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a b s t r a c t

In an electric power system, demand fluctuations may result in significant ancillary cost to suppliers. Fur-

thermore, in the near future, deep penetration of volatile renewable electricity generation is expected to

exacerbate the variability of demand on conventional thermal generating units. We address this issue by

explicitly modeling the ancillary cost associated with demand variability. We argue that a time-varying price

equal to the suppliers’ instantaneous marginal cost may not achieve social optimality, and that consumer

demand fluctuations should be properly priced. We propose a dynamic pricing mechanism that explicitly

encourages consumers to adapt their consumption so as to offset the variability of demand on conventional

units. Through a dynamic game-theoretic formulation, we show that (under suitable convexity assumptions)

the proposed pricing mechanism achieves social optimality asymptotically, as the number of consumers in-

creases to infinity. Numerical results demonstrate that compared with marginal cost pricing, the proposed

mechanism creates a stronger incentive for consumers to shift their peak load, and therefore has the potential

to reduce the need for long-term investment in peaking plants.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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. Introduction

Our motivation stems from the fact that fluctuations in the de-

and on conventional thermal generating units typically result in

ignificantly increased, and nontrivial, ancillary costs. Today, such

emand fluctuations are mainly due to time-dependent consumer

references. In addition, in the future, a certain percentage of elec-

ricity production is required by law in many states in the U.S. to come

rom renewable sources (Barbose, Wiser, Phadke, & Goldman, March

008). The high volatility of renewable energy sources may aggravate

he variability of the demand for conventional thermal generators and

esult in significant ancillary cost. More concretely, either a demand

urge or a decrease in renewable generation may result in (i) higher

nergy costs due to the deployment of peaking plants with higher

amping rates but higher marginal cost, such as oil/gas combustion

urbines, and (ii) the cost associated with resource redispatch2 that
∗ Corresponding author. Tel.: +1 8579989930.

E-mail addresses: jnt@mit.edu (J.N. Tsitsiklis), xuyunjian@gmail.com (Y. Xu).
1 This work was done while the author was a graduate student at MIT.
2 A certain level of reserve must always be maintained in an electric power system.

ocal reserve shortages are usually due to the quick increase of system load rather

han a capacity deficiency. If the increase of system load makes the system short

n reserves, the system redispatches resources to increase the amount of reserves

vailable. Redispatch generally increases the generation cost and results in higher

rices. The redispatch cost can be very high (cf. Section 2.3.2 of ISO New England Inc.,

010).
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he system will incur to meet reserve constraints if the demand in-

rease (or renewable generation decrease) causes a reserve shortage.

There is general agreement that charging real-time prices (that

eflect current operating conditions) to electricity consumers has the

otential of reducing supplier ancillary cost, improving system effi-

iency, and lowering volatility in wholesale prices (Chao, 2010; Spees

Lave, 2008; US Department of Energy, 2006). Therefore, dynamic

ricing, especially real-time marginal cost pricing, is often identified

s a priority for the implementation of wholesale electricity markets

ith responsive demand (Hogan, 2010), which in turn raises many

ew questions. For example, should prices for a given time interval

e calculated ex ante or ex post? Does real-time pricing introduce

he potential for new types of market instabilities? How is supplier

ompetition affected? In this paper, we abstract away from almost all

f these questions and focus on the specific issue of whether prices

hould also explicitly encourage consumers to adapt their demand so

s to reduce supplier ancillary cost.

To illustrate the issue that we focus on, we note that a basic model

f electricity markets assumes that the cost of satisfying a given level

t of aggregate demand during period t is of the form C(At). It then

ollows that in a well-functioning wholesale market, the observed

rice should more or less reflect the marginal cost C′(At). In par-

icular, prices should be more or less determined by the aggregate

emand level. Empirical data do not quite support this view. Fig. 1

lots the real-time system load and the hourly prices on February 11,

011 and on February 16, 2011, as reported by the New England ISO
(EURO) within the International Federation of Operational Research Societies (IFORS).
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Fig. 1. Real-time prices and actual system load, ISO New England Inc. Blue bars represent the real-time system loads and the dots connected by a black line represent the

hourly prices.
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(ISO New England Inc., 2011). We observe that prices do not seem

to be determined solely by At but that the changes in demand, At −
At−1, also play a major role. In particular, the largest prices seem to

occur after a demand surge, and not necessarily at the hour when the

load is highest. We take this as evidence that the total cost over T + 1

periods is not of the form

T∑
t=0

C(At),

but rather of the form

T∑
t=0

(
C(At)+ H(At−1, At)

)
, (1)

for a suitable function H.

We take the form of Eq. (1) as our starting point and raise the

question of the appropriate prices. We note that wholesale electricity

prices set by an OPF (optimal power flow)-based approach is simply

the highest marginal cost of active generating units (Sioshansi, Oren,

& O’Neill, 2010; Wu, Rothleder, Alaywan, & Papalexopoulos, 2004): at

time t, At−1 has already been realized, and taking its value for granted,

a consumer is charged a unit price equal to

C′(At)+ ∂

∂At
H(At−1, At), (2)

which is the supplier’s marginal cost at stage t. We refer to this sim-

ple approach as “marginal cost pricing” (MCP), which is essentially

the one used in the price calculation processes implemented by the

California ISO (2009), New England ISO (Litvinov, 2011), and NYISO

(cf. Section 17.1 of NYISO, 2012). However, a simple argument based

on standard mathematical programming optimality conditions shows

that for system optimality to obtain, the demand At−1 should also in-

cur (after At is realized) a unit price of (Sioshansi et al., 2010):

∂

∂At−1
H(At−1, At), (3)

This is in essence the pricing mechanism that we analyze in this

paper.3

The actual model that we consider will be richer from the one

discussed above in a number of respects. It includes an exogenous
3 In current two-settlement systems, the real-time prices are charged only on the

difference of the actual demand and the estimated demand at the day-ahead market.

However, the two-settlement system provides the same real-time incentives to price-

taking consumers, as if they were purchasing all of their electricity at the real-time

prices (cf. Chapter 3–2 of Stoft, 2002). h

Please cite this article as: J.N. Tsitsiklis, Y. Xu, Pricing of fluctuations in ele
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ource of uncertainty (e.g., representing weather conditions) that has

n impact on consumer utility and supplier cost, and therefore can in-

orporate the effects of volatile renewable electricity production4. It

llows for consumers with internal state variables (e.g., a consumer’s

emand may be affected by how much electricity she has already

sed). It also allows for multiple consumer types (i.e., with different

tility functions and different internal state dynamics). Consumers

re generally modeled as price-takers, as would be the case in a model

nvolving an infinity (a continuum) of consumers. However, we also

onsider the case of finite consumer populations and explore certain

quilibrium concepts that are well-suited to the case of finite but large

onsumer populations. On the other hand, we ignore most of the dis-

inctions between ex post and ex ante prices. Instead, we assume that

t each time step, the electricity market clears. The details of how this

ould happen are important, but are generic to all electricity markets,

ence not specific to our models, and somewhat orthogonal to the

ubject of this paper. (See however Appendix A for some discussion

f implementation issues.)

The ancillary cost function H(At−1, At) is a central element of our

odel. How can we be sure that this is the right form? In general,

edispatch and reserve dynamics are complicated and one should

ot expect such a function to capture all of the complexity of the

rue system costs; perhaps, a more complex functional form such as

(At − 2, At−1, At) would be more appropriate. We believe that the

orm we have chosen is a good enough approximation, at least under

ertain conditions. To argue this point, we present in Appendix B an

xample that involves a more detailed system model (in which the

rue cost is a complicated function of the entire history of demands)

nd show that a function of the form H(At−1, At) can capture most of

he cost of ancillary services.

.1. Summary and contributions

Before continuing, we provide here a roadmap of the paper to-

ether with a summary of our main contributions.

(a) We provide a stylized (yet quite rich) model of an electricity

market, which incorporates the cost of ancillary services (cf.

Section 2).

(b) We provide some justification of the form of the cost function

in our model, as a reasonable approximation of more detailed

physical models (cf. Appendix B).
4 The value of demand response on mitigating the variability of renewable generation

as received some recent attention (Rahimi & Ipakchi, 2010; Stadler, 2008).

ctricity markets, European Journal of Operational Research (2015),
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(c) We propose and analyze a pricing mechanism that properly

charges for the effects of consumer actions on ancillary services

(cf. Section 3).

(d) For a continuum model involving non-atomic price-taking con-

sumers, we consider Dynamic Oblivious Equilibria (DOE), in

which every consumer maximizes her expected payoff un-

der the sequence of prices induced by a DOE strategy profile

(Section 4). We show that (under standard convexity assump-

tions), a mechanism that properly charges for the effects of

consumer actions on ancillary services maximizes social wel-

fare (cf. Theorem 2 in Section 6).

(e) We carry out a game-theoretic analysis of the case of a large but

finite number of consumers. We show that a large population

of consumers who act according to a DOE (derived from an

associated continuum game) results in asymptotically optimal

(as the number of consumers goes to infinity) social welfare (cf.

Theorem 2 in Section 6), and asymptotically maximizes every

consumer’s expected payoff (this is an “asymptotic Markov

equilibrium” property; cf. Theorem 1 in Section 5).

(f) We illustrate the potential benefits of our mechanism through

a simple numerical example. In particular, we show that com-

pared with marginal cost pricing, the proposed mechanism

reduces the peak load, and therefore has the potential to re-

duce the need for long-term investments in peaking plants (cf.

Appendix E).

.2. Related literature

There are two streams of literature, on electricity pricing and

n game theory, that are relevant to our work, and which we now

roceed to discuss, while also highlighting the differences from the

resent work.

Regarding electricity markets, the impact of supply friction on

conomic efficiency and price volatility has received some recent at-

ention. Mansur (2008) shows that under ramping constraints, the

rices faced by consumers may not necessarily equal the true sup-

lier marginal cost. In a continuous-time competitive market model,

ho and Meyn (2010a) show that the limited capability of generat-

ng units to meet real-time demand, due to relatively slow ramping

ates, does not harm social welfare, but may result in extreme price

uctuations. In a similar spirit, Kizilkale and Mannor (2010) construct

dynamic game-theoretic model to study the tradeoff between eco-

omic efficiency and price volatility. Cho and Meyn (2010b) con-

truct a dynamic newsboy model to study the reserve management

roblem in electricity markets with exogenous demand. The sup-

lier cost in their model depends not only on the overall demand,

ut also on the generation resources used to satisfy the demand.

or example, a quickly increasing demand may require more respon-

ive and more expensive resources (e.g., peaking generation plants).

ang, Negrete-Pincetic, Kowli, Shafieepoorfard, Meyn, and Shanbhag

2012) study a somewhat related dynamic competitive equilibrium

hat includes ancillary services with ramping constraints. Closer to

he present paper, Sioshansi et al. (2010) suggest that wholesale

lectricity prices should explicitly account for intertemporal ramping

onstraints.

To study the impact of pricing mechanisms on consumer behav-

or and load fluctuations, we construct a dynamic game-theoretic

odel that differs from existing dynamic models for electricity mar-

ets and incorporates both the consumers’ responses to real-time

rice fluctuations and the suppliers’ ancillary cost incurred by load

wings5. Our main results validate the suggestion made in Sioshansi

t al. (2010), from a demand-response (DR) perspective: wholesale
5 Some major differences between our model and existing ones are discussed at the

nd of Section 2.

f
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t
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lectricity prices should properly charge for the effects of consumer

ctions on ancillary services, because proper price signals will en-

ourage consumers to adapt their consumption so as to offset the

ariability of demand on conventional units.

On the game-theoretic side, the standard solution concept for

tochastic dynamic games is the Markov perfect equilibrium (MPE)

Fudenberg & Tirole, 1991; Maskin & Tirole, 1988), involving strate-

ies where an agent’s action depends on the current state of all agents.

s the number of agents grows large, the computation of an MPE is

ften intractable (Doraszelski & Pakes, 2007). For this reason, alterna-

ive equilibrium concepts, for related games featuring a non-atomic

ontinuum of agents (e.g., “oblivious equilibrium” or “stationary

quilibrium” for dynamic games without aggregate shocks), have re-

eived much recent attention (Adlakha, Johari, Weintraub, & Gold-

mith, 2011; Weintraub, Benkard, & Van Roy, 2008).

There is a large literature on a variety of approximation prop-

rties of non-atomic equilibria (Al-Najjar, 2004; 2008; Mas-Colell &

ives, 1993). Recently, Adlakha et al. (2011) have derived sufficient

onditions for a stationary equilibrium strategy to have the Asymp-

otic Markov Equilibrium (AME) property, i.e., for a stationary equi-

ibrium strategy to asymptotically maximize every agent’s expected

ayoff (given that all the other agents use the same stationary equi-

ibrium strategy), as the number of agents grows large. Their model

ncludes random shocks that are assumed to be idiosyncratic to each

gent. However, in the problem that we are interested in, it is im-

ortant to incorporate aggregate shocks (such as weather conditions)

hat have a global impact on all agents. In this spirit, Weintraub,

enkard, and Van Roy (2010) consider a market model with aggre-

ate profit shocks, and study an equilibrium concept at which every

rm’s strategy depends on the firm’s current state and on the recent

istory of the aggregate shock. Finally, for dynamic oligopoly mod-

ls with a few dominant firms and many fringe firms, Ifrachy and

eintraub (2012) propose and analyze a new equilibrium concept,

oment-based Markov equilibrium (MME), in which each firm’s ac-

ion depends on the aggregate shock, the exact states of the dominant

rms, and a few aggregate statistics on the distribution of fringe firm

tates.

For a general dynamic game model with aggregate shocks, Bodoh-

reed (2012) shows that a non-atomic counterpart of an MPE, which

e refer to as a Dynamic Oblivious Equilibrium (DOE) in this paper,

symptotically approximates an MPE in the sense that as the number

f agents increases to infinity, the actions taken in an MPE can be well

pproximated by those taken by a DOE strategy of the non-atomic

imit game. However, without further restrictive assumptions on the

gents’ state transition kernel, the approximation property of the

ctions taken by a DOE strategy does not necessarily imply the AME

roperty of the DOE, and we are not aware of any AME results for

odels that include aggregate shocks. Thus, our work is different in

his respect: for a dynamic non-atomic model with aggregate shocks,

hich is a simplified variation of the general model considered in

odoh-Creed (2012), we prove the AME property of a DOE.

The efficiency of non-atomic equilibria for static games has been

ddressed in recent research (Bodoh-Creed, 2011; Milchtaich, 2004;

oughgarden & Tardos, 2004). For a dynamic industry model with a

ontinuum of identical producers and exogenous aggregate shocks,

ucas and Prescott (1971) show (under convexity assumptions) that

he expected social welfare is maximized at a unique competitive

quilibrium. In a similar spirit, in this paper we show (under convex-

ty assumptions) that the proposed pricing mechanism maximizes the

xpected social welfare in a model involving a continuum of (possibly

eterogeneous) consumers. We also consider the case of a large but

nite number of consumers, and show that the expected social wel-

are is approximately maximized if all consumers act according to a

on-atomic equilibrium (DOE). For large dynamic games, the asymp-

otic social optimality of non-atomic equilibria (DOEs) established in

his paper seems to be new.
ctricity markets, European Journal of Operational Research (2015),
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2. Model

We consider a (T + 1)-stage dynamic game with the following

elements:

1. The game is played in discrete time. We index the time periods

with t = 0, 1, . . . , T. Each stage may represent a five minute in-

terval in real-time balancing markets where prices and dispatch

solutions are typically provided at five minute intervals.

2. There are n consumers, indexed by 1, . . . , n.

3. At each stage t, let st ∈ S be an exogenous state, which evolves

as a Markov chain and whose transitions are not affected by con-

sumer actions. The set S is assumed to be finite. In electricity

markets, the exogenous state may represent time and/or weather

conditions, which impact consumer utility and supplier cost. It

may also represent the level of renewable generation.

4. For notational conciseness, for t � 1, let st = (st−1, st), and let

s0 = s0. We use St to denote the set of all possible st . We refer to

st as the global state at stage t.

5. Given an initial global state s0, the initial states (types) of the con-

sumers, {xi,0}n
i=1

, are independently drawn according to a prob-

ability measure ηs0
over a finite set X0. We use X to denote the

cardinality of X0.

6. The state of consumer i at stage t is denoted by xi, t. At t = 0,

consumer i’s initial state, xi, 0, indicates her type. For t = 1, . . . , T,

we have xi, t = (xi, 0, zi, t), where zi,t ∈ Z and Z = [0, Z] is a compact

subset of R. The variables {zi,t}n
i=1

allow us to model intertemporal

substitution effects in consumer i’s demand.

7. We use Xt to denote a consumer’s state space at stage t. In par-

ticular, at stage t � 1, Xt = X0 × Z .

8. At stage t, consumer i takes an action ai, t and receives a non-

negative utility6Ut(xi, t, st, ai, t).

9. Each consumer’s action space is A = [0, B], where B is a positive

real number. (In the electric power context, B could reflect a local

transmission capacity constraint.)

0. We use At = ∑n
i=1 ai,t to denote the aggregate demand at stage t.

1. Given consumer i’s current state, xi, t, and the next exogenous state

st + 1, the next state of consumer i is determined by her action

taken at stage t, i.e., xi, t + 1 = (xi, 0, zi, t + 1), where zi, t + 1 = r(xi, t,

ai, t, st + 1), for a given function r.

2. Let Gt = At + Rt be the capacity available at stage t, where Rt is

the system reserve at stage t. For simplicity, we assume that the

system reserve at stage t depends only on the current aggregate

demand, At, and the current exogenous state st. That is, we have

Rt = g(At, st) for a given function of g that reflects the reserve policy

of the system operator.

3. At stage t, let C(At, Rt, st) be the total conventional generation

cost, that is, the sum of the supplier’s cost to meet the aggregate

demand At through its primary energy resources, e.g., coal-based

and nuclear power plants, and the cost to maintain a system re-

serve Rt. Since Rt usually depends only on At and st, we can write

C(At, Rt, st) as a function of At and st, i.e., there exists a primary

cost function C : R × S → [0, ∞)such that C(At, st) = C(At, Rt, st).
We assume that for any s ∈ S, C( ·, s) is nondecreasing.

4. At stage t � 1, let H(At−1, At, Rt−1, Rt, st) denote the ancillary cost

incurred by load swings7. Since Rt usually depends only on At and

st, we can write H(At−1, At, Rt−1, Rt, st)as a function of At−1, At, st−1,

and st, i.e., there exists an ancillary cost function H : R
2 × S2 →

[0,∞) such that H = H(At−1, At, st). The ancillary cost at stage 0 is

assumed to be a function of s and A .
0 0

6 At t = 0, U0 is a mapping from X0 × S × A to [0, �), while for t � 1, Ut is a mapping

from X0 × Z × S × A to [0, �).
7 In general, the supplier ancillary cost may depend on the entire history of sys-

tem load and global states. However, ancillary cost functions with the simple form

H(At−1, At, Rt−1, Rt, st) can serve as a good approximation of the supplier’s true ancil-

lary cost (cf. Appendix B).

o

i

r
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5. At stage 0, the total supplier cost is of the form

C(A0, s0)+ H0(A0, s0), (4)

and for t = 1, . . . , T, the total supplier cost at stage t is given by

C(At, st)+ H(At−1, At, st). (5)

In contrast to existing dynamic models for electricity markets with

n exogenous demand process (Cho & Meyn, 2010a; 2010b), our dy-

amic game-theoretic model incorporates the consumer reactions to

rice fluctuations, and allows us to study the impact of pricing mech-

nisms on consumer behavior and economic efficiency. Through a

ynamic game-theoretic formulation, Kizilkale and Mannor (2010)

tudy the tradeoff between economic efficiency and price volatility.

ur model is different from the one studied in Kizilkale and Mannor

2010) in the following respects:

1. Our model allows the generation cost to depend on an exogenous

state, and therefore can incorporate supply-side volatility due to

uncertainty in renewable electricity generation. As an example,

consider a case where the exogenous state, st, represents the elec-

tricity generation from renewable resources at stage t. Then the

demand for conventional generation is At − st. For example, the

system reserve can be set as the maximum of the minimum sys-

tem reserve requirement8 R̄(st) and a certain fraction of the cur-

rent system load, say, δAt for some constant δ > 0. The cost func-

tion, C(At, Rt, st), then depends only on the output of conventional

generating units, At − st, and the system reserve, max{R̄(st), δAt}.

Furthermore, the ancillary cost incurred at stage t depends on the

system reserve and the outputs of conventional generating units

at stages t − 1 and t, and is therefore a function of At−1, At, st−1,

and st.

2. More important, instead of penalizing each consumer’s attempt

to change her own action across time, the ancillary cost function

in our model penalizes the change in the aggregate demand by all

consumers. The change in a single consumer’s action may harm

or benefit the social welfare, while aggregate demand volatility is

usually undesirable.

The main feature of our model is the ancillary cost function H,

hich makes the supplier cost non-separable over time. In an electric

ower system, the ancillary cost function models the costs associ-

ted with the variability of conventional thermal generator output,

uch as the energy cost of peaking plants. Note that the ancillary cost

s not necessarily zero when At � At−1, because thermal generating

nits have ramping-down constraints, and because a decrease in re-

ewable electricity production may lead to an increase of the system

eserve, even if At � At−1. The presence of the ancillary cost function

akes conventional marginal cost pricing inefficient (cf. Example 1 in

ection 3).

To keep the model simple, we do not incorporate any idiosyn-

ratic randomness in the consumer state evolution. Thus, besides

he randomness of consumer types (initial states), the only source

f stochasticity in the model is the exogenous state st.

To effectively highlight the impact of pricing mechanisms on con-

umer behavior, as well as on economic efficiency and demand volatil-

ty, we have made the following simplifications and assumptions for

he power grid:

(a) As in Cho and Meyn (2010a), we assume that the physical pro-

duction capacity is large enough so that the possible changes

of the generation capacity are not constrained.
8 Conventionally, the minimum system reserve is usually defined by the biggest

nline generator (Wang, Redondo, & Galiana, 2003). Since renewable generation causes

mportant fluctuations, reserves should also be allowed to depend on the level of

enewable generation (that is incorporated by the global state st).
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9 At the boundary of the domain, 0, we require continuity of the right-derivatives of

C, H0, and H.
(b) Transmission capacity is large enough to avoid any congestion.

We also assume that the cost of supplying electricity to con-

sumers at different locations is the same. Therefore, a common

price for all consumers is appropriate.

(c) We use a simplified form of ancillary cost functions,

H(At−1, At, st), to approximate the supplier ancillary cost. In

Appendix B, we discuss this approximation and present a nu-

merical example to justify it.

Actual power systems and markets are quite complex and our

odel does not necessarily capture all relevant aspects in a realistic

anner. For example, the assumption of two types of generators may

ot be satisfied in real power systems. However, we make such as-

umptions for specificity, and in order to avoid an exceedingly com-

lex model, while still being able to develop our main argument,

hich is somewhat orthogonal to such issues.

. The Pricing mechanism

The marginal cost pricing mechanism discussed in Section 1

harges a time-varying unit price on each consumer’s demand. As

emonstrated in the following example, a time-varying price that

quals the supplier’s instantaneous marginal cost may not achieve

ocial optimality in a setting that includes ancillary costs. For this

eason, we propose a new pricing mechanism that takes into account

he ancillary cost associated with a consumer’s demand at the previ-

us stage.

xample 1. This example shows that at an efficient competitive equi-

ibrium (between one supplier and one consumer), the per-unit price

harged to the consumer does not equal the supplier’s instantaneous

arginal cost. Consider a two-stage deterministic model with one

onsumer and one supplier. At stage t, the consumer’s utility function

s Ut: [0, �) → [0, �). Let at denote the demand at stage t, and let

= (a0, a1). Let gt denote the actual generation at stage t, and let

= (g0, g1). Two unit prices, p0 and p1, are charged on the consump-

ion at stage 0 and 1, respectively. Let p = (p0, p1). The consumer’s

ayoff-maximization problem is

aximize
a

U0(a0)− p0a0 + U1(a1)− p1a1. (6)

et H0 be identically zero, and let the ancillary cost function at stage 1

epend only on the difference between the supply at the two stages.

hat is, the ancillary cost at stage 1 is of the form H(g1 − g0). The

upplier’s profit-maximization problem is

aximize
g

p0g0 + p1g1 − C(g0)− C(g1)− H(g1 − g0). (7)

he social planner’s problem is

Maximize
(a,g)

U0(a0)+ U1(a1)− C(g0)− C(g1)− H(g1 − g0)

subject to a = g.
(8)

Now consider a competitive equilibrium, (a, g, p), at which the

ector a solves the consumer’s optimization problem (6), the vec-

or g solves the supplier’s optimization problem (7), and the market

lears, i.e., a = g. Suppose that the utility functions are concave and

ontinuously differentiable, and that the cost functions C and H are

onvex and continuously differentiable. We further assume that H′(0)

0, and that for t = 0, 1, U′
t(0) > C′(0), U′

t(B) < C′(B). Then, there ex-

sts a competitive equilibrium, (a, g, p), which satisfies the following

onditions:

U′
0(a0) = p0,

U′
1(a1) = p1,

{
C′(a0)− H′(a1 − a0) = p0,

C′(a1)+ H′(a1 − a0) = p1.
(9)

e conclude that the competitive equilibrium solves the social wel-

are maximization problem in (8), because it satisfies the following
Please cite this article as: J.N. Tsitsiklis, Y. Xu, Pricing of fluctuations in ele
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sufficient) optimality conditions:

′
0(a0) = C′(a0)− H′(a1 − a0), U′

1(a1) = C′(a1)+ H′(a1 − a0),

a0 = g0, a1 = g1. (10)

However, we observe that the socially optimal price p0 does not

quals the supplier’s instantaneous marginal cost at stage 0, C′(a0).

ence, by setting the price equal to C′(a0), as would be done in a real-

ime balancing market, we may not achieve social optimality. More

enerally, marginal cost pricing need not be socially optimal because

t does not take into account the externality conferred by the action

0 on the ancillary cost at stage 1, H(a1 − a0). At a socially optimal

ompetitive equilibrium, the consumer should pay

C′(a0)− H′(a1 − a0)
)
a0 + (

C′(a1)+ H′(a1 − a0)
)
a1,

.e., the price on a0 should be the sum of the supplier marginal cost

t stage 0, C′(a0), and the marginal ancillary cost associated with a0,

H′(a1 − a0), which is determined at the next stage, after a1 is realized.

Before describing the precise pricing mechanism we propose, we

ntroduce a differentiability assumption on the cost functions.

ssumption 1. For any s ∈ S, C( ·, s) and H0( ·, s) are continuously dif-

erentiable on [0, �). For any (A′, s) ∈ A × S2, H(A, A′, s)and H(A′, A, s)
re continuously differentiable in A on [0, �).9

Inspired by Example 1, we introduce prices

t = C′(At, st), t = 0, . . . , T, (11)

nd

t = ∂H(At−1, At, st)

∂At−1
, wt = ∂H(At−1, At, st)

∂At
, t = 1, . . . , T. (12)

t stage 0, we let q0 = 0 and w0 = H′
0(A0, s0). Under the proposed

ricing mechanism, consumer i’s payoff at stage t is given by

t(xi,t, st, ai,t)− (pt + wt)ai,t − qtai,t−1. (13)

ote that pt + wt is the supplier marginal cost at stage t (including

he marginal ancillary cost). The proposed pricing mechanism charges

onsumer i an additional price qt on her previous demand, equal to

he marginal ancillary cost with respect to ai, t − 1.

We now define some of the notation that we will be using. For t =
, . . . , T, let yi, t = (ai, t − 1, xi, t) be the augmented state of consumer

at stage t. At t = 0, let yi, 0 = xi, 0. For stage t, let Yt be the set of

ll possible augmented states. In particular, we have Y0 = X0, and

t = A × Xt, for t = 1, . . . , T.

Let �n(D) be the set of empirical probability distributions over a

iven set D that can be generated by n samples from D. (Note that

mpirical distributions are always discrete, even if D is a continuous

et.) Let ft ∈ �n(Yt) be the empirical distribution of the augmented

tate of all consumers at stage t, and let f−i,t ∈ �n−1(Yt)be the empir-

cal distribution of the augmented state of all consumers (excluding

onsumer i) at stage t. We refer to ft as the population state at stage

. Let ut ∈ �n(A) denote the empirical distribution of all consumers’

ctions at stage t, and let u−i,t ∈ �n−1(A)be the empirical distribution

f all consumers’ (excluding consumer i) actions at stage t.

For a given n, it can be seen from (11) and (12) that the prices, and

hus the stage payoff in (13), are determined by the current global

tate, st, consumer i’s current augmented state, yi, t, and current ac-

ion, ai, t, as well as the empirical distributions, f−i, t and u−i, t of other

onsumers’ current augmented state and action. Hence, for a certain

unction π ( · ), we can write the stage payoff in (13) as

(yi,t, st, ai,t, f−i,t, u−i,t) = Ut(xi,t, st, ai,t)− (pt + wt)ai,t − qtai,t−1.

(14)
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4. A continuum model and dynamic oblivious strategies

To study the aggregate behavior of a large number of consumers,

we consider a non-atomic game involving a continuum of infinitesi-

mally small consumers, indexed by i � [0, 1]. We assume that (under

state s0) a fraction ηs0
of the consumers has initial state x. In a non-

atomic model, any single consumer’s action has no influence on the

aggregate demand and the prices. We consider a class of strategies

(dynamic oblivious strategies) in which a consumer’s action depends

only on the history of past exogenous states, ht = (s0, . . . , st), and her

own current state10, i.e., of the form

ai,t = νt(xi,t, ht).

Suppose that consumer i uses a dynamic oblivious strategy ν =
(ν0, . . . , νT). Since there is no idiosyncratic randomness, given a his-

tory ht, the state xi, t of consumer i at stage t depends only on her

initial state xi, 0. That is, there is a mapping lν,ht
: X0 → Xt, such that

xi,t = lν,ht
(xi,0). Therefore, we can specify the action taken by a dy-

namic oblivious strategy in the alternative form

ai,t = νt(xi,0, ht)
�= νt(lν,ht

(xi,0), ht). (15)

We refer to ν = (ν0, . . . , νT) as a dynamic oblivious strategy, and let

V be the set of all such strategies.

An alternative formulation involving strategies that depend on

consumer expectations on future prices would lead to a Rational Ex-

pectations Equilibrium (REE), an equilibrium concept based on the

rational expectations approach pioneered by Muth (1961). In our

continuum model, since the only source of stochasticity is from the

exogenous state st, future prices under any given strategy profile, are

completely determined by the history ht. Therefore, it is reasonable

to expect that strategies of the form (15) will lead to an equilibrium

concept that is identical in outcomes with a REE (cf. the discussion in

Section 4.2).

Before formally defining a Dynamic Oblivious Equilibrium (DOE),

we first provide some of the intuition behind the definition. In a

continuum model, if all consumers use a common dynamic oblivious

strategy ν , the aggregate demand and the prices at stage t depend

only on the history of exogenous states, ht = (s0, . . . , st). A dynamic

oblivious strategy ν is a DOE (cf. the formal definition in Section

4.2) if it maximizes every consumer’s expected total payoff, under

the sequence of prices that ν induces. In Section 4.3, we associate

a continuum model with a sequence of n-consumer models (n = 1,

2, . . . ), and specify the relation between the continuum model and

the corresponding n-consumer model.

4.1. The sequence of prices induced by a dynamic oblivious strategy

Let ht = (s0, . . . , st) denote a history up to stage t, and let Ht = St+1

denote the set of all possible such histories. Recall that in a continuum

model, given an initial global state s0, the distribution of consumers’

initial states is ηs0
. Therefore, under a history ht, if all consumers use

the same dynamic oblivious strategy ν , then the average demand is

Ãt|ν,ht
=

∑
x∈X0

ηs0
(x) · νt(x, ht). (16)

We now introduce the cost functions in a continuum model. Let C̃ :

R × S → [0, ∞) be a primary cost function. Let H̃ : R
2 × S2 → [0, ∞)

be an ancillary cost function at stage t � 1, and let H̃0 : R × S → [0, ∞)
be an ancillary cost function at the initial stage 0.
10 Note that a dynamic oblivious strategy depends only on the consumer’s current

state, instead of her augmented state. As we will see in Section 4.2, in a continuum

model, since any single consumer i has no influence on the prices, a best response or

equilibrium strategy need not take into account the action ai, t − 1 taken at the previous

stage.

E

h

a
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Given the cost functions in a continuum model, we define the

equence of prices induced by a dynamic oblivious strategy as follows

cf. Eqs. (11)–(12)):

t|ν,ht
= C̃′(Ãt|ν,ht

, st), q̃0|ν,h0
= 0, w̃0|ν,h0

= H̃′
0(Ã0|ν,h0

, s0), (17)

nd for t � 1,

q̃t|ν,ht
= ∂H̃

(
Ãt−1|ν,ht−1

, Ãt|ν,ht
, st

)
∂ Ãt−1|ν,ht−1

,

˜t|ν,ht
= ∂H̃

(
Ãt−1|ν,ht−1

, Ãt|ν,ht
, st

)
∂ Ãt|ν,ht

. (18)

.2. Equilibrium strategies

In this subsection we define the concept of a DOE. Suppose that

ll consumers other than i use a dynamic oblivious strategy ν . In a

ontinuum model, consumer i’s action does not affect the prices. If all

onsumers except i use a dynamic oblivious strategy ν , consumer i’s

blivious stage value (the stage payoff in a continuum model) under

history ht and an action ai, t, is

ĩ,t(yi,t, ht, ai,t | ν) = Ut(xi,t, st, ai,t)− (̃pt|ν,ht
+ w̃t|ν,ht

)ai,t

−q̃t|ν,ht
ai,t−1, (19)

here the prices, p̃t|ν,ht
, w̃t|ν,ht

, and q̃t|ν,ht
, are defined in (17) and

18). Since a single consumer’s action cannot influence q̃t, the last

erm in (19) is not affected by the action ai, t, and the decision ai, t at

tage t need not take ai, t − 1 into account, but should take q̃t+1 into

ccount.

Consumer i’s oblivious stage value under a dynamic oblivious

trategy ν̂, is11

ĩ,t(yi,t, ht | ν̂, ν)
�= π̃i,t(yi,t, ht, ν̂t(xi,0, ht) | ν). (20)

n particular, we use π̃i,t(yi,t, ht | ν, ν) to denote the oblivious stage

alue of consumer i at stage t, if all consumers use the strategy ν .

iven an initial global state s0 and an initial state of consumer i, xi, 0,

er oblivious value function (total future expected payoff function

n a continuum model) is

ĩ,0(xi,0, s0 | ν̂, ν) = E

{
T∑

τ=0

π̃i,τ (yi,τ , hτ | ν̂, ν)

}
, (21)

here the expectation is over the future global states, {sτ }T
τ=1.

efinition 1. A strategy ν is a Dynamic Oblivious Equilibrium (DOE)

f

sup
∈V

Ṽi,0(xi,0, s0 | ν̂, ν) = Ṽi,0(xi,0, s0 | ν, ν), ∀xi,0 ∈ X0, ∀s0 ∈ S.

A DOE is guaranteed to exist, under suitable assumptions, and this

s known to be the case for our model (under our assumptions), and

ven for a more general model that includes idiosyncratic random-

ess (Bergin & Bernhardt, 1992). The DOE, as defined above, is es-

entially the same concept as the “dynamic competitive equilibrium”

tudied in Bodoh-Creed (2012), which is defined as the non-atomic

quivalent of an MPE, in a continuum model. At a DOE, the beliefs

f all consumers on future prices are consistent with the equilibrium

utcomes. Therefore, a DOE is identical in outcomes with a Rational

xpectations Equilibrium (REE).

Note that to compute a DOE one has to keep track of the entire

istory of shocks, and that consumers may not have the rationality
11 Recall that the initial state (the type) of consumer i, xi, 0, is included in its state xi, t ,

s well in its augmented state yi, t , for any t.
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r computational power to calculate a DOE. However, in future elec-

ricity markets, consumers may receive price estimates from utili-

ies and/or the independent system operator (ISO) through advanced

etering infrastructures. (In Appendix A, we provide some discus-

ion of a possible implementation of the proposed real-time pricing

echanism.) If utilities and/or the ISO could make accurate estimates

contingent on future history of the exogenous state) of the prices12,

REE (equivalently, a DOE) will be a plausible outcome of such a mar-

et. Furthermore, we will show (Theorem 2) that under the proposed

ricing mechanism, and under certain convexity assumptions, a DOE

s socially optimal for the continuum model.

.3. The n-consumer model associated with a continuum model

We would like to take the cost functions in a continuum model

o approximate the cost functions in an n-consumer model. Since

he continuum of consumers is described by distributions over

0, 1], the demand given in (16) can be regarded as the aver-

ge demand per consumer. To capture this correspondence, we as-

ume the following relation between the cost functions in a contin-

um model and their counterparts in a corresponding n-consumer

odel.

ssumption 2. For any n ∈ N, any s ∈ S, and any s in S2, we have

n(A, s) = nC̃

(
A

n
, s

)
, Hn

0(A, s) = nH̃0

(
A

n
, s

)
,

nd

n(A, A′, s) = nH̃

(
A

n
,

A′

n
, s

)
,

here the superscript n is used to indicate that these are the cost

unctions associated with an n-consumer model.

Assumption 2 implies that

Cn)′(A, s) = C̃′(A/n, s), (Hn
0)

′(A, s) = H̃′
0(A/n, s), s ∈ S,

nd for any s ∈ S2,

∂Hn(A, A′, s)

∂A
= ∂H̃(A/n, A′/n, s)

∂(A/n)
,

∂Hn(A, A′, s)

∂A′ = ∂H̃(A/n, A′/n, s)

∂(A′/n)
,

o that there is a correspondence between the marginal cost in the

ontinuum model (evaluated at the average demand) and in the cor-

esponding n-consumer model.

. Approximation in large games

In this section, we consider a sequence of dynamic games, and

how that as the number of consumers increases to infinity, a DOE

trategy for the corresponding continuum game is asymptotically op-

imal for every consumer (i.e., an approximate best response), if the

ther consumers follow that same strategy. In the rest of the paper,

e often use a superscript n to indicate quantities associated with an

-consumer model.

Suppose that all consumers except i use a dynamic oblivious strat-

gy ν . Given a history ht and an empirical distribution f n
−i,t

, we use
12 We note that several recent works show that a reasonably accurate approxima-

ion could be achieved even if the agents’ strategy depends only on the recent history

as opposed to the full history) of the aggregate shock (Bodoh-Creed, 2012; Wein-

raub et al., 2010). These results suggest that utilities may be able to obtain accu-

ate price estimates by taking into account only the recent history of the aggregate

hock.

|∣∣∣

o
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(ht, f n
−i,t

, ν) to denote the empirical distribution, un
−i,t

, of the actions

aken by consumers excluding i. In an n-consumer model, suppose

hat consumer i uses a history-dependent strategy κn = {κn
t }T

t=0 of

he form

i,t = κn
t (yi,t, ht, f n

−i,t), (22)

hile the other consumers use a dynamic oblivious strategy ν . Let

n denote the set of all possible history-dependent strategies κn

or the n-consumer model. Note that since all other consumers use

he oblivious strategy ν , f n
−i,t

is completely determined by ν , f n
−i,0

,

nd ht.

The stage payoff received by consumer i at time t is

n
i,t(yi,t, ht, f n

−i,t | κn, ν) = πn
(

yi,t, st, ai,t, f n
−i,t, v(ht, f n

−i,t, ν)
)

, (23)

here ai,t = κn
t (yi,t, ht, f n

−i,t
), and the stage payoff function on the

ight-hand side is given in (14). Given an initial global state, s0, and

onsumer i’s initial state, xi, 0, consumer i’s expected payoff under the

trategy κn is

n
i,0

(
xi,0, s0 | κn, ν

) = E

{
T∑

t=0

πn
i,t(yi,t, ht, f n

−i,t | κn, ν)

}
, (24)

here the expectation is over the initial distribution f n
−i,0

and over the

uture global states, {st}T
t=1. In particular, we use Vn

i,0

(
xi,0, s0 | ν, ν

)
to

enote the expected payoff obtained by consumer i if all consumers

se the strategy ν .

efinition 2. A dynamic oblivious strategy ν has the asymptotic

arkov equilibrium (AME) property (Adlakha et al., 2011), if for

ny initial global state s0 ∈ S, any initial consumer state xi,0 ∈ X0,

nd any sequence of history-dependent strategies {κn}, we have

im sup
n→∞

(
Vn

i,0

(
xi,0, s0 | κn, ν

) − Vn
i,0

(
xi,0, s0 | ν, ν

)) ≤ 0.

We will show that every DOE has the AME property, under the

ollowing assumption, which strengthens Assumption 1.

ssumption 3. We assume that:

3.1. The following four families of functions, of A, {C̃′(A, s) : s ∈ S},
{H̃′

0(A, s) : s ∈ S}, {∂H̃(A, A′, s)/∂A : (A′, s) ∈ A × S2}, and

{∂H̃(A′, A, s)/∂A : (A′, s) ∈ A × S2}, are uniformly equicontin-

uous on [0, �).13

3.2. The marginal costs are bounded from above, i.e.,

|C̃′(A, s)| ≤ P, |H̃′
0(A, s)| ≤ P, ∀(A, s) ∈ A × S,

and∣∣∣∣∣∂H̃(A, A′, s)

∂A

∣∣∣∣∣ ≤ P,

∣∣∣∣∣∂H̃(A′, A, s)

∂A

∣∣∣∣∣ ≤ P, ∀(A′, s) ∈ A × S2,

where P is a positive constant.

3.3. The utility functions, {Ut(x, s, a)}T
t=0, are continuous in a and

bounded from above, i.e.,

Ut(x, s, a) ≤ Q, t = 0, . . . , T, ∀(x, s, a) ∈ Xt × S × A,

where Q is a positive constant.

Combining with Assumption 2, Assumption 3.1 implies that for

ny ε > 0, there exists a δ > 0 such that for any positive integer n, if

A − A| ≤ nδ, then for every s ∈ S,

(Cn)′(A, s)− (Cn)′(A, s)
∣∣∣ ≤ ε,

∣∣∣(Hn
0)

′(A, s)− (Hn
0)

′(A, s)
∣∣∣ ≤ ε, (25)
13 A sufficient condition for this assumption to hold is to require a universal bound

n the derivatives of the functions in each family.
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and for any (A′, s) ∈ A × S2,∣∣∣∣∣∂Hn(A, A′, s)

∂A
− ∂Hn(A, A′, s)

∂A

∣∣∣∣∣ ≤ ε,

×
∣∣∣∣∣∂Hn(A′, A, s)

∂A
− ∂Hn(A′, A, s)

∂A

∣∣∣∣∣ ≤ ε. (26)

Note that the boundness of the cost function derivatives im-

plies the Lipschitz continuity of the cost functions. Combining with

Assumption 2, for any pair of real numbers (A, A), any positive integer

n, and for every s ∈ S we have∣∣∣Cn(A, s)− Cn(A, s)
∣∣∣ ≤ P|A − A|,

∣∣∣Hn
0(A, s)− Hn

0(A, s)
∣∣∣ ≤ P|A − A|,

(27)

and for any (A′, s) ∈ A × S2,∣∣∣Hn(A, A′, s)− Hn(A, A′, s)
∣∣∣ ≤ P|A − A|,∣∣∣Hn(A′, A, s)− Hn(A′, A, s)
∣∣∣ ≤ P|A − A|. (28)

The following theorem states that a DOE strategy approximately

maximizes a consumer’s expected payoff (among all possible history-

dependent strategies) in a dynamic game with a large but finite num-

ber of consumers, if the other consumers also use that strategy.

Theorem 1. Suppose that Assumptions 2–3 hold. Every DOE has the AME

property.

Theorem 1 is proved in Appendix C. Various approximation prop-

erties of non-atomic equilibrium concepts in a continuum game have

been investigated in previous works. Sufficient conditions for a sta-

tionary equilibrium (an equilibrium concept for a continuum game

without aggregate uncertainty) to have the AME property are derived

in Adlakha et al. (2011). For a continuum game with both idiosyncratic

and aggregate uncertainties, Bodoh-Creed (2012) shows that as the

number of agents increases to infinity, the actions taken in an MPE

can be well approximated by some DOE strategy of the non-atomic

limit game. Note, however, that in a general n-consumer game, even

if all consumers take an action that is close to the action taken by a

DOE strategy of the non-atomic limit game, the population states and

the prices in the n-consumer game can still be very different from

their counterparts in the non-atomic limit game. Therefore, without

further assumptions on the consumers’ state transition kernel (e.g.,

continuous dependence of consumer states on their previous actions),

the approximation property of a DOE on the action space does not

necessarily imply the AME property of the DOE.

6. Asymptotic social optimality

In Section 6.1, we define the social welfare associated with an

n-consumer model and with a continuum model. In Section 6.2, we

show that for a continuum model, the social welfare is maximized

(over all symmetric dynamic oblivious strategy profiles) at a DOE, and

that for a sequence of n-consumer models, if all consumers use the

DOE strategy of the corresponding continuum model, then the social

welfare is asymptotically maximized, as the number of consumers

increases to infinity.

6.1. Social welfare

In an n-consumer model, let xt = (x1, t, . . . , xn, t) and at = (a1, t, . . . ,

an, t) be the vectors of consumer states and actions, respectively, at

stage t. Let at = (at−1, at) for t � 1, and a0 = a0. For t = 1, . . . , T, the

social welfare realized at stage t is
Please cite this article as: J.N. Tsitsiklis, Y. Xu, Pricing of fluctuations in ele
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n
t (xt, st, at) = −Cn(At, st)− Hn(At−1, At, st)+

n∑
i=1

Ut(xi,t, st, ai,t),

(29)

nd at stage 0, the social welfare is

n
t (x0, s0, a0) = −Cn(A0, s0)− Hn

0(A0, s0)+
n∑

i=1

U0(xi,0, s0, ai,0).

(30)

Because of the symmetry of the problem, the social welfare at

tage t depends on xt and at only through the empirical distribu-

ion of state-action pairs. In particular, under a symmetric history-

ependent strategy profile κn = (κn, . . . , κn) (cf. the definition of a

istory-dependent strategy in Eq. (22)), we can write the social wel-

are at time t (with a slight abuse of notation) as Wn
t (f n

t , ht | κn). Given

n initial global state s0 and an initial population state f n
0 , the expected

ocial welfare achieved under a symmetric history-dependent strat-

gy profile κn is given by

n
0 (f

n
0 , s0 | κn) = Wn

0(f
n
0 , s0 | κn)+ E

{
T∑

t=1

Wn
t (f

n
t , ht | κn)

}
, (31)

here the expectation is over the future global states {st}T
t=1. In par-

icular, we use Wn
0 (f n

0 , s0 | νn) to denote the expected social welfare

chieved by the “symmetric dynamic oblivious strategy profile”, νn =
ν , . . . , ν).

In a continuum model, suppose that all consumers use a com-

on dynamic oblivious strategy ν . Given an initial global state s0, the

xpected social welfare is

˜0(s0 | ν) = W̃0(s0 | ν)+ E

{
T∑

t=1

W̃t(ht | ν)

}
, (32)

here the expectation is over the future global states, {st}T
t=1. Here,˜

t(ht | ν) is the stage social welfare under history ht:˜
t(ht | ν) = −C̃(Ãt|ν,ht

, st)− H̃(Ãt−1|ν,ht−1
, Ãt|ν,ht

, st)

+
∑
x∈X0

ηs0
(x)Ut

(
lν,ht

(x), st, νt(x, ht)
)
, t = 1, . . . , T,

(33)

here lν,ht
maps a consumer’s initial state into her state at stage t,

nder the history ht and the dynamic oblivious strategy ν . The social

elfare at stage 0 is given by˜
0(s0 | ν) = −C̃(Ã0|ν,h0

, s0)− H̃0(Ã0|ν,h0
, s0)

+
∑
x∈X0

ηs0
(x)U0 (x, s0, ν0(x, s0)). (34)

.2. Asymptotic social optimality of a DOE

We now define some notation that will be useful in this subsection.

ince there is no idiosyncratic randomness, given a history ht, the state

f consumer i at stage t depends only on her initial state xi, 0, and her

ctions taken at τ = 0, . . . , t − 1. At stage t � 1, the history ht and

he transition function zi, t + 1 = r(xi, t, ai, t, st + 1) define a mapping

ht
: X0 × At → Z:

i,t = kht
(xi,0, ai,0, . . . , ai,t−1), t = 1, . . . , T. (35)

iven an initial state xi, 0, consumer i’s total utility under a his-

ory ht can be written as a function of her actions taken at stages

= 0, . . . , t:

Uht
(xi,0, ai,0, . . . , ai,t) = U0(xi,0, s0, ai,0)

+
t∑

τ=1

Uτ (xi,0, khτ
(xi,0, ai,0, . . . , ai,τ−1), sτ , ai,τ ). (36)
ctricity markets, European Journal of Operational Research (2015),

http://dx.doi.org/10.1016/j.ejor.2015.04.020


J.N. Tsitsiklis, Y. Xu / European Journal of Operational Research 000 (2015) 1–10 9

ARTICLE IN PRESS
JID: EOR [m5G;May 14, 2015;13:38]

o

u

A

c

e

&

R

4

s

p

e

O

t

g

T

i

a

r

f

t

c

s

t

A

t

a

h

E

f

a

w

b

T

t

t

o

U

f

a

U

F

U

F

i

d

T

c

7

a

c

w

t

c

p

n

s

i

i

a

p

c

t

p

t

d

p

s

r

t

p

f

v

p

s

t

o

a

u

14 Note that we are only comparing the social welfare under different symmetric

dynamic oblivious strategy profiles, where all consumers are using the same dynamic

oblivious strategy (ν or ϑ). This is no loss of generality because under Assumption 4, the

social welfare in a continuum game is a concave function of the collection of consumer

actions taken under the different histories. Hence, it can be shown that the optimal

social welfare can be achieved by a symmetric dynamic oblivious strategy profile.
15 Under Assumption 4, the social welfare in an n-consumer game is a concave func-

tion of the collection of consumer actions taken under the different histories. Therefore,

supκn∈Kn
Wn

0 (f n
0 , s0 | κn) is also the maximum social welfare that can be achieved by a

(possibly non-symmetric) history-dependent strategy profile.
Before proving the main result of this section, we introduce a series

f assumptions on the convexity and differentiability of the cost and

tility functions.

ssumption 4. We assume the following:

4.1. For any s ∈ S, C̃(·, s) is convex; for any s ∈ S2, H̃(A, A′, s) is con-

vex in (A, A′).
4.2. For any hT ∈ HT and any xi,0 ∈ X0, the function defined in (36)

is concave with respect to the vector (ai, 0, . . . , ai, T).

4.3. For any t � 1, any ht ∈ Ht, and any xi,0 ∈ X0, the function kht

defined in (35) is monotonic in ai, τ , for τ = 0, . . . , t − 1; further,

its left and right derivatives with respect to ai, τ exist, for τ =
0, . . . , t − 1.

4.4. For t � 1, and for any (x, s, a) ∈ X0 × S × A, the left and right

derivatives of the utility function Ut(x, z, s, a) in z exist.

We note that supplier cost functions are generally not convex (be-

ause, for example, of start-up costs), and that there is a substantial lit-

rature on the pricing of non-convexities in electricity markets (Araoz

Jörnsten, 2011; Motto & Galiana, 2004; O’Neill, Sotkiewicz, Hobbs,

othkopf, & Stewart, 2005). The convexity assumption (Assumption

.1) results in a tractable analytical setting that can be used to provide

ome theoretic results, and is often used in the literature on optimal

ower flow (OPF) (Lavaei & Low, 2012; Wu et al., 2004) and on en-

rgy market economics (Baldick, Grant, & Kahn, 2004; Sioshansi &

ren, 2007). We finally note that even for non-convex cost functions,

he proof of Theorem 2 (in Appendix D) shows that in a non-atomic

ame, a DOE corresponds to a local optimum of the social welfare.

his is the best one could wish for since a local optimal cannot be

mproved unless a significant fraction of the consumers change their

ction simultaneously.

For concave utility functions (with respect to a), Assumption 4.2

equires that the transition function kht
preserves concavity (a linear

unction would be an example). Assumptions 4.1 and 4.2 guaran-

ee that in both models (a dynamic game with a finite number of

onsumers, and the corresponding continuum game), the expected

ocial welfare (consumer i’s expected payoff) is concave in the vec-

or of actions taken by all consumers (respectively, by consumer i).

ssumptions 4.3 and 4.4 ensure the existence of left and right deriva-

ives of the expected social welfare given in (32), with respect to the

ctions taken by consumers. An example where Assumptions 4.2–4.4

old is given next.

xample 2. We show in this example that Assumptions 4.2–4.4 hold

or a large category of deferrable electric loads. For appliances such

s Plug-in Hybrid Electric Vehicles (PHEVs), dish washers, or clothes

ashers, a customer usually only cares whether a task is completed

efore a certain time.

Given an initial state (type) of consumer i, xi, 0, let D(xi, 0) and

(xi, 0) indicate her total desired demand and the stage by which the

ask has to be completed, respectively. Under a given history ht, the

otal utility accumulated by consumer i until time t is assumed to be

f the form

ht
(xi,0, ai,0, . . . , ai,t) = Z

⎛⎝xi,0, min

⎧⎨⎩D(xi,0),

min{T(xi,0),t}∑
τ=0

ai,τ

⎫⎬⎭
⎞⎠ ,

or some function Z. If for every xi,0 ∈ X0, Z(xi, 0, · ) is nondecreasing

nd concave, then Assumption 4.2 holds. At stage t = 0, we have

0(xi,0, s0, ai,0) = Z
(
xi,0, min {D(xi,0), ai,0}) .

or t = 1, . . . , T(xi, 0), we let zi,t = ∑t−1
τ=0 ai,τ , and

t(xi,0, zi,t, st, ai,t) = Z
(
xi,0, min {D(xi,0), ai,t + zi,t})

− Z
(
xi,0, min {D(xi,0), zi,t}) .

or t � T(xi, 0) + 1, we let zi, t = D(xi, 0), and let Ut(xi, t, st, ai, t) be

dentically zero. Suppose that for every xi,0 ∈ X0, the right and left

erivatives of Z(xi, 0, · ) exist. Then, Assumptions 4.3 and 4.4 hold.
Please cite this article as: J.N. Tsitsiklis, Y. Xu, Pricing of fluctuations in ele
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heorem 2. Suppose that Assumptions 2–4 hold. Let ν be a DOE of the

ontinuum game. Then, the following hold.

(a) In the continuum game, the social welfare is maximized (over all

dynamic oblivious strategy profiles) at the DOE, i.e.,14

W̃0(s0 | ν) = supϑ∈V W̃0(s0 | ϑ), ∀s0 ∈ S,

where V is the set of all dynamic oblivious strategies.

(b) For a sequence of n-consumer games, the symmetric DOE strategy

profile, νn = (ν , . . . , ν), asymptotically maximizes the expected so-

cial welfare, as the number of consumers increases to infinity. That

is, for any initial global state s0, and any sequence of symmetric

history-dependent strategy profiles {κn}, we have15

lim sup
n→∞

E

{Wn
0 (f

n
0 , s0 | κn)− Wn

0 (f
n
0 , s0 | νn)

n

}
≤ 0,

where the expectation is over the initial population state, f n
0 .

The proof of Theorem 2 is given in Appendix D.

. Conclusion and future directions

In an electric power system, load swings may result in significant

ncillary cost to suppliers. Motivated by the observation that marginal

ost pricing may not achieve social optimality in electricity markets,

e propose a new dynamic pricing mechanism that takes into account

he externality conferred by a consumer’s action on future ancillary

osts. Besides proposing a suitable game-theoretic model that incor-

orates the cost of load fluctuations and a particular pricing mecha-

ism for electricity markets, a main contribution of this paper is to

how that the proposed pricing mechanism achieves social optimal-

ty in a dynamic non-atomic game, and approximate social optimal-

ty for the case of finitely many consumers, under certain convexity

ssumptions.

To compare the proposed pricing mechanism with marginal cost

ricing, we have studied a numerical example in which demand in-

reases sharply at the last stage (cf. Appendix E). In this example,

he proposed pricing mechanism creates a stronger incentive (com-

ared to marginal cost pricing) for consumers to shift their peak load,

hrough an additional negative price charged on off-peak consumer

emand. As a result, compared with marginal cost pricing, the pro-

osed pricing mechanism achieves a higher social welfare, and at the

ame time, reduces the peak load, and therefore has the potential to

educe the need for long-term investments in peaking plants.

We believe that the constructed dynamic game-theoretic model,

he proposed pricing mechanism, and more importantly, the insights

rovided by this work, can be applied to more general markets with

riction. As an extension and future work, one can potentially de-

elop and use variations of our framework to a market of a perishable

roduct/service where demand fluctuations incur significant cost to

uppliers. Examples include data centers implementing cloud services

hat suffer from the switching costs to toggle a server into and out

f a power-saving mode (Lin, Wierman, Andrew, & Thereska, 2011),

nd large organizations such as hospitals that use on-call staff to meet

nexpected demand.
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