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Abstract— We study the problem of scheduling over timevary-
ing links in a network that serves both heavy-tailed and light-
tailed traffic. We consider a system consisting of two parallel
queues, served by a single server. One of the queues receives
heavy-tailed traffic (the heavy queue), and the other receives
light-tailed traffic (the light queue). The queues are connected
to the server through time-varying ON/OFF links, which model
fading wireless channels. We first show that the policy that
gives complete priority to the light-tailed traffic guarantees the
best possible tail behavior of both queue backlog distributions,
whenever the queues are stable. However, the priority policy is
not throughput maximizing, and can cause undesirable instability
effects in the heavy queue. Next, we study the class of through-
put optimal max-weight-α scheduling policies. We discover a
threshold phenomenon, and show that the steadystate light queue
backlog distribution is heavy-tailed for arrival rates above a
threshold value, and light-tailed otherwise. We also obtain the
exact tail coefficient of the light queue backlog distribution under
max-weight-α scheduling. Finally, we study a log-max-weight
scheduling policy, which is throughput optimal, and ensures that
the light queue backlog distribution is light-tailed.

Index Terms— Heavy-tailed traffic, queuing analysis,
scheduling.

I. INTRODUCTION

SCHEDULING conflicting communication links is an
important task that arises in a variety of settings, including

wireless networks and high speed switches. There is a large
literature on scheduling conflicting links in a constrained
queueing network, and many of these papers are based
on the maximum-weight scheduling framework proposed
in [20] and [21]. The importance of maximum-weight schedul-
ing is due to its ‘throughput optimality’ property. That is, it can
stably support the largest set of traffic rates that is supportable
by a given queueing network. For this reason, the max-weight
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family of scheduling policies has received much attention in
various networking contexts, including switches [13], satellites
[16], wireless [17], and optical networks [2].

Although throughput is an important first-order performance
metric, a more discerning metric is the delay experienced by
the traffic flows. While the throughput optimality of max-
weight scheduling and its variants have been well understood
for a while, the delay properties of these scheduling policies
are not as thoroughly understood. Average delay bounds, such
as those in [17] and [10] can be derived using Lyapunov drift
techniques; however, these are quite loose in general.

Existing results on the delay performance of max-weight
policies indicate that these policies tend to perform well when
the competing traffic sources are, loosely speaking, symmetric
and well-behaved. This is intuitively due to the tendency
of max-weight policies to balance the queues, by assigning
greater service rates to links that have larger queue backlogs.
For example, [21] contains a strong sample path optimal-
ity result for queue backlogs under stochastically symmetric
traffic to parallel queues, and which is generalized in [6].
Additionally, [15] derives order optimal delay bounds when
the arrival rates are ‘ f -balanced’, and lie inside a scaled
version of the stability region. Certain large deviations opti-
mality results are also known [18], [19] for the class of max-
weight policies when all the arrival processes are sufficiently
well-behaved and light-tailed.

On the other hand, the traffic flows encountered in prac-
tice tend to be highly asymmetric, exhibiting wide range of
variability or burstiness [11]. In this paper, we analyze the
delay performance of generalized max-weight policies, when
the competing traffic sources are highly asymmetric. We study
a system consisting of two parallel queues, served by a single
server. One of the queues is fed by a highly bursty arrival
process, which is modeled as being heavy-tailed. The other
queue is fed by a light-tailed arrival process. We refer to these
queues as the ‘heavy’ and ‘light’ queues, respectively. The
performance metric we focus on in the present paper is the
tail behavior of the steady-state queue backlog distributions.
This tail behavior essentially captures the probability of a large
delay event occurring in the queueing system.

To our knowledge, [12] was the first paper to study the
performance of the max-weight family of scheduling policies,
when heavy-tailed and light-tailed traffic compete for service.
Specifically, it was shown in [12] that when the heavy-tailed
traffic has an infinite variance, the light-tailed traffic experi-
ences an infinite expected delay under max-weight scheduling,
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Fig. 1. A system of two parallel queues, with one of them fed with heavy-
tailed traffic. The channels connecting the queues to the server are unreliable
ON/OFF links.

due to competition from the heavy-tailed traffic. The authors
also studied a more general max-weight-α policy, wherein
by increasing the preference afforded to the light queue,
it is possible to make the expected delay of the light-tailed
traffic finite. In a subsequent paper [9], we obtained an exact
asymptotic characterization of the steady-state queue-backlog
distributions under generalized max-weight policies, for a
fairly general class of heavy-tailed distributions. Our results
in [9] show that the light-tailed traffic always suffers a heavy-
tailed backlog under max-weight-α scheduling, although the
‘tail coefficient’ can be influenced by appropriately adjusting
the α parameters in the policy.

In [9], we assume that the queues are reliably connected to
the server. In the present paper, we introduce channel variabil-
ity into the model, and assume that the queues are connected
to the server through time-varying ON/OFF links (Fig. 1).
This can be viewed as a rudimentary model of a wireless
uplink/downlink scenario, with two nodes communicating with
a base station through fading channels. In this setup with time-
varying ON/OFF links, we discover a threshold phenomenon
with respect to the arrival rate of the light-tailed traffic, which
essentially governs the queue backlog distribution faced by the
light-tailed traffic. Under max-weight-α scheduling, we show
that the light queue backlog distribution is light-tailed if the
arrival rate to the light queue is below a certain threshold
value, and heavy-tailed if the arrival rate is above the threshold
value. This is in contrast with the case of reliable channels [9],
where the light-tailed traffic faces heavy-tailed queue backlog
for all positive arrival rates. Further, when the arrival rate is
above the threshold value, we obtain the exact tail coefficient
of the queue backlog distributions, which helps us identify all
the bounded moments of the queue backlogs. This threshold
behavior is intuitively due to the fact that the light-tailed traffic
can always be served whenever the link serving the heavy-
tailed queue is OFF, and is therefore guaranteed a minimum
service rate independent of the behavior of the heavy queue.

The simplest way to guarantee a good tail behavior for the
light queue distribution is to give the light queue complete
priority over the heavy queue, so that it does not have to
compete with the heavy queue for service. However, giving
priority to the light queue has an important shortcoming – it
is not a throughput optimal scheduling policy for the system.
Indeed, we characterize the loss in throughput, and point out
that giving complete priority to the light queue can cause
undesirable instability effects in the heavy queue.

Thus on the one hand, the throughput optimal max-weight-
α scheduling policy can lead to heavy-tailed asymptotics for

the light queue. On the other hand, giving priority to the light
queue leads to good tail behavior for the light queue, but is not
throughput optimal. As a compromise, we study a log-max-
weight (LMW) scheduling policy, which gives significantly
more importance to the light queue compared to max-weight-α
scheduling. We show that the LMW policy has both desirable
attributes – namely, it is throughput optimal, and ensures
better tail behavior for the light queue distribution compared to
max-weight-α.

The remainder of this paper is organized as follows.
In Section II, we introduce the system model and the req-
uisite technical preliminaries. In Section III, we study priority
scheduling. Section IV deals with queue backlog behavior
under max-weight-α scheduling. In Section V, we analyze
the queue backlog behavior under log-max-weight scheduling.
Section VI concludes the paper.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

In this section, we describe the system model, and specify
our assumptions about the traffic statistics. Our system consists
of two parallel queues, H and L, served by a single server,
as depicted in Fig. 1. Time is slotted, and stochastic arrivals
of packet bursts occur to each queue in each slot. The server
is capable of serving one packet per time slot, from only one
of the queues according to a scheduling policy. Let H (t) and
L(t) denote the number of packets that arrive at the end of
slot t, to H and L respectively. Although we postpone the
precise assumptions on the traffic statistics to Section II-B,
let us loosely say that the input L(t) is light-tailed, and H (t)
is heavy-tailed. We will refer to the queues H and L as the
heavy and light queues, respectively.

The queues are connected to the server through time-varying
links. Let SH (t) ∈ {0, 1} and SL(t) ∈ {0, 1} respectively
denote the states of the channels connecting the H and L
queues to the server. When a channel is in state 0, it is OFF,
and no packets can be served from the corresponding queue in
that slot. When a channel is in state 1, it is ON, and a packet
can be served from the corresponding queue if the server is
assigned to that queue. This channel model can be used to
represent fading wireless links in a two-user up-link or down-
link system.

The channel processes SH (t) and SL(t) are independent
of each other, and independent of the arrival processes. We
assume that SH (t) and SL(t) are i.i.d. from slot to slot, distrib-
uted according to Bernoulli processes with positive means pH
and pL respectively. That is, P {Si (·) = 1} = pi , i ∈ {H, L}.
We say that a particular time slot t is exclusive to H , if
SH (t) = 1 and SL(t) = 0, and similarly for L.

Before we specify the precise assumptions on the arrival
processes, we pause to make some relevant definitions.

A. Heavy-Tailed and Light-Tailed Random Variables

Definition 1: A non-negative random variable X is said
to be light-tailed if there exists θ > 0 for which
E

[
exp(θ X)

]
< ∞. A random variable is heavy-tailed if it is

not light-tailed. In other words, a light-tailed random variable
is one that has a well defined moment generating function in
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Fig. 2. The rate region of the system is shown in solid line, and the set of
stabilizable rates under priority for L is the region under the dashed line.

a neighborhood of the origin. The complementary distribution
function of a light-tailed random variable decays at least
exponentially fast. Heavy-tailed random variables are those
that have complementary distribution functions that decay
slower than any exponential. We now define the tail coefficient
of a random variable.

Definition 2: The tail coefficient of a random variable X is
defined by

CX = sup{c ≥ 0 | E
[
Xc] < ∞}.

In words, the tail coefficient is the threshold where the power
moment of a random variable starts to blow up. Note that
the tail coefficient of a light-tailed random variable is infinite.
On the other hand, the tail coefficient of a heavy-tailed
random variable may be infinite (e.g., log-normal) or finite
(e.g., Pareto). In this paper, we restrict our attention to the
class of heavy-tailed random variables that have a finite tail
coefficient.

We now state the precise assumptions on the arrival
processes.

B. Assumptions on the Arrival Processes

1) The arrival processes H (t) and L(t) are independent of
each other.

2) H (t) is independent and identically distributed (i.i.d.)
from slot-to-slot.

3) L(t) is i.i.d. from slot-to-slot.
4) L(·) is light-tailed with E [L(t)] = λL .
5) H (·) is heavy-tailed with tail coefficient CH (1 < CH <

∞), and E [H (t)] = λH .

The conditions for a rate pair (λH ,λL ) to be stably1

supportable in this system are well known. Specifically, it
follows from the results in [21] that the rate region of the
system is given by

$ = {(λH ,λL) | 0 ≤ λL < pL, 0 ≤ λH < pH ,

λH + λL < pH + pL − pH pL} . (1)

Thus, the rate region is pentagonal, with its boundary indicated
by the solid line in Fig. 2.

1The notion of stability we use is the positive recurrence of the system
backlog Markov chain.

Let qH (t) and qL(t), respectively, denote the number of
packets in H and L at the beginning of slot t, under a
particular scheduling policy, and let qH and qL denote the
corresponding steady-state queue backlogs when they exist.
The evolution of the two queues is given by

qi (t + 1) = max(qi (t) + i(t) − Si (t)µi (t), 0), i ∈ {H, L},
where µi (t) = 1 if the server is assigned to the queue i during
time t, and zero otherwise. We assume that the scheduler
can observe the current channel states Si (t), i ∈ {H, L}, as
well as the queue backlogs qi (t), i ∈ {H, L}, before making
a scheduling decision in slot t . Our aim is to characterize the
distributions of the steady-state queue backlogs qH and qL
under various scheduling policies.

III. PRIORITY POLICIES

In this section, we study two extremal scheduling policies,
namely, priority for L and priority for H . Our analysis helps
us arrive at the conclusion that the tail of the heavy queue is
inevitably heavy-tailed under any scheduling policy.

A. Priority for the Heavy-Tailed Traffic

Under priority for H , the heavy queue receives service
whenever it is non-empty and connected to the server. Queue
L receives service during its exclusive slots, and when both
queues are connected, but H is empty. It should be intu-
itively clear at the outset that this policy is bound to have
an undesirable impact on the light queue. The reason we
analyze this policy is that it gives us a best case scenario for
the heavy queue. The following result shows that the heavy
queue backlog distribution is one order heavier than its input
distribution under this policy.

Proposition 1: Under priority for H , the steady-state queue
backlog distribution of the heavy queue is a heavy-tailed
random variable with tail coefficient equal to CH −1. That is,
for every ϵ > 0, we have

E
[
qCH−1−ϵ

H

]
< ∞, (2)

and
E

[
qCH−1+ϵ

H

]
= ∞. (3)

Proof: We first note that under priority for H, the heavy
queue behaves like a discrete time G/M/1 system. For such
a queue, the upper bound (2) is easily obtained using a drift
argument for the Lyapunov function V (qH (t)) = qH (t)CH −ϵ .
To obtain the lower bound (3), let us define H̃ as a fictitious
heavy queue, which is fed by the same input sample path as
the original queue H. However, H̃ is always connected to the
server, and receives service in every slot. Notice now that qH
stochastically dominates qH̃ . It is therefore sufficient to show

that E
[
qCH−1+ϵ

H̃

]
= ∞, and this can be accomplished by

following [9, Th. 1] . !
Since priority for H affords the most favorable treatment to

the heavy queue, it follows that the tail behavior of H can be
no better than the above under any policy.

Proposition 2: Under any scheduling policy, qH is heavy-
tailed with tail coefficient at most CH −1. That is, Equation (3)
holds for all scheduling policies.
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B. Priority for the Light-Tailed Traffic

Under priority for L, the light queue is served whenever
its channel is ON, and L is non-empty. The heavy queue is
served during the exclusive slots of H , and in the slots when
both channels are ON, but L is empty. This policy ensures
that the light queue does not have to compete with the heavy
queue for service, and guarantees the lowest possible light
queue backlog among all policies. However, we show that this
policy is not throughput optimal, and that it fails to stabilize
the heavy queue for some arrival rates within the rate region
in (1). The following theorem characterizes the behavior of
both queues under priority for L.

Theorem 1: The following statements hold under priority
scheduling for the light queue.
(i) If λH > pH (1 − λL), the heavy queue is unstable, and

no steady-state exists.
(ii) If λH < pH (1 − λL), the heavy queue is stable, and its

steady-state backlog qH is heavy-tailed with tail coeffi-
cient CH − 1.

(iii) qL is light-tailed and satisfies the LDP

lim
b→∞

−1
b

log P {qL > b} = IL ,

where IL is the intrinsic exponent of the light queue given
by

IL = sup
{
θ

∣∣ $L(θ) − log
(
1 − pL + pLeθ

)
< 0

}
,
(4)

and $L(θ) = log E
[
eθ L(1)

]
is the log moment generating

function of L(·).
In Fig. 2, the line λH = pH (1 − λL) is shown using a

dashed segment. The above theorem asserts that H is stable
under priority for L only in the trapezoidal region under the
dashed line, while the rate region of the system is clearly
larger. Therefore, priority for L is not throughput optimal in
this setting. To summarize, priority for L can lead to instability
of the heavy queue, but for all arrival rates that it can stabilize,
the asymptotic behavior of both queues is as good as it can
possibly be. Let us now prove the above theorem.

Proof: First, we note that the light queue behaves like a
discrete time G/M/1 queue under priority, since the service
time for each packet is geometrically distributed with mean
1/pL . Thus, qL is light-tailed, and satisfies the same LDP as
a G/M/1 queue. Statement (iii) therefore follows from classical
large deviation results [5, Th. 1.4].

Let us now prove statement (i) of the theorem. Under
priority for L, denote by D̂H (t) ∈ {0, 1} the indicator of a
service opportunity afforded to the heavy queue in slot t . Thus,
D̂H (t) = 1 if H is ON and the server is assigned to H during
slot t, and zero otherwise. Note that D̂H (t) = 1 does not
necessarily imply a departure from the heavy queue in that
slot, since H could be empty. We will compute the long term
average rate of service opportunities given to H under priority
for L, defined as2

lim
T →∞

1
T

T∑

t=1

D̂H (t).

2We will see momentarily that this limit exists almost surely.

Since the light queue behaves as a G/M/1 queue, the
intervals between successive commencements of busy periods
of L are renewal intervals. Let us denote by X L a random
variable representing the length of a renewal interval. Also
denote by B and I , respectively, the average length of a busy
and idle period of L. The average length of a renewal interval
is therefore E [X L ] = B+ I . Consider now the total number of
service opportunities d̂H (i) given to H during the i th renewal
interval. Thus, d̂H (i) equals the number of exclusive slots of
H during the renewal interval, plus the number of slots when
both channels are ON and L is empty (the idle time). We can
then consider d̂H (i) as a renewal reward function, and invoke
the renewal reward theorem [4] to write (almost surely)

lim
T →∞

1
T

T∑

t=1

D̂H (t) =
E

[
d̂H (i)

]

B + I
.

Let us now compute E
[
d̂H (i)

]
. First, the average number

of exclusive slots of H during a renewal interval is given by
pH (1 − pL)(B + I ). Second, the average number of slots
when both channels are ON, and L is empty is given by
I pH pL . Therefore, E

[
d̂H (i)

]
= pH (1− pL)(B+ I )+ I pH pL .

Substituting this in the reward theorem, we get

lim
T →∞

1
T

T∑

t=1

D̂H (t) = pH (1 − pL) + pH pL
I

B + I
. (5)

In the above, note that I
B+I

is the fraction of time that the
light queue is idle. Also, by applying Little’s law to the server
at the light queue, we find that the fraction of time the light
queue is busy should equal λL

pL
, which is the load on the light

queue. Therefore,

I

B + I
= 1 − λL

pL
.

Substituting in (5),

lim
T →∞

1
T

T∑

t=1

D̂H (t) = pH (1 − pL) + pH pL

(
1 − λL

pL

)

= pH (1 − λL ). (6)

Thus, the average rate of service opportunities for H almost
surely equals pH (1 − λL). If λH > pH (1 − λL), then the
average service rate given to the heavy queue is dominated by
the average arrival rate, leading to the instability of H . This
proves statement (i).

Finally, to prove statement (ii), we can use a direct
Lyapunov approach as shown in [7, Th. 5.1]. Alternatively,
we could invoke [3, Th. 1] on the heavy queue in isolation,
after verifying that the requisite conditions are met. !

The special case in which the queues are always connected
to the server, i.e., pH = pL = 1, is interesting. In this case, the
set of arrival rates stabilizable under priority for L coincides
with the stability region of the system, which is given by

{(λH ,λL) | λH + λL < 1 } .
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Therefore, when the queues are reliably connected to the
server, priority scheduling for the light-tailed traffic is through-
put optimal, and also ensures the best possible tail behavior
for both queues.

IV. MAX-WEIGHT-α SCHEDULING

In this section, we analyze the tail behavior of the light
queue distribution under max-weight-α scheduling. For fixed
parameters αH > 0 and αL > 0, the max-weight-α policy
operates as follows. During each slot t, compare

qL(t)αL SL(t) " qH (t)αH SH (t),

and serve one packet from a queue that wins the comparison.
Ties are broken in favor of the light queue. Note that αL = αH
corresponds to the usual max-weight policy, which serves the
longest connected queue in each slot. The case αL/αH > 1
corresponds to emphasizing the light queue over the heavy
queue, and vice-versa.

It can be shown using standard Lyapunov arguments that
max-weight-α scheduling is throughput optimal for all αH > 0
and αL > 0. That is, it can stably support all arrival rates
within the rate region (1). This throughput optimality result
follows, for example, from [3, Th. 1].

We show that under max-weight-α scheduling, the tail
behavior of the steady-state light queue backlog distribution is
strongly dependent on λL , the arrival rate to the light queue.
Specifically, we show that qL is light-tailed when λL is below
a threshold value, and heavy-tailed with a finite tail coefficient
for λL above the threshold value.

The following result shows that the light queue distribution
is light-tailed under any ‘reasonable’ policy, as long as the rate
λL is smaller than a threshold value.

Proposition 3: Suppose that λL < pL(1 − pH ). Then qL is
light-tailed under any policy that serves L during its exclusive
slots.

Proof: The proof is straightforward once we note that the
exclusive slots of L occur independently during each slot with
probability pL(1 − pH ). Indeed, consider the L queue under
a policy that serves L only during its exclusive slots. Under
this policy, the L queue behaves like a G/M/1 queue with
light-tailed inputs at rate λL , and service rate pL(1 − pH ).
It can be shown using standard large deviation arguments
[5, Th. 1.4] that qL is light-tailed under the policy that serves
L only during its exclusive slots. It follows, using a stochastic
dominance argument that qL is light-tailed under any policy
that serves L during its exclusive slots. !

The above proposition implies that for λL < pL(1 − pH ),
the light queue distribution is light-tailed under max-weight-α
scheduling. The region λL < pL(1−pH ) is shown unshaded in
Fig. 3. Thus, qL is light-tailed under max-weight-α scheduling
for arrival rates in the unshaded region.

In the remainder of this section, we investigate the tail
behavior of the light queue under max-weight-α scheduling
when the arrival rate is above the threshold, i.e., for λL >
pL(1 − pH ). In this case, the light queue receives traffic
at a higher rate than can be supported by the exclusive
slots of L alone. Therefore, the light queue has to compete

Fig. 3. Under max-weight-α scheduling, qL is light-tailed for arrival rates
in the unshaded region, and heavy-tailed in the shaded region.

for service with the heavy queue during the slots that both
channels are ON. Since the heavy queue can be very large
with substantially high probability, it seems intuitively rea-
sonable that the light queue will suffer from this competi-
tion, and also take on a heavy-tailed behavior. This intuition
is indeed correct, although proving the result takes some
effort.

We prove that the light queue distribution is heavy-tailed
when λL > pL(1 − pH ) for all values of the scheduling para-
meters αL and αH . We also obtain the exact tail coefficient of
the light queue distribution for ‘plain’ max-weight scheduling
(αL/αH = 1), and for the regime where the light queue is
given more importance (αL/αH > 1).

A. Max-Weight Scheduling

Let us first characterize the tail coefficient of the steady-
state light queue backlog under the max-weight policy, which
serves the longest connected queue in each slot. Since qL is
light-tailed for λL < pL(1 − pH ) according to Proposition 3,
we will focus on the case λL > pL(1 − pH ).

Theorem 2: Suppose that λL > pL(1 − pH ). Then, under
max-weight scheduling, qL is heavy-tailed with tail coefficient
CH − 1.

In terms of Fig. 3, the theorem asserts that qL is heavy-
tailed with tail coefficient CH − 1 for all arrival rates in the
shaded region. Proving the above result involves showing (i) an
upper bound: E

[
qCH−1−ϵ

H

]
< ∞, and (ii) a lower bound:

E
[
qCH−1+ϵ

H

]
= ∞, for any ϵ > 0. We deal with each part

separately.
1) Upper Bound for Max-Weight Scheduling:
Proposition 4: Under max-weight scheduling, we have

E
[
qCH−1−ϵ

L

]
< ∞, ∀ ϵ > 0.

Proof: This is a special case (αL/αH = 1) of Proposition 6,
in the next section. !

2) Lower Bound for Max-Weight Scheduling:
Proposition 5: Suppose that λL > pL(1− pH). Then, under

max-weight scheduling, we have

E
[
qCH−1+ϵ

L

]
= ∞, ∀ ϵ > 0.
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This is a special case of Proposition 7, but we will provide
a proof because this special case is more transparent. Since
the proof is rather involved, we describe the idea informally,
and present the formal proof in Appendix A. In our intuitive
argument, we will argue that

lim
t→∞ E

[
qL(t)CH −1+ϵ

]
= ∞. (7)

The above is the limit of the expectation of a sequence of ran-
dom variables, whereas what we really want in Proposition 5 is
the expectation of the limiting random variable qL . Although
it is by no means obvious that the limit and the expectation
can be interchanged here, we will ignore this as a technical
point for the time being.

The main idea behind the proof is to consider the renewal
intervals that commence at the beginning of each busy period
of the system. Let us define the renewal reward process R(t) =
qL(t)CH −1+ϵ . By the key renewal theorem for arithmetic
processes [4, p. 81],

lim
t→∞ E [R(t)] = E [R]

E [T ]
,

where E [R] denotes the expected reward accumulated over a
renewal interval, and E [T ] < ∞ is the mean renewal interval.
It is therefore enough to show that3

E
[

T∑

i=0

qL(i)CH−1+ϵ

]

= ∞.

To see intuitively why the above expectation is infinite, let
us condition on the busy period commencing at time 0 with
a burst of size b to the heavy queue4. After this instant, the
heavy queue drains at rate pH , assuming for the sake of a
lower bound that there are no further bursts arriving at H .
In the meantime, the light queue receives traffic at rate λL ,
and gets served only during the exclusive slots of L, which
occur at rate pL(1− pH ). With high probability therefore, the
light queue will steadily build up at rate λL − pL(1 − pH ),
until it eventually catches up with the draining heavy queue.
It can be shown that the light queue will build up to an
&(b) level before it catches up with the heavy queue. Further,
the light queue backlog stays at &(b) for a time interval of
length &(b). Therefore, with high probability, the reward is
at least &(bCH−1+ϵ) for &(b) time slots. Thus, for some
constant K ,

E
[ T∑

i=0

qL(i)CH−1+ϵ

]

≥ E
[

K b · bCH−1+ϵ
]

= ∞,

where the last expectation is infinite because the initial burst
size has tail coefficient equal to CH .

In words, the light queue not only grows to a level propor-
tionate to the initial burst size, but also stays large for a period
of time that is proportional to the burst size. This leads to a
light queue distribution that is one order heavier than the burst
size distribution.

3Without loss of generality, we have considered a busy period that com-
mences at time 0.

4It is easy to show that this event has positive probability for all large
enough b.

B. Max-Weight-α Scheduling With αL ≥ αH

In this subsection, we characterize the exact tail coefficient
of the light queue distribution under max-weight-α scheduling,
with αL ≥ αH . We only treat the case λL > pL(1− pH ), since
qL is known to be light-tailed otherwise. Our main result for
this regime is the following.

Theorem 3: Suppose that λL > pL(1 − pH ). Then, under
max-weight-α scheduling with αL ≥ αH , qL is heavy-tailed
with tail coefficient

γ = αL

αH
(CH − 1). (8)

In terms of Fig. 3, the above theorem asserts that qL is heavy-
tailed with tail coefficient γ for all arrival rates in the shaded
region. As before, proving this result involves showing (i) an
upper bound of the form E

[
qγ−ϵ

H

]
< ∞, and (ii) a lower

bound of the form E
[
qγ+ϵ

H

]
= ∞, for all ϵ > 0. We deal

with each of them separately.
1) Upper Bound for Max-Weight-α Scheduling:
Proposition 6: Under max-weight-α scheduling, we have

E
[
qγ−ϵ

L

]
< ∞, ∀ ϵ > 0.

Proof: The result is a consequence of a theorem in [3].
Indeed, max-weight-α scheduling in our context is equivalent
to comparing qL(t)βαL SL (t) with qH (t)βαH SH (t), where β >
0 is arbitrary, and scheduling the winning queue in each slot.
In particular, if we choose β = (CH − 1)/αH − ϵ/αL , the
conditions imposed in [3, Theorem 1] are satisfied for any
ϵ > 0, so that the steady-state queue backlogs satisfy

E
[
qγ−ϵ

L

]
< ∞,

and

E
[

q
CH−1− αH

αL
ϵ

H

]
< ∞. (9)

!
Remark 1: (i) Proposition 6 is valid for any parameters

αL and αH , and not just for αL ≥ αH .
(ii) Equation (9) and Proposition 2 together imply that the tail

coefficient of qH is equal to CH −1 under max-weight-α
scheduling, for any parameters αL and αH .

2) Lower Bound for Max-Weight-α Scheduling With
αL ≥ αH :

Proposition 7: Suppose that λL > pL(1− pH). Then, under
max-weight-α scheduling with αL ≥ αH , we have

E
[
qγ+ϵ

L

]
= ∞, ∀ ϵ > 0.

To prove the above result, we take an approach that is
conceptually similar to the proof of Proposition 5. We consider
the renewal process that commences at the beginning of each
busy period of the system, and define the reward process
Rγ (t) = qL(t)γ+ϵ . We will show that the expected
reward accumulated over a renewal interval is infi-
nite. The key renewal theorem will then imply that
limt→∞ E

[
qL(t)γ+ϵ

]
=∞. Finally, the result we want can be

obtained by invoking a truncation argument to interchange the
limit and the expectation.
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To see intuitively why the expected reward over a renewal
interval is infinite, let us condition on the busy period com-
mencing with a burst of size b at the heavy queue. Starting
at this instant, the light queue will build up at the rate
λL − pL(1− pH ) with high probability. However, unlike in the
case of max-weight scheduling, the light queue only builds up
to an &(bαH/αL ) level before it ‘catches up’ with the heavy
queue and wins back the service preference. It can also be
shown that the light queue catches up within a time interval
of length &(bαH/αL ). It might therefore be tempting to argue
that the light queue stays above &(bαH/αL ) for an interval of
duration &(bαH/αL ). Although this argument is not incorrect
as such, it fails to capture what typically happens in the system.
Let us briefly follow through with this argument, in order to
understand why it does not give us the lower bound we want.

Indeed, following the above argument, the reward is at least
&(b(γ+ϵ)αH/αL ) = &(bCH−1+ϵαH /αL ) for &(bαH/αL ) time
slots, so that the expected reward over the renewal interval
is lower bounded by

Eb

[
&(bCH−1+αH /αL+ϵαH /αL )

]
,

which is finite for αL/αH > 1. Therefore, the above simple
bound fails to give the result we are after.

The problem with the above argument is that it looks at
the time scale at which the light queue catches up, whereas
the event that decides the tail coefficient happens after the
light queue catches up. In particular, the light queue catches
up relatively quickly, in a time scale of )(bαH /αL ). However,
after the light queue catches up with the heavy queue, the two
queues drain together, with most of the slots being used to
serve the heavy queue. In fact, as we show, before the light
queue backlog can drain by a constant factor after catch-up,
the heavy queue drains by &(b). As such, the light queue
remains at an &(bαH/αL ) level for &(b) time slots. Therefore,
the expected reward can be lower bounded by

Eb

[
&(b)bCH−1+ϵαH /αL )

]
= Eb

[
&(bCH+ϵαH /αL )

]
= ∞,

which is what we want. In sum, the light queue builds up
relatively quickly until catch-up, but takes a long time to drain
out after catch-up. The proof is relegated to Appendix B.

C. Max-Weight-α Scheduling With αL < αH

We finally consider the case αL < αH under max-weight-α
scheduling, and study the asymptotic behavior of qL . Recall
that max-weight-α scheduling with αL < αH corresponds to
giving the heavy queue more importance compared to the light
queue. In this regime, we show that qL is heavy-tailed with a
finite tail coefficient, for arrival rates in the shaded region of
Fig. 3.

Our first result for this case is an upper bound on the tail
coefficient of qL . Intuitively, we would expect that the tail
behavior of qL in this regime cannot be better than it is under
max-weight scheduling. In other words, the tail coefficient of
qL in this regime cannot be larger than CH − 1. This intuition
is indeed correct.

Fig. 4. Under max-weight-α scheduling with αL < αH , qL is light-tailed
for arrival rates in the unshaded region, and heavy-tailed with tail coefficient
equal to CH − 1 in for arrival rates in the gray region. For arrival rates in the
region colored black, the tail coefficient lies in [γ , CH − 1].

Proposition 8: Suppose that λL > pL(1− pH). Then, under
max-weight-α scheduling with αL < αH , the tail coefficient
of qL is at most CH − 1.
Proof: The argument is similar to the proof of Proposition 5.
Specifically, conditioning on an initial burst of size b arriving
to the heavy queue, it can be shown that with high probability,
qL will be O(b) in size for at least O(b) time slots. !

Next, to obtain a lower bound on the tail coefficient of qL,
recall that Proposition 6 holds for the present regime as well.
Thus,

γ = αL

αH
(CH − 1)

is a lower bound5 on the tail coefficient of qL . In sum, we
have shown that for λL > pL(1− pH), the light queue backlog
distribution is heavy-tailed, with a tail coefficient that lies in
the interval [γ , CH − 1].

It turns out that we can obtain the exact tail coefficient of
qL for arrival rates in a subset of the shaded region in Fig. 3.
Specifically, consider the region represented by pL(1− pH ) <
λL < pL(1 − λH ). In Fig. 4, this region is shown in gray.
It can be shown that all arrival rates in the region shaded gray
can be stabilized under priority for H. Furthermore, under
priority for H , it can be shown that qL is heavy-tailed with
tail coefficient equal to CH − 1, when pL(1 − pH ) < λL <
pL(1 − λH ).

Since the tail of qL under max-weight-α scheduling with
any parameters is no worse than under priority for H, we
can conclude that the tail coefficient of qL is at least CH − 1
when pL(1− pH ) < λL < pL(1−λH ). Combining this with
Proposition 8, we conclude that the tail coefficient qL is
equal to CH − 1, when the arrival rate pair lies in the gray
region of Fig. 4.

Proposition 9: Suppose that pL(1−pH )<λL < pL(1−λH ).
Then, under max-weight-α scheduling with αL < αH , the tail
coefficient of qL is equal to CH − 1.

The region shaded black in Fig. 4 (λL > pL(1 − λH ))
corresponds to the arrival rates for which priority for H is not
stabilizing6. Under max-weight-α scheduling with αL < αH ,

5Note that γ is smaller than CH − 1 in this regime.
6This case is symmetric to the case in Theorem 1(i).
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we are unable to determine the exact tail coefficient of qL for
arrival rates in the black region of Fig. 4. However, we have
shown that the tail coefficient lies in the interval [γ , CH − 1].

D. Special Case of Reliable Links

In the special case of reliably connected links
(pH = pL = 1), the tail behavior of qL under max-
weight-α scheduling can be obtained from our foregoing
analysis. Specifically, it follows from the results above that
the light queue backlog distribution is heavy-tailed under
max-weight-α scheduling, for all values of the scheduling
parameters, and all non-zero arrival rates. The tail coefficient
of qL for this case is given by
(i) CH − 1 for αL

αH
≤ 1, and

(ii) γ = αL
αH

(CH − 1) for αL
αH

> 1.

We remark that this recovers our results in [9].

E. Section Summary

We showed the following threshold result in this section.
When λL < pL(1 − pH), the light queue backlog distribution
is light-tailed under max-weight-α scheduling, for all values of
the scheduling parameters. However, when λL > pL(1− pH ),
the light queue distribution is inevitably heavy-tailed under
max-weight-α scheduling. In particular, under max-weight
scheduling (αL = αH ), the tail coefficient of qL is equal
to CH − 1. For αL ≥ αH , the tail coefficient of qL is
γ = (CH −1)αL/αH . Finally, for αL < αH , the tail coefficient
of qL lies in [γ , CH − 1]. Finally, we also showed that the
heavy queue distribution is heavy-tailed with tail coefficient
CH − 1 for all values of the scheduling parameters.

V. LOG-MAX-WEIGHT SCHEDULING

In this section, we study the performance of log-max-weight
scheduling policy. During each time slot t, the log-max-weight
policy compares

qL(t)SL (t) " log(1 + qH (t))SH (t),

and serves one packet from the queue that wins the compari-
son. Again, ties are broken to favor the light queue.

The main idea in the LMW policy is to give preference to
the light queue to a far greater extent than any max-weight-α
policy. Specifically, for αL/αH > 1, the max-weight-α policy
compares qL to a power of qH that is smaller than 1. On the
other hand, LMW scheduling compares qL to a logarithmic
function of qH , leading to a significant preference for the light
queue. We will show that this significant de-emphasis of the
heavy queue with respect to the light queue ensures a better
tail behavior for qL compared to max-weight-α scheduling.

Furthermore, the LMW policy has another useful property
when the heavy queue gets overwhelmingly large. Although
the LMW policy significantly de-emphasizes the heavy queue,
it does not ignore it, unlike priority for L. That is, if the H
queue backlog gets overwhelmingly large compared to L, the
LMW policy will serve the heavy queue. In contrast, priority
for L will ignore any build-up in H , as long as L is non-
empty. This property ensures that the LMW policy stabilizes
all arrival rates within the rate region in (1).

Fig. 5. Under LMW scheduling, qL is light-tailed for arrival rates in the
unshaded region.

We show that LMW scheduling has desirable performance
on both fronts, namely throughput optimality, and the tail
behavior of the light queue backlog. The LMW policy can
be shown to be throughput optimal, using the results in [3].
In terms of the tail, we show that the LMW policy guarantees
that the light queue backlog distribution is light-tailed, for all
arrival rates that can be stabilized by priority for L. For arrival
rates that are not stabilizable under priority for L, the LMW
policy will still stabilize the system, although we are not able
to guarantee that qL is light-tailed for these arrival rates.

Let us now state the main result regarding LMW scheduling.
Theorem 4: Under LMW scheduling, qL is light-tailed if at

least one of the following conditions hold:
(i) λL < pL(1 − pH ), or

(ii) λH < pH (1 − λL ).
Note that under condition (i) above, qL is easily seen to be

light-tailed under LMW scheduling, since the arrival rate is
small enough to be supported by the exclusive slots of L. The
second condition in Theorem 4 states that for all arrival rates
that can be stabilized under priority for L (i.e., the trapezoidal
region in Fig. 2), qL is light-tailed under LMW scheduling.
The intuition behind the second condition is as follows. When
condition (ii) is satisfied but condition (i) is not, we can show
that there are two distinct modes of overflow of qL , both
of which have exponentially decaying probability. First, the
input process and the channel process of the light queue could
behave atypically, causing an overflow. This is a classical large
deviation event, with exponent given by IL in (4). The second
possibility is that the heavy queue receives a very large burst
of size exp(b) and takes over the server, leading to an eventual
overflow of the light queue. This event also has exponentially
small probability in b, since for these arrival rates, the heavy
queue can be shown to have tail-coefficient equal to CH − 1.

The union of the two regions in which qL is light-tailed
according to Theorem 4 is shown unshaded in Fig. 5. As can
be seen, the unshaded region occupies most of the rate region,
except for the shaded triangle. For arrival rates in the shaded
triangle, the LMW policy still stabilizes the system. However,
Theorem 4 does not determine the tail behavior of qL for
arrival rates in the shaded triangle.

The proof of Theorem 4 is omitted in the interest of brevity,
and can be found in [7, Th. 5.4]. We remark that in a recent
paper [14], it has been proven that qL is light-tailed under the
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LMW policy for all arrival rates inside the rate region. This
proof [14, Th. 9] uses a completely different approach to show
that qL has a strictly positive exponent, although it does not
determine the value of the exponent, or the likeliest modes of
overflow.

VI. CONCLUSION

We considered a system of parallel queues fed by a mix of
heavy-tailed and light-tailed traffic, and served by a single
server through time-varying channels. We studied the tail
behavior of the queue backlog distributions under various
scheduling policies. We showed that the backlog distribution
of the heavy queue is inevitably heavy-tailed. In contrast, the
light queue backlog distribution can be heavy-tailed or light-
tailed, depending on the arrival rates and the scheduling policy.
A major contribution of this paper is the characterization
of the tail of the queue backlog distributions under max-
weight-α scheduling. We showed that the light queue backlog
distribution under max-weight-α scheduling is light-tailed for
arrivals rates below a certain threshold, and heavy-tailed for
arrival rates above the threshold.

Another contribution of the paper was to show that the
LMW scheduling policy ensures that the light queue backlog
distribution is light-tailed, in addition to being throughput
optimal. Indeed, we believe that the LMW policy occupies a
special place in the context of scheduling light-tailed traffic
in the presence of heavy-tailed traffic. This is because the
LMW policy de-emphasizes the heavy-tailed flow sufficiently
to maintain good light queue asymptotics, while also ensuring
network-wide stability.

APPENDIX A

PROOF OF PROPOSITION 5

We will first show Eq. (7) and then use a truncation argu-
ment to interchange the limit and the expectation. Consider the
renewal process defined by the commencement of each busy
period of the system. Let T denote a typical renewal interval.
We have E [T ] < ∞ since the system is stable. Define the
reward function

R(t) = qL(t)CH −1+ϵ .

As argued earlier, due the key renewal theorem, it is enough
to show that the expected reward accumulated over a renewal
interval is infinite. Without loss of generality, let us consider a
busy period that commences at time 0. We need to show that

E
[

T∑

i=0

qL(i)CH−1+ϵ

]

= ∞.

The busy period that commences at time 0 can be of three
different types. It can commence with (i) a burst arriving to
L alone, or (ii) a burst arriving to H alone, or (iii) bursts
arriving to both H and L simultaneously. It can be shown that
all the three events have positive probabilities7. The event that

7In fact, we can explicitly compute the probability of each of the three
events in terms of the probability mass at 0 for H (·) and L(·), but the actual
probabilities are not important for the proof.

is of interest to us is (ii), i.e., the busy period commencing
with a burst at the heavy queue only, so that qH (0) > 0 and
qL(0) = 0. Let us denote this event by EH = {qH (0) >
0, qL(0) = 0}. We now have the following lower bound

E
[

T∑

i=0

qL(i)CH−1+ϵ

]

≥ E
[

T∑

i=0

qL(i)CH−1+ϵ; EH

]

= Eb

[

E
[

T∑

i=0

qL(i)CH−1+ϵ; EH

∣∣∣qH (0) = b

]]

.

In the last step above, we have iterated the expectation over the
initial burst size b. The inner expectation above is a function
of b; let us denote it by

gϵ(b) := E
[

T∑

i=0

qL(i)CH −1+ϵ; EH

∣∣∣qH (0) = b

]

.

Thus,

E
[

T∑

i=0

qL(i)CH−1+ϵ

]

≥ Eb [gϵ(b)] ≥ Eb [gϵ(b); b > b0],

∀b0 ≥ 1. (10)

Since the above bound is true for any b0, we can make b0 as
large as we want. In particular, we will make the initial burst
size large enough to be able to assert that the arrival process
to L as well as the channel processes behave ‘typically’ for
time scales of order b.

To be more precise, choose δ > 0 such that λL − pL
(1 − pH ) − 3δ = η > 0, and choose any small κ > 0. Define

τb = b
2(pH + λL )

.

For large enough b0, and b > b0, it is clear from the (weak)
law of large numbers (LLN) that

P
{∣∣∣∣∣

1
τb

τb∑

i=0

SH (i) − pH

∣∣∣∣∣ > δ

}

< κ.

In words, the channel process of H is overwhelmingly likely
to behave according to its mean pH . Now for all t ≤ τb, the
backlog of H can be lower bounded as

qH (t)≥b −
τb∑

i=0

SH (i)≥b − (pH + δ)τb = b
(

pH +2λL −δ

2(pH +λL)

)
,

(11)
with probability greater than 1−κ. Similarly, the input process
to the light queue is also likely to behave according to its mean.
That is, for large enough b0 and b > b0,

P
{∣∣∣∣∣

1
τb

τb∑

i=0

L(i) − λL

∣∣∣∣∣ > δ

}

< κ.

Therefore, for all t ≤ τb, the backlog of L can be upper
bounded as

qL(t) ≤
τb∑

i=0

L(i) ≤ b
(

λL + δ

2(pH + λL)

)
, (12)
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with probability greater than 1 − κ. From (11), (12), and
the independence of the processes L(·) and SH (·), we can
conclude that qH (t) > qL(t) for all t ≤ τb, with probability
greater than 1−2κ. Since the light queue remains smaller that
the heavy queue for t ≤ τb with high probability, it follows that
the light queue receives service only during its exclusive slots.
More precisely, the departure process from the light queue can
be bounded as

τb∑

i=1

DL(i) ≤
τb∑

i=1

SL(i)(1 − SH (i)),

with probability at least 1 − 2κ. However, the exclusive slots
of L are also overwhelmingly likely to behave according to
the mean:

P
{∣∣∣∣∣

1
τb

τb∑

i=0

SL(i)(1 − SH (i)) − pL(1 − pH )

∣∣∣∣∣ > 2δ

}

< κ.

Thus,
τb∑

i=1

DL(i) ≤ τb(pL(1 − pH ) + 2δ),

with probability at least 1−3κ. Using the above bound on the
departures from L, along with the fact that arrivals to L are
also typical, we can lower bound qL(τb) with high probability.
Indeed,

qL(τb) =
τb∑

i=1

L(i) −
τb∑

i=1

DL(i) ≥

τb(λL − δ) − τb(pL(1 − pH ) + 2δ) = b
(

η

2(pH + λL)

)
,

with probability at least 1−3κ. Next, since at most one packet
can be served in a slot, we have,

qL(t) ≥ b
(

η

4(pH + λL)

)
, if τb ≤ t ≤ τb + τb

(η

2

)
,

with probability at least 1 − 3κ.
We can thus lower bound gϵ(b) for large enough b0 and

b > b0 as

gϵ(b)1{b>b0} =E
[

T∑

i=0

qL(i)CH −1+ϵ;EH

∣∣∣qH (0)=b

]

1{b>b0}

≥
⎡

⎣(1 − 3κ)

τb+τb( η
2 )∑

i=τb

(
ηb

4(pH + λL)

)CH −1+ϵ
⎤

⎦ 1{b>b0}

≥ (1−3κ)
ητb

2

(ητb

2

)CH −1+ϵ
1{b>b0} = K bCH+ϵ1{b>b0}, (13)

for some constant K > 0. Thus, going back to (10),

E
[

T∑

i=0

qL(i)CH−1+ϵ

]

≥ Eb [gϵ(b); b > b0]

≥ Eb

[
K bCH+ϵ; b > b0

]
= ∞.

The last step is because the initial burst size b has
tail coefficient CH , so that Eb

[
bCH+ϵ; b > b0

]
≥

Eb

[
bCH+ϵ − bCH+ϵ

0

]
= ∞ for all b0. Therefore, we

are done proving (7).
Finally, we use a truncation argument to prove that

E
[
qCH−1+ϵ

L

]
= ∞, where qL is the steady-state limit of

qL(t).

A. Truncation Argument

Our intention is to show that the limit and the expectation
in (7) can be interchanged, so that we get the desired moment
result for the limiting random variable qL . Our truncation argu-
ment relies on the Monotone Convergence Theorem (MCT)
[1, Theorem 16.2], as well as a result that affirms the conver-
gence of moments when there is convergence in distribution
[1, Th. 25.12].

The main idea here is to define a truncated reward function

RM (t) = (M ∧ qL(t))CH −1+ϵ,

where M is a large integer, and M ∧ qL(t) := min(M, qL (t)).
There are three steps in our truncation argument.
(i) Tracing all the steps leading up to (13) in the proof above,

and using the key renewal theorem for the truncated
reward function, we can show that

wM := lim
t→∞ E [RM (t)]

≥ 1 − 3κ

E [T ]
Eb

[
ητb

2

(
M ∧

(ητb

2

))CH −1+ϵ
1{b>b0}

]
,

(14)

for all M and large enough b0. The left hand side in
the above inequality is a function of M, which we have
denoted by wM . The expression inside the expectation on
the right is a function of b and M, which we denote by

uM (b) = ητb

2

(
M ∧

(ητb

2

))CH −1+ϵ
1{b>b0}.

When viewed as a sequence of functions indexed by M ,
it is easy to see that {uM (b), M > 1} is a monotonically
non-decreasing sequence of functions. Furthermore,

lim
M→∞

uM (b) = K bCH+ϵ1{b>b0}, ∀ b, b0

where K is the positive constant in Equation (13).
Invoking the MCT for the sequence uM (b), we have

lim
M→∞

Eb [uM (b)] = Eb

[
lim

M→∞
uM (b)

]

= Eb

[
K bCH+ϵ; b > b0

]
= ∞.

Next, going back to (14) and taking M to infinity, we
have

lim
M→∞

wM = lim
M→∞

(
lim

t→∞ E [RM (t)]
)

≥ 1 − 3κ

E [T ]
lim

M→∞
Eb [uM (b)] = ∞. (15)

(ii) Recall that the steady-state queue backlog qL is defined
as the distributional limit of qL(t), as t becomes large.
In other words, viewing qL(t) as a sequence of random
variables indexed by t, we have qL(t) ⇒ qL, where
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“⇒” denotes convergence in distribution. Next, let us fix
M, and view RM (t) as a sequence of random variables
indexed by t . We have

RM (t) ⇒ (M ∧ qL)CH −1+ϵ .

Theorem 25.12 in [1] asserts that when a sequence of
random variables converges in distribution, the corre-
sponding sequence of means also converges to the mean
of the limiting random variable, as long as a technical
condition called uniform integrability is satisfied. Since
RM (t) is bounded above by MCH −1+ϵ for all t, uniform
integrability is trivially satisfied, and we have

lim
t→∞ E [RM (t)] = E

[
(M ∧ qL)CH −1+ϵ

]
,

for each M. Thus,

wM = E
[
(M ∧ qL)CH −1+ϵ

]
. (16)

(iii) Consider finally the term inside the expectation on the
right hand side of Equation (16). When viewed as
a sequence of random variables indexed by M, the
term (M ∧ qL)CH −1+ϵ represents a monotonically non-
decreasing sequence of random variables. Furthermore,

lim
M→∞

(M ∧ qL)CH −1+ϵ = qCH−1+ϵ
L .

Thus, another application of the MCT gives

lim
M→∞

E
[
(M ∧ qL)CH −1+ϵ

]
= E

[
qCH −1+ϵ

L

]
. (17)

Finally, combining (17), (16), and (15), we get

E
[
qCH −1+ϵ

L

]
= lim

M→∞
E

[
(M ∧ qL)CH −1+ϵ

]

= lim
M→∞

wM = ∞.

Proposition 5 is now proved. !

APPENDIX B

PROOF OF PROPOSITION 7

For the renewal process considered above, consider the
reward function Rγ (t) = qL(t)γ+ϵ . Our aim is to show that
the expected reward over the renewal interval is infinite, or

E
[

T∑

i=0

qL(i)γ+ϵ

]

= ∞.

The key renewal theorem would then imply that
limt→∞ E

[
qL(t)γ+ϵ

] = ∞. We can finally appeal to
a truncation argument to interchange the limit and the
expectation, and obtain the desired result.

Defining EH = {qH (0) > 0, qL(0) = 0}, and proceeding as
in the proof of Proposition 5,

E
[

T∑

i=0

qL(i)γ+ϵ

]

≥ E
[

T∑

i=0

qL(i)γ+ϵ; EH

]

= Eb

[

E
[

T∑

i=0

qL(i)γ+ϵ; EH

∣∣∣qH (0) = b

]]

.

In the last step above, we have iterated the expectation over the
initial burst size b. The inner expectation above is a function
of b; let us denote it by

gγ (b) := E
[

T∑

i=0

qL(i)γ+ϵ; EH

∣∣∣qH (0) = b

]

.

Thus,

E
[

T∑

i=0

qL(i)γ+ϵ

]

≥ Eb
[
gγ (b)

] ≥ Eb
[
gγ (b); b > b0

]
,

∀b0 ≥ 1. (18)

Since the above bound is true for any b0, we can make b0 as
large as we want. We will make b0 large enough for us to be
able to invoke the law of large numbers several times in the
rest of the proof.

At this point, we note that for the sake of a lower bound on
the expected reward over the renewal interval, we can assume
that the heavy queue receives no further arrivals after the
initial burst. Under this assumption, we will next show that
the light queue catches up with the heavy queue in )(bαH /αL )
time slots. We first need to define what exactly we mean by
‘catch-up’.

The catch-up time τc is defined as

τc = min
{
t > 0

∣∣qL(t)αL/αH ≥ qH (t) > 0
}
. (19)

In words, the catch-up time is the first time after the arrival
of the initial burst for which qL(τc)αL/αH ≥ qH (τc). Note that
the catch-up time need not always exist, even if EH occurs8.
However, we show that if the initial burst size is large, the
catch-up time exists with high probability.

Indeed, let b > b0 for large enough b0, and suppose that
a catch-up time does not exist. Let us consider the queue
backlogs after the first b−1 time slots, by which time the busy
period could not have possibly ended. Since the light queue
never catches up, the departure process from the light queue
can be upper bounded by the number of exclusive slots. Thus,
the light queue backlog at time b−1 can be lower bounded as

qL(b − 1) ≥
b−1∑

i=0

L(i) − SL (i)(1 − SH (i)).

Since catch-up has not occurred until time b − 1, it follows
that qL(b − 1)αL/αH < qH (b − 1) < b. Thus, assuming that a
catch-up time does not exist implies

(
b−1∑

i=0

L(i) − SL(i)(1 − SH (i))

)αL/αH

< b,

or equivalently,
(

1
b

b−1∑

i=0

L(i) − SL(i)(1 − SH (i))

)αL/αH

<
b

bαL/αH
.

When b is large, the weak LLN implies that the above event
has a small probability. This is because the term inside the

8For example, the initial burst size might be small, and the system might
empty again without the light queue ever receiving a single packet during the
renewal interval.
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parentheses on the left is a sample average of random variables
with positive mean. Thus, the non-occurrence of catch-up
implies the occurrence of a small probability event. This
implies that a catch-up time exists for large b with high
probability9.

Next, we show that τc is )(bαH/αL ) with high probability.
First, to obtain a lower bound on τc, define τ1(b) as the unique
positive solution to the equation

(λLτ1(b))αL = (b − pHτ1(b))αH .

It is easy to see that τ1(b) = &(bαH/αL ). Let us now bound
the queue backlogs in the interval 0 ≤ t ≤ ⌊ τ1(b)

2 ⌋. For the
heavy queue,

qH (t) ≥ b −
⌊ τ1(b)

2 ⌋∑

i=0

SH (i) ≥ b − (pH + δ)⌊τ1(b)

2
⌋

with high probability for large b, where δ > 0 can be chosen
arbitrarily small. Similarly, for the light queue,

qL(t) ≤
⌊ τ1(b)

2 ⌋∑

i=0

L(i) ≤ ⌊τ1(b)

2
⌋(λL + δ)

with high probability for large b. Comparing the last two
bounds, it is evident that

qL(t)αL/αH > qH (t), 0 ≤ t ≤ ⌊τ1(b)

2
⌋,

for large b, with high probability. Thus, catch-up has not
occurred by time ⌊ τ1(b)

2 ⌋, so that τc > ⌊ τ1(b)
2 ⌋ with high

probability for large b. Since τ1(b) = &(bαH/αL ), it follows
that τc is at least &(bαH/αL ).

Second, to obtain an upper bound on the catch-up time,
define

τ2(b) = (2b)αH/αL

λL − pL(1 − pH )
.

Suppose that catch-up has not occurred by time ⌈τ2(b)⌉. Then,
the departures from the light queue only occur during the
exclusive slots of L. Thus,

qL(⌈τ2(b)⌉) ≥
⌈τ2(b)⌉∑

i=0

L(i) − SL (i)(1 − SH (i)).

Since we assumed that catch-up has not occurred by time
⌈τ2(b)⌉, we have qL(⌈τ2(b)⌉)αL/αH < qH (⌈τ2(b)⌉) ≤ b.
Therefore,

⎛

⎝
⌈τ2(b)⌉∑

i=0

L(i) − SL(i)(1 − SH (i))

⎞

⎠
αL/αH

< b,

9In this proof, when we state that an event occurs with high probability for
large b, we mean the following: Given any κ > 0, there exists a large enough
b0 such that for all b > b0, the event in question has probability greater than
1−κ . In a symmetric fashion, we can define a low probability event for large
b as the complement of a high probability event.

or equivalently,

1
⌈τ2(b)⌉

⌈τ2(b)⌉∑

i=0

L(i)−SL(i)(1 − SH (i)) <
bαH/αL

⌈τ2(b)⌉

<
λL − pL(1 − pH )

2αH /αL
.

By the weak LLN, the above event is of low probability when
b is large. Therefore, we conclude that τc < ⌈τ2(b)⌉ with high
probability when b is large.

We have so far shown that the light queue catches up
with the heavy queue in a time scale of )(bαH/αL ) with
high probability. Therefore, it easily follows that qL(τc) =
)(bαH/αL ) and qH (τc) = b−)(bαH/αL ) with high probability.
We have now reached the core of the proof where we show
that after τc, the light queue stays at )(bαH /αL ) for &(b) time
slots.

To this end, define σc as the first time after τc that the light
queue backlog falls below (qH (τc)/2)αH /αL . That is,

σc = min

{

t > τc

∣∣∣∣∣ qL(t) <

(
qH (τc)

2

)αH /αL
}

.

It is clear that σc is well defined when τc exists, since the
system eventually empties.

With the intention of necessitating a low probability event,
let us assume that

qH (t) ≥ 3qH (τc)

4
, for all t ∈ [τc, σc]. (20)

Next, define

ωc = max

{

τc ≤ t < σc

∣∣∣∣∣qL(t) ≥
(

3qH (τc)

4

)αH /αL
}

.

In words, ωc is the last time before σc that the light queue
backlog exceeds (3qH (τc)/4)αH /αL . Now, by the definition
of ωc and the assumption made in (20), it is clear that
qL(t)αL/αH < qH (t) for ωc < t ≤ σc. Thus, the departures
that occur from the light queue during the interval ωc < t ≤ σc
must necessarily occur during the exclusive slots of L.
Therefore,

qL(σc) = qL(ωc) +
σc∑

i=ωc+1

L(i) − SL(i)(1 − SH (i)),

or equivalently,

1
σc − ωc

σc∑

i=ωc+1

L(i) − SL(i)(1 − SH (i)) = qL(σc) − qL(ωc)

σc − ωc
.

This necessarily implies

1
σc − ωc

σc∑

i=ωc+1

L(i) − SL(i)(1 − SH (i)) < 0. (21)

From the definition of σc and ωc, it is clear that

σc − ωc > qL(ωc) − qL(σc)

=
(
3αH /αL − 2αH /αL

) (
qH (τc)

4

)αH /αL

,
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so that σc − ωc is at least &(bαH/αL ). Therefore, by the weak
LLN, the event in (21) is a low probability event for large b.

What we have shown now is that the assumption in (20)
implies the occurrence of a low probability event for large b.
Therefore, the assumption (20) will be false with high proba-
bility when b is large. In other words, with high probability,
there exists t ∈ [τc, σc] for which qH (t) < 3qH (τc)

4 . In
particular, this implies that σc − τc > qH (τc)

4 , with high
probability for large b.

Next, since qH (τc) = b − )(bαH /αL ) with high probability,
we have qH (τc) > b/2 for large enough b. Thus, σc − τc >
b/8, with high probability, and for τc ≤ t < σc, the light
queue backlog is lower bounded by

qL(t) ≥
(

qH (τc)

2

)αH /αL

>

(
b
4

)αH /αL

,

also with high probability. We have thus shown that after
catch-up, the light queue backlog stays at &(bαH/αL ) for &(b)
slots, with high probability.

We can now return to (18) to finish the sequence of
inequalities. In particular, let us choose b0 large enough such
that for b > b0, the intersection of all the high probability
events above has probability at least 1 − κ, for some κ > 0.
Then,

E
[

T∑

i=0

qL(i)γ+ϵ

]

≥ Eb
[
gγ (b); b > b0

]

≥ (1−κ)Eb

[
b
8

·
(

b
4

)αH /αL (γ+ϵ)

; b > b0

]

= K1Eb

[
b·bCH−1+ϵαH /αL ; b > b0

]
= ∞,

since the burst size b has tail coefficient CH . The key renewal
theorem would then imply that

lim
t→∞ E

[
qL(t)γ+ϵ

]
= ∞, for all ϵ > 0.

We can finally invoke a truncation argument similar to
the one in Proposition 5 to interchange the limit and
the expectation. Thus, for the steady-state backlog qL, we
have E

[
qγ+ϵ

L

]
= ∞, for all ϵ > 0. !
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