
OPERATIONS RESEARCH
Vol. 57, No. 4, July–August 2009, pp. 823–839
issn 0030-364X !eissn 1526-5463 !09 !5704 !0823

informs ®

doi 10.1287/opre.1080.0638
©2009 INFORMS

Efficiency of Scalar-Parameterized Mechanisms
Ramesh Johari

Department of Management Science and Engineering, Stanford University, Stanford, California 94305,
ramesh.johari@stanford.edu

John N. Tsitsiklis
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,

jnt@mit.edu

We consider the problem of allocating a fixed amount of an infinitely divisible resource among multiple competing, fully
rational users. We study the efficiency guarantees that are possible when we restrict to mechanisms that satisfy certain
scalability constraints motivated by large-scale communication networks; in particular, we restrict attention to mechanisms
where users are restricted to one-dimensional strategy spaces. We first study the efficiency guarantees possible when the
mechanism is not allowed to price differentiate. We study the worst-case efficiency loss (ratio of the utility associated with
a Nash equilibrium to the maximum possible utility), and show that Kelly’s proportional allocation mechanism minimizes
the efficiency loss when users are price anticipating. We then turn our attention to mechanisms where price differentiation
is permitted; using an adaptation of the Vickrey-Clarke-Groves class of mechanisms, we construct a class of mechanisms
with one-dimensional strategy spaces where Nash equilibria are fully efficient. These mechanisms are shown to be fully
efficient even in general convex environments, under reasonable assumptions. Our results highlight a fundamental insight
in mechanism design: when the pricing flexibility available to the mechanism designer is limited, restricting the strategic
flexibility of bidders may actually improve the efficiency guarantee.

Subject classifications : game/group decisions: noncooperative, bidding/auctions; networks/graphs: theory;
utility/preference: theory.

Area of review : Revenue Management.
History : Received January 2007; revisions received November 2007, March 2008, June 2008; accepted July 2008.

Published online in Articles in Advance May 6, 2009.

1. Introduction
We consider the problem of allocating a fixed amount of
an infinitely divisible resource among multiple competing,
fully rational users, a problem that has received extensive
attention in recent literature on pricing of communication
resources (Shenker et al. 1996, Falkner et al. 2000). We
investigate a fundamental question: What is the best achiev-
able efficiency when users are fully rational? We study the
efficiency guarantees that are possible when we restrict our-
selves to mechanisms that satisfy certain constraints moti-
vated by large-scale communication networks.
Our starting point is a mechanism introduced by Kelly

(1997). For the special case of a single resource in fixed
supply, his scheme is easily described. Each user chooses
a total payment, or bid. The resource is then allocated to
users in proportion to their bids, and each user pays an
amount equal to his bid; equivalently, a market-clearing
price is set equal to the sum of the bids divided by the total
amount of available resource.
This scheme has two desirable properties: First, the strat-

egy space of the users is “simple,” i.e., one-dimensional;
and second, the feedback required from the mechanism
to the users is a single price per unit of resource. Both
features are central requirements for a mechanism to be
practical in the context of large networks. To keep the
communication from the users to the network simple, it is

reasonable to restrict users to one-dimensional bids; we
refer to mechanisms that restrict users to such bids as
scalar-parameterized mechanisms. Further, in communica-
tion networks, mechanisms that use “aggregate feedback”
are considered scalable (Shenker 1990); this is one motiva-
tion for mechanisms that choose only a single price. The
Kelly mechanism is designed to incorporate both of these
design principles simultaneously (see also Kelly et al. 1998
and Srikant 2004).
Kelly (1997) considered a model where each user is

endowed with a concave, increasing utility that is a func-
tion of the received resource allocation. He showed that
if users do not anticipate the effect of their bid choices
on market-clearing prices, then at equilibrium, a fully effi-
cient allocation is achieved—that is, an allocation where
the aggregate utility of the users has been maximized. How-
ever, this analysis assumed that users are not fully ratio-
nal and do not fully anticipate the effects of their bids
on prices. By contrast, Johari and Tsitsiklis (2004) consid-
ered a game-theoretic model of the Kelly mechanism where
users are price anticipating, and established that the aggre-
gate utility at a Nash equilibrium is no worse than 75% of
the maximal aggregate utility.
In this paper, we investigate the optimality of the result

of Johari and Tsitsiklis (2004). Our results provide two
major insights. First, we show that if we restrict attention
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to a class of mechanisms where users only submit one-
dimensional bids, and the mechanism only chooses a single
price, then the Kelly mechanism exhibits the best possi-
ble efficiency guarantee. Formally, we consider a class of
market-clearing mechanisms; in these mechanisms each user
submits a scalar-parameterized demand function, and a sin-
gle price is chosen to clear the market. Under reasonable
assumptions, we show that the Kelly mechanism minimizes
the worst-case efficiency loss at a Nash equilibrium when
users are price anticipating. This result complements the
work of Maheswaran and Basar (2004): they reached similar
conclusions for a qualitatively different class of mechanisms
involving differentiated prices that are functions of individ-
ual bids, as opposed to our single prices that are functions of
all bids. See §2.1 for details.
Our second major insight is aimed at understanding the

importance of the single-price assumption in the preceding
result. To investigate this point, we preserve the assump-
tion that bids are one-dimensional, but remove the restric-
tion that the mechanism only chooses a single price. We
ask: How much can we improve the efficiency guarantee
if the mechanism is allowed to choose a different price
for each user? Using a class of mechanisms inspired by
the Vickrey-Clarke-Groves (VCG) approach (Vickrey 1961,
Clarke 1971, Groves 1973), we show that if users are
restricted to using one-dimensional bids, but the mechanism
can price differentiate (i.e., set a different price for each
user), then fully efficient Nash equilibria can be achieved—
not only in a single-resource setting, but also in general
convex environments. We call these mechanisms scalar
strategy VCG !SSVCG" mechanisms.1 We note that as a
special case, SSVCG mechanisms contain an earlier class
of mechanisms obtained by Yang and Hajek (2006a) and
Maheswaran (2003); we further discuss this relationship
in §§2.2 and 5.2.

Outline. The remainder of this paper is organized as
follows. In §2, we discuss related work. In §3, we give
the mathematical framework of our optimal mechanism
design problem. We restrict attention to allocation of a sin-
gle infinitely divisible resource among multiple users. Each
user is endowed with a concave, strictly increasing, differ-
entiable utility function, and makes strategic decisions to
maximize his utility less payment.
In §3.1, we begin by embedding the Kelly mechanism

into a broader class of market-clearing mechanisms. We
make a simple but crucial observation: a user’s bid # estab-
lishes a relation d = #/p between the quantity d allocated
to the user, and the market-clearing price p per unit of the
resource. This can be viewed as having the user submit
a demand function D!p$#", which specifies demand as a
function of p. The user is, however, limited to a particular
one-parameter family of demand functions, demand func-
tions of the form D!p$#"= #/p; choosing a value for the
parameter # is all the freedom given to the user.
Although the Kelly mechanism assumes a specific form

forD!p$#", an entire family of market-clearing mechanisms

results if we consider alternative forms for D!p$#". This
added generality retains the simplicity of the Kelly mech-
anism: each user selects from a one-dimensional strategy
space, and a single price is charged to all users. Formally,
we restrict attention to smooth market-clearing mechanisms
defined by a differentiable parameterized demand function
D!p$#".2 In these mechanisms, each user r chooses a strat-
egy #r ! 0. A price p∗ = pD!!" is then chosen to clear
the market, i.e., so that

∑

r D!p
∗$ #r" = C, where C is

the supply, the amount of available resource. Each user r
then receives an allocationD!p∗$ #r", and pays p∗D!p∗$ #r".
A smooth market-clearing mechanism is thus entirely spec-
ified by the parametric family of demand functions D!p$#".
We emphasize that although the class of demand functions
is constrained in this way, no such constraints are imposed
on the true utility functions of the users (other than concav-
ity and monotonicity).
In §3.2, we recapitulate existing results regarding the

Kelly mechanism. We note that the Kelly mechanism yields
full efficiency when users are price taking, and guarantees
an efficiency of 75%: i.e., the aggregate utility at a Nash
equilibrium is no less than 75% of the maximal aggregate
utility when users are price anticipating, and this bound is
tight.
With this background, our objective is to maximize the

market’s efficiency. In particular, we wish to determine
whether the 75% guarantee of the Kelly mechanism can
be improved. In §4, we consider a class ! of smooth
market-clearing mechanisms where: (1) users’ payoffs are
concave when users are price anticipating, i.e., when they
fully anticipate the functional form of the market-clearing
price pD!!"; and (2) for each p, the range of D!p$#", as
# varies over the nonnegative real numbers, is the entire
interval [0$#). We explain why these assumptions are rea-
sonable, and give examples of mechanisms in ! beyond
the Kelly mechanism.
We show in Theorem 1 that in this class of mechanisms,

the Kelly mechanism minimizes the worst-case efficiency
loss when users are price anticipating, and is the unique
mechanism with this property. In the process, we also give
a structural description of all mechanisms in this class: any
mechanism satisfying the given assumptions must be of
the form D!p$#" = #/B!p", where B is concave, strictly
increasing, and invertible on (0$#). Notably, this structural
characterization implies that any such mechanism is a pro-
portional allocation mechanism: the allocation is always
made in proportion to the bids, as is true for the Kelly
mechanism. Thus, mechanisms in ! differ only in the
prices they choose for any given vector of users’ bids.
For any smooth market-clearing mechanism, users have

one-dimensional strategy spaces, and the mechanism only
chooses a single price. Because of these constraints, even
the highest performance mechanism—the Kelly mecha-
nism—suffers a positive efficiency loss. In §5, we consider
the implications of removing the “single price” constraint,
while retaining the constraint that strategy spaces must
be one-dimensional. We show in §5.2 that if we consider
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mechanisms with scalar strategy spaces, and allow the mech-
anism to choose a different price for each user, then in
fact full efficiency is achievable at Nash equilibrium; this
is shown via a class of mechanisms called SSVCG mech-
anisms (see above); we show that as a special case of
this mechanism, one can recover the mechanism and main
conclusions of Yang and Hajek (2006a) and Maheswaran
(2003). The result involves adapting the well-known class of
VCG mechanisms to the case of scalar strategy spaces. For
SSVCG mechanisms, we are also able to consider far more
general resource allocation environments. In particular, we
show that for a very general class of convex resource allo-
cation problems, if the utility of a user depends only on a
scalar function of the vector of resources allocated to that
user, then SSVCG mechanisms ensure that full efficiency is
achievable at Nash equilibrium. We show that an efficient
Nash equilibrium always exists, and we also give reasonable
sufficient conditions under which all Nash equilibria are effi-
cient. As an illustration, we apply our SSVCG framework to
a standard multicommodity flow problem. We conclude with
a discussion of extensions and open problems in §6.

2. Related Work
In this section, we review threads of the existing literature
related to our work. One body of recent work concerns the
characterization of efficiency loss in scalar-parameterized
mechanisms; we compare this work with the results of §4.
A second thread of the literature studies the design of scalar-
parameterized mechanisms that achieve full efficiency; we
compare this work with the results of §5.

2.1. Efficiency Loss of Scalar-Parameterized
Mechanisms

In §4, we show that in the class ! of smooth market-
clearing mechanisms, the Kelly mechanism uniquely min-
imizes the worst-case efficiency loss when users are price
anticipating. The efficiency loss of the Kelly mechanism
was first studied by Johari and Tsitsiklis (2004); sub-
sequently, several others have studied efficiency loss of
related resource allocation mechanisms, including Chen
and Zhang (2008), Johari et al. (2005), Johari and
Tsitsiklis (2006), Maheswaran (2003), Maheswaran and
Basar (2004), Moulin (2008b), Sanghavi and Hajek (2004),
and Yang and Hajek (2006a). More generally, several
works in the recent literature aim at quantifying efficiency
losses in games, e.g., for routing (Czumaj and Voecking
2002, Koutsoupias and Papadimitriou 1999, Mavronicolas
and Spirakis 2001), traffic networks (Correa et al. 2004,
Roughgarden and Tardos 2002), network design problems
(Anshelevich et al. 2003, Fabrikant et al. 2003), and supply
chain management (Roels and Perakis 2007); for a more
comprehensive discussion on work in this area, the reader
is referred to the survey text of Nisan et al. (2007).
The most closely related result to ours is presented by

Maheswaran and Basar (2004). They consider mechanisms

where each user r chooses a bid wr , and the allocation is
made proportional to each user’s bid. However, rather than
assuming that every user pays wr as in the Kelly mech-
anism, Maheswaran and Basar consider a class of mech-
anisms where the user pays c!wr", where c is a convex
function.3 They show that in this class of mechanisms, the
Kelly mechanism (i.e., a linear function c) achieves the
minimal worst-case efficiency loss when users are price
anticipating.
We note that, in general, in Maheswaran and Basar’s

model, different users are charged different per-unit prices
for the resource they obtain (i.e., pricing is nonuniform),
unless c is linear—exactly the Kelly mechanism. By con-
trast, in every mechanism in the class of mechanisms we
consider, all users are charged the same per-unit price (i.e.,
the market-clearing price), where the price is a function
of the vector of all bids, which depends on the specific
mechanism chosen. Thus, our results prove optimality of
the Kelly mechanism in a distinct regime from Maheswaran
and Basar.
We also note that our work is substantially different

in another way from Maheswaran and Basar because we
do not postulate a priori that the mechanism must allo-
cate the resource in proportion to users’ bids; instead, this
emerges as a consequence of our rather natural assump-
tions on the mechanisms in !. Several other works
on efficiency of resource allocation mechanisms, includ-
ing Maheswaran and Basar (2004) and Yang and Hajek
(2006a), assume a priori that allocations are made in pro-
portion to users’ bids. In this sense, our result lends a rigor-
ous foundation to the intuition that proportional allocation
mechanisms—those that allocate the resource in proportion
to users’ bids—yield a natural approach to resource alloca-
tion among competing users.
We conclude this section by noting that because the

class ! induces constraints on the communication both to
and from the mechanism, a strictly positive efficiency loss
is inevitable. Our approach in §4 can be viewed as an opti-
mization problem that aims at minimizing efficiency loss
subject to communication constraints.

2.2. Fully Efficient Scalar-Parameterized
Mechanisms

In §5, we relax the assumption that all users must pay
the same per-unit price for the resource. We construct a
class of scalar strategy VCG mechanisms that ensure that
Nash equilibria are fully efficient. The literature in both
economics and, more recently, in operations research has a
significant body of work related to this problem. The sem-
inal results of Vickrey (1961), Clarke (1971), and Groves
(1973) established that if users can submit entire utility
functions, and the mechanism can choose individualized
prices (i.e., one price per user), then full efficiency can be
achieved as a dominant strategy equilibrium. In our set-
ting, however, because of the restriction to one-dimensional
strategy spaces, it is not possible to achieve full efficiency
in dominant strategies.
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Reichelstein and Reiter (1988) presented a key general
result in the theory of mechanism design with restricted
strategy spaces. Their paper calculates the minimal strat-
egy space dimension that allows for fully efficient Nash
equilibria for a general class of economic models known as
exchange economies. Their results apply to general convex
environments such as those studied in §5.3; however, their
mechanisms require a strategy space per user of dimension
!J −1"+J /!R!R−1"", where J is the number of resources
being allocated (e.g., the number of links in a network),
and are “asymmetric,” in the sense that different users are
treated differently, even if they all choose the same strate-
gies. We are able to use a strategy space smaller than their
bound, in part because each user’s utility depends only on
a scalar function of the allocation to that user, and in part
because we assume quasilinear preferences.
More recently, for the special case of multicommod-

ity flow, Semret (1999) presented a class of mechanisms
similar to the VCG class, but where each user has a two-
dimensional strategy space; the author demonstrates exis-
tence of an approximately efficient Nash equilibrium, but
does not establish conditions under which all equilibria are
efficient. Maheswaran and Basar (2004) (as well as the ear-
lier work, Maheswaran 2003) and Yang and Hajek (2006a)
independently suggested a mechanism for allocation of a
single infinitely divisible resource in fixed supply. They
demonstrated that Nash equilibria of this mechanism are
efficient. Remarkably, as we will see in §5, their mech-
anism can be recovered as a special case of the SSVCG
mechanisms we develop.
We note here that simultaneously and independently of

our work described in §5, Yang and Hajek (2007) pro-
posed a class of VCG-like mechanisms with scalar strategy
spaces; these results were first presented by Yang and Hajek
(2006b). In some respects, their work is more special-
ized than ours: they restrict attention to network resource
allocation settings and consider a less general class of
mechanisms. However, their paper also considers various
extensions not discussed here: “soft” capacity constraints,
specified through penalty functions; revenue of SSVCG
mechanisms; and dynamic algorithms that converge to effi-
cient Nash equilibria.
Subsequent to our work (Johari and Tsitsiklis 2005) and

the work of Yang and Hajek (2007), several papers have pre-
sented related constructions of mechanisms that use limited
communication yet achieve fully efficient Nash equilibria
(Dimakis et al. 2006, Stoenescu and Ledyard 2006, Moulin
2008a). Building on the work of Semret (1999) discussed
above, Dimakis et al. (2006) establish that a VCG-like mech-
anism where agents submit a pair of strategies (requested
price and quantity) can achieve fully efficient equilibrium
for a related resource allocation game. Stoenescu and Led-
yard (2006) consider the problem of resource allocation by
building on the notion of minimal message spaces addressed
in earlier literature on mechanism design, and propose a
class of efficient mechanisms with restricted strategy spaces.

Finally, Moulin (2008a) considers the design of efficient
scalar-parameterized mechanisms where the net monetary
transfer from users is minimized.
Several other papers have considered the consequences

of restricted communication in a discrete setting where
complexity is measured in bits, rather than dimension.
Blumrosen et al. (2007) consider a setting where each bid-
der in an auction for a single indivisible item can only
transmit a fixed number of bits to the auctioneer. Fadel
and Segal (2009) use a communication-complexity theo-
retic approach to study the number of bits necessary to
achieve efficiency under a variety of notions of equilibrium.
Both papers treat substantively different environments from
those studied here, and of course the methods of analysis
are substantially different as well.

3. Preliminaries
The basic model we study is similar to the one studied
by Kelly (1997) and Johari and Tsitsiklis (2004). We con-
sider a collection of R users bidding for a share of a finite,
infinitely divisible resource of capacity C. We begin by
describing the users. Each user r is endowed with a util-
ity function Ur! · " that determines the monetary value of
any resource allocation to user r . We let U= !U1$ % % % $UR"
denote the vector of utility functions. We make the follow-
ing assumption, which will remain in force throughout the
paper, unless explicitly mentioned otherwise.

Assumption 1. For each r , and over the domain dr ! 0,
the utility function Ur!dr" is nonnegative, concave, strictly
increasing, and continuous; and over the domain dr > 0,
Ur!dr" is continuously differentiable. Furthermore, the
right directional derivative at 0, denoted U ′

r !0", is finite.
We let " denote the set of all utility functions satisfying
these conditions.

Note that although we make rather strong differentiabil-
ity assumptions, these are not essential to the argument;
however, they ease the technical presentation. We call a
triple (C$R$U), where C > 0, R> 1, and U ∈"R, a utility
system; our goal is to design a resource allocation mecha-
nism that has high efficiency for all utility systems.
We assume that utility is measured in monetary units;

thus, if user r receives a rate allocation dr , but must pay wr ,
he receives a net payoff given by4

Ur!dr"−wr%

Given any vector of utility functions U ∈"R, our goal is
to maximize aggregate utility, as defined in the following
problem:

SYSTEM!C$R$U":

maximize
R
∑

r=1

Ur!dr" (1)

subject to
R
∑

r=1

dr "C$ (2)

d! 0% (3)
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We will say that d solves SYSTEM!C$R$U" if d is an
optimal solution to (1)–(3).

3.1. Smooth Market-Clearing Mechanisms

In general, the utility system (C$R$U) is unknown to the
mechanism designer, so a mechanism must be designed to
elicit information from the users. The following definition
captures the types of market mechanisms that we study. Let
#+ = &x ∈# ! x! 0'.

Definition 1. A differentiable function D( !0$#" × #+

→ #+ is said to define a smooth market-clearing mecha-
nism if for all C > 0, for all R > 1, and for all nonzero
! ∈ !#+"R, there exists a unique solution p > 0 to the fol-
lowing equation:

R
∑

r=1

D!p$#r"=C% (4)

We let pD!!" denote this solution.5

We can interpret a smooth market-clearing mecha-
nism in terms of a market-clearing process. Each user r
chooses a parameter #r , which specifies a demand func-
tion p )→D!p$#r", and determines user r’s demand for
the resource as a function of the price p of the resource.
The mechanism then chooses a single price p = pD!!"
so that aggregate demand equals the available capacity
(cf. (4)). Each consumer r then receives a resource alloca-
tion of D!p$#r", and pays pD!p$#r". Note that (1) each
user is restricted to a one-dimensional strategy space;
and (2) the mechanism only uses a single price to allo-
cate the resource; i.e., the mechanism does not price
discriminate.

Remark 1. Although our definition implicitly restricts the
strategy #r of each user to #+, the subsequent analysis can
be adapted to hold even if the strategy space of each user
is allowed to be [c$#), where c ∈#.

Remark 2. The market-clearing price is undefined if
!= 0. As we will see below, when we formulate a game
between consumers for a given function D, we will assume
that the payoff to all users is −# if the composite strategy
vector is != 0. Note that this is slightly different from the
definition in Johari and Tsitsiklis (2004), where the payoff
to a user with utility function U and strategy #= 0 is U!0".
We will discuss this distinction further later; we simply
note for the moment that it does not affect our results.

We will study the performance of smooth market-clear-
ing mechanisms through their equilibria. Two notions of
equilibrium are relevant to our analysis: competitive equi-
librium and Nash equilibrium. In a competitive equilibrium,
users act as price takers; that is, they do not anticipate the
effect of their actions on the market-clearing price. Con-
versely, at a Nash equilibrium, users are completely rational
and anticipate the functional dependence of the market-
clearing price pD!!" on their own strategic decisions. Nash

equilibrium is a complete information solution concept:
implicitly, we assume that players’ payoff functions are
common knowledge. The formal definitions of competitive
equilibrium and Nash equilibrium are as follows.

Definition 2. Given a utility system (C$R$U) and a
smooth market-clearing mechanism D, we say that a
nonzero vector ! ∈ !#+"R is a competitive equilibrium if,
for )= pD!!", there holds for all r :

#r ∈ argmax
#̄r!0

*Ur!D!)$ #̄r ""−)D!)$ #̄r "+% (5)

Definition 3. Given a utility system (C$R$U) and a
smooth market-clearing mechanism D, we say that a
nonzero vector ! ∈ !#+"R is a Nash equilibrium if there
holds for all r :

#r ∈ argmax
#̄r!0

Qr!#̄r ,!−r "$ (6)

where

Qr!#r,!−r "

=















Ur!D!pD!!"$ #r""−pD!!"D!pD!!"$ #r"

if ! *= 0$

−# if != 0%

(7)

Notice that the payoff Qr is −# if the composite strategy
vector is ! = 0 because in this case no market-clearing
price exists.
One prominent example of a smooth market-clearing

mechanism is the Kelly mechanism, studied in the context
of communication networks by Kelly (1997); we discuss
this mechanism in the next section.

3.2. The Kelly Mechanism

In this section, we define the Kelly mechanism and survey
some of its basic properties. In the Kelly mechanism, each
user r submits a payment (also called a bid) of wr to the
resource manager. Given the vector w = !w1$ % % % $wr", the
resource manager chooses an allocation d = !d1$ % % % $ dr".
The mechanism does not price discriminate; thus, each user
is charged the same price ) > 0, leading to dr = wr/).
If the entire capacity C is allocated, then we expect the
price ) to satisfy

∑

r

wr

)
=C%

The preceding equality can only be satisfied if
∑

r wr > 0,
in which case we have

)=
∑

r wr

C
% (8)

In other words, if the manager chooses to allocate the entire
resource and does not price discriminate between users,
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then for every nonzero w there is a unique price ) > 0
that must be chosen by the network, given by the previous
equation. The allocation dr!w" to user r is thus

dr!w"=







wr
∑

s ws

C if wr > 0$

0 if wr = 0$
(9)

and the payoff to user r (when w *= 0) is Ur!dr!w""−wr .
The Kelly mechanism is a smooth market-clearing mech-

anism. To see this interpretation, note that when a user
chooses a total payment wr , it is as if the user has chosen a
demand function D!p$wr"=wr/p for p > 0. The resource
manager then chooses a price ) so that

∑

r D!)$wr"=C,
i.e., so that the aggregate demand equals the supply C. For
the specific form of demand functions we consider here,
this leads to the expression for ) given in (8). User r then
receives an allocation given by D!)$wr", and makes a pay-
ment )D!)$wr"=wr .
The following remarks summarize the key insights about

the Kelly mechanism.

Remark 3. Notice that the Kelly mechanism allocates the
resource in proportion to the bids of the users (from (9)).
We refer to mechanisms of this form as proportional allo-
cation mechanisms; they will play a key role in our analysis
in §4.

Remark 4. When users act as price takers, then given a
price ) > 0, each user r chooses wr ! 0 to maximize
Ur!wr/)" − wr . For the Kelly mechanism, a competitive
equilibrium always exists, and the resulting allocation is
fully efficient (Kelly 1997); this result is a special case
of the first fundamental theorem of welfare economics
(Mas-Colell et al. 1995, Chapter 16).

Remark 5. When users act as price anticipators, they max-
imize their payoff with the knowledge that the price will
be set according to (8). Johari and Tsitsiklis (2004) ana-
lyze this setting through the Nash equilibria of the resulting
game; they show that for any utility system, at the unique
Nash equilibrium of this game, the aggregate utility at the
resulting allocation achieves at least 75% of the maximum
possible aggregate utility.

In the next section, we consider a broader class of mech-
anisms that includes the Kelly mechanism as a special case,
and use this setting to investigate the optimality of the Kelly
mechanism.

4. Optimality of the Kelly Mechanism
In this section, we ask the following type of fundamental
question: Is a particular mechanism “desirable” among a
class of mechanisms satisfying certain “reasonable” prop-
erties? Defining desirability is the simpler of the two tasks:
we consider a mechanism to be desirable if it minimizes
worst-case efficiency loss when users are price anticipating.

Importantly, we ask for this efficiency property independent
of the utility functions of the market participants, and their
number. That is, the mechanisms we seek are those that
perform well under broad assumptions on the nature of the
preferences of market participants. We will show that under
a specific set of assumptions, the Kelly mechanism in fact
minimizes the worst-case efficiency loss when users are
price anticipating.
We now frame the specific class ! of market mecha-

nisms we consider in this section, defined as follows.

Definition 4. The class ! consists of all functions
D!p$#" such that the following conditions are satisfied:
1. D defines a smooth market-clearing mechanism (cf.

Definition 1).
2. For all C > 0, and for all Ur ∈", a user’s payoff is

concave if he is price anticipating; that is, for all R, and
for all !−r ∈ !#+"R, the function

Ur!D!pD!!"$ #r""−pD!!"D!pD!!"$ #r"

is concave in #r > 0 if !−r = 0, and concave in #r ! 0 if
!−r *= 0.
3. For all p > 0, and for all d ! 0, there exists a # ! 0

such that D!p$#"= d.

We pause here to briefly discuss the conditions in the
previous definition. The second one allows us to character-
ize Nash equilibria in terms of only first-order conditions.
To justify this condition, we note that some assumption of
quasiconcavity is generally used to guarantee existence of
pure-strategy Nash equilibria (Fudenberg and Tirole 1991).
The third condition ensures that given a price p and desired
allocation d ∈ *0$C+, each user can make a choice of # to
precisely guarantee the allocation d. This is an “expressive-
ness” condition on the mechanism, which ensures all pos-
sible demands can be chosen at any market-clearing price.
The following example gives a family of mechanisms that
lie in !.

Example 1. Suppose that D!p$#"= #p−1/-, where -! 1.
It is easy to check that this class of mechanisms satis-
fies D ∈! for all choices of -; when - = 1, we recover
the Kelly mechanism. The market-clearing condition yields
that pD!!"= !

∑

r #r/C"
1/-. Note that as a result, the allo-

cation to user r at a nonzero vector ! is

D!pD!!"$ #r"=
#r

∑

s #s
C%

In other words, regardless of the value of -, the market-
clearing allocations are chosen proportional to the bids.
This remarkable fact is a special case of a more general
result we establish below: all mechanisms in ! are pro-
portional allocation mechanisms; they differ only in the
market-clearing price that is chosen.
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Our interest is in the worst-case ratio of aggregate utility
at any Nash equilibrium to the optimal value of SYSTEM.
Formally, for D ∈! we define a constant .!D" as follows:

.!D"= inf
{∑R

r=1Ur!D!pD!!"$ #r""
∑R

r=1Ur!dS
r "

∣

∣

∣

∣

C > 0$ R> 1$

U ∈"R$ dS solves SYSTEM!C$R$U"$

and ! is a Nash equilibrium
}

%

Note that because all U ∈" are strictly increasing and non-
negative, the aggregate utility

∑R
r=1Ur!d

S
r " is positive for

any utility system (C$R$U) with C > 0, and any optimal
solution dS to SYSTEM. However, Nash equilibria may not
exist for some utility systems (C$R$U); in this case, we
set .!D"= 0.

Our main result in this section is the following theorem.

Theorem 1. Given D ∈!(
1. For any utility system (C$R$U), there exists a com-

petitive equilibrium !. Furthermore, for any such !, the
resulting allocation d given by dr = D!pD!!"$ #r" solves
SYSTEM!C$R$U".
2. There exists a concave, strictly increasing, differen-

tiable, and invertible function B( !0$#"→ !0$#" such that
for all p > 0 and #! 0,

D!p$#"= #

B!p"
%

3. .!D" " 3/4, and this bound is met with equality if
and only if D!p$#"=/#/p for some /> 0.

Before continuing to the proof, we make the following
key remark.

Remark 6. Parts 1 and 2 of the theorem provide a char-
acterization of the types of mechanisms allowed by the
constraints that define !. In particular, notice that for
nonzero !, the market-clearing condition (4) yields

C =
R
∑

r=1

D!pD!!"$ #r"=
∑R

r=1 #r
B!pD!!""

$ (10)

which implies that

D!pD!!"$ #r"=
#r

∑R
s=1 #s

C, (11)

in other words, every mechanism in ! is a proportional
allocation mechanism. As a result, we conclude that for
a given vector !, when the market clears, mechanisms
in ! differ from the Kelly mechanism only in the market-
clearing price—the allocation is the same. Part 3 of the the-
orem then characterizes the efficiency loss of mechanisms
of this form.
We emphasize that the theorem here is distinguished in

part from related work because the allocation rule (11) was
not assumed in advance. Rather, the result here starts from
a set of simple assumptions on the structure of mechanisms
to be considered (the definition of the class !), and uses
them to prove that any mechanism in the class must lead
to the allocation in (11).

Proof. Throughout the proof, we fix a particular mecha-
nism D ∈!.
Step 1. For all R > 1 and !−r ∈ !#+"R−1, the func-

tions D!pD!!"$ #r" and −pD!!"D!pD!!"$ #r" are concave
in #r > 0 if !−r = 0, and concave in #r ! 0 if !−r *= 0. This
conclusion follows by considering linear utility functions
with a very large and a very small slope, respectively. Let
Ur!dr"= -dr , with -> 0. If we apply Condition 2 of Def-
inition 4 with -→#, then it follows that D!pD!!"$ #r" is
concave in #r for nonzero !. Similarly, if we let -→ 0,
it follows that −pD!!"D!pD!!"$ #r" is concave in #r for
nonzero !.
Step 2. A user’s payoff is concave if he is price taking.

In other words, we will show that for all U ∈ " and for
all p > 0, U!D!p$#""−pD!p$#" is concave in #. The key
idea is to use a limiting regime where both the number of
users and the capacity grow large, so that users that are price
anticipating effectively become price taking. The details are
deferred to the electronic companion, which is available as
part of the online version that can be found at http://or.pubs.
informs.org/.
Step 3. There exists a positive function B such that

D!p$#"= #/B!p" for p > 0 and #! 0. By Step 2, a user’s
payoff is concave when he is price taking. By choosing
U!d" = -d where - >p (respectively, - <p ), it follows
that D!p$#" must be concave (respectively, convex) in # for
a given p > 0. Thus, for fixed p > 0, D!p$#" is an affine
function of #. Condition 3 in Definition 4 then implies that
the constant term must be zero, while the coefficient of the
linear term is positive; thus, D!p$#" = #/B!p" for some
positive function B!p".
Before continuing, we note that the previous step already

implies the fact that any mechanism D ∈ ! must be
a proportional allocation mechanism. This follows from
Remark 6.
Step 4. For all utility systems !C$R$U", there exists a

competitive equilibrium, and it is fully efficient. This step
relies critically on Condition 3 in Definition 4: given a
price ), a user can first determine his optimal choice of
quantity, and then choose a parameter # to express this
choice.
Formally, fix a utility system (C$R$U). Let d be an opti-

mal solution to SYSTEM!C$R$U", and let ) be the corre-
sponding Lagrange multiplier, i.e., ) satisfies the following
optimality conditions:

U ′
r !dr"=) if dr > 0$ (12)

U ′
r !0"") if dr = 0% (13)

For each r , choose #r = B!)"dr . Clearly, ) = pD!!";
furthermore, the optimality conditions (12)–(13) ensure
that (5) holds for all r . Thus, ! is a competitive equilibrium.
Finally, we check that every competitive equilibrium

yields an allocation that is an optimal solution to SYSTEM
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!C$R$U". By Condition 3 in Definition 4, note that for any
price)> 0, we have

max
dr!0

!Ur!dr"−)dr"=max
#r!0

!Ur!D!)$#r""−)D!)$#r""%

Thus, if ! is a competitive equilibrium, then the optimality
conditions (12)–(13) must hold with )= pD!!" and dr =
D!)$#r". We conclude that d is an optimal solution to
SYSTEM!C$R$U". This establishes the first claim of the
theorem.
Step 5. B is an invertible, differentiable, strictly increas-

ing, and concave function on !0$#". The technical details
are deferred to the electronic companion. In the sequel, we
let 0( !0$#"→ !0$#" be the (necessarily differentiable)
inverse of B.
Step 6. Let !C$R$U" be a utility system. A vector !! 0

is a Nash equilibrium if and only if at least two compo-
nents of ! are nonzero, and there exists a nonzero vector
d ! 0 and a scalar ) > 0 such that #r = )dr for all r ,
∑R

r=1 dr =C, and the following conditions hold(

U ′
r !dr"

(

1− dr

C

)

=0!)"

(

1− dr

C

)

+)0′!)"

(

dr

C

)

if dr > 0$ (14)

U ′
r !0""0!)" if dr = 0% (15)

In this case dr = D!pD!!"$ #r", ) = ∑R
r=1 #r/C, and

0!)"= pD!!". The proof is developed using the first-order
necessary and sufficient conditions for a vector ! to be
a Nash equilibrium; details are deferred to the electronic
companion.
Step 7. Let !C$R$U" be a utility system. Then, there

exists a unique Nash equilibrium. Our approach is to
demonstrate existence of a Nash equilibrium by find-
ing a solution ) > 0 and d ! 0 to (14)–(15), such that
∑R

r=1 dr =C. The technical details are deferred to the elec-
tronic companion.
Step 8. If the function 0 is not linear, there exists a

utility system !C$R$U" such that at the unique Nash equi-
librium !, the aggregate utility is strictly less than 3/4
of the maximal aggregate utility. Consider a utility system
with the following properties. Let C = 1. Fix ) > 0, and
let U1!d1" = Ad1, where A > 0!)". We will choose the
remaining utilities so that we obtain a solution to the Nash
conditions (14)–(15) with market-clearing price 0!)".
We start by calculating d1 by assuming it is nonzero, and

applying (14):

d1 =
!A−0!)""C

A−0!)"+)0′!)"
% (16)

We then choose users 2$ % % % $R to have identical linear util-
ity functions, with slopes less than A. As we will see, this
will be possible if R is large enough. Formally, let d =
!C −d1"/!R− 1", and (cf. (14)) define

-= 0!)"C + !)0′!)"−0!)""d

C −d
% (17)

Let Ur!dr"= -dr for r = 2$ % % % $R. Note that as R increases
to infinity, d tends to zero and - converges to 0!)", which
is less than A. This guarantees that d1 must be nonzero at
any Nash equilibrium, which then implies that d1 is indeed
given by (16). In turn, letting dr = d for r = 2$ % % % $R,
this implies that (d1$ % % % $ dR) and ) are a valid solution to
(14)–(15), when users have utility functions U1$ % % % $UR.

Now consider the limiting ratio of Nash aggregate util-
ity to maximal aggregate utility, as R → #, in which
case, d → 0, and -→0!)". Regardless of R, a solution
to SYSTEM!C$R$U" is to allocate the entire resource to
user 1, so the maximal aggregate utility is AC. Thus, the
limiting ratio of Nash aggregate utility to maximal aggre-
gate utility becomes
Ad1 +-!C −d1"

AC

= !A−0!)""

A−0!)"+)0′!)"

+
(

1− !A−0!)""

A−0!)"+)0′!)"

)(

0!)"

A

)

% (18)

We will show that for a suitable choice of A and ), with
)> 0 and A>0!)", this value is less than 3/4.
Given that the nonnegative and convex function 0

has been assumed to be nonlinear, it is straightforward
to check that there exists some ) > 0 for which 1 =
)0′!)"/0!)" > 1. At this value of ), the right-hand side
of (18) can be rewritten in the form

!1− x"2

1+ !1− 1"x
+ x$ (19)

where x=0!)"/A. By choosing x= 1/2, i.e., A= 20!)",
we see that that the ratio is indeed strictly smaller than 3/4,
establishing the claim.
The proof of the theorem is completed by observing that

when 0 is linear, we have D!p$#"=/#/p for some /> 0,
recovering the Kelly mechanism. Thus, the worst-case effi-
ciency ratio is known to be exactly equal to 3/4 (Johari and
Tsitsiklis 2004). #

Remark 7. In fact, it is possible to prove something much
stronger than the previous theorem: for any mechanism
D ∈!, we can explicitly characterize the exact worst-case
efficiency loss when users are price anticipating. We have
shown that all mechanisms D satisfying the conditions of
the theorem must be of the form D!p$#"= #/B!p". Recall
from the proof that 0!)" is the differentiable inverse of B.
If we define

1∗ =max
)>0

[

)0′!)"

0!)"

]

=
(

inf
p>0

[

pB′!p"

B!p"

])−1

$ (20)

we can then show that .!D" = G!1∗", where the func-
tion G is given by

G!1"=



















3
4

if 1 = 1$

212 − 31
√

1+
√

1

!1− 1"2
√

1
if 1 > 1%

(21)
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Figure 1. The function G!1" defined in (21). Note that
G!1" is strictly decreasing, with G!1"= 3/4.
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Details are available in Chapter 5 of Johari (2004); the
function G is plotted in Figure 1. The proof involves
(i) showing that examples constructed as in Step 8 of the
proof of Theorem 1 in fact yield the worst case efficiency
loss when users are price anticipating, and (ii) picking the
worst possible values of 1 and x. For any 1, the valueG!1"
is just the minimum of expression (19) over x ∈ !0$1". Fur-
thermore, G is strictly decreasing for 1 ! 1, which means
that the worst possible value of expression (19) is obtained
by employing the largest-possible value of 1. Note that
the quantity pB′!p"/B!p" is the elasticity of B!p" (Varian
1992), a common measure of the degree of “nonlinearity”
of a function. Thus, 1/1∗ is the minimal elasticity of B!p"
over all p > 0. To summarize, the worst case efficiency loss
of such a mechanism is governed by the degree of nonlin-
earity of B!p", as measured through the quantity 1∗ defined
in (20).

Remark 8. We note one potentially undesirable feature of
the family of market-clearing mechanisms considered: the
payoff to user r is defined as −# when the composite
strategy vector is != 0 (cf. (7)). This definition is required
because when the composite strategy vector is ! = 0, a
market-clearing price may not exist. One possible rem-
edy is to restrict attention instead to mechanisms where
D!p$#" = 0 if # = 0 for all p ! 0; in this case, we can
define pD!!" = 0 if ! = 0, and let the payoff to user r
be Ur!0" if #r = 0. This condition amounts to a “normal-
ization” on the market-clearing mechanism. Furthermore,
this modification now exactly captures the mechanism of
Johari and Tsitsiklis (2004), where Qr!0,w−r "=Ur!0" for
all w−r ! 0. It is straightforward to show that this modi-
fication does not alter the conclusion of Theorem 1. The
argument involves a modification of the class of mecha-
nisms !, which includes the requirement D!p$0"= 0.

Remark 9. We note a key desirable feature of the mecha-
nisms considered in Theorem 1, particularly in the context
of communication networks. In general, even though the
strategy space of the users is one-dimensional, the market-
clearing price pD!!" may have a complex dependence on
the vector !. However, under the conditions of Theorem 1,
the market-clearing price is only a function of

∑

s #s , so
that the market-clearing process does not require identifica-
tion of individual users interacting with the mechanism, or
even the number of users. This is a desirable scaling prop-
erty for market mechanisms to be deployed in large-scale
networks (Shenker 1990).

Remark 10. As discussed in §2.1, Maheswaran and Basar
(2004) also considered a class of mechanisms that allocate
the resource according to the bids made by users. However,
for every mechanism they consider, the payment made by
a user depends only on the bid of that user, whereas in
our setting this condition holds only for the Kelly mecha-
nism. Thus, even though we have shown that we can restrict
attention to proportional allocation mechanisms in parts 1
and 2 of the theorem, the class of proportional allocation
mechanisms we consider is distinct from the class con-
sidered by Maheswaran and Basar, and thus our proof of
optimality of the Kelly mechanism is distinct as well.

5. The Vickrey-Clarke-Groves
(VCG) Approach

The mechanisms we considered in the last section had sev-
eral restrictions placed on them; chief among these are that
(1) users are restricted to using “simple” strategy spaces;
and (2) the mechanism uses only a single price to clear
the market. One could consider lifting both restrictions:
allow more complex strategies, with users perhaps declar-
ing their entire utility function to the market; and also,
allow price discrimination so that each user is charged
a personalized per-unit price for the resource. The best-
known solution employing both these generalizations is the
Vickrey-Clarke-Groves (VCG) approach to eliciting utility
information (Vickrey 1961, Clarke 1971, Groves 1973). We
review VCG mechanisms in §5.1.
In this section, we are interested in deciding whether

the same outcome can be realized while preserving restric-
tion (1) above, but removing restriction (2): that is, can
mechanisms with “simple” strategy spaces that employ
price discrimination achieve full efficiency? In §5.2, we
present a class of mechanisms, inspired by the VCG class,
in which users only submit scalar strategies; we show that
these SSVCG mechanisms have desirable efficiency prop-
erties. In particular, we establish existence of an efficient
Nash equilibrium, and under an additional condition, we
also establish that all Nash equilibria are efficient. We
extend this result to general convex environments in §5.3,
and discuss an application to multicommodity flow routing.
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5.1. VCG Mechanisms

In the VCG class of mechanisms, the basic approach is to
let the strategy space of each user r be the set " of possible
utility functions, as defined in Assumption 1, and structure
the payments made by each user so that the payoff of each
user r has the same form as the objective function in the
problem SYSTEM. Thus, in a VCG mechanism, each user
is simply asked to declare their utility function; of course,
if the payments are not structured properly, there is no guar-
antee that individuals will make truthful declarations. For
each r , we use +Ur to denote the declared utility function of
user r , and use +U = ! +U1$ % % % $ +UR" to denote the vector of
declared utilities.
Suppose that user r receives an allocation dr , but has to

make a payment tr ; we use the notation tr to distinguish
from the bid wr of §3. Then, the payoff to user r is

Pr!tr $ dr"=Ur!dr"− tr %

On the other hand, the social objective (1) can be written as

Ur!dr"+
∑

s *=r

Us!ds"%

Comparing the preceding two expressions, the most natural
means to align user objectives with the social planner’s
objectives is to define the payment tr as the negation of the
sum of the utilities of all users other than r .
Formally, given a vector of declared utility functions +U, a

VCG mechanism chooses the allocation d!+U" as an optimal
solution to SYSTEM for the declared utility functions +U.
For simplicity, let $ = &d ! 0(

∑

r dr " C'; this is the
feasible region for SYSTEM!C$R$U". Then, for a VCG
mechanism, we have

d!+U" ∈ argmax
d∈$

∑

r

+Ur!dr"% (22)

The payments are structured so that

tr !+U"=−
∑

s *=r

+Us!ds!+U""+hr!+U−r "% (23)

Here hr is an arbitrary function of the declared utilities of
users other than r ; because user r cannot affect this term
through the choice of +Ur , he chooses +Ur to maximize

Pr!dr!+U"$ tr !+U""=Ur!dr!+U""+
∑

s *=r

+Us!ds!+U""%

Now note that given +U−r , the above expression is bounded
above by

max
d∈$

[

Ur!dr"+
∑

s *=r

+Us!ds"

]

%

However, because d!+U" satisfies (22), user r can achieve
the preceding maximum by truthfully declaring +Ur = Ur .
Because this optimal strategy does not depend on the utility
functions ! +Us$ s *= r" declared by the other users, we recover
the well-known fact that in a VCG mechanism, truthful dec-
laration is a dominant strategy for user r . This discussion is
summarized in the following well-known proposition; see,
e.g., Green and Laffont (1979).

Proposition 1. Consider a VCG mechanism defined
according to (22) and (23). Then, declaring +Ur = Ur is
a dominant strategy for each user r . Furthermore, under
these strategies, the resulting allocation is efficient.

For our purposes, the interesting feature of the VCG
mechanism is that it elicits the true utility functions from
the users, and in turn (because of the definition of d!+U")
chooses an efficient allocation. However, it does so with a
high degree of required communication: Each user submits
an entire utility function, essentially an infinite-dimensional
object. In the next section, we explore a class of mecha-
nisms inspired by the VCG mechanisms, but with limited
communication requirements.

5.2. Scalar Strategy VCG Mechanisms

We now consider a class of mechanisms where each user’s
strategy is a submitted utility function (as in VCG mecha-
nisms), except that users are only allowed to choose from
a given single-parameter family of utility functions. One
cannot expect such mechanisms to have efficient dominant
strategy equilibria, and we will focus instead on the effi-
ciency properties of the resulting Nash equilibria.
Formally, SSVCG mechanisms allow users to choose

from a given family of utility functions ,U! · , #", parame-
terized by # ∈ !0$#".6 We make the following assumptions
about this family.

Assumption 2. 1. For every # > 0, the function ,U! · , #":
d )→ ,U!d,#", defined for d! 0, is strictly concave, strictly
increasing, continuous, and continuously differentiable for
d > 0.7

2. For every 2 ∈ !0$#" and d ! 0, there exists a # > 0
such that ,U ′!d,#"= 2.8

Given !, the mechanism chooses d!!" such that

d!!"= argmax
d∈$

∑

r

,U!dr, #r"% (24)

Because ,U! · , #r" is strictly concave for each r , the solution
d!!" is uniquely defined. (Note the similarity between (22)
and (24).)
By analogy with expression (23), the monetary payment

by user r is

tr !!"=−
∑

s *=r

,U!ds!!", #s"+hr!!−r "% (25)

Here hr is a function that depends only on the strate-
gies !−r = !#s$ s *= r" submitted by the users other
than r . Although we do not advocate any particular
choice of hr , a natural candidate is to define hr!!−r " =
∑

s *=r
,U!ds!!−r ", #s", where d!!−r " is the aggregate utility-

maximizing allocation excluding user r . This leads to a
natural scalar strategy analogue of the Clarke pivot mecha-
nism (Clarke 1971). Note that, of course, the per-unit price
paid by each user will typically be different.
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Given hr , the payoff to user r is

Pr!dr!!"$tr !!""=Ur!dr!!""+
∑

s *=r

,U!ds!!",#s"−hr!!−r "%

A strategy vector ! is a Nash equilibrium if no user can
profitably deviate through a unilateral deviation, i.e., if for
all users r , there holds

Pr!dr!!"$ tr !!""! Pr!dr!#
′
r $!−r "$ tr !#

′
r $!−r ""

for all #′r > 0% (26)

We start with the following key lemma, proven using an
argument analogous to Proposition 1.

Lemma 1. The vector ! is a Nash equilibrium of an SSVCG
mechanism if and only if for all r ,

d!!" ∈ argmax
d∈$

[

Ur!dr"+
∑

s *=r

,U!ds, #s"

]

% (27)

Proof. Fix a user r . Because #r does not affect hr ,
from (26) user r will choose #r to maximize the following
effective payoff:

Ur!dr!!""+
∑

s *=r

,U!ds!!", #s"% (28)

The optimal value of the objective function in (27) is cer-
tainly an upper bound to user r’s effective payoff (28).
Thus, given a vector !, if (27) is satisfied for all users r ,
then (26) holds for all users r , and we conclude ! is a Nash
equilibrium.
Conversely, given a vector !, suppose that (27) is not sat-

isfied for some user r . We will show that ! cannot be a
Nash equilibrium. Because $ is compact, an optimal solu-
tion exists to the problem in (27) for user r ; call this opti-
mal solution d∗. The vector d∗ must satisfy the first-order
optimality conditions (analogous to (12)–(13)), which only
involve the first derivatives U ′

r !d
∗
r " and ! ,U ′!d∗

s , #s"$ s *= r".
Suppose now that user r chooses #′r > 0 such that
,U ′!d∗

r , #
′
r " = U ′

r !d
∗
r ". Then, d

∗ also satisfies the optimal-
ity conditions for problem (24). Because d!#′r $!−r " is the
unique optimal solution to (24) when the strategy vector is
(#′r $!−r ), we must have d!#′r $!−r "= d∗. Thus, we have

Pr!dr!!"$ tr !!"" < Ur!d
∗
r "+

∑

s *=r

,U!d∗
s , #s"−hr!!−r "

=Ur!dr!#
′
r $!−r ""+

∑

s *=r

,U!ds!#
′
r $!−r ", #s"

−hr!!−r "

= Pr!dr!#
′
r $!−r "$ tr !#

′
r $!−r ""%

(The first inequality follows from the assumption that (27)
is not satisfied for user r .) We conclude that (26) is violated
for user r , so ! is not a Nash equilibrium. #

The following corollary states that there exists a Nash
equilibrium that is efficient. Furthermore, at this efficient
Nash equilibrium, all users truthfully reveal their utilities in
a local sense: Each user r chooses #r so that the declared
marginal utility ,U ′!dr!!", #r" is equal to the true marginal
utility U ′

r !dr!!"".

Corollary 1. For any SSVCG mechanism, there exists
an efficient Nash equilibrium ! defined as follows( Let dS

be an optimal solution to SYSTEM!C$R$U". Each user r
chooses #r so that ,U ′!dS

r , #r"=U ′
r !d

S
r ". The resulting allo-

cation satisfies d!!"= dS .

Proof. By Assumption 2, each user r can choose #r so
that ,U ′!dS

r , #r"= U ′
r !d

S
r ". For this vector !, it is clear that

d!!"= dS because the optimal solution to (24) is uniquely
determined, and the optimality conditions for (24) involve
only the first derivatives ,U ′!dr!!", #r". By the same argu-
ment, it also follows that dS is an optimal solution in (27).
Because d!!" = dS , we conclude that (27) is satisfied for
all r , and thus ! is a Nash equilibrium. #

We note that, as in classical VCG mechanisms, there can
be additional, possibly inefficient, Nash equilibria, as the
following example shows.

Example 2. Consider a system with R identical users with
strictly concave utility function U . Suppose that user 1
chooses #1 so that ,U ′!C,#1" >U ′!0", and every other
user r chooses #r so that ,U ′!0, #r" <U ′!C". We then have
d!!"= !1$0", so that the entire resource is allocated to
user 1. Because U ′!C""U ′!0", it follows that (27) is sat-
isfied for all users r , and we conclude ! is a Nash equi-
librium. However, this Nash equilibrium is inefficient: The
unique optimal solution to SYSTEM!C$R$U" is symmetric,
and allocates C/R units of the resource to each of the R
users.

The equilibrium in the preceding example involves a
“bluff:” User 1 declares such a high marginal utility at C
that all other users concede. One way to preclude such
equilibria is to enforce an assumption that guarantees par-
ticipation. The next proposition assumes that at least two
users have infinite marginal utility at zero allocation; this
guarantees that all Nash equilibria are efficient.

Proposition 2. Suppose that Assumptions 1 and 2 hold,
except that U ′

r !0"=# for at least two users r . Suppose that
! is a Nash equilibrium. Then, d!!" is an optimal solution
to SYSTEM!C$R$U".

Proof. Note that Lemma 1 applies even if we allow
U ′

r !0" to be infinite. Suppose, without loss of generality,
that U ′

1!0" = U ′
2!0" = #. Let d = d!!". We observe that

users 1 and 2 must have positive allocations at equilibrium,
from (27). The optimality conditions for (27) thus imply
that for i= 1$2, and for each s *= i, we have

U ′
i !di"= ,U ′!ds, #s" if ds > 0$ (29)

! ,U ′!ds, #s" if ds = 0% (30)

In particular, U ′
1!d1"= ,U ′!d2, #2" and U ′

2!d2"= ,U ′!d1, #1".
Furthermore, the optimality conditions for problem (24)
yield ,U ′!d1, #1"= ,U ′!d2, #2". From these relations, we first
conclude that U ′

1!d1" = ,U ′!d1, #1" = ) for some scalar ).
Further, if we consider the optimality conditions for (27)
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for an arbitrary user r , we obtain U ′
r !dr" = ,U ′!d1, #1" =

U ′
1!d1" = ) if dr > 0, and U ′

r !dr" " ,U ′!d1, #1" =
U ′

1!d1"=) if dr = 0. However, these are exactly the suf-
ficient conditions for optimality for d for the problem
SYSTEM!C$R$U", with Lagrange multiplier ). #

Intuitively, for efficiency to hold, we need to have at least
two actively “competing” users. In the previous result, this
is guaranteed because the two users with infinite marginal
utility at zero allocation will want a strictly positive rate in
any equilibrium.
The results of this section demonstrate that by relax-

ing the assumption that the resource allocation mecha-
nism must set a single price, we can in fact significantly
improve upon the efficiency guarantee of Theorem 1. We
note that Maheswaran and Basar (2004) (as well as the ear-
lier work, Maheswaran 2003) and Yang and Hajek (2006a)
have (independently of each other) presented a class of
mechanisms for this resource allocation problem that oper-
ate as follows. Each user r chooses a “bid” #r ! 0. Define
T = ∑

s #s and T−r =
∑

s *=r #s . Their mechanism allocates
in proportion to the bids, so dMY

r !!"= #rC/T . Each user r
makes a payment defined by

tMY
r !!"= #s!3!T "−3!T−r ""$

where 3 is a strictly increasing, continuously differen-
tiable function, such that, in addition, the function u )→
u23′!u"/C is a strictly increasing, onto function from
[0$#) to [0$#). Under these assumptions, define ,U!x,#"=
−#3!#/x". Then, it can be verified that: (1) ,U satisfies
Assumption 2; and (2) the corresponding SSVCG mech-
anism is the Maheswaran-Basar/Yang-Hajek mechanism,
so that d!!" = dMY !!" and t!!" = tMY !!".9 Yang and
Hajek have shown that as long as at least two users r
have U ′

r !0"=#, then all Nash equilibria are efficient; this
matches the result of Proposition 2. A similar result is
derived by Maheswaran and Basar for allocation of a single
infinitely divisible resource, by assuming a single nonstrate-
gic “virtual” user who always bids 4 for the resource; Nash
equilibria of the resulting mechanism become efficient as 4
approaches zero. In conclusion, our class of SSVCG mech-
anisms includes the mechanism of Maheswaran (2003),
Maheswaran and Basar (2004), and Yang and Hajek (2006a)
as a special case.

5.3. General Convex Environments

Despite the fact that we have formulated SSVCG mech-
anisms for the specific choice of $ corresponding to
allocation of a single resource, our results hold for far
more general convex environments. Formally, we continue
to assume that each user r is to receive an allocated
quantity dr . However, we now assume that the feasible
resource allocations are determined by constraints involv-
ing the vector d, as well as some auxiliary variables y =
!yR+1$ % % % $ yR+M". As an example, y may be the path flows

in a multicommodity flow model, in which case dr is
the total rate allocated to user r . We make the following
assumption about $ .

Assumption 3. The set $ of feasible allocations d is of
the form

$ = &d! 0( there exists y ∈#M$ y! 0$

such that gj!d$y"" 0$ j = 1$ % % % $ J '$

for some given functions gj .
Further( 1. The set $ is compact;
2. For each j , the function gj is convex and differentiable

on an open set containing !#+"R+M ;
3. There exists a pair !d̄$ -y" ∈ #R+M such that gj!d̄$ -y"

< 0 for all j .

In the preceding assumption, M denotes the dimension
of the space of auxiliary variables, and J the number of
convex inequality constraints. Although we assume differ-
entiability in condition (2), this is not crucial; we assume
differentiability for technical simplicity.

Remark 11. Condition (3) in the preceding assumption
ensures that the Slater constraint qualification holds for all
the optimization problems we consider; see, e.g., Bertsekas
et al. (2003). We note that all our results apply to the more
general setting where in addition to the convex inequal-
ity constraints, the set $ is constrained by affine equality
constraints of the form hk!d$y"= 0, k= 1$ % % % $K. In this
case, condition (3) in Assumption 3 is modified to require
that there exists a pair !d̄$ -y" in the relative interior of
the set &!d$y"( hk!d$y" = 0', such that gj!d̄$ -y" < 0 for
all j; with this modification the Slater constraint qualifi-
cation once again applies. All our results continue to hold
in this setting, if we simply represent the kth affine equal-
ity constraint by the two equivalent inequality constraints
hk!d$y"" 0 and hk!d$y"! 0.

We define an efficient allocation as the solution to the
following generalized definition of SYSTEM:

SYSTEM:

maximize
R
∑

r=1

Ur!dr" (31)

subject to d ∈$ % (32)

It is straightforward to check that under Assumption 3,
nearly all the basic results established above continue to
hold; in particular, Proposition 1, Lemma 1, and Corol-
lary 1 continue to hold, with proofs nearly identical to their
existing versions. Thus, (27) continues to provide a nec-
essary and sufficient condition for the characterization of
Nash equilibria, and from Corollary 1 we know that there
always exists at least one efficient Nash equilibrium.
It is natural to search for an analog of Proposition 2.

In particular, we would like a more general sufficient con-
dition that guarantees that all Nash equilibria are efficient.
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We now provide such a guarantee, under additional condi-
tions on the structure of the constraints.
We first introduce some notation. Given a vector ! of

user strategies, we denote by z= !d$y" the optimal solution
d= d!!" to problem (24), together with optimal values of
the auxiliary variables y. (Recall that d, the vector of result-
ing allocations, is uniquely determined by strict concavity
of the objective function in (24).) Given such a solution,
we let

% =
{

k ∈ &1$ % % % $R+M'( zk > 0
}

(33)

be the indices associated with variables whose value is
nonzero, and we let

& =
{

j( gj!z"= 0
}

(34)

be the set of constraint indices that are binding. For each k,
we define the vector D!k" as

D!k"=
(

5gj
5zk

!z"$ j ∈ &
)

% (35)

For example, if the constraints are of the form Az−b" 0,
for some matrix A and some vector b, and if all constraints
are binding, then D!k" is the kth column of A.

Proposition 3. Suppose that Assumptions 1–3 hold, except
that U ′

r !0" is allowed to be infinite. Suppose that ! is a
Nash equilibrium, d= d!!" is the optimal solution to prob-
lem (24), and y is an associated optimal vector of auxiliary
variables. Define %, & , and D!k" according to (33), (34),
and (35), respectively. Suppose furthermore that for every
user r ∈ &1$ % % % $R', the vector D!r" is in the span of the
vectors D!s", s *= r , s ∈%. Then, d is an efficient allocation.

Proof. Let ! be a Nash equilibrium, and let z = !d$y"
correspond to an optimal solution to problem (24). Because
! is a Nash equilibrium, z is also an optimal solution to
problem (27) for each r ∈ &1$ % % % $R'.
To simplify the argument, we first assume that & =

&1$ % % % $ J' , so that all constraints are binding. Let " ! 0
and #!r" ! 0 be vectors of Lagrange multipliers associ-
ated with the optimal solution z for problem (24), and
problem (27) for user r , respectively. Such Lagrange mul-
tipliers are guaranteed to exist by Assumption 3 because
the Slater constraint qualification is satisfied; see, e.g.,
Bertsekas et al. (2003, §5.4). To simplify the presentation,
we define Uk!d" = 0 for k > R and all d ! 0. Then, the
optimality conditions for problem (24) are

,U ′!zk, #k"=".D!k" if zk > 0$ k ∈ &1$ % % % $R'$ (36)

,U ′!zk, #k""".D!k" if zk = 0$ k ∈ &1$ % % %R'$ (37)

U ′
k!zk"=".D!k"

if zk > 0$ k ∈ &R+ 1$ % % % $R+M'$ (38)

U ′
k!zk""".D!k"

if zk = 0$ k ∈ &R+ 1$ % % % $R+M'% (39)

Similarly, the optimality conditions for problem (27) for
user r , r ∈ &1$ % % % $R', are
,U ′!zk, #k"=#!r".D!k"

if zk > 0$ k ∈ &1$ % % % $R'$ k *= r$ (40)

,U ′!zk, #k""#!r".D!k"

if zk = 0$ k ∈ &1$ % % % $R'$ k *= r$ (41)

U ′
k!zk"=#!r".D!k"

if zk > 0$ k ∈ &r$R+ 1$ % % % $R+M'$ (42)

U ′
k!zk""#!r".D!k"

if zk = 0$ k ∈ &r$R+ 1$ % % % $R+M'% (43)

From (36), (38), (40), and (42), we deduce that for all
r ∈ &1$ % % % $R' and k ∈% such that k *= r , we have

#!r".D!k"=".D!k"% (44)

The preceding equality holds because zk is positive for all
k ∈%.
Fix a user r ∈ &1$ % % % $R'. By assumption, there exists a

vector of coefficients (-rk$ k ∈%$ k *= r) such that

D!r"=
∑

&k∈%( k *=r'

-rkD!k"% (45)

Suppose first that zr = 0. We have

U ′
r !zr ""#!r".D!r"=

∑

&k∈%( k *=r'

-rk#!r"
.D!k"

=
∑

&k∈%( k *=r'

-rk"
.D!k"=".D!r"%

The inequality follows from the optimality condition (43).
The first equality follows from (45). The second equality
follows from (44). The third equality uses (45) again. If
instead zr > 0, then by using (42), we see that the inequal-
ity above holds with equality. Combining this result with
(38)–(39), we conclude that

U ′
k!zk"=".D!k" if zk > 0$ k ∈ &1$ % % % $R+M'$

U ′
k!zk""".D!k" if zk = 0$ k ∈ &1$ % % % $R+M'%

These are precisely the optimality conditions for the prob-
lem SYSTEM (with Lagrange multiplier vector "), and
therefore d is an efficient allocation.
If & *= &1$ % % % $ J' , so that some constraints are not bind-

ing, the preceding argument continues to hold: We need only
consider the constraints in & because the Lagrange multi-
pliers associated with nonbinding constraints are zero. #

Remark 12. For the case where the constraints defining $
are linear, of the form Az− b " 0, the linear dependence
condition of Proposition 3 is equivalent to the following:
Given a Nash equilibrium and r ∈ &1$ % % % $N' , if we per-
turb the r th component of z, then it is always possible to
feasibly modify the components zk, k *= r , k ∈ %, so that
those constraints that are binding (i.e., the constraints in & )
remain binding.
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To gain some intuition for Proposition 3, suppose that we
have no auxiliary variables, that the set $ is a polyhedron,
and that $ has an extreme point with positive components.
At that extreme point, and in the absence of degeneracy,
there are exactly R constraints that are binding. In this case,
the vectors D!k" are linearly independent, and therefore
the linear dependence condition of Proposition 3 fails to
hold. Intuitively, for the condition to hold, we need to have
a number of actively “competing” users (i.e., users with
positive dr ) which is greater than the effective number of
resources (i.e., the number of binding constraints). (Notice
that the violation of this condition is behind the failure
observed in Example 2.)
The linear dependence condition is satisfied in a broad

class of problems. The following presents an important
example: multicommodity flow routing.

Example 3 (Multicommodity Flow). In this model,
R users send traffic through a network of L links. Each
link l has a given finite positive capacity, denoted Cl > 0.
Each user r has available a collection P!r" of paths on
which she can send traffic; each path p ∈ P!r" is identified
with the set of links it goes through, so that p⊂ &1$ % % % $L'.
Let P =⋃

r P!r" and let M = !P !. By duplicating paths if
necessary, we assume without loss of generality that each
path p ∈ P is associated with exactly one user. The set
$ is then defined as follows:

$ =
{

d! 0( there exists y! 0 with
∑

p∈P!r"
yp = dr$ r = 1$ % % % $N, and (46)

∑

p∈P( l∈p
yp "Cl$ l= 1$ % % % $L

}

% (47)

As discussed in Remark 11, $ satisfies a variation of
Assumption 3, and therefore Proposition 3 still applies.
We now make the following assumptions. First, we

assume that for all users r , we have U ′
r !0" =#. Second,

we assume that for each link l, there are two users r1!l" and
r2!l" for which the path &l', consisting of the single link l,
is the only candidate path. The latter assumption guarantees
sufficient competition at every link; informally, it requires
that competition for resources from flows travelling a short
distance is nonnegligible. (A similar assumption was used
by Yang and Hajek 2007.) Under these assumptions, we
now show that Proposition 3 applies, and thus establish that
any resulting Nash equilibrium is efficient.
We only need to verify that the linear dependence condi-

tion in Proposition 3 is satisfied at a Nash equilibrium. To
check this, let ! be a Nash equilibrium, and let z= !d$y"
be a corresponding optimal solution to problem (24), so
d= d!!". We will use the equivalent statement of the linear
dependence condition provided in Remark 12.
First note that because U ′

r !0"=#, at a Nash equilibrium
every variable dr is nonzero. Furthermore, for those users

that have a single path p, the corresponding path variable yp
is also nonzero.
Let us consider perturbing a variable dr , say by adding 6

to it. Let p ∈ P!r" be such that yp > 0. Then, we can add 6
to yp, so that the binding constraint (46) for that particular
user r remains binding. In addition, for every link l on the
path p, there exists a user ri!l" *= r that has a single path
that only uses this link. By decreasing dri!l"

and the associ-
ated component of y by 6, the binding constraint (46) for
ri!l" remains binding. Furthermore, if constraint (47) was
binding, it remains binding. We conclude that the condi-
tion of Remark 12 holds, as required, and thus the result
of Proposition 3 applies.

We conclude this section by noting several extensions.
First, it is possible to construct a similar class of mecha-
nisms when each user r has a utility function Ur!xr " that
depends on a vector of resources xr . In this case, user r
needs a strategy space of the same dimension as the vec-
tor xr . The structure of the mechanism is then analogous
to the one described in §5.2.
As for standard VCG mechanisms, the mechanisms we

have proposed are certainly not budget balanced; that is,
∑

r tr !!" *= 0 in general. However, one can consider a vari-
ety of forms for the functions hr to mitigate this effect;
a choice similar to the “pivot” mechanisms of Clarke
(1971) results if hr!!−r " = −∑

s *=r
,U!xs!!−r ", #s", where

xs!!−r " is the optimal resource allocation if user r is
removed from the system. In this mechanism all payments
tr are negative, and a user r makes a payment if and only
if his presence affects the optimal resource allocation.

6. Discussion and Conclusions
This paper studies the efficiency achievable by scalar-
parameterized mechanisms, particularly in allocation of a
single infinitely divisible resource. In §4, we show our first
main result: when a single price is used for all users, then
within a class of reasonable market-clearing mechanisms
the Kelly mechanism uniquely minimizes the worst case
efficiency loss when users are price anticipating. An inter-
mediate result also shows that allocating the resource in pro-
portion to users’ bids (as in the Kelly mechanism) is a nat-
ural consequence of simple assumptions on the mechanism.
In §5, we show that relaxing the single-price assumption
actually allows us to significantly improve the performance
of the mechanism: in our second main result, we demon-
strate a class of mechanisms that exhibit efficient Nash
equilibria. We also argue that these SSVCG mechanisms
can be extended to much more general resource allocation
environments, and provide conditions under which all Nash
equilibria are efficient. We then successfully apply SSVCG
mechanisms to a standard multicommodity flow setting.
Compared to the two major results described above,

there is another possibility: we might relax the assump-
tion of one-dimensional bids, while preserving the single-
price restriction on the market mechanism. Consider,
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for example, mechanisms where users submit arbitrary
demand functions (giving demand as a function of price),
and a single price is chosen to clear the market. Using an
analog of the argument in Klemperer and Meyer (1989),
it is straightforward to show that for the model we are con-
sidering, there exist games with arbitrarily inefficient Nash
equilibria. The argument involves showing that essentially
any feasible outcome (consisting of a price and allocation
vector) can be sustained at a Nash equilibrium.
Our results, as well as those of earlier work such as

Maheswaran (2003), Maheswaran and Basar (2004), and
Yang and Hajek (2006a, 2007), suggest that there is an
interesting interplay between the strategic flexibility granted
to users, and the pricing flexibility granted to the mecha-
nism. When users are allowed great flexibility in submitting
their bids, then full efficiency is possible with price dif-
ferentiation (the VCG approach, where users’ bids consist
of entire utility functions), whereas arbitrarily high ineffi-
ciency results if only a single price is allowed (as in the
preceding paragraph). On the other hand, when users are
allowed to use only one-dimensional signals, then with a
single price the most efficient mechanism (i.e., the Kelly
mechanism) suffers a nonzero efficiency loss, whereas with
price differentiation full efficiency can again be achieved
(as established for SSVCG mechanisms and their precur-
sors in Maheswaran and Basar 2004 and Yang and Hajek
2007). Note, in particular, the critical insight from this
stream of work that when pricing flexibility is limited,
restricting strategic flexibility may actually increase effi-
ciency. These results are summarized in Figure 2.
We briefly note several extensions and open directions.

First, §4 considers only a single resource. For general
network topologies, we can consider a game where users

Figure 2. Strategic flexibility vs. pricing flexibility.
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summary of current understanding. This paper discusses efficiency when
mechanisms have restricted strategic flexibility (i.e., one-dimensional bids).

submit individual bids to each link in the network, similar
to the approach taken by Johari and Tsitsiklis (2004). In
this case, if each link is endowed with a smooth market-
clearing mechanism satisfying the assumptions of §4, then
the worst case efficiency loss will be minimized if each
link uses the Kelly mechanism.
A second extension of the work in §4 applies to mar-

kets with supply function bidding. Motivated by current
problems in market design for electric power systems, we
consider a model where multiple producers compete to sat-
isfy an inelastic demand. Demand for electricity, partic-
ularly in the short run, is characterized by low elasticity
with respect to price, i.e., changes in price do not lead
to significant changes in the level of demand; see, e.g.,
Stoft (2002, §1-7.3). A basic model for electricity mar-
ket operation involves supply function bidding (Klemperer
and Meyer 1989): Each generator submits a supply func-
tion expressing their willingness to produce electricity as a
function of the market-clearing price. A single price is then
chosen to ensure that supply matches the inelastic demand.
In Johari (2004), we consider restrictions on the supply
functions that can be chosen by the generators, and aim to
design these restrictions so that nearly efficient allocations
are achieved even if firms are price anticipating. We prove
a characterization theorem, similar to Theorem 1, describ-
ing the best possible efficiency guarantees within a class of
mechanisms in which the generators are restricted to sub-
mitting a supply function chosen from within a restricted,
one-parameter family. Details of this work can be found in
Johari (2004).
All the work in this paper is concerned with quasilinear

environments, i.e., users’ utilities are measured in monetary
units. Further, our models assume that users have unlim-
ited budgets. An interesting set of parallel issues arises if
one relaxes these assumptions. Indeed, we note that the
Kelly mechanism is quite similar to the celebrated Shapley-
Shubik “trading post” mechanism (Shapley and Shubik
1977). In the Shapley-Shubik mechanism, users maximize
utility (which may not be quasi-linear), and users are sub-
ject to a budget constraint. These games thus exhibit very
different equilibria from the Kelly mechanism. An inter-
esting open direction concerns evaluating the efficiency
properties of the Shapley-Shubik mechanism and determin-
ing the extent to which the Shapley-Shubik mechanism is
an “optimal” design. Zhang and others have considered
notions of optimality such as envy-freeness in the setting
where users have budget constraints; see Zhang (2005) and
Feldman et al. (2005) for details.
We note that all our work considers efficiency from a

static standpoint. This is natural as a starting point, and our
positive results give proof-of-concept of potentially viable
mechanism designs. However, a complete approach also
requires attention to the dynamic setting. Several works
have recently considered dynamics for convergence to effi-
cient equilibrium. Yang and Hajek (2007) have shown that a
form of myopic best-response dynamics can converge to an
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efficient Nash equilibrium of the SSVCG mechanism in the
multicommodity flow setting, whereas the ascending auc-
tion mechanism of Ausubel (2006) provides a mechanism
with limited communication requirements and at least one
efficient subgame-perfect equilibrium. The former analyzes
a stylized model of dynamics assuming a certain model of
user behavior; the latter proposes a dynamic mechanism
design assuming fully rational user behavior. Clearly, a sig-
nificant open direction is to develop a unified treatment
of the efficiency of resource allocation mechanisms with
restricted communication requirements in a dynamic setting.
Ultimately, however, the most intriguing questions raised

by this work are captured by Figure 2. The results of this
paper and earlier work in the area suggest that in design-
ing efficient markets, strategic flexibility can be increased
only if pricing flexibility is available. However, we have
only studied this issue in the extremes depicted in Figure 2.
In particular, we have not quantitatively characterized the
trade-offs between strategic flexibility and pricing flexibil-
ity. For example, we have studied mechanisms with a single
price per resource, and with perfect price discrimination.
A natural question arises: What are the gains in efficiency
if a two-tiered pricing system is used? How many prices
are needed for a bounded efficiency loss guarantee if users
have strategy spaces parameterized by a fixed number of
dimensions? The answers to such questions remain inter-
esting directions for future work.

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnotes
1. A similar result was independently and simultaneously
presented by Yang and Hajek (2006b, 2007); see §2.2.
2. Some notion of smoothness is required to ensure that
dimension is a reasonable measure of strategic flexibility;
for example, in the absence of a differentiability require-
ment, an arbitrary amount of information can be commu-
nicated in a single scalar, e.g., using a space-filling curve.
3. We note that the authors’ assumption that c is convex
is largely to ensure existence of a Nash equilibrium; in our
context, a similar role is played by the second condition in
Definition 4.
4. We follow the terminology used in the communications
literature. The economics literature frequently uses “valu-
ation” and “utility” instead of our “utility” and “payoff,”
respectively.
5. Note that we suppress the dependence of this solution
on C; where necessary we will emphasize this dependence.
6. Note that, by contrast with §4, the choice of bid # by a
user indexes a utility function, rather than a demand func-
tion. However, this is not crucial: if a user with utility func-
tion U maximizes U!d"−pd (i.e., the user acts as a price

taker), the solution yields the demand function D!p" =
!U ′"−1!p". Up to an additive constant, the utility function
and demand function can be recovered from each other.
Thus, we could define SSVCG mechanisms where users
submit demand functions from a parameterized class. We
define our SSVCG mechanisms in terms of utility func-
tions to maintain consistency with the standard definition
of VCG mechanisms in the literature.
7. This is almost the same as Assumption 1, except that we
require strict concavity, do not require nonnegativity, and
allow U ′

r !0" to be infinite.
8. Because we do not assume differentiability with respect
to #, the only differentiation of ,U is with respect to the
first coordinate d, and ,U ′!d,#" will always stand for the
derivative with respect to d.
9. A small technical issue arises here because ,U ′!0$ #"=#
for all # > 0, which violates the last part of Assumption 2;
however, the development in this section can be adapted to
cover this case.
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