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Abstract—We provide a dynamic policy for the rapid containment of a contagion process modeled as an SIS epidemic on a bounded
degree undirected graph with n nodes. We show that if the budget r of curing resources available at each time is VðWÞ, whereW is the
CutWidth of the graph, and also of orderVðlog nÞ, then the expected time until the extinction of the epidemic is of orderOðn=rÞ, which is
within a constant factor from optimal, as well as sublinear in the number of nodes. Furthermore, if the CutWidth increases only
sublinearly with n, a sublinear expected time to extinction is possible with a sublinearly increasing budget r.

Index Terms—Networks, epidemics, control, contagion, influence minimization
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1 INTRODUCTION

MANY contagion processes over large networks can lead
to costly cascades unless controlled by outside inter-

vention. Examples include epidemics spreading over a pop-
ulation of individuals, viruses attacking a network of
connected computers, or financial contagion in a network of
banks. In this paper we study how this type of contagion
can be prevented or contained by dynamically curing some
of the infected nodes under a budget constraint on
the amount of curing resources (curing budget) that can be
deployed at each time.

More specifically, we consider a canonical SIS epidemic
model on an undirected graph1 with n nodes, with a com-
mon infection rate along any edge that connects an infected
and a healthy node, and node-specific curing rates rvðtÞ at
each node v. The curing rates are to be chosen according to
a curing policy which is based on the past history of the pro-
cess and the network structure, subject to an upper bound
on the total curing rate

P
v rvðtÞ at every time instant t. Cur-

ing policies are evaluated in terms of the expected time it
takes for the epidemic to become extinct, i.e., the process to
reach the state where all nodes are healthy.

The main contribution of this paper is the construction
of a policy for the dynamic control of epidemics. Our
analysis involves the CutWidth of the underlying graph.
Intuitively, the CutWidth measures the required budget
of curing resources in a simpler deterministic curing
problem, in which infected nodes are cured one at a time,
subject to the constraint that the number of edges
between healthy and infected nodes is at all times less

than or equal to the budget of curing resources. Our pol-
icy, called from now on the CURE policy, possesses sev-
eral desirable properties:

i) Assuming that the available curing resources are
larger than a certain quantity that depends on sev-
eral global characteristics of the underlying network
(maximum degree and CutWidth) and considering
the worst case where all nodes are initially infected,
our policy is (order) optimal.

ii) When a strict subset of the nodes is initially infected
our policy is (order) optimal with high probability if
the available curing resources are larger than a cer-
tain quantity that depends on local properties of the
set of initially infected nodes (”impedance”) and the
maximum degree of the graph.

iii) In a companion paper [6], we show that for certain
bounded degree graphs a contagion process cannot
be rapidly contained, i.e., the expected time to
extinction cannot be made sublinear in the number
n of nodes using a sublinear curing budget at each
time. Specifically we establish that if the CutWidth
increases at least linearly with n, then a sublinear
(in n) expected time to extinction is impossible with
a sublinear budget r. In this paper we prove that
for graphs with bounded degree and sublinear Cut-
Width, a sublinear curing budget at each time is
enough to guarantee sublinear extinction time. The
combination of these two results provides a qualita-
tive characterization of the best possible scaling of
the extinction time in terms of the CutWidth.

Our policy is based on a combinatorial result which states
the following. Given an initial set of infected nodes, nodes
can be removed from that set, one at a time, in way that the
maximum cut (number of edges) between healthy and
infected nodes encountered during this process is upper
bounded by the sum of the CutWidth of the graph and the
cut associated with the initial set. Let us refer to the sequence
of subsets encountered during this process as a target path.
The main idea underlying our policy is to allocate the entire
curing budget to appropriate nodes so that we stay most of

1. Our results actually are easily generalized to the case of directed
graphs.
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the time, with high probability, on or near the target path.We
show that this is indeed possible, as long as the curing bud-
get scales in proportion to the CutWidth. We also show that
the policy is optimal (within a multiplicative constant) if the
available budget at each time is alsoVðlog nÞ.2

A similar model, but in which the curing rate allocation is
done statically (open-loop) has been studied in [3], [5], [8],
[14], but the proposed methods were either heuristic or
based on mean-field approximations of the evolution pro-
cess. Closer to our work, the authors of [2] let the curing
rates be proportional to the degree of each node, but inde-
pendent of the current state of the network, which means
that curing resources may be wasted on healthy nodes. On
a graph with bounded degree, the policy in [2] achieves sub-
linear time to extinction, but requires a curing budget that is
proportional to the number of nodes. In contrast, our policy
achieves the same performance (sublinear time to extinc-
tion) for all bounded degree graphs with small CutWidth
by properly focusing the curing resources. As an extreme
example, consider a line graph with n nodes, and assume
that the n=2 leftmost nodes are initially infected.
The degree-based policy of [2] requires a total budget pro-
portional to n and allocates it proportional to the degree. In
contrast, our policy can achieve sublinear expected time to
extinction with a Vðlog nÞ but sublinear budget. This is
because, instead of allocating the available budget to all
nodes, our policy focuses on specific nodes on the boundary
between healthy and infected nodes, in this instance on the
rightmost infected node. By extending this idea, our policy
achieves a similar improvement for all graphs with sublin-
ear CutWidth. More specifically, for a graph with maximum
degree D the degree based policy of [2] achieves expected
extinction time which is Oðlog nÞ when the curing budget at
each time is at least VðnDÞ. In contrast, for a graph with
maximum degree D and CutWidth at most Oðlog n=nÞ, our
policy achieves Oðlog nÞ expected extinction time when the
curing budget per time instant is at least Vðn=log nÞ.

The rest of the paper is organized as follows. In Section 2
we present the details of the model. In Section 3 we intro-
duce the CutWidth and establish the combinatorial result
mentioned earlier. In Section 4 we present the policy and
analyze its performance. In Section 5 we develop some cor-
ollaries that demonstrate the possibility of fast extinction
using a sublinear budget and the approximate optimality of
our policy in a certain regime. We also mention some exam-
ples. Finally, in Section 7 we offer some closing remarks.

2 THE MODEL

We consider a network, represented by a connected undi-
rected graph G ¼ ðV;EÞ, where V denotes the set of nodes
and E denotes the set of edges. We use n to denote the num-
ber of nodes. Two nodes u; v 2 V are neighbors if ðu; vÞ 2 E.
We denote by D the maximum of the node degrees.

We assume that the nodes in a set I0% V are initially
infected and that the infection spreads according to a con-
trolled contact process where the rate at which infected

nodes get cured is determined by a network controller. Spe-
cifically, each node can be in one of two states: infected or
healthy. The controlled contact process—also known as the
SIS epidemic model—on G is a right-continuous, continu-

ous-time Markov process fItgt&0 on the state space f0; 1gV ,
where It stands for the set of infected nodes at time t. We
refer to It as the infection process.

State transitions at each node occur independently
according to the following dynamics.

a) The process is initialized at the given initial state I0.
b) If a node v is healthy, i.e., if v =2 It, the transition rate

associated with a change of the state of that node to
being infected is equal to an infection rate b times
the number of infected neighbors of v, that is,

b '
!!fðu; vÞ 2 E : u 2 Itg

!!;

where we use j ' j to denote the cardinality of a set.
By rescaling time, we can and will assume through-
out the paper that b ¼ 1.

c) If a node v is infected, i.e., if v 2 It, the transition rate
associated with a change of the state of that node to
being healthy is equal to a curing rate rvðtÞ that is
determined by the network controller, as a function
of the current and past states of the process. We are
assuming here that the network controller has access
to the entire past evolution of the process.

We assume a budget constraint of the form
X

v2V
rvðtÞ ( r; (1)

for each time instant t, reflecting the fact that curing is
costly. A curing policy is a mapping which at any time t
maps the past history of the process to a curing vector
rðtÞ ¼ frvðtÞgv2V that satisfies (1).

We define the time to extinction as the time until the pro-
cess reaches the absorbing state where all nodes are healthy:

t ¼ minft & 0 : It ¼ ;g:

The expected time to extinction (the expected value of t) is the
performance measure that we will be focusing on.

3 GRAPH THEORETIC PRELIMINARIES

In this sectionwe introduce the notions of a cut and of theCut-
Width that will be used in the description of our policy. We
state some of their properties and then proceed to develop a
key combinatorial result that will play a critical role in the
analysis of our policy’s performance. Throughout, we assume
thatwe are dealingwith a particular given graphG.

3.1 CutWidth
For convenience, we will be using the shorthand term “bag”
to refer to “a subset of V .” We also use the following nota-
tion. For any two bags A and B, and any v 2 V , we let

A nB ¼ fv 2 A : v =2 Bg;
and

A) v ¼ A n fvg:
We also use Ac to denote the complement, V nA of A.

2. We write fðnÞ ¼ oðgðnÞÞ if limn!1 fðnÞ=gðnÞ ¼ 0. We write fðnÞ ¼
VðgðnÞÞ if lim infn!1fðnÞ=gðnÞ > 0. Finally, we write fðnÞ ¼ OðgðnÞÞ if
lim supn!1fðnÞ=gðnÞ < 1.
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We next define the concept of a monotone crusade. A
monotone crusade from a bag A to another bag B, where
B % A, is a finite sequence of bags that starts with A and
ends with B, so that at each step of the sequence no nodes
are added (cf. Part (iii) of Definition 1), and exactly one
node is removed (cf. Part (iv) of Definition 1).

Definition 1. For any two bags A and B, with B % A, a (mono-
tone) crusade from A to B, or (A # B)-crusade for short, is a
sequence v ¼ðv0;v1; . . . ;vkÞ of bags of length jvj ¼ kþ 1,
with the following properties:

i) v0 ¼ A,
ii) vk ¼ B,
iii) viþ1 + vi, for i ¼ 0; 1; . . . ; k) 1, and
iv) jvi n viþ1j ¼ 1, for i ¼ 0; 1; . . . ; k) 1.

We denote by CðA # BÞ the set of all ðA # BÞ-crusades.
The number of edges connecting a bag Awith its comple-

ment is called the cut of the bag. It is equal to the total rate at
which new infections occur, when the set of currently
infected nodes is A.

Definition 2. For any bag A, its cut, cðAÞ, is defined as the cardi-
nality of the set of edges

"
ðu; vÞ : u 2 A; v 2 Ac

#
:

In Proposition 1 below, we record, without proof, an ele-
mentary property of cuts.

Proposition 1. For any two bags A and B, we have

cðA [BÞ ( cðAÞ þ cðBÞ ( cðAÞ þ D ' jBj:

We define the width of a monotone crusade v as the
maximum cut encountered during the crusade. Intuitively,
this is the largest infection rate to be encountered if the
nodes were to be cured according to the sequence pre-
scribed by the crusade deterministically, if no new infec-
tions happen in between.

Definition 3. Given an (A # B)-crusade v ¼ ðv0; . . . ;vkÞ, its
width zðvÞ is defined by

zðvÞ ¼ max
0(i(k

fcðviÞg:

We next define what we call the impedance of a bag A, as
the minimum possible width among the CðA # ;Þ-crusades.
This minimization captures the objective of finding a cru-
sade along which the total infection rate is always small.

Definition 4. The impedance dðAÞ of a bag A is defined by

dðAÞ ¼ min
v2CðA#;Þ

zðvÞ: (2)

For the special case where A ¼ V , the impedance is known as
the CutWidth [1], [4], [9], [12], and will be denoted by W .
Fig. 1 illustrates examples of graphs with typical values of
CutWidth.

We say that a (monotone) crusade (A # B)-crusade v is
optimal if it attains the minimum in Eq. (2). It can be seen
that the impedances satisfy the Bellman equation:

dðAÞ ¼ max
"
cðAÞ;minfdðBÞ : B % A; jAnBj ¼ 1g

#
: (3)

Furthermore, along an optimal crusade, we have dðviþ1Þ (
dðviÞ, for i ¼ 0; 1; . . . ; k) 1. Finally, we note that cðAÞ (
dðAÞ.

3.2 Impedance and CutWidth
n this section we discuss the relation between the imped-
ance of an arbitrary bag and the CutWidth. The impedance
of a bag A is at least cðAÞ, which in general may be much
larger than the CutWidth.3 This is a concern because the sto-
chastic nature of the infections can always bring the process
to a bag with high impedance, and therefore high subse-
quent infection rates. The next lemma provides an upper
bound on the impedance of a bag A in terms of the Cut-
WidthW of the graph and the cut of A.

Lemma 1. For any bag A, we have

dðAÞ ( W þ cðAÞ:

Proof. IConsider a monotone crusade v 2 CðV # ;Þ whose
width is equal to the CutWidth W . This crusade starts
with V and removes nodes one at a time, until the empty

Fig. 1. (a) A line graph has CutWidth equal to 1. A corresponding mono-
tone crusade starts with a bag containing all nodes and the subsequent
bags are constructed by removing nodes one at a time from left to right.
(b) A two dimensional

ffiffiffi
n

p
,

ffiffiffi
n

p
grid graph has CutWidth

ffiffiffi
n

p
þ 1. A cor-

responding monotone crusade starts with a bag containing all nodes
and the subsequent bags are constructed by removing nodes one at a
time from left to right and row by row. (c) A star graph with 2n leaves has
CutWidth equal to n. A corresponding monotone crusade starts with a
bag containing all nodes and the subsequent bags are constructed by
removing the first n leaves one at a time, then the center and then the
remaining n. Expander graphs are another example of graphs with linear
(in the size of the graph) CutWidth but with bounded degree.

3. As an example, consider a line graph, and let A be the set of even-
numbered nodes. Then, cðAÞ is approximately n, whereas the CutWidth
of the line graph is equal to 1.
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set is obtained. Let v1; v2; . . . ; vn be the nodes in V ,
arranged in the order in which they are removed.

Let us now fix a bag A. We construct a monotone cru-
sade v̂ 2 CðA # ;Þ as follows. We start with A and remove
its nodes one at a time, according to the order prescribed
by v. For example, if n ¼ 4, and A ¼ fv2; v4g, the mono-
tone crusade that starts from A first removes node v2 and
then removes node v4.

At any intermediate step during the crusade v̂, the
current bag is of the form A \ fvk; . . . ; vng, for some k. It
only remains to show that the cut of such a bag is upper
bounded by cðAÞ þW . Let R ¼ fv1; . . . ; vk)1g. Note that

cðRÞ ( W;

because of the definition of the width and the assumption
that the width of v is W . Note also that the current bag is
simply A \Rc.

For any two sets S1 and S2, let eðS1; S2Þ be the number
of edges that join them. We have that

cðA \RcÞ ¼ e
%
A \Rc; ðA \RcÞc

&

¼ eðA \Rc;Ac [RÞ
( eðA \Rc;AcÞ þ eðA \Rc;RÞ
( eðA;AcÞ þ eðRc;RÞ
¼ cðAÞ þ cðRÞ
( cðAÞ þW:

We conclude that the cut associated with any intermedi-
ate bag in the crusade v̂ is upper bounded by cðAÞ þW .
It follows that the width of v̂, and therefore dðAÞ as well,
is also upper bounded by that same quantity. tu

4 THE CURE POLICY

In this section, we present our curing policy and we study
the resulting expected time to extinction, starting from an
arbitrary initial set of infected modes. Loosely speaking, the
policy, at any time, tries to follow a certain desirable (mono-
tone) crusade, called a target path, by allocating all of the
curing resources to a single node, namely, the node that
should be removed in order to obtain the next bag along the
target path. On the other hand, this ideal scenario may be
interrupted by infections, at which point the policy shifts its
attention to newly infected nodes, and attempts to return to
a bag on the target path. It turns out that under certain
assumptions, this is successful with high probability and
does not take too much time. However, with small probabil-
ity, the process veers far off from the target path; in that case
the policy “restarts” in a manner that we will make precise
in the sequel.

It is quite intuitive (and formally established in [6]) that a
fast (sublinear) time to extinction may not be possible if the
curing budget is smaller than the CutWidth. For this reason,
we focus on the regime where the curing rate is at least pro-
portional to the CutWidth, and more concretely, on the
regime where r & 4W , which we henceforth assume.

Under the above assumptions on the budget r, and the
additional assumptions that r ¼ Vðlog nÞ and r & 8D, we
will construct a policy whose expected time to extinction is
Oðn=rÞ; cf. Theorem 1 and Corollary 1.

4.1 Description of the CuRe Policy
Waiting period.A typical attempt starts at some bag A, with a
waiting period. (If this is the first attempt, then A ¼ I0. Oth-
erwise,A is the bag at the end of the preceding attempt.) Dur-
ing the waiting period, all curing rates rvðtÞ are kept at zero.4
Thewaiting period ends at the first subsequent time that5

cðItÞ ( r=8:

Let B be the bag It right at the end of the waiting period,
and let vB ¼ ðvB

0 ; . . . ;v
B
jBjÞ the corresponding optimal cru-

sade, which we refer to as the target path.
Segments. Each segment of an attempt starts either at the

end of the waiting period or at the end of a preceding seg-
ment of the same attempt. In all cases, the segment starts
with a bag on the target path. For the first segment, this is
guaranteed by the definition of the target path. For subse-
quent segments, it will be guaranteed by our specifications
of what happens at the end of the preceding segment. Let
v1; . . . ; vm be the nodes in the bag at the beginning of a seg-
ment, arranged in the order according to which they are to
be removed along the target path. For example, the bag at
the beginning of the segment is vB

0 ¼ fv1; . . . ; vmg, the next
bag is vB

1 ¼ fv2; . . . ; vmg, etc. The node v1 is called the target
node; the goal of the segment is to cure the target node and
reach the bag C ¼ fv2; . . . ; vmg. For all t during the segment,
we define Dt ¼ It n C; this is the set of infected nodes that
do not belong to the next bag on the target path. At the
beginning of the segment, It ¼ C [ fvg and therefore
Dt ¼ fv1g. During the segment, the entire curing budget is
allocated to an arbitrarily chosen node from Dt. Note that
rvðtÞ ¼ 0 for v 2 C during the segment and therefore, we
always have It - C.

The segment ends when either:

i) all nodes have been cured, i.e., It ¼ ;; in this case, the
attempt is considered successful and the process is
over.

ii) It ¼ C and C 6¼ ; in which case the target node is
cured, the process is on the target path, and we are
ready to start the next segment. In this case, we say
that we have a short segment.

ii) jDtj & r=8D, in which case we say that the segment
was long, and that the attempt has failed. In this case,
the attempt has nomore segments, and a new attempt
will be initiated, startingwith a waiting period.

4.2 Performance Analysis—Outline
We now proceed to establish an upper bound on the
expected time to extinction, under the assumption that

4. During the waiting period the curing budget is wasted and not
allocated to any of the nodes. Note that the cut of It during the waiting
phase could be linear in the number of nodes, while we focus on the
regime where the available budget is sublinear. Therefore, regardless of
the allocation, during the waiting period the process would have an
upward drift. For this reason, allocating budget to a subset of nodes in
this period would not have a significant effect on the performance.

5. Note that the waiting period is guaranteed to terminate in finite
time, with probability 1. This is because if it were infinite, then healthy
nodes would keep getting infected until eventually It ¼ V . But
cðV Þ ¼ 0, which means that at some point the condition cðItÞ ( r=8
would be satisfied and the waiting period would be finite, a
contradiction.
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r & 4W , for any set of initially infected nodes. If the process
always stayed on the target path, that is, if we had no infec-
tions, the expected time to extinction would be the time
until all nodes (at most n of them) were cured. Given that
nodes are cured at a rate of r, the expected time to extinction
would have been Oðn=rÞ. On the other hand, infections do
delay the curing process, by increasing jDtj during
segments, and we need to show that these do not have a
major impact.

There are two kinds of segments to consider, short ones, at
the end of which jDtj ¼ 0, and long ones, at the end of which
jDtj & r=8D. During a segment, the size ofDt (the “distance”
from the target path) is at most r=8D. Using also an upper
bound on the size of the cut along the target path, we can
show that the infection rate throughout a segment is smaller
than the curing rate. For this reason, during a segment, the
process jDtj has a downward drift. As a consequence, using
a standard argument, the expected duration of a segment is
small and there is high probability that the segment ends
with jDtj ¼ 0, so that the segment is short and we continue
with the next segment. As a result, the expected duration of
an attempt behaves similar to the case of no infections and is
also of order Oðn=rÞ. Finally, by studying the number of
failed attempts until a successful one, we can establish an
upper bound for the overall policy. A formal version of this
argument is the content of the rest of this section.

4.3 Segment Analysis
Let us focus on a particular segment, and let Mt ¼ jDtj. The
process Mt evolves on the finite set f0; 1; . . . ; r=8Dg. (For
simplicity, and without loss of generality, we assume that
r=8D is an integer.) Recall that C was defined as the bag on
the target path that we were trying to reach at the end of the
segment. The difference Dt at the time that the segment
starts consists of exactly one node: the target node. Thus,
the process Mt is initialized at one, at the beginning of the
segment. The process Mt is stopped as soon one of the two
boundary points, 0 or r=8D, is reached. At each time before
the process is stopped, there is a rate equal to r of down-
ward transitions. Furthermore, there is a rate cðItÞ of
upward transitions, corresponding to new infections.

Lemma 2. The rate cðItÞ of upward transitions during a segment
satisfies cðItÞ ( r=2.

Proof. The definition Dt ¼ It n C implies that It % C [Dt.
Consequently,

cðItÞ ( cðCÞ þ cðDtÞ ( cðCÞ þ D ' jDtj

¼ cðCÞ þ D 'Mt ( cðCÞ þ r

8
:

(4)

We have used here Proposition 1, in the first and second
inequality, together with the factMt ( r=8D.

On the other hand, C is on the target path associated
with B, the bag obtained at the end of the waiting period.
As remarked at the end of Section 3.1, the impedance
does not increase along an optimal crusade, and there-
fore, dðCÞ ( dðBÞ. Using also Lemma 1, we have

cðCÞ ( dðCÞ ( dðBÞ ( W þ cðBÞ:

Recall now that a waiting period ends with a bag whose
cut is at most r=8. Therefore, cðBÞ ( r=8. It follows that
cðCÞ ( W þ r=8. Using this fact, together with the
assumption r & 4W and Eq. (4), we obtain

cðItÞ ( cðCÞ þ r

8
(

'
W þ r

8

(
þ r

8
( r

4
þ r

8
þ r

8
¼ r

2
:

tu

We now establish the properties of the segments that we
have claimed earlier; namely, that segments are short, with
high probability, and do not last too long.

Lemma 3.

a) The probability that the segment is long is at most

p ¼ 1

2r=8D ) 1
:

b) The expected length of a segment is upper bounded by
2=r.

Proof.

a) Using Lemma 2, the process Mt is stochastically
dominated by a process Nt on the same space
f0; 1; . . . ; r=8Dg, which is initialized to be equal to
the value of Mt at the beginning of the segment
(which is one), has a rate r of downward transi-
tions, a rate r=2 of upward transitions, and stops
at the first time that it reaches one of the two
boundary values. Note that the ratio of the down-
ward to the upward drift is equal to 2. The proba-
bility, denoted by p, that the process Nt will first
reach the upper boundary is a well-studied quan-
tity and is given by the expression in part (a) of
the Lemma. The proof is standard and can be
found in Section 2.1 of [11] (for a non-martingale
based proof) or Section 2.3 of [16] (for a martin-
gale based proof). Since Mt is stochastically domi-
nated by Nt, the probability that Mt will first
reach the upper boundary is no larger.

b) For simplicity, let us suppose that the segment
starts at time t ¼ 0. We define the process

Ht ¼ Mt þ
r

2
t

and the stopped version, Ĥt which stops at the
time T that the segment ends. It is straightforward

to verify that Ĥt is a supermartingale, because the
upward drift of the process is bcðItÞ ( r=2 and the
downward drift is r, so that the total downward

drift at least r=2. Furthermore, Ĥ0 ¼ H0 ¼ M0 ¼ 1.
Using Doob’s optional stopping theorem we
obtain

1 ¼ E½M0/ ¼ E½Ĥ0/ & E½ĤT / þ
r

2
' E½T / & r

2
' E½T /;

from which we conclude that

E½T / ( 2

r
:

tu
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Note that if r & a log n, where a is a sufficiently large
constant, then p can be made smaller that 1=n2, so that np
tends to zero. We will be using this observation later on. We
will now bound the length of a waiting period.

Lemma 4. The expected length of a waiting period is bounded
above by 8n=r.

Proof. A waiting period involves at most n infections. The
waiting period ends as soon as cðItÞ ( r=8. Therefore,
during the waiting period, infections happen at a rate of
at least r=8. In particular, during the waiting period, the
expected time between consecutive infections is at most
8=r. For a maximum of n infections, the expected time is
upper bounded by 8n=r. tu

We can now combine the various bounds we have
derived so far in order to bound the expected time to extinc-
tion under our policy.

Theorem 1. Suppose that r & 4W and that r is large enough so
that np < 1, where p is as defined in Lemma 3. For any initial
bag, the expected time to extinction under the CURE policy is
upper bounded by

1

1) np
' 10n

r
:

Proof.We start by upper bounding the expected duration of
an attempt. The expected length of the waiting period of
an attempt is upper bounded by 8n=r, by Lemma 4.

The number of segments during an attempt is at most
n since each segment is associated with one target node
and there can be at most n different target nodes. By
Lemma 3, the expected length of a segment is at most 2=r.

Putting everything together, the expected duration of
an attempt is at most ð8n=rÞ þ ð2n=rÞ ¼ 10n=r.

Each attempt involves n segments. During each seg-
ment, there is probability at most p that the segment is
long and that the attempt fails. Therefore, the overall
probability that an attempt will fail is at most np (here
we used the union bound). We note that his upper bound
(np) on the failure probability holds regardless of the ini-
tial bag at the beginning of an attempt. It follows that the
attempt is stochastically dominated by a geometric ran-
dom variable with parameter 1) np. For this reason, the
expected number of attempts is at most 1=ð1) npÞ, and
the desired result follows. tu

5 COROLLARIES AND NEAR-OPTIMALITY

OF THE CURE POLICY

Theorem 1 has a number of interesting consequences, which
we collect in the corollary that follows. We argue that if all
nodes are initially infected, then the expected time to extinc-
tion under any policy is at least n=r. Furthermore, in a cer-
tain regime of parameters, our policy achieves Oðn=rÞ
expected time to extinction and is therefore optimal within
a multiplicative constant. Finally, if the CutWidth increases
sublinearly with the number of nodes, then the expected
time to extinction can be made sublinear in n, using only a
sublinear budget. This last result is also proved in [6], using
a different, nonconstructive argument.

Corollary 1.

a) For any graph with n nodes and with all nodes initially
infected, the expected time to extinction is at least n=r,
under any policy.

b) Suppose that the budget r satisfies

r & 4W; r & 16D log2 n:

Then, for large enough n, and for any initial set of
infected nodes, the expected time to extinction under
the CURE policy is at most 26n=r, which is sublinear
in n and within a multiplicative factor from optimal.

c) Suppose that the maximum degree is bounded, i.e., D is
Oð1Þ. If the CutWidth increases sublinearly with n,
then it is possible to have sublinear time to extinction
with a sublinear budget.

Proof.

a) Since nodes are cured at a rate of at most r, and
there are n nodes to be cured, the expected time
to extinction must be at least n=r, even in the
absence of infections.

b) When r & 16 ' log2 n ' D, we have r=8D & 2 log2 n,

and 2r=8D & n2. Thus, the probability p in Lemma
3 is of order Oð1=n2Þ, and np is of order Oð1=nÞ. In
particular, for large enough n, the factor 1=ð1 )
npÞ is less than 2. By Theorem 1, the expected
time to extinction is at most 20n=r. This is sublin-
ear in n, because r tends to infinity. Order opti-
mality follows from part (a).

c) Suppose that the budget r satisfies the conditions
in part (b), together with the condition

r ¼ Vðn=log nÞ:

Then, it follows frompart (b) that the expected time
to extinction under the CURE policy is of order
Oðlog nÞ. IfW increases sublinearly with n, we can
satisfy the conditions in parts (b) and (c) while
keeping r sublinear in n, and still achieve sublinear,
e.g.,Oðlog nÞ expected time to extinction. tu

We continue with some examples. For a line graph
with n nodes, the CutWidth is equal to 1 and D ¼ 2.
Therefore, by part (b) of Corollary 1 we can guarantee an
approximately optimal expected time to extinction, of
order Oðn=rÞ, as long as r & 16 ' log2 n ' D ¼ 32 log2 n. We
note, however, that for this example, our analysis is not
tight, and the requirement r & 32 log2 n is stronger than
necessary.

For a square grid-graph with n nodes, the Cut-Width is
approximately

ffiffiffi
n

p
and D ¼ 4. In this case, the requirement

r & 4W 0 4
ffiffiffi
n

p
is the dominant one, and suffices to guaran-

tee an approximately optimal expected time to extinction, of
order Oðn=rÞ.

In both of these examples, we can of course let r be much
larger than the minimum required, which was Oðlog nÞ and
Oð

ffiffiffi
n

p
Þ, respectively, in order to obtain a smaller expected

time to extinction, e.g., the Oðlog nÞ expected time to extinc-
tion in part (c) of the corollary.
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6 PERFORMANCE OF THE CURE POLICY UNDER

ARBITRARY INITIAL INFECTIONS

The results of Section 5 are stated in terms of n andW which
are global characteristics of the network and do not take into
account the possibility of a favorable set of initially infected
nodes. In this section we obtain performance guarantees for
our policy as a function of jAj and dðAÞ, where A is the bag
of initially infected nodes. Our goal is to explore conditions
under which the CURE policy is (order) optimal, i.e.,
achieves expected extinction time of order OðjAj=rÞ.

Note that if cðAÞ > r=8, a waiting phase is initiated. By
the end of the waiting phase a superset of A (potentially the
whole graph) is infected and thus the performance of the
CURE policy cannot be related to the properties of A.
For this reason, we focus on the case where cðAÞ < r=8.
Section 5 illustrates that when the budget is larger than 4W
then, the CuRe policy is (order) optimal. In this section we
are interested in the case where the impedance of the initial
bag, dðAÞ, is smaller than the CutWidth of the graph, i.e.,
dðAÞ < W . Under such conditions, we expect to require less
curing budget in order to attain (order) optimal extinction
time; the main theorem of this section confirms this fact.

First we establish some properties of the first attempt of
the CURE policy, when r & maxf4dðAÞ; 8cðAÞg. Note the
similarity between the latter condition and that of Corollary
1(a).

Lemma 5. Suppose that the set of initially infected nodes is A,
and that r & maxf4dðAÞ; 8cðAÞg. Let tS denote the duration
of a segment and let S denote the event that the segment is
short. Moreover, we write pl ¼ PðScÞ. Then, for the first
attempt the following properties hold:

a) The probability pl that a segment is long is at most

p ¼ 1

2r=8D ) 1
:

b) The expected length of a segment is upper bounded by
2=r, i.e., E½ts/ ( 2=r.

c) The conditional expectation of a segment, given that it
is short, E½ts jS/, is upper bounded by 2=ðrð1) pÞÞ.

Proof.

a,b) Note that since cðAÞ ( r=8 there is no waiting
phase and the target path of the first attempt is
the crusade associated with dðAÞ. Given this
observation, the proofs are identical to Lemma 3
after replacingW by dðAÞ in all arguments.

c) We have,

E½ts/ ¼ E½ts j S/ð1) plÞ þ E½ts j Sc/pl
& E½ts j S/ð1) plÞ & E½ts j S/ð1) pÞ:

Solving for E½ts j S/ and using part (b) the result
follows. tu

We now combine the bounds we derived in order to
bound the expected time to extinction under our policy.

Lemma 6. Suppose that the set of initially infected nodes is A
with r & maxf4dðAÞ; 8cðAÞg. Moreover, suppose that r is

large enough so that jAjp < 1 and let E denote the event that
the first attempt is successful. Then

E½t j E/ ( jAj 2

ð1) pÞr
:

Proof. First, the conditional expectation is well defined since
PðEÞ & 1) jAjp > 0 by the assumptions of the lemma.
Conditioned on the success of the first attempt, the
number of segments is jAj and the result follows from
Lemma 5c. tu

Lemma 6 is mainly relevant in the regime where jAj
grows to infinity with

r & maxf4dðAÞ; 16D log2jAj; 8cðAÞg: (5)

In this regime, the budget is sufficiently high for the first
attempt to be successful with high probability. Thus, the
performance indicated by Lemma 6 is achieved conditioned
on an event which occurs with high probability, as the fol-
lowing theorem states.

Theorem 2. Suppose that the budget satisfies Eq. (5) and that the
set of initially infected nodes is A, whose size jAj grows to
infinity. Let E be the event that the first attempt is successful.
Then, PðEÞ ¼ 1) oð1Þ, E½t j E/ is of order OðjAj=rÞ, and thus
our policy is (order) optimal with high probability.

Proof. Following similar reasoning as in Corollary 1, under
the condition (5), the probability p in Lemma 5 is of order

Oð1=jAj2Þ. This implies that

lim
jAj!1

PðEÞ & lim
jAj!1

ð1) jAjpÞ ¼ 1:

Moreover, for large enough jAj, 1) p is larger than 1=2
and thus, by Lemma 6 the expected time to extinction,
conditioned on E is at most 4jAj=r and thus OðjAj=rÞ. tu

Note that Theorem 2 establishes (order) optimality with
high probability, which is weaker than (order) optimality in
Corollary 1. This is due to the fact that the lower budget
requirements (r & maxf4dðAÞ; 16D log2jAj; 8cðAÞg versus
r & maxf4W; 16 log2 n ' Dg) come at a cost: if we have a long
segment and a failed attempt (which is a small probability
event) the process can potentially be uncontrollable and the
extinction time from then on large.

7 DISCUSSION AND CONCLUSIONS

We have presented a dynamic curing policy which achieves
sublinear expected time to extinction, using a sublinear cur-
ing budget when the CutWidth of the underlying graph is
sublinear in the number of nodes. This policy applies to any
subset of initially infected nodes and the resulting expected
time to extinction is order-optimal when the available bud-
get is sufficiently large.

The analysis of the extinction time under our policy is
based on a drift analysis of the epidemic process. The
upward drift is equal to the cut of the set of infected nodes
cðItÞ and the downward drift is proportional to the curing
budget r. While the process is on the target path, cðItÞ, and
therefore the upward drift, can be bounded from above by
the impedance of the starting bag. On the other hand, when
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the process deviates from the target path this is no longer
the case. For this reason we invoke the maximum degree D
of the graph in order to bound the change of the cut during
each such deviation. Note that none of our results (except
for Corollary 1c) requires bounded degree. The maximum
degree appears in the minimum budget requirement but is
not required to be bounded. Furthermore, our results indi-
cate that under our policy, the process has low probability
of deviating significantly from the target path and therefore
only the locally maximum degree is relevant to the analysis,
and not the global maximum. In other words, as long as the
infection does not reach high degree nodes we should
have results similar to those for the bounded degree case.
However, the performance analysis for this case is expected
to be significantly harder and the statement of the results
more complicated.

Our policy allocates all the available budget to one node at
every time instant. This is permitted by our formulation but
in practice each infected agent can only be offered a bounded
amount of curing resources. Our policy, cannot be directly
generalized to account for such a constraint but the insights
of our solution can be directly adapted to such a scenario.

A drawback of the CURE policy is computational com-
plexity because calculating the impedance of a bag or find-
ing a target path is computationally hard. Like many other
interesting graph problems, CutWidth is NP-complete [7],
even if we restrict to planar graphs or graphs with maxi-
mum degree three [13] but in general fixed parameter linear
[17]. Several approximation algorithms have been devel-
oped for computing the CutWidth of a graph. Specifically,
there is a polynomial time Oðlog2 nÞ-approximation algo-
rithm for general graphs [10], and a polynomial time con-
stant factor approximation algorithm for dense graphs [15].
We leave it as an interesting future direction to develop
such algorithms for computing the impedance of a bag.
Finally, we have argued in this paper that the CURE policy
is efficient in the sense of attaining near-optimal, Oðn=rÞ
expected time to extinction, in a certain parameter regime. It
is an interesting problem to look for approximately optimal
policies over a wider set of regimes.
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