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CONTINUOUS-TIME AVERAGE-PRESERVING OPINION
DYNAMICS WITH OPINION-DEPENDENT COMMUNICATIONS∗
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Abstract. We study a simple continuous-time multiagent system related to Krause’s model of
opinion dynamics: each agent holds a real value, and this value is continuously attracted by every
other value differing from it by less than 1, with an intensity proportional to the difference. We prove
convergence to a set of clusters, with the agents in each cluster sharing a common value, and provide
a lower bound on the distance between clusters at a stable equilibrium, under a suitable notion of
multiagent system stability. To better understand the behavior of the system for a large number of
agents, we introduce a variant involving a continuum of agents. We prove, under some conditions,
the existence of a solution to the system dynamics, convergence to clusters, and a nontrivial lower
bound on the distance between clusters. Finally, we establish that the continuum model accurately
represents the asymptotic behavior of a system with a finite but large number of agents.
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1. Introduction. We study a continuous-time multiagent model: each of n
agents, labeled 1, . . . , n, maintains a real number (“opinion”) xi(t), which is a contin-
uous function of time and evolves according to the integral equation version of

(1.1) ẋi(t) =
∑

j: |xi(t)−xj(t)|<1

(xj(t)− xi(t)) .

This model has an interpretation in terms of opinion dynamics: an agent considers
another agent to be a neighbor if their opinions differ by less than 1, and agent opin-
ions are continuously attracted by their neighbors’ opinions. Numerical simulations
show that the system converges to clusters inside which all agents share a common
value. Different clusters lie at a distance of at least 1 from each other, and often ap-
proximately 2. This is illustrated in Figure 1.1, which represents the time evolution
of the values xi(t) of 1000 agents with randomly and uniformly distributed initial
values. Similar behaviors are observed for other distributions; see [9] for some more
numerical experiments. The minimal distance of 1 between clusters is easily explained
by the fact that clusters separated by a distance less than 1 would be interacting and
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Fig. 1.1. Evolution with time of the values xi(t) for 1000 agents, with initial values randomly
and uniformly distributed on [0, 10]. Observe the convergence to four clusters separated by a distance
slightly greater than 2.

attracting each other. The observation that the typical intercluster distance is close
to 2 is, however, more surprising. In this paper, we focus on understanding these con-
vergence properties and the structure of the set of clusters, including the asymptotic
behavior for large n.

Note that the agent interaction topology in (1.1) explicitly depends on the agent
states, as xj(t) influences xi(t+1) only if |xi(t)− xj(t)| < 1. Many multiagent systems
involve a changing interaction topology; see, e.g., [1, 10, 11, 16, 19, 20] and [17, 18]
for surveys. In some cases, the interaction topology evolves randomly or according to
some exogenous scheme, but in other cases it is modeled as a function of the agent
states. The latter is typically the case for models of animals or robots with limited
visibility. This state dependence, however, is usually not taken into account in the
analysis, probably due to the technical difficulties that it presents. Notable exceptions
include [6, 7, 12], in which the authors consider second order multiagent systems where
the agent velocities or headings are influenced by those of all the other agents, and
where the intensity of these influences varies with the distances between agents.

In an effort to understand the effect of state-dependent interaction topologies,
we have recently analyzed [3] one of the simplest discrete-time multiagent systems of
this kind, namely, Krause’s model1 of opinion dynamics [13]: n agents maintain real
numbers (“opinions”) xi(t), i = 1, . . . , n, and synchronously update them as follows:

xi(t+ 1) =

∑
j: |xi(t)−xj(t)|<1 xj(t)∑

j: |xi(t)−xj(t)|<1 1
.

This model was particularly appealing due to its simple formulation, and due to some
peculiar behaviors that it exhibits, which cannot be explained without taking into
account the explicit dynamics of the interaction topology. Indeed, a first analysis
using results on infinite inhomogeneous matrix products, as in [10, 14], shows con-
vergence to clusters in which all agents share the same opinion and shows that the
distance between any two clusters is at least 1. Numerical simulations, however, show
a qualitative behavior similar to the one shown in Figure 1.1 for the model (1.1): the

1The model is sometimes referred to as the Hegselmann–Krause model.
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distance between adjacent clusters is usually significantly larger than 1, and typically
close to 2, when the number of agents is sufficiently large, a phenomenon for which
no explanation was available.

Our goal in [3] was thus to develop a deeper understanding of Krause’s model and
of these observed phenomena by using explicitly the dynamics of the interaction topol-
ogy. To this effect, we introduced a new notion of stability, tailored to such multiagent
systems, which provided an explanation for the observed intercluster distances when
the number of agents is large. Furthermore, to understand the asymptotic behavior
as the number of agents increases, we also studied a model involving a continuum of
agents. We obtained partial convergence results for this continuum model, and proved
nontrivial lower bounds on the intercluster distances, under some conditions.

Our results in [3] were, however, incomplete in certain respects. In particular, the
question of convergence of the continuum model remains open, and some of the results
involve assumptions that are not easy to check a priori. We see two main reasons for
these difficulties. First, the system is asymmetric, in the sense that the influence of
xj(t) on xi(t+ 1) can be very different from that on xi(t) on xj(t+ 1), when i and j
do not have the same number of neighbors. Second, the discrete-time nature of the
system allows, for the continuum model, buildup of an infinite concentration of agents
with the same opinion, thus breaking the continuity of the agent distribution.

For the above reasons, we have chosen to analyze here the system (1.1), a con-
tinuous-time symmetric variant of Krause’s model, for which we provide crisper and
more complete results. One reason is that, thanks to the symmetry, the average
value 1

n

∑
i xi(t) is preserved, and the average value of a group of agents evolves in-

dependently of the interactions taking place within the group, unlike Krause’s model.
In addition, when two agent values approach each other, their relative velocity de-
cays to zero, preventing the formation of infinite concentration in finite time. The
continuous-time nature of the system brings up, however, some new mathematical
challenges, related, for example, to the existence and uniqueness of solutions.

To summarize, the objective of the present paper is twofold. First, we want to
advance our understanding of multiagent systems with state-dependent interactions
by analyzing in full detail one simple but nontrivial such system. Second, we want
to explain the convergence of agents to clusters separated by approximately twice the
interaction distance, a phenomenon that often arises in such opinion dynamics models
(see [3, 9, 15] and the references therein).

1.1. Outline and contributions. In section 2, we give some basic properties
of the model (1.1) and prove convergence to clusters in which all agents share the
same value. We then analyze the distance between adjacent clusters, building on an
appropriate notion of stability with respect to perturbing agents introduced in [3].
This analysis leads to a necessary and sufficient condition for stability that is consis-
tent with the experimentally observed intercluster distances, and to a conjecture that
the probability of convergence to a stable equilibrium tends to one as the number of
agents increases. In section 3, we introduce a variant involving a continuum of agents
to approximate the model for the case of a finite but large number of agents. Under
some smoothness assumptions on the initial conditions, we prove the existence of a
unique solution, convergence to clusters, and nontrivial lower bounds on the inter-
cluster distances, consistent with the necessary and sufficient condition for stability
in the discrete-agent model. Finally, in section 4, we explore the relation between the
two models, and establish that the behavior of the discrete model approaches that of
the continuum model over finite but arbitrarily long time intervals, provided that the
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number of agents is sufficiently large.
The results summarized above differ from those obtained in [3] for Krause’s model

in three respects: (i) we prove the convergence of the continuum model, in contrast to
the partial results obtained for Krause’s model; (ii) all of our stability and approxima-
tion results are valid under some simple and easily checkable smoothness assumptions
on the initial conditions, unlike the corresponding results in [3], which require, for ex-
ample, the distance between the largest and smallest opinions to remain larger than 2
at all times; (iii) finally, we settle the problem of existence and uniqueness of a solution
to our equations, a problem that did not arise for Krause’s discrete-time model.

1.2. Related work. Our model (1.1) is closely related to that treated by Canuto,
Fagnani, and Tilli [5], who consider a continuum of multidimensional opinions, while
treating discrete agents as a special case. In the case of discrete agents with one-
dimensional opinions, the evolution is described by

ẋi(t) =
∑
j

ξ (xi(t)− xj(t)) (xi(t)− xj(t)) ,

where ξ is a continuous nonnegative radially symmetric and decaying function, taking
positive values only for arguments with norm smaller than a certain constant R. They
also consider a first order discrete-time2 approximation of their model, described in the
case of discrete agents with one-dimensional opinions by xi(t+δ) = xi(t)+δẋi(t). Our
model is therefore a particular case of their continuous-time model in one dimension,
with a step function for ξ, except that a step function does not satisfy their continuity
assumption.

The authors of [5] prove convergence of the opinions, in distribution, to clusters
separated by at least R for both discrete- and continuous-time models, but do not
address the issue of intercluster distances being significantly larger than R and close
to 2R. Their convergence proof relies on the decrease of the measured variance of
the opinion distribution, and is based on an Eulerian representation that follows the
density of agent opinions, in contrast to the Lagrangian representation used in this
paper, which follows the opinion x of each agent. It is interesting to note that, despite
differences between these two methods for proving convergence, they both appear to
fail in the absence of symmetry and cannot be used to prove convergence for the
continuum-agent variant of Krause’s model.

Finally, the models in this paper are related to other classes of rendezvous meth-
ods and opinion dynamics models, as described in [3, 15] and the references therein.
Several more complex decentralized control laws are built on such rendezvous meth-
ods.

2. Discrete agents. The differential equation (1.1) usually has no differentiable
solutions. Indeed, observe that the right-hand side of the equation can be discontin-
uous in time when the interaction topology changes, which can prevent x from being
differentiable. To avoid this difficulty, we consider functions x : �+ → �n that are
solutions of the integral version of (1.1), namely,

(2.1) xi(t) = xi(0) +

∫ t

0

∑
j: |xi(τ)−xj(τ)|<1

(xj(τ) − xi(τ)) dτ.

Note that, for all t at which ẋi(t) exists, it can be computed using (1.1).

2The assumption on the continuity of ξ appears unnecessary in the discrete-time case, as was
recently confirmed by one of the authors of [5] in a personal communication.
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2.1. Existence and convergence. Time-switched linear systems are of the
form x(t) = x(0)+

∫ t

0 Aτx(τ) dτ , where the matrix At is a piecewise constant function
of t. They always admit a unique solution, provided that the number of switches
taking place during any finite time interval is finite. Position-switched systems of the
form ẋ(t) = x(0) +

∫ t

0 Ax(τ)x(τ) dτ may, on the other hand, admit no or multiple
solutions. Our model (2.1) belongs to the latter class and indeed admits multiple
solutions for some initial conditions. Observe, for example, that the two-agent system
with initial condition x̃ = (− 1

2 ,
1
2 ) admits a first solution x(t) = x̃ and a second

solution x(t) = x̃e−t. The latter solution indeed satisfies the differential equation
(1.1) at every time except 0 and thus satisfies (2.1). We will see, however, that such
cases are exceptional.

We say that x̃ ∈ �n is a proper initial condition of (2.1) if the following hold:
(a) There exists a unique x : �+ → �n : t → x(t) satisfying (2.1) and such that

x(0) = x̃.
(b) The subset of �+ on which x is not differentiable is at most countable and

has no accumulation points.
(c) If xi(t) = xj(t) holds for some t, then xi(t

′) = xj(t
′) for every t′ ≥ t.

We then say that the solution x is a proper solution of (2.1). The proof of the
following result is sketched in Appendix A, and a detailed version is available in [4].

Theorem 1. Almost all x̃ ∈ �n (in the sense of Lebesgue measure) are proper
initial conditions.

It follows from condition (c) and from the continuity of proper solutions that if
xi(t) ≥ xj(t) holds for some t, then this inequality holds for all subsequent times. For
the sake of clarity, we thus assume in what follows that the components of proper
initial conditions are sorted; that is, if i > j, then x̃i ≥ x̃j , which also implies that
xi(t) ≥ xj(t) for all t. Moreover, an explicit computation, which we perform in sec-
tion 3 for a more complex system, shows that |xi(t)−xj(t)| ≥ |x̃i − x̃j | e−nt. Observe
finally that if xi+1(t

∗) − xi(t
∗) > 1 holds for some t∗ for a proper solution x, then

ẋi+1(t) ≥ 0 and ẋi(t) ≤ 0 hold for almost all subsequent t, so that xi+1(t) − xi(t)
remains larger3 than 1. As a consequence, the system can then be decomposed into
two independent subsystems, consisting of agents 1, . . . , i, and i + 1, . . . , n, respec-
tively.

We now characterize the evolution of the average and variance (sum of squared
differences from the average) of the opinions. For this purpose, we let F be the set of
vectors s̃ ∈ �n such that, for all i, j ∈ {1, . . . , n}, either s̃i = s̃j or |s̃i − s̃j | ≥ 1. We
refer to vectors in F as equilibria.

Proposition 1. Let x be a proper solution of (2.1). The average opinion x̄(t) =
1
n

∑n
i=1 xi(t) is constant. The sum of squared differences from the average, V (x(t)) =∑n

i=1 (xi(t)− x̄(t))2, is nonincreasing. Furthermore, with the exception of a countable
set of times, if xt �∈ F (respectively, xt ∈ F ), then the derivative (dV/dt)(x(t)) is
negative (respectively, zero).

Proof. For all t, except possibly for countably many,

(2.2)
d

dt
x̄(t) =

1

n

∑
i

ẋi(t) =
1

n

∑
(i,j): |xi(t)−xj(t)|<1

(xj(t)− xi(t)) = 0.

Since x(t) is continuous, this implies that x̄(t) is constant.

3The case xi+1(t) − xi(t) = 1 is more complex. Agents could indeed become “reconnected,” as
in the nonuniqueness example given above, because (2.1) is allowed to fail at countably many times.
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Observe now that, for all t at which x is differentiable, d
dtV (x(t)) equals

n∑
i=1

2 (xi(t)− x̄(t)) ẋi(t) = 2

n∑
i=1

xi(t)ẋi(t) = 2

n∑
i=1

∑
j: |xi(t)−xj(t)|<1

xi(t) (xj(t)− xi(t)) ,

where we have used the relation (2.2) twice and the definition (2.1). The right-hand
side of this equality can be rewritten as∑

i,j: |xi(t)−xj(t)|<1

xi(t) (xj(t)− xi(t)) +
∑

j,i: |xj(t)−xi(t)|<1

xj(t) (xi(t)− xj(t)) ,

so that

d

dt
V (x(t)) = −

∑
i,j: |xi(t)−xj(t)|<1

(xj(t)− xi(t))
2
.

The latter expression is negative if x(t) �∈ F and zero otherwise.
There are several convergence proofs for the system (2.1). We present here a

simple one, which highlights the importance of the average preservation and symmetry
properties and extends nicely to the continuum model. A proof relying on other
properties and that can be used in the absence of symmetry can be found in [9].

Theorem 2. Every proper solution x of (2.1) converges to a limit x∗ ∈ F ; that
is, for any i, j, if x∗

i �= x∗
j , then |x∗

i − x∗
j | ≥ 1.

Proof. Observe that, by symmetry, the equality

k∑
i=1

∑
j≤k: |xi(t)−xj(t)|<1

(xj(t)− xi(t)) = 0

holds for any k and any t. Therefore, it follows from (2.1) that for all t, except possibly
for countably many,

(2.3)
d

dt

k∑
i=1

xi(t) =
k∑

i=1

∑
j>k: |xi(t)−xj(t)|<1

(xj(t)− xi(t)) ,

which is nonnegative, because j > k > i implies xj(t) − xi(t) ≥ 0. Since xi(t) ≤
maxj xj(0) = xn(0) for all i and t ≥ 0,

∑k
i=1 xi(t) is bounded and therefore converges

monotonically for any k. It then follows that every xi(t) converges to a limit x∗
i . We

assume that x∗
k �= x∗

k+1 and suppose, to obtain a contradiction, that x∗
k+1 − x∗

k < 1.
Then, since every term xj(t) − xi(t) on the right-hand side of (2.3) is nonnegative,
the derivative on the left-hand side is asymptotically positive and bounded away from
0, preventing the convergence of

∑k
i=1 xi(t). Therefore, x

∗
k+1 − x∗

k ≥ 1.

2.2. Stable equilibria and intercluster distances. By the term clusters, we
will mean the limiting values to which the agent opinions converge. With some abuse
of terminology, we also refer to a set of agents whose opinions converge to the same
value as a cluster. Theorem 2 implies that clusters are separated by a distance of at
least 1. On the other hand, extensive numerical experiments indicate that the distance
between adjacent clusters is typically significantly greater than 1, and if the clusters
contain the same number of agents, it is usually close to 2. We believe that this
phenomenon can, at least partially, be explained by the fact that clusters that are too
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Fig. 2.1. Example of a temporary, “metastable” equilibrium. Initially, two clusters are formed
and do not interact with each other, but they both interact with a small number of agents in between.
As a result, the distance separating them eventually becomes less than 1. The clusters then attract
each other directly and merge into a single, larger cluster.

close to each other can be forced to merge by the presence of a small number of agents
between them, as in Figure 2.1. To formalize this idea we introduce a generalization
of the system (2.1) in which each agent i has a weight wi, and its opinion evolves
according to

(2.4) xi(t) = xi(0) +

∫ t

0

∑
j: |xi(τ)−xj(τ)|<1

wj (xj(τ) − xi(τ)) dτ .

The results of section 2.1 carry over to the weighted case (the proof is the same).
We will refer to the sum of the weights of all agents in a cluster as its weight. If all
the agents in a cluster have exactly the same opinion, the cluster behaves as a single
agent with this particular weight.4

Let s̃ ∈ F be an equilibrium vector. Suppose that we add a new agent of weight δ
and initial opinion x0, consider the resulting configuration as an initial condition, and
let the system evolve according to some solution x(t) (we do not require uniqueness).
We define Δ(δ, s̃) as the supremum of |xi(t)− s̃i|, where the supremum is taken over
all possible initial opinions x0 of the perturbing agent, all i, all times t, and all possible
solutions x(t) of the system (2.1). We say that s̃ is stable if limδ↓0 Δ(δ, s̃) = 0. An
equilibrium is thus unstable if some modification of fixed size can be achieved by
adding an agent of arbitrarily small weight. This notion of stability is almost the
same as the one that we introduced for Krause’s model in [2, 3].

Theorem 3. An equilibrium is stable if and only if for any two clusters A
and B with weights WA and WB , respectively, their distance is greater than d =1 +
min{WA,WB}
max{WA,WB} .

4In the case of nonproper initial conditions leading to multiple solutions, it is not hard to show
that there exists at least one solution in which each cluster behaves as a single agent with the
corresponding weight.
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Proof. The proof is very similar to the proof of Theorem 2 in [3]. The main idea is
the following. A perturbing agent can initially be connected to at most two clusters,
and cannot perturb the equilibrium substantially if it is connected to none or one. If
it is connected to two clusters A,B, it moves in the direction of their center of mass
WA s̃A+WB s̃B

WA+WB
, while the two clusters move at a much slower pace, proportional to the

perturbing agent’s weight. We note that, by a simple algebraic calculation, the center
of mass of two clusters is within unit distance from both clusters if and only if their
distance is no greater than d.

If the distance between the two clusters is greater than d, then the center of mass
of the two clusters is greater than unit distance away from one of the clusters, say,
from B. Therefore, eventually the perturbing agent is no longer connected to B, and
rapidly joins cluster A, having modified the cluster positions only proportionally to
its weight. Thus, the equilibrium is stable.

On the other hand, if the distance between the two clusters is less than d, then
the center of mass is less than unit distance away from both clusters. We can place
the perturbing agent at the center of mass. Then, the perturbing agent does not
move, but keeps attracting the two clusters, until eventually they become connected
and then rapidly merge. Thus, the equilibrium is not stable.

If the distance between clusters is exactly equal to d, the center of mass is at
exactly unit distance from one of the two clusters. Placing a perturbing agent at the
center of mass results in nonunique solutions. In one of these solutions, the clusters
start moving towards their center of mass, and the subsequent behavior is the same
as in the case where the distance between clusters is less than d, thus again showing
instability. Such a solution violates the differential version of (2.1) only at time t = 0
and thus satisfies (2.1).

Theorem 3 characterizes stable equilibria in terms of a lower bound on interclus-
ter distances. It allows for intercluster distances at a stable equilibrium that are less
than 2, provided that the clusters have different weights. This is consistent with ex-
perimental observations for certain initial opinion distributions (see [9], for example).
On the other hand, for the frequently observed case of clusters with equal weights,
stability requires intercluster distances of at least 2. Thus, this result comes close to a
full explanation of the observed intercluster distances of about 2.2. Of course, there is
no guarantee that our system will converge to a stable equilibrium. (A trivial example
is obtained by initializing the system at an unstable equilibrium.) However, we have
observed that for a given distribution of initial opinions, and as the number of agents
increases, we almost always obtain convergence to a stable equilibrium. This leads us
to the following conjecture.

Conjecture 1. Suppose that the initial opinions are chosen randomly and inde-
pendently according to a bounded probability density function with connected support,
which is also bounded below by a positive number on its support. Then, the probability
of convergence to a stable equilibrium tends to 1, as the number of agents increases
to infinity.

In addition to extensive numerical evidence (see, for example, [9]), this conjecture
is supported by the intuitive idea that if the number of agents is sufficiently large,
convergence to an unstable equilibrium is made impossible by the presence of at least
one agent connected to the two clusters. It is also supported by results obtained in
the next sections. A similar conjecture has been made for Krause’s model [2, 3].

3. Agent continuum. To further analyze the properties of (2.1) and its behav-
ior as the number of agents increases, we now consider a variant involving a continuum
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of agents. We use the interval I = [0, 1] to index the agents, and denote by Y the set
of bounded measurable functions x̃ : I → �, attributing an opinion x̃(α) ∈ � to every
agent in I. As an example, a uniform distribution of opinions is given by x̃(α) = α.
We use the function x : I × �+ → � : (α, t) → xt(α) to describe the collection of all
opinions at different times.5 We denote by xt the function in Y obtained by restricting
x to a certain value of t. For a given initial opinion function x̃0 ∈ Y , we are interested
in functions x satisfying

(3.1)
d

dt
xt(α) =

∫
β: (α,β)∈Cxt

(xt(β)− xt(α)) dβ,

where Cx̃ ⊆ I2 is defined for any x̃ ∈ Y by

Cx̃ := {(α, β) ∈ I2 : |x̃(α) − x̃(β)| < 1}.

In what follows, we denote by χx̃ the indicator function of Cx̃.
Note that x0, the restriction of x to t = 0, should not be confused with x̃0,

an arbitrary function in Y intended as an initial condition but for which there may
possibly exist no or several corresponding functions x. The existence or uniqueness
of a solution to (3.1) is not guaranteed, and there may, moreover, exist functions
that satisfy this equation in a weaker sense, without being differentiable in t. For
this reason, it is more convenient to formally define the model through an integral
equation. For an initial opinion function x̃0 ∈ Y , we are interested in measurable
functions x : I ×�+ → � : (α, t) → xt(α) such that

(3.2) xt(α) = x̃0(α) +

∫ t

0

(∫
β: (α,β)∈Cxτ

(xτ (β)− xτ (α)) dβ

)
dτ

holds for every t and for every α ∈ I.6 Similar to the case of discrete agents, one

can easily prove that, for any solution x of (3.2), x̄t :=
∫ 1

0 xt(α) dα is constant, and∫ 1

0
(xt(α) − x̄t)

2
dα is nonincreasing in t.

For the sake of simplicity, we will restrict our attention to nondecreasing (and
often increasing) opinion functions and define X as the set of nondecreasing bounded
functions x̃ : I → �. This is no essential loss of generality, because the only quantities
of interest relate to the distribution of opinions; furthermore, monotonicity of initial
opinion functions can be enforced using a measure-preserving reindexing of the agents;
finally, monotonicity is preserved by the dynamics under mild conditions. In what
follows, an element of X will be referred to as a nondecreasing function. Furthermore,
if x : I × [0,∞) → � is such that xt ∈ X for all t, we will also say that x is
nondecreasing.

3.1. Existence and uniqueness of solutions. The existence of a unique so-
lution to (3.2) is in general not guaranteed, as there exist initial conditions allow-
ing for multiple solutions. Consider, for example, x̃0(α) = −1/2 if α ∈ [0, 1

2 ], and
x̃0(α) = 1/2 otherwise. Observe that, similar to our discrete-agent example, xt = x̃0

and xt(α) = x̃0(α)e
−t/2 are two possible solutions of (3.2). Nevertheless, we will prove

5Note the reversal of notational conventions: the subscript now indicates time rather than an
agent’s index.

6A slightly more general definition would require (3.2) to be satisfied for almost all α ∈ I.
However, this would result in distracting technicalities.
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existence and uniqueness, provided that the initial condition, as a function of α, has
a positive and bounded increase rate; this is equivalent to assuming that the density
of initial opinions is bounded from above and from below on its support, which is
connected.

Our proof of existence and uniqueness is based on the Banach fixed point theorem,
applied to the operator G that maps measurable functions x : I × [0, t1] → � into the
set of such functions, according to

(G(x))t(α) = x̃0(α) +

∫ t

0

(∫
β: (α,β)∈Cxτ

(xτ (β)− xτ (α)) dβ

)
dτ

for some fixed t1. Observe indeed that x is a solution of the system (3.2) if and only
if x0 = x̃ and x = G(x).

It is convenient to introduce some additional notation. For positive real numbers
m,M , we call Xm ⊂ X the set of nondecreasing functions x̃ : I → � such that

x̃(β)− x̃(α)

β − α
≥ m

holds for every β �= α, and we call XM ⊂ X the set of nondecreasing functions x̃ such
that

x̃(β)− x̃(α)

β − α
≤ M

holds for every β �= α. We then denote Xm ∩ XM by XM
m and say that a function

x̃ ∈ X is regular if it belongs to XM
m for some m,M > 0. Now let L be the operator

defined on X and taking its values in the set of functions from I to �, defined by

(3.3) L (x̃)(α) =

∫
χx̃(α, γ) (x̃(γ)− x̃(α)) dγ.

Observe that (3.2) can be rewritten as xt(α) = x̃0(α) +
∫ t

0
L (xτ )(α) dτ = (G(x))t.

The proof of existence and uniqueness rests on two important qualitative prop-
erties of our model. The first, given in Lemma 1, establishes that L is Lipschitz
continuous on Xm. This property will allow us to establish that the operator G is a
contraction (when t1 is small enough) and to apply Banach’s fixed point theorem. The
second, Lemma 2, gives bounds on the rate at which the opinions of different agents
can approach each other. It is instrumental in showing that regularity is preserved,
allowing us to apply the same argument and extend the solution to arbitrarily long
time intervals.

Lemma 1. Let x̃ be a function in Xm, where m > 0. The operator L is Lipschitz
continuous at x̃ with respect to the || · ||∞ norm. More precisely, for any ỹ∈ Y ,

||L (x̃)− L (ỹ)||∞ ≤
(
2 +

8

m

)
||x̃− ỹ||∞ .

Proof. Let x̃ ∈ Xm, ỹ ∈ Y , and δ = ||x̃− ỹ||∞. Fix some α ∈ I, and let
Nx := {γ : |x̃(γ)− x̃(α)| < 1}, Ny := {γ : |ỹ(γ)− ỹ(α)| < 1} be the sets of agents
connected to α under the configuration defined by x̃ and ỹ, respectively. Let also
Nxy = Nx ∩ Ny, Nx\y = Nx \ Nxy, and Ny\x = Ny \ Nxy. By the definition (3.3)
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of L , we have L (x̃)(α) =
∫
Nx

(x̃(γ)− x̃(α)) dγ and L (ỹ)(α) =
∫
Ny

(ỹ(γ)− ỹ(α)) dγ.

Therefore,

L (ỹ)(α)− L (x̃)(α) =

∫
Nxy

(ỹ(γ)− x̃(γ)− ỹ(α) + x̃(α)) dγ

+

∫
Ny\x

(ỹ(γ)− ỹ(α)) dγ −
∫
Nx\y

(x̃(γ)− x̃(α)) dγ.

It follows from the definitions of Nx and Ny that |x̃(γ)− x̃(α)| < 1 holds for every
γ ∈ Nx\y ⊆ Nx, and |ỹ(γ)− ỹ(α)| < 1 holds for every γ ∈ Ny\x ⊆ Ny. This leads to

(3.4)

|L (ỹ)(α) − L (x̃)(α)| ≤
∫
Nxy

(|ỹ(γ)− x̃(γ)|+ |ỹ(α) − x̃(α)|) dγ + |Nx\y|+ |Ny\x|

≤ 2 |Nxy| δ +
∣∣Nx\y

∣∣+ ∣∣Ny\x
∣∣

≤ 2δ +
∣∣Nx\y

∣∣+ ∣∣Ny\x
∣∣ ,

where we have used the bound |Nxy| ≤ |I| = 1 to obtain the last inequality. It remains
to give bounds on

∣∣Nx\y
∣∣ and ∣∣Ny\x

∣∣.
If γ ∈Ny\x, then γ ∈ Ny, and |ỹ(γ)− ỹ(α)| < 1. This implies that

|x̃(γ)− x̃(α)| ≤ |x̃(γ)− ỹ(γ)|+ |ỹ(γ)− ỹ(α)| + |ỹ(α) − x̃(α)| ≤ δ + 1 + δ.

Since such a γ does not belong to Nx, we also have |x̃(γ)− x̃(α)| ≥ 1. Thus, for every
γ ∈ Ny\x, the opinion x̃(γ) lies in the set

[x̃(α) − 1−2δ, x̃(α)− 1] ∪ [x̃(α) + 1, x̃(α) + 1+2δ] ,

which has length at most 4δ. Since the rate of change of opinions (with respect to the
index γ) is at least m, we conclude that

∣∣Ny\x
∣∣ ≤ 4δ/m. A similar argument shows

that
∣∣Nx\y

∣∣ ≤ 4δ/m. The inequality (3.4) then becomes

|L (ỹ)(α) − L (x̃)(α)| ≤ 2δ + 8
δ

m
=

(
2 +

8

m

)
||ỹ − x̃||∞ ,

which is the desired result.
Lemma 2. Let x̃ ∈ Y . Suppose that α, β ∈ I, and x(α) ≤ x(β). Then,

L (x̃)(β) − L (x̃)(α) ≥ − (x̃(β)− x̃(α)) .

Furthermore, if x̃ ∈ Xm for some m > 0, then

L (x̃)(β) − L (x̃)(α) ≤ 2

m
(x̃(β)− x̃(α)) .

Proof. Let Nα := {γ : |x̃(γ)− x̃(α)| < 1} and Nβ := {γ : |x̃(γ)− x̃(β)| < 1}
be the sets of agents connected to α and β, respectively. Now let Nαβ = Nα ∩ Nβ ,
Nα\β = Nα \ Nαβ , and Nβ\α = Nβ \Nαβ . It follows from the definition (3.3) of L
that

(3.5)

L (x̃)(β) =

∫
Nαβ

(x̃(γ)− x̃(β)) dγ +

∫
Nβ\α

(x̃(γ)− x̃(β)) dγ,

L (x̃)(α) =

∫
Nαβ

(x̃(γ)− x̃(α)) dγ +

∫
Nα\β

(x̃(γ)− x̃(α)) dγ.
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The definitions of the sets Nβ\α and Nα\β , together with x̃(β) ≥ x̃(α), imply that
x̃(γ) > x̃(α) holds for all γ ∈ Nβ\α, and x̃(γ) < x̃(β) holds for every γ ∈ Nα\β. Using
these inequalities and subtracting the two equalities above, we obtain

L (x̃)(β) − L (x̃)(α) ≥
∫
Nαβ

(x̃(α)− x̃(β)) dγ +

∫
Nβ\α∪Nα\β

(x̃(α) − x̃(β)) dγ.

Since |Nαβ |+
∣∣Nα\β

∣∣+ ∣∣Nβ\α
∣∣ = |Nα ∪Nβ| ≤ |I| = 1, we obtain the first part of the

lemma.
Let us now assume that x̃ ∈ Xm. It follows from (3.5) and from the inequality

x̃(β) ≥ x̃(α) that

(3.6) L (x̃)(β) − L (x̃)(α) ≤
∫
Nβ\α

(x̃(γ)− x̃(β)) dγ −
∫
Nα\β

(x̃(γ)− x̃(α)) dγ,

which is bounded by
∣∣Nβ\α

∣∣ + ∣∣Nα\β
∣∣. Observe that x̃(Nβ\α)⊆[x̃(α) + 1, x̃(β) + 1).

Since x̃ ∈ Xm, we have

∣∣Nβ\α
∣∣ ≤ 1

m

∣∣x̃(Nβ\α)
∣∣ = 1

m
(x̃(β)− x̃(α)) .

The same bound holds on
∣∣Nα\β

∣∣. The second part of the lemma then follows from
the bound (3.6).

The first part of Lemma 2 implies that, for any solution x, the difference of the
opinions of two agents decreases at most exponentially fast. As a consequence, if the
initial condition of x is an increasing function of α, then xt is also increasing for all
t. We note that this last property does not necessarily hold for nonregular initial
conditions that are only nondecreasing.

We can now formally state our existence and uniqueness result, with the rest of
the proof given in Appendix B. This result also shows that if the initial condition is
regular, then the two models given by a differential or integral equation, respectively,
admit a unique and common solution, which is regular at all times.

Theorem 4. Suppose that the initial opinion function satisfies x̃0 ∈ XM
m for some

m,M > 0. Then the models (3.1) and (3.2) admit a unique and common solution x,
and x satisfies

(3.7) me−t ≤ xt(β) − xt(α)

β − α
≤ Me4t/m

for every t and β �= α.

3.2. Convergence and fixed points. In this section, we prove that opinions
converge to clusters separated by at least unit distance, as in the case of discrete
agents. The proof has some similarities with the one of Theorem 2. It involves three
partial results, the first of which establishes the convergence of the average value of
xt on any interval. Lemma 3 involves an assumption that xt is nondecreasing. By
Theorem 4, this is guaranteed if the initial condition is regular.

Lemma 3. Let x be a nondecreasing solution of the integral equation (3.2). For
any c ∈ I, the limit

lim
t→∞

∫ c

0

xt(α) dα
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exists. As a result, the average value (
∫ c

b
xt(α) dα)/(c−b) of xt on any positive length

interval [b, c] converges as t → ∞.
Proof. Fix some c ∈ [0, 1] and t1, t2 with 0 ≤ t1 < t2. The evolution equation

(3.2) yields

(3.8)∫ c

0

xt2(α)dα =

∫ c

0

xt1(α)dα +

∫ t2

t1

(∫ c

0

∫ 1

0

χxτ (α, β) (xτ (β) − xτ (α)) dβ dα

)
dτ,

where we have used the Fubini theorem to interchange the integration with respect
to τ and α. We observe that∫ c

0

∫ c

0

χxτ (α, β) (xτ (β)− xτ (α)) dβ dα = 0,

because of the symmetry property χxτ (α, β) = χxτ (β, α). Therefore,

(3.9)∫ c

0

∫ 1

0

χxτ (α, β) (xτ (β) − xτ (α)) dβ dα =

∫ c

0

∫ 1

c

χxτ (α, β) (xτ (β) − xτ (α)) dβ dα.

The latter integral is nonnegative, because xτ (β) − xτ (α) ≥ 0 whenever α ≤ c ≤ β.
Thus,

∫ c

0
xt(α) dα is a bounded and nondecreasing function of t, and hence converges,

which is the desired result.
Proposition 2. Let x be a solution of the integral equation (3.2) such that xt

is nondecreasing in α for all t. For all α ∈ I, except possibly for a countable set, the
limit limt→∞ xt(α) exists.

Proof. Let ỹ(α) = lim supt→∞ xt(α). Since, for any t, xt(α) is a nondecreasing
function of α, it follows that ỹ(α) is also nondecreasing in α. Let S be the set of all
α at which ỹ(·) is discontinuous. Since ỹ(·) is nondecreasing, it follows that S is at
most countable.

Fix some α /∈ S. Suppose, in order to derive a contradiction, that xt(α) does
not converge to ỹ(α). We can then fix some ε > 0 and a sequence of times tn that
converges to infinity, such that xtn(α) ≤ ỹ(α) − ε. In particular, for any δ > 0, we
have

(3.10)

∫ α

α−δ

xtn(β) dβ ≤
∫ α

α−δ

xtn(α) dβ = δxtn(α) ≤ δỹ(α) − δε.

Since ỹ(·) is continuous at α, we can choose δ so that ỹ(α − δ) ≥ ỹ(α) − ε/3.
Furthermore, there exists a sequence of times τn that converges to infinity and such
that

xτn(α− δ) ≥ ỹ(α− δ)− ε

3
≥ y(α)− 2ε

3
.

At those times, we have

(3.11)

∫ α

α−δ

xτn(β) dβ ≥
∫ α

α−δ

xτn(α− δ) dβ = δxτn(α − δ) ≥ δỹ(α) − 2δε

3
.

However, (3.10) and (3.11) contradict the fact that
∫ α

α−δ
xt(α) dα converges, thus

establishing the desired result.
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We now characterize the fixed points and the possible limit points of the system.
Let F ⊂ X be the set of nondecreasing functions s̃ such that, for every α, β ∈ I, either
s̃(α) = s̃(β) or |s̃(α)− s(β)| > 1. Similarly, let F be the set of nondecreasing functions
s̃ such that, for almost every pair (α, β) ∈ I2, either s̃(α) = s̃(β) or |s̃(α) − s(β)| ≥ 1.
Finally, we say that s̃ ∈ X is a fixed point if the integral equation (3.2) with initial
condition s̃ admits a unique solution xt = s̃ for all t.

Proposition 3.

(a) Let x be a nondecreasing (in α, for all t) solution of the integral equation
(3.2), and suppose that ỹ(α) = limt→∞ xt(α) a.e. Then, ỹ ∈ F .

(b) If s̃ ∈ F , then s̃ is a fixed point.
(c) If s̃ is a nondecreasing fixed point, then s̃ ∈ F .
Proof. (a) We take the limit in (3.8) as t2 → ∞. Since the left-hand side converges

and the integral inside the brackets is nonnegative (by (3.9)), it follows that

lim inf
τ→∞

∫ c

0

∫ 1

0

χxτ (α, β) (xτ (β)− xτ (α)) dβ dα = 0.

Using (3.9) and then Fatou’s lemma, we obtain

∫ c

0

∫ 1

c

lim inf
τ→∞ χxτ (α, β) (xτ (β)− xτ (α)) dβ dα = 0.

Note that xτ (β)−xτ (α) converges to ỹ(β)−ỹ(α) a.e. If χỹ(α, β) = 1, then χxτ (α, β) =
1 for τ large enough. This shows that lim infτ→∞ χxτ (α, β) ≥ χỹ(α, β). We conclude
that ∫ c

0

∫ 1

c

χỹ(α, β)(ỹ(β) − ỹ(α)) dβ dα = 0.

We integrate this equation over all c ∈ [0, 1], interchange the order of integration, and
obtain ∫ 1

0

∫ 1

α

χỹ(α, β)(ỹ(β) − ỹ(α))(β − α) dβ dα = 0.

This implies that, for almost all pairs (α, β) with α < β (with respect to the two-
dimensional Lebesgue measure), we have χỹ(α, β)(ỹ(β)− ỹ(α)) = 0, and either ỹ(α) =
ỹ(β) or ỹ(β) ≥ ỹ(α) + 1. This is possible only if ỹ ∈ F (the details of this last step
are elementary and are omitted).

(b) Suppose that s̃ ∈ F . We have either χs̃(α, β) = 0 or s̃(α) = s̃(β). Thus,∫
χs̃(α, β)(s̃(β) − s̃(α)) dβ = 0 for all α, and xt = s̃ for all t is thus a solution of the

system. We now prove that this solution is unique. (Recall that uniqueness is part of
our definition of a fixed point.)

Since s̃ is bounded and belongs to F , there exists a positive ε < 1/2 such that, for
all α, β ∈ I, either s̃(α) = s̃(β) or |s̃(α)− s̃(β)| > 1 + 3ε. Now let y be a solution of
(3.2) with s̃ as initial condition. Equation (3.2) readily implies that |yt(α) − s̃(α)| ≤ ε
for all t ∈ [0, ε] and α ∈ I. Therefore, for t ∈ [0, ε], there holds that |yt(α) − yt(β)| < 1
if and only if |s̃(α)− s̃(β)| < 1, and yt is also a solution of the integral equation

yt(α) = s̃(α) +

∫ t

τ=0

(∫
β:(α,β)∈Cs̃

(yτ (β)− yτ (α)) dτ

)
,
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which unlike (3.2) is a linear system, because Cs̃ is constant. It can be shown, using,
for example, the Lipschitz continuity of the corresponding linear operator, that this
system admits a unique solution, so that yt = s̃ holds for t ∈ [0, ε]. Repeating this
reasoning, we obtain yt = s̃ for all t > 0, and s̃ is thus a fixed point.

(c) Suppose that s̃ is a nondecreasing fixed point. By the definition of a fixed
point, the function x defined by xt = s̃ for all t is a solution of the integral equation
(3.2). Since it trivially converges to s̃ and remains nondecreasing, the result follows
from part (a) of this proposition.

The following theorem combines and summarizes the convergence results of this
subsection.

Theorem 5. Let x be a solution of the integral equation (3.2) such that x0 is
regular (or, more generally, such that xt is nondecreasing for all t). There exists a
function ỹ ∈ F such that limt→∞ xt(α) = ỹ(α) holds for almost all α. Moreover, the
set of nondecreasing fixed points contains F and is contained in F .

3.3. Stability and intercluster distances. As in the discrete case, we call
clusters the discrete opinion values held by a positive measure set of agents at a fixed
point s̃. For a cluster A, we denote by WA, referred to as the weight of the cluster,
the length of the interval s̃−1(A). By an abuse of language, we also call a cluster the
interval s̃−1(A) of indices of the associated agents. In this section, we show that, for
regular initial conditions, the limit to which the system converges satisfies a condition
on the intercluster distance similar to the one in Theorem 3. From this result, we
extract a necessary condition for stability of a fixed point.

Theorem 6. Let x̃0 ∈ X be an initial opinion function, let x be the solution
of the integral equation (3.2), and let s̃ = limt→∞ xt a.e. be the function to which x
converges. If x̃0 is regular, then

(3.12) |B −A| ≥ 1 +
min{WA,WB}
max{WA,WB}

holds for any two clusters A and B of s̃. As a consequence, s̃ belongs to F and is thus
a fixed point.

Proof. The idea of the proof is to rely on the continuity of xt (as a function of α)
at each t to guarantee the presence of perturbing agents between the clusters. Then,
if (3.12) is violated, these perturbing agents will cause a merging of clusters.

Let A,B be two clusters of s̃, with A < B. Since s̃ ∈ F , 1 ≤ B − A. Let
m = WAA+WBB

WA+WB
be their center of mass. Condition (3.12) is equivalent to requiring

the center of mass to be at least unit distance away from at least one of the clusters.
Suppose, to obtain a contradiction, that this condition is not satisfied, that is, that
m is less than unit distance away from each of the two clusters A and B.

Since clusters are at least one unit apart, A and B are necessarily adjacent, and
since (3.12) is violated, B − A < 2. From the monotonicity of xt, there exists some
c ∈ I such that

sup
{
α : lim

t→∞xt(α) = A
}
= c = inf

{
α : lim

t→∞xt(α) = B
}
.

Moreover, we have the inclusions

(3.13)
(c−WA, c) ⊆

{
α : lim

t→∞xt(α) = A
}

⊆ [c−WA, c],

(c, c+WB) ⊆
{
α : lim

t→∞xt(α) = B
}
⊆ [c, c+WB].
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Let us fix an ε > 0. Since xt(α) converges to s̃(α) for almost every α, since all xt

are nondecreasing, and since clusters are separated by a distance of at least 1, there
exists a t′ > 0 such that, for all t ≥ t′, the following implications are satisfied:

(3.14)

α < c−WA − ε ⇒ xt(α) ≤ A− 1,
α ∈ (c−WA + ε, c− ε) ⇒ xt(α) ∈ (A− ε, A+ ε),
α ∈ (c+ ε, c+WB − ε) ⇒ xt(α) ∈ (B − ε, B + ε),
α > c+WB + ε ⇒ xt(α) ≥ B + 1.

We introduce some new notation. With each function x̃ ∈ X we associate the
function l̂x̃ : � → (−1, 1) defined by

l̂x̃(q) =

∫
x̃−1((q−1,q+1))

(x̃(β)− q) dβ.

The value l̂x̃(q) represents the derivative of the opinion of an agent whose current
opinion is q. In particular, the differential equation (3.1) can be rewritten as d

dtxt(α) =

l̂xt(xt(α)).

Let us evaluate l̂xt(q) for q ∈ [B − 1 + ε, A + 1 − ε]. (Note that this interval is
nonempty, because B−A < 2.) Observe first that q− 1 ≥ A− 1+ ε > A− 1, because
B − A ≥ 1. From the first relation in (3.14) and the continuity of xt with respect to
α, we obtain

xt(c−WA − ε) ≤ A− 1 < q − 1.

Observe also that q− 1 ≤ A−ε. From the second relation in (3.14) and the continuity
of xt, we obtain

xt(c−WA + ε) ≥ A− ε ≥ q − 1.

A similar argument around q + 1 shows that

xt(c+Wb − ε) ≤ q + 1 < B + 1 ≤ xt(c+WB + ε).

Provided that ε is sufficiently small, these inequalities and the monotonicity of xt

imply that

[c−WA + ε, c+WB − ε] ⊆ x−1
t ((q − 1, q + 1)) ⊆ [c−WA − ε, c+WB + ε].

It also follows from the inclusions (3.14) that
∫ c−ε

c−WA+ε
(xt(β)− q) dβ = WA(A−

q) +O(ε) and
∫ c+WB−ε

c+ε
(xt(β)− q) dβ = WB(B − q) +O(ε). Therefore,

l̂xt(q) = WA(A− q) +WB(B − q) +O(ε) = (WA +WB)(m− q) +O(ε).

Observe now that, since the two clusters do not satisfy condition (3.12), their center
of mass m lies in (B − 1, A + 1). Provided that ε is sufficiently small, we have

m ∈ (B− 1+ ε, A+1− ε), and therefore l̂xt(B− 1+ ε) > 0 and l̂xt(A+1− ε) < 0 for
all t ≥ t′.

Recall that x̃0 ∈ XM
m for some m,M > 0. From Theorem 4, x satisfies the

differential equation (3.1) d
dtxt(α) = L (xt)(α) = l̂xt(xt(α)) and also condition (3.7).

In particular, xt is continuous and increasing with respect to α ∈ I for each t. There
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exists therefore a positive length interval J such that xt′(J) ⊆ [B − 1 + ε, A+ 1− ε].

Since l̂xt(B − 1 + ε) > 0 and l̂xt(A + 1 − ε) < 0 hold for any t ≥ t′, and since
d
dtxt(α) = l̂xt(xt(α)), this implies that xt(J) ⊆ [B − 1 + ε, A + 1 − ε] for all t ≥ t′.
Since J has positive length, this contradicts the inclusions (3.13) on the convergence
to the clusters A and B.

We note that the above proof also applies to any solution of (3.2) for which xt is
continuous with respect to α ∈ I for all t.

The following inclusions summarize the relations between the different sets of
functions that have been proved above:{

lim
t→∞ xt :

x0 regular

}
⊆
{

s ∈ F :
satis. (3.12)

}
⊂ F

⊆ fixed
points

⊂
{

lim
t→∞xt :

x0 nondecreasing

}
⊆ F .

Observe that the set of possible limt→∞ xt strictly contains the set of fixed points.
Every fixed point is indeed the limit of a system taking the fixed point itself as initial
condition. On the other hand, a function such as x̃0(α) = −1/2 if α ∈ [0, 12 ], and
x̃0(α) = 1/2 otherwise, is a limit point, because (3.2) admits xt = x̃0 for all t as a
solution, but it is not a fixed point, because (3.2) also admits other solutions with the
same initial condition.

From Theorem 6, we can deduce a necessary condition for the stability of a fixed
point under a classical definition of stability (in contrast to the nonstandard stability
notion introduced for the discrete-agent system). Let s̃ be a fixed point of (3.2). We
say that s̃ is stable if for every ε > 0 there is a δ > 0 such that if ||s̃− x̃0||1 ≤ δ,
then ||s̃− xt||1 ≤ ε for every t and every solution x of the integral equation (3.2)
with x̃0 as initial condition. It can be shown that this classical notion of stability is
stronger than the stability with respect to the addition of a perturbing agent used
in section 2.2. More precisely, if we view the discrete-agent system as a special case
of the continuum model, stability under the current definition implies stability with
respect to the definition used in section 2.2.

Corollary 1. Let s̃ be a fixed point of (3.2). If s̃ is stable, then, for any two
clusters A and B,

(3.15) |B −A| ≥ 1 +
min{WA,WB}
max{WA,WB} .

Proof. Suppose that s̃ does not satisfy this condition, and let K be the infimum
of ||s̃− s̃′||1 over all s̃′ ∈ F satisfying the condition. Clearly, K > 0. For every
δ > 0, there exist M ≥ m > 0 and x̃0 ∈ XM

m such that ||s̃− x̃0||1 ≤ δ. Let x be
the solution of the integral equation (3.2) with x̃0 as initial condition, and let s′ be
the a.e.-limit of xt. It follows from Theorem 6 that s′ satisfies condition (3.12) and
therefore that ||s̃− s̃′||1 ≥ K. Using the dominated convergence theorem, we obtain
limt→∞ ||s̃− xt||1 = ||s̃− s′||1. As a result, limt→∞ ||s̃− xt||1 ≥ K > 0 holds for
initial conditions x̃0 arbitrarily close to s̃, and s̃ is therefore unstable.

It is possible to prove that the strict inequality version of condition (3.15) is also
necessary for stability. The proof for the case of equality relies on modifying the
positions of an appropriate set of agents and “creating” some perturbing agents at
the weighted average of the two clusters. See Chapter 10 of [9] or Theorem 6 in [3] for
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the same proof applied to Krause’s model. We conjecture that the strict inequality
version of condition (3.15) is also sufficient.

Conjecture 2. A fixed point s̃ of (3.2) is stable with respect to the norm || · ||1
if and only if, for any two clusters A,B,

|B −A| > 1 +
min{WA,WB}
max{WA,WB} .

We note that Conjecture 2 is a fairly strong statement. It implies, for example,
that multiple clusters are indeed possible starting from regular initial conditions,
which is an open question at present.

4. Relation between the discrete and continuum-agent models. We now
formally establish a connection between the discrete-agent and the continuum-agent
models and use this connection to argue that the validity of Conjecture 2 implies the
validity of Conjecture 1 in section 2.2. Toward this purpose, we begin by proving a
result on the continuity of the opinion evolution with respect to the initial conditions.

Proposition 4. Let x be the solution of the continuum model (3.2) for some
regular initial condition x̃0 ∈ XM

m . For every ε > 0 and T > 0, there exists a
δ > 0 such if y is a solution of the continuum model (3.2) and ||y0 − x̃0||∞ ≤ δ, then
||yt − xt||∞ ≤ ε for all t ∈ [0, T ].

Proof. From Theorem 4, xt ∈ Xme−t for all t. Lemma 1 then implies that, for
any ỹt ∈ Y and any t ∈ [0, T ],

(4.1) ||L (ỹt)− L (xt)||∞ ≤
(
2 +

8

m
et
)
||ỹt − xt||∞ ≤

(
2 +

8

m
eT
)
||ỹt − xt||∞ .

For every α ∈ I, we have

yt(α) − xt(α) = y0(α)− x̃0(α) +

∫ t

0

(L (yτ )(α)− L (xτ )(α)) dτ.

It follows from this relation and from the bound (4.1) that

||yt − xt||∞ − ||ys − xs||∞ ≤
∫ t

s

(
2 +

8

m
eT
)
||yτ − xτ ||∞ dτ

holds for any 0 ≤ s ≤ t ≤ T . This implies that, for all t ∈ [0, T ],

||yt − xt||∞ ≤ ||y0 − x̃0||∞ et(2+
8
m eT ) ≤ ||y0 − x̃0||∞ eT(2+

8
m eT ).

Let us now fix an ε > 0 and take δ > 0 such that δeT(2+
8
m eT ) ≤ ε. It follows

from the inequality above that if ||ỹ0 − x̃0||∞ ≤ δ, then ||yt − xt||∞ ≤ ε for every
t ∈ [0, T ].

The following result shows that the continuum-agent model can be interpreted as
the limit when n → ∞ of the discrete-agent model on any time interval of finite length.
To avoid any risk of ambiguity, we use ξ to denote discrete vectors in what follows.
Moreover, we assume that such vectors are always sorted (i.e., j > i ⇒ ξj ≥ ξi).
We define the operator G that maps a discrete (nondecreasing) vector to a function
by G(ξ)(α) = ξi if α ∈ [ i−1

n , i
n ), and G(ξ)(1) = ξ(n), where n is the dimension

of the vector ξ. Let ξ be a solution of the discrete-agent model (2.1) with initial
condition ξ(0). One can verify that G(ξ(t)) is a solution to the continuum-agent
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integral equation (3.2) with G(ξ(0)) as initial condition. As a result, the discrete-
agent model can be simulated by the continuum-agent model. The next proposition
provides a converse, in some sense, over finite-length time intervals.

Theorem 7. Consider a regular initial opinion function x̃0, and let (ξ〈n〉)n>0 be a
sequence of (nondecreasing) vectors in �n such that limn→∞

∣∣∣∣G(ξ〈n〉(0))− x̃0

∣∣∣∣
∞ = 0,

and such that, for each n, ξ〈n〉(0) is a proper initial condition, admitting a unique
solution ξ〈n〉(t). Then, for every T and every ε> 0, there exists n′ such that∣∣∣∣∣∣G(ξ〈n〉(t))− xt

∣∣∣∣∣∣
∞

≤ ε

holds for all t ∈ [0, T ] and n ≥ n′.
Proof. The result follows directly from Proposition 4 and from the fact that

G(ξ〈n〉(t)) is a solution of (3.2) with the initial condition G(ξ〈n〉(0)).
When x̃ is regular, a simple way of building such a sequence (ξ〈n〉(0))n>0 is to

take ξ
〈n〉
i (0) = x̃0(i/n). Theorem 7 implies that the discrete-agent model approximates

arbitrarily well the continuum model for arbitrarily large periods of time, provided
that the initial distribution of discrete opinions approximates sufficiently well the
initial conditions of the continuum model. Now recall that, according to Theorem 6
and for regular initial conditions, the continuum-agent model converges to a fixed
point satisfying the intercluster distance condition (3.12). The conjunction of these
two results thus seems to support our Conjecture 1, that the discrete-agent model
converges to an equilibrium satisfying this same condition, provided that the number
of agents is sufficiently large and that their initial opinions approximate some regular
function. This argument, however, is incomplete, because the approximation result in
Theorem 7 is valid only over finite, not infinite, time intervals. Nevertheless, we will
now show that this reasoning is valid, with rare exceptions, if Conjecture 2 holds.

Proposition 5. Suppose that x̃0 is regular, and suppose that the limit s̃ of the
resulting solution x of (3.2) is stable and its clusters satisfy

(4.2) |B −A| > 1 +
min{WA,WB}
max{WA,WB} .

Let ξ(0) ∈ �n be a vector whose n entries are randomly and independently selected
according to a probability density function corresponding to x̃0. Then, the clusters of
the limit of the corresponding solution of (2.1) satisfy (4.2), with probability that tends
to 1 as n → ∞.

Proof. Let s̃ = limt→∞ xt, which is assumed to be stable and to satisfy (4.2).
Since (4.2) involves a strict inequality, we see that there exists some K > 0 such that
the clusters of any fixed point s′ that satisfies ||s′ − s̃||1 ≤ K must also satisfy (4.2).
Furthermore, since s̃ is stable, there exists some ε > 0 such that if a solution of the
integral equation (3.2) satisfies ||yt′ − s̃||1 < ε for some t′, then ||yt − s̃||1 ≤ K for all
t ≥ t′. To summarize, if a converging trajectory yt comes within ε of s̃, that trajectory
can converge only to a fixed point whose clusters satisfy (4.2).

Suppose now that ξ(0) is a vector generated at random, as in the statement of the
proposition, and whose components are reindexed so that they are nondecreasing. It
follows from Kolmogorov–Smirnov theorems (see [8], for example) and the regularity
of x̃0 that, for any given δ > 0, the probability of the event ||G(ξ(0)) − x̃0||∞ < δ
converges to 1 as n → ∞.

Since xt converges to s̃ a.e., the dominated convergence theorem implies that
there exists some t′ such that ||xt − s̃||1 < ε/2. Now let ξ(t) be a solution of (2.1) for
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the initial condition ξ(0), the existence of which is guaranteed with probability 1 by
Theorem 1. Since G(ξ(t)) is also a solution of the problem (3.2) with initial condition
G(ξ(0)), Proposition 4 implies that when δ is chosen sufficiently small (which happens
with high probability when n is sufficiently large) we will have ||G(ξ(t′))− xt′ ||∞ < ε/2
and, consequently, ||G(ξ(t′))− xt′ ||1 < ε/2. Therefore, with probability that tends to
1 as n increases,

||G(ξ(t′))− s̃||1 ≤ ||G(ξ(t′))− xt′ ||1 + ||xt′ − s̃||1 <
ε

2
+

ε

2
= ε.

It follows that, with probability that tends to 1 as n increases, the limit G(ξ(t)) is a
fixed point that satisfies (4.2).

We now use Proposition 5 to establish the connection between our two conjec-
tures. Suppose that Conjecture 2 holds. Let x̃0 be a regular initial condition. By
Theorem 6, the resulting trajectory converges to a fixed point s̃ that satisfies the
nonstrict inequality (3.12). We expect that generically the inequality will actually be
strict, in which case, according to Conjecture 2, s̃ is stable. Therefore, subject to the
genericity qualification above, Proposition 5 implies the validity of Conjecture 1.

5. Conclusions. We have analyzed a simple continuous-time multiagent system
for which the interaction topology depends on the agent states. We worked with the
explicit dynamics of the interaction topology, which raised a number of difficulties,
because the resulting system is highly nonlinear and discontinuous. This is in contrast
to the case of exogenously determined topology dynamics, which result in time-varying
but linear dynamics.

After establishing convergence to a set of clusters in which agents share the same
opinion, we focused on the intercluster distances. We proposed an explanation for
the experimentally observed distances based on a notion of stability that is tailored
to our context. This also led us to conjecture that the probability of convergence to
a stable equilibrium (in which certain minimal intercluster distances are respected)
tends to 1 as the number of agents increases.

We then introduced a variant of the model, involving a continuum of agents.
For regular initial conditions, we proved the existence and uniqueness of solutions,
the convergence of the solution to a set of clusters, and a nontrivial bound on the
intercluster distances of the same form as the necessary and sufficient condition for
stability for the discrete-agent model. Finally, we established a link between the
discrete and continuum models and related our first conjecture to a seemingly simpler
conjecture.

The results presented here are parallel to, but much stronger than, those that we
obtained for Krause’s model of opinion dynamics [3]. Indeed, we have provided here a
full analysis of the continuum model under the mild and easily checkable assumption
of regular initial conditions.

The tractability of the model in this paper can be attributed to (i) the inherent
symmetry of the model, and (ii) the fact that it runs in continuous time, although the
latter aspect also raised nontrivial questions related to the existence and uniqueness
of solutions. We note, however, that similar behaviors have also been observed for
systems without such symmetry. One can therefore wonder whether the symmetry is
really necessary, or just allows for comparatively simpler proofs. One can similarly
wonder whether our results admit counterparts in models involving high-dimensional
opinion vectors, where one can no longer rely on monotonic opinion functions and
order-preservation results.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5234 V. D. BLONDEL, J. M. HENDRICKX, AND J. N. TSITSIKLIS

As in our work on Krause’s model, our study of the system on a continuum and
the distances between the resulting clusters uses the fact that the density of agents
between the clusters that are being formed is positive at any finite time. This, however,
implies that, unlike the discrete-agent case, the clusters always remain indirectly
connected, and it is not clear whether this permanent connection can eventually force
clusters to merge. In fact, it is an open question whether there exists a regular initial
condition that leads to multiple clusters, although we strongly suspect this to be
the case. A simple proof would consist of an example of regular initial conditions
that admit a closed-form formula for xt. However, this is difficult, because of the
discontinuous dynamics. The only available examples of this type converge to a single
cluster, as, for example, in the case of any two-dimensional distribution of opinions
with circular symmetry (see [5]).

Appendix A. Existence and uniqueness of solutions to the discrete-
agent equation: Proof of Theorem 1. We sketch here the proof of Theorem
1, a full version of which is available in [4]. Observe first that if x is the unique
solution of the system (2.1) for a given initial condition, then xi(t) = xj(t) implies
that xi(t

′) = xj(t
′) holds for all t′ > t. Indeed, one could otherwise build another

solution by switching xi and xj after the time t, in contradiction with the uniqueness
of the solution. Therefore, every initial condition x̃0 satisfying condition (a) in the
definition of proper initial conditions automatically satisfies condition (c).

Let us now fix the number of agents n and, for every undirected graph G on n
vertices, with edge set E, define XG ⊆ �n as the subset in which |xi − xj | < 1 if
(i, j) ∈ E, and |xi − xj | > 1 if (i, j) �∈ E. When restricted to XG, the system (2.1)
becomes the linear time-invariant differential system

(A.1) ẋi =
∑

j:(i,j)∈E

(xj − xi),

which admits a unique solution for any initial condition. This system can be more
compactly written as ẋ = −LGx, where LG is the Laplacian matrix of the graph G.

Consider an initial condition x̃ ∈ �n, and suppose that x̃ ∈XG0 for some G0. Let
xG0 be the unique solution of ẋ = −LG0x with xG0(0) = x̃. If this solution always
remains in XG0 , it is necessarily the unique solution of (2.1). Otherwise, let t1 > 0
be the first time at which xG0(t) ∈ ∂XG0, and set x(t) = xG0(t) for all t ∈ [0, t1]. By
the definition of the sets XG, the point x(t1) also belongs to the boundary of at least
one other set XG1 , with G1 and G0 differing only by one edge (i, j). We consider here
the case where (i, j) ∈ E0, (i, j) �∈ E1, and xi(t1) > xj(t1), but a similar argument
can be made in the three other possibilities. We also assume that x(t1) belongs to the
closure of no other set XG and that (LG0x(t1))i − (LG0x(t1))j �= 0. This assumption
does not always hold, but can be proved to hold for all boundary points that can be
reached, except for a set that has zero measure (with respect to the relative Lebesgue
measure defined on the lower-dimensional boundary).

Since xi(t)−xj(t) < 1 for t just before t1 and xi(t1)−xj(t1) = 1, there must hold
that limt↑t1(ẋi(t)− ẋj(t)) ≥ 0, and thus −(LG0x(t1))i + (LG0x(t1))j > 0, because we
have assumed that the latter quantity is nonzero. Recall that G1 is obtained from G0

by removing the edge (i, j). Since xi(t1)− xj(t1) = 1, we have

−(LG1x)i + (LG1x)j = −(LG0x)i + (LG0x)j − 2(xj(t1)− xi(t1))
= −(LG0x)i + (LG0x)j + 2
> 0.
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So, if the solution x can be extended after t1, there must hold that xi(t)−xj(t) > 1 for
all t in some positive length open interval starting at t1. This implies that x(t) ∈ XG1

on some (possibly smaller) positive length open interval starting at t1, because x(t1)
is at a positive distance from all sets XG other than XG0 and XG1 . On this latter
interval, any solution x must thus satisfy ẋ = −LG1x. This linear system admits a
unique solution xG1 for which xG1(t1) = x(t1). Moreover, the solution remains in
XG1 for some positive length time period, again because −(LG1x)i+(LG1x)j > 0 and
because x(t1) is at a positive distance from all sets XG other than XG0 and XG1 . If it
remains in XG1 forever, we extend x by setting x(t) = xG1(t) on [t1,∞). Otherwise,
we extend x, as before, on the interval [t1, t2], where t2 is the first time after t1 at which
xG1 ∈ ∂XG1 . In both cases, x is a solution to (2.1), on [0,∞) or [0, t2], respectively,
and is unique. Indeed, we have seen that it is the unique solution on [0, t1), that any
extended solution should then enter XG1 , and that there is a unique solution entering
XG1 at t1 via x(t1).

One can prove that, for almost all initial conditions, this process can be continued
recursively without encountering any “problematic boundary points,” namely, those
for which (LGx)i − (LGx)j = 0, or those incident to more than two sets.7 Such a
recursive construction ends after a finite number of transitions if a solution eventually
enters and remains forever in a set XG. In this case, we have proved the existence of
a unique solution (2.1) on �+, differentiable everywhere but on a finite set of times.
Alternatively, the construction may result in an infinite sequence of transition times
t1, t2, . . . . If this sequence diverges, we again have a unique solution. A problem
arises only if this sequence converges to some finite time T ∗, in which case we could
establish existence and uniqueness only on [0, T ∗). The following lemma shows that
this problematic behavior will not arise and concludes the proof of Theorem 1.

Lemma 4. Suppose that the above recursive construction never encounters prob-
lematic boundary points (in the sense defined above) and produces an infinite sequence
of transition times t0, t1, . . . . Then, this sequence diverges, and therefore there exists
a unique solution x, defined for all t ≥ 0. Moreover, ẋ(t) does not converge to 0 when
t → ∞.

Proof. Since the sequence t1, t2, . . . of transition times is infinite, a nonempty set
of agents is involved in an infinite number of transitions, and there exists a time T
after which every agent involved in a transition will also be involved in a subsequent
one. Consider now a transition occurring at s1 > T and involving agents i and j.
We denote by ẋi(s

−
1 ) and ẋi(s

+
1 ) the limits limt↑s1 ẋi(t) and limt↓s1 ẋi(t), respectively.

(Note that these limits exist, because, away from boundary points, the function x is
continuously differentiable.)

Suppose without loss of generality that xi > xj . If i and j are connected before s1
but not after, then the update equation (2.1) implies that ẋi(s

+
1 ) = ẋi(s

−
1 )−(xj(s1)−

xi(s1)). Noting that xi(s1) − xj(s1) = 1, we conclude that ẋi(s
+
1 ) = ẋi(s

−
1 ) + 1.

Moreover, xi − xj must have been increasing just before s1, so that ẋi(s
−
1 ) ≥ ẋj(s

−
1 ).

If, on the other hand, i and j are connected after s1 but not before, then ẋj(s
+
1 ) =

ẋj(s
−
1 ) + 1, and since xi − xj must have been decreasing just before s1, there holds

that ẋj(s
−
1 ) ≥ ẋi(s

−
1 ). In either case, there exists an agent k1 ∈ {i, j} for which

ẋk1(s
+
1 ) = max{ẋi(s

−
1 ), ẋj(s

−
1 )} + 1. It follows from s1 > T that this agent will get

involved in some other transition at a further time. Call s2 the first such time.
The definition (2.1) of the system implies that, in between transitions, |ẋi(t)| ≤ n

7The authors are pleased to acknowledge discussions with Prof. Eduardo Sontag on this assertion
and its proof.
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for all agents. Using (2.1) again, this implies that |ẍi(t)| ≤ 2n2 for all t at which
i is not involved in a transition. Therefore, ẋk1 (s

−
2 ) ≥ ẋk1(s

+
1 ) − 2n2(s2 − s1) =

xk1(s
−
1 )+1−2n2(s2−s1). Moreover, by the same argument as above, there exists a k2

for which ẋk2(s
+
2 ) = ẋk1(s

−
2 )+1 ≥ xk1 (s

−
1 )+2−2n2(s2−s1). Continuing recursively,

we can build an infinite sequence of transition times s1, s2, . . . (a subsequence of
t1, t2, . . . ) such that, for every m,

ẋkm(s+m) ≥ ẋi(s
−
1 ) +m− 2n2(sm − s1)

holds for some agent km. Since all velocities are bounded by n, this implies that sm−s1
must diverge as m grows and therefore that the sequence t1, t2, . . . of transition times
diverges.

Note that the proof of Lemma 4 provides an explicit bound on the number of
transitions that can take place during any given time interval.

Appendix B. Existence and uniqueness of solutions to the continuum-
agent model: Proof of Theorem 4. Let us fix a function x̃0 ∈ XM

m , with 0 < m ≤
M . Let us also fix some t1 such that

(B.1)
m

2
≤ m− 2Mt ≤ me−t ≤ Me4t/m ≤ M +

8

m
t ≤ 2M

and

(B.2)

(
2 +

16

m

)
t ≤ 1

2
, et ≤ 2,

for all t ∈ [0, t1]. We note, for future reference, that t1 can be chosen as a function
f(m,M), where f is continuous and positive.

Recall that we defined the operator G that maps measurable functions x : I ×
[0, t1] → � into the set of such functions by

(G(x))t(α) = x̃0(α) +

∫ t

0

L (xτ )(α)dτ.

Observe that x is a solution of the integral equation (3.2) if and only if x0 = x̃0 and
x = G(x). Let P be the set of measurable functions x : I× [0, t1] → � : (α, t) → xt(α)

such that x0 = x̃0 and such that, for all t ∈ [0, t1], we have xt ∈ X
M+8(M/m)t
m−2Mt or, in

detail,

(B.3) m− 2Mt ≤ xt(β)− xt(α)

β − α
≤ M + 8

M

m
t

for all t ∈ [0, t1] and all β �= α. In particular, if x ∈ P , then

(B.4)
m

2
≤ xt(β)− xt(α)

β − α
≤ 2M

for all t ∈ [0, t1] and all β �= α.
We note that P , endowed with the ‖ · ‖∞ norm, defined by

||x||∞ = max
α∈I,t∈[0,t1]

|xt(α)| ,
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is a complete metric space. We will apply Banach’s fixed point theorem to the operator
G on P . The first step is to show a contraction property of G.

Lemma 5. The operator G is contracting on P . In particular, ||G(y)−G(x)||∞ <
1
2 ||y − x||∞ for all x, y ∈ P .

Proof. Let x, y ∈ P . For any t ∈ [0, t1], we have xt ∈ Xm/2 (cf. (B.4)), and
Lemma 1 implies that

||L (yt)− L (xt)||∞ ≤
(
2 +

16

m

)
||yt − xt||∞ .

Then, for every α ∈ I,

|(G(y))t(α) − (G(x))t(α)| =
∣∣∣∣
∫ t

0

(L (yτ )(α) − L (xτ )(α)) dτ

∣∣∣∣
≤
∫ t

0

||L (yτ )− L (xτ )||∞ dτ

≤
∫ t

0

(
2 +

16

m

)
||yτ − xτ ||∞ dτ

≤
(
2 +

16

m

)
t ||y − x||∞

≤ 1

2
||y − x||∞ ,

where the last inequality follows from (B.2).
Before applying Banach’s fixed point theorem, we also need to verify that G maps

P into itself.
Lemma 6. If x ∈ P , then G(x) ∈ P .
Proof. Suppose that x ∈ P . By definition, G(x)0 = x̃0, and we need only prove

that G(x) satisfies condition (B.3). For t ∈ [0, t1] and α ≤ β, we have

G(x)t(β)−G(x)t(α) = x̃0(β) − x̃0(α) +

∫ t

0

(L (xτ )(β)− L (xτ )(α)) dτ.

It follows from the first part of Lemma 2 and from (B.4) that

L (xτ )(β) − L (xτ )(α) ≥ − (xτ (β)− xτ (α)) ≥ −2M(β − α).

Since x̃0(β) − x̃0(α) ≥ m(β − α), for any t ∈ [0, t1], we have

G(x)t(β) −G(x)t(α) ≥ m(β − α)−
∫ t

0

2M(β − α) dτ = (m− 2Mt)(β − α),

so that G(x) satisfies the first inequality in (B.3).
We now use the second part of Lemma 2 and (B.4) to obtain

L (xτ )(β) − L (xτ )(α) ≤ 4

m
(xτ (β) − xτ (α)) ≤ 8

M

m
(β − α).

Since x̃0(β) − x̃0(α) ≤ M(β − α), for any t ∈ [0, t1], we have

G(x)t(β)−G(x)t(α) ≤ M(β − α) +

∫ t

0

8
M

m
(β − α)dτ =

(
M + 8

M

m
t

)
(β − α).
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Therefore G(x) also satisfies the second inequality in (B.3) and belongs to P .
By Lemmas 5 and 6, G maps P into itself and is a contraction. It follows, from

the Banach fixed point theorem, that there exists some unique x∗ ∈ P such that
x∗ = G(x∗). We now show that no other fixed point can be found outside P .

Lemma 7. If a measurable function x : I × [0, t1) satisfies x = G(x), then it
satisfies condition (3.7) and, in particular, x ∈ P .

Proof. Suppose that the function x : I × [0, t1] → � : (α, t) → xt(α) satisfies

x = G(x); that is, xt(α) = x̃0(α)+
∫ t

0 L (xτ )(α) dτ for all t and α ∈ I. It follows from
the first part of Lemma 2 that

(B.5) (xt(β)− xt(α))− (x0(β) − x0(α)) ≥ −
∫ t

0

(xτ (β)− xτ (α)) dτ

holds for α ≤ β and 0 ≤ s ≤ t. Since h(t) − h(0) ≥ − ∫ t

0 h(τ)dτ for all t ≥ 0 implies
that h(t) ≥ h(0)e−t (special case of Gronwall’s inequality), and since x̃0 ∈ Xm implies
that (x0(β)− x0(α)) ≥ m(β − α), it follows from (B.5) that

xt(β) − xt(α) ≥ e−t (x0(β)− x0(α)) ≥ me−t(β − α),

which proves the first inequality in (3.7) and also that xt ∈ Xme−t for all t. Using
this bound, it follows from the second part of Lemma 2 that

(xt(β) − xt(α))− (x0(β) − x0(α)) ≤
∫ t

0

2

m
et (xτ (β) − xτ (α)) dτ

≤ 4
m

∫ t

0

(xτ (β) − xτ (α)) dτ,

where the last inequality follows from (B.2). Therefore,

xt(β)− xt(α) ≤ e4t/m(x̃0(β) − x̃0(α)) ≤ Me4t/m(β − α),

where we have used the assumption that x̃0 ∈ XM . This shows the second inequality
in (B.3) and, in particular, that x ∈ P .

We have shown so far that the integral equation (3.2) has a unique solution x∗

(for t ∈ [0, t1]), which also belongs to P . We argue that it is also the unique solution
to the differential equation (3.1). Since L (x∗

t ) is bounded for all t, it follows from the
equality

(B.6) x∗
t = x̃0 +

∫ t

0

L (x∗
τ ) dτ

that x∗
t is continuous with respect to t under the || · ||∞ norm; that is, there holds

limτ→t ||x∗
τ − x∗

t ||∞ = 0 for all t. By Lemma 7, x∗ satisfies condition (3.7), and then
Lemma 1 implies that L is a Lipschitz continuous at every x∗

t . The continuity of x∗
t

with respect to t then implies that L (x∗
t ) also evolves continuously with t. Therefore,

we can differentiate (B.6), to obtain d
dtx

∗
t (α) = L (x∗

t )(α), for all t and α. The
function x∗ is thus a solution to the differential equation (3.1). Finally, since every
solution of the differential equation is also a solution of the integral equation, which
admits a unique solution, the solution of the differential equation is also unique.

To complete the proof of the theorem, it remains to show that the solution x∗

can be extended to all t ≥ 0. Let x̃1 = x∗
t1 . It follows from (3.7) that x̃1 ∈ XM1

m1
, with
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m1 = me−t1 and M1 = Me4t/m. By repeating the argument given for [0, t1], there
exists a unique x∗∗, defined on I × [t1, t2], such that

x∗∗
t = x̃1 +

∫ t

t1

L (x∗∗
τ ) dτ

for all t ∈ [t1, t2] and where t2 − t1 = f(m1,M1). One can easily verify that the
function obtained by concatenating x∗ and x∗∗ is a (unique) solution of the integral
and differential equations on [0, t2] and that it satisfies the bound (3.7). Repeating
this argument, we show the existence of a unique solution on every [0, tn], with

tn+1 − tn = f(me−tn ,Me4tn/m).

Since this recursion can be written as tn+1 = tn+g(tn), with g continuous and positive
on [0,∞), the sequence tn diverges. (To see this, note that if tn ≤ t∗ for all n, then
g(tn) ≥ min0≤t≤t∗ g(t) > 0 for all n, which proves that tn → ∞, a contradiction.)
This completes the proof of Theorem 4.
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