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E-companion to The Practical Value of Field Experiments

EC.1. Multiplicative Model

Consider an alternative multiplicative demand model of the following form:

∆qi = xai11 xai22 · · ·xainn wi.

Taking logs, we obtain

log(∆qi) = ai1 log(x1) + ai2 log(x2) + · · ·+ ain log(xn) + log(wi)

=
n∑
`=1

ai` log(x`) + log(wi).

By defining ∆q̃i , log(∆qi), x̃` , log(x`), w̃i , log(wi), we can rewrite the above as

∆q̃i =
n∑
`=1

ai`x̃` + w̃i,

which is of the same form as our standard linear additive model.

Suppose that the noise term wi is log-normally distributed and hence w̃i ∼N(0, c2).10 We are free

to choose the decisions x`, and so let us choose each one randomly by first choosing u` uniformly

from the interval [−ρ, ρ] and then assigning x` = eu` . Thus, x̃` ∼ U [−ρ, ρ]. We continue to assume

independence among the x’s and w’s, which translates into independence among the x̃’s and w̃’s.

Therefore, we can apply the same estimation method as described in Chapter 3 to learn the A

matrix in this multiplicative model. In particular, the statistic defined in Section 3.5 becomes

ỹij , β ·∆q̃i · x̃j, which would again be an unbiased estimator of aij. In addition, our methodology

for estimating k and d from empirical data and our simulation procedure, presented in Sections 4

and 5, can be similarly adapted to fit the multiplicative model.

EC.2. Asymptotic Notation

Let n be a vector of variables; then we say:

(i) f(n)∈O(g(n)) if there exist constants N and C > 0 such that |f(n)| ≤C|g(n)| for all n such

that ni >N, ∀i;

(ii) f(n)∈Ω(g(n)) if there exist constants N and C > 0 such that |f(n)| ≥C|g(n)| for all n such

that ni >N, ∀i;

(iii) f(n)∈Θ(g(n)) if f(n)∈O(g(n)) and f(n)∈Ω(g(n)).

10 More generally, we can relax this assumption – we require only that w̃i is sub-Gaussian with parameter c and has
zero mean.
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In the first case, f(n) ∈ O(g(n)) essentially means that f(n) grows no faster than g(n) as n

becomes large. In this sense, g(n) can be thought of as an “upper bound” on the rate of growth of

f(n). An example is f(n) = 100n and g(n) = n2.

In the second case, f(n)∈Ω(g(n)) essentially means that f(n) grows at least as fast as g(n) as

n becomes large. And so in this case, g(n) can be thought of as a “lower bound” on the rate of

growth of f(n). An example is f(n) = n and g(n) = logn+ 100
√
n.

In the last case, f(n) ∈Θ(g(n)) means that f(n) and g(n) grow at essentially the same rate as

n becomes large. An example is f(n) = n+
√
n and g(n) = 2n− 1, as both grow linearly with n.

We say that f(n)∈Θ(n) and g(n)∈Θ(n).

As illustrated above, asymptotic notation focuses on the order of growth and ignores constants.

To justify the importance of focusing on the order of growth in the regime of large numbers of

products, let us consider the following example.

Example EC.1. (Impact of linear vs. logarithmic growth.) Suppose that there are two esti-

mation methods, requiring s1(n) = n and s2(n) = 10 logn experiments, respectively, in order to

estimate an A matrix for n products. For a small number of products, such as n = 10, the first

method requires just 10 experiments, whereas the second method requires 10 log(10)≈ 23 experi-

ments. However, with a large number of products, such as n= 100, the first method now requires

100 experiments, whereas the second method requires 10 log(100)≈ 46 experiments, a much smaller

number. As the number of products increases further, the difference between the two methods

becomes more and more pronounced.

The purpose of asymptotic notation is to focus on the dominant scaling factor and ignore con-

stants, such as 10 in method 2 of the example above. Although these constants have a relatively

larger impact when n is small, they become insignificant as n becomes large. Specifically, we say

that for method 1, s1(n)∈Θ(n), and for method 2, s2(n)∈Θ(logn).

EC.3. Proof of Theorem 1

Theorem 1. (Estimation accuracy with sub-Gaussian noise for general A matrices.) Under

Assumption 1, for any n×n matrix A and any ε≥ 0,

P

(
max
i,j
|âij − aij| ≥ ε

)
≤ 2n2 exp

{
− sε2

maxi 36 (
∑n

`=1 a
2
i` + c2/ρ2)

}
.

Proof. Let our decisions be i.i.d. continuous random variables x distributed uniformly on [−ρ, ρ],

so that E[x] = 0 and var(x) = E[x2] = ρ2/3. We perform an experiment using a vector of decisions

x. Let ∆qi be the observed percentage change in demand for product i, and let xj be the pricing

decision for product j.
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Having defined β , 3/ρ2, we consider the statistic

yij = β(∆qixj) = β

(
n∑
`=1

ai`x` +wi

)
xj,

which satisfies E[yij] = aij. Therefore, yij is an unbiased estimator of aij. Let yij(t) be the statistic

calculated from the tth experiment. By Assumption 1, for each (i, j), the statistics yij(t) are inde-

pendent and identically distributed across different experiments t. By the law of large numbers, the

sample mean âij , 1
s

∑s

t=1 yij(t) converges to aij as we take many samples from many experiments.

We wish to bound the concentration of âij around its mean, aij.

To do so, we show that âij is sub-Gaussian. A random variable X is sub-Gaussian with parameter

σ > 0 if

E[exp(λ(X −E[X]))]≤ exp(σ2λ2/2) (EC.1)

for all λ∈R. We make use of the following well-known properties:

1. If X is sub-Gaussian with parameter σ, then aX + b is sub-Gaussian with parameter |a|σ.

2. If X is bounded a.s. in an interval [a, b], then X is sub-Gaussian with parameter at most

(b− a)/2.

3. If X1 and X2 are sub-Gaussian with parameters σ1 and σ2, respectively,

(a) and if X1 and X2 are independent, then X1 + X2 is sub-Gaussian with parameter√
σ2
1 +σ2

2.

(b) and if X1 and X2 are not independent, then X1 +X2 is sub-Gaussian with parameter at

most
√

2(σ2
1 +σ2

2).

4. If X is sub-Gaussian with parameter σ, then it satisfies the following concentration bound:

P(|X −E[X]| ≥ ε)≤ 2exp

(
− ε2

2σ2

)
, ∀ε≥ 0. (EC.2)

We first consider the random variable yij:

yij = β

(
n∑
`=1

ai`x` +wi

)
xj

= β

{(∑
` 6=j

ai`x` +wi

)
xj + aijx

2
j

}
= β

{
V xj + aijx

2
j

}
,

where we have defined

V ,
∑
6̀=j

ai`x` +wi.

We now show that V is sub-Gaussian. For each `, x` is bounded on [−ρ, ρ] and therefore

sub-Gaussian with parameter ρ. Hence, ai`x` is sub-Gaussian with parameter |ai`|ρ. Also, under
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Assumption 1, wi is sub-Gaussian with parameter c. The random variables ai`x` and wi are all

independent. Therefore, their sum, V , is also sub-Gaussian with parameter σV ,
√∑

6̀=j a
2
i`ρ

2 + c2.

Next, we show that V xj is sub-Gaussian using the definition. For any λ∈R,

E [exp{λ(V xj −E[V xj])}] =E [exp{λ(V xj)}] (EC.3)

=

∫ ρ

−ρ
E[exp{λ(V x)}] 1

2ρ
dx (EC.4)

≤
∫ ρ

−ρ
exp

{
(|x|σV )2λ2/2

} 1

2ρ
dx (EC.5)

≤
∫ ρ

−ρ
exp

{
(ρσV )2λ2/2

} 1

2ρ
dx

= exp
{

(ρσV )2λ2/2
}
,

where (EC.3) is because V xj has zero mean; (EC.4) is obtained by conditioning on the values of

xj; and (EC.5) follows from (EC.1) and the fact that for any x ∈ [−ρ, ρ], V x is zero-mean and

sub-Gaussian with parameter |x|σV . Therefore, V xj is also sub-Gaussian with parameter ρσV .

Next, we show that aijx
2
j is sub-Gaussian. Since x2

j is bounded in [0, ρ2], it is sub-Gaussian with

parameter ρ2/2. Therefore, aijx
2
j is sub-Gaussian with parameter ρ2|aij|/2.

Finally, yij is a sum of two (dependent) sub-Gaussian random variables: βV xj with parameter

βρσV , and βaijx
2
j with parameter βρ2|aij|/2. Therefore, yij is also sub-Gaussian with parameter

σY ,
√

2(β2ρ2σ2
V +β2ρ4a2ij/4) =

√√√√2

{
β2ρ2

(∑
6̀=j

a2i`ρ
2 + c2

)
+β2ρ4a2ij/4

}

≤

√√√√2β2ρ4

(
n∑
`=1

a2i` + c2/ρ2

)

=

√√√√18

(
n∑
`=1

a2i` + c2/ρ2

)
.

Since âij = 1
s

∑s

t=1 yij(t) is a sample mean of s independent yij’s, âij is sub-Gaussian with param-

eter

σij ,
1

s

√
sσ2

Y ≤

√√√√18

s
·

(
n∑
`=1

a2i` + c2/ρ2

)
.

We can then bound the concentration of our estimator âij around the true parameter aij using

(EC.2):

P(|âij − aij| ≥ ε) ≤ 2exp

{
− ε2

2σ2
ij

}
≤ 2exp

{
− sε2

36 (
∑n

`=1 a
2
i` + c2/ρ2)

}
.
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This gives a concentration bound for the error of a particular (i, j) pair. To arrive at the final

result, which bounds the maximum error over all (i, j) pairs, we apply the union bound and conclude

that

P

(
max
i,j
|âij − aij| ≥ ε

)
≤ 2n2 exp

{
− sε2

maxi 36 (
∑n

`=1 a
2
i` + c2/ρ2)

}
. �

EC.4. Proof of Theorem 2

Theorem 2. (Necessary condition for uniform ε-accurate estimation under sparsity with Gaus-

sian noise.) For λ> 0, let

An,k(λ),

{
A∈Rn×n : |{j : aij 6= 0}|= k,∀i= 1, . . . , n; min

i,j:aij 6=0
|aij| ≥ λ

}
be the class of n×n A matrices whose rows are k-sparse and whose nonzero entries are at least λ in

magnitude. Let the noise terms be i.i.d. N (0, c2) for some c > 0. Suppose that for some ε∈ (0, λ/2)

and δ ∈ (0,1/2), we have an estimator that

(a) experiments with percentage price changes x∈ [−1, ρ̃], for some ρ̃≥ 1 (i.e., the price of each

product cannot fall below 0 and cannot increase by more than 100ρ̃%), and

(b) for any A matrix in An,k(λ) achieves uniformly ε-accurate estimates with probability 1− δ.

Then, the number of experiments used by the estimator must be at least

s≥ k log(n/k)− 2

log(1 + k2λ2ρ̃2/c2)
.

Proof. For any λ> 0, consider the class An,k(λ). Fix some ε∈ (0, λ/2) and δ ∈ (0,1/2). In what

follows, all estimators use the results of s experiments, for some arbitrary s.

Define the sub-class Aconst
n,k (λ), {A∈Rn×n : |{j : aij 6= 0}|= k,∀i= 1, . . . , n;aij = λ,∀i, j s.t. aij 6=

0} ⊂An,k(λ), which is the class of all n×n A matrices whose rows are k-sparse and whose nonzero

entries are all exactly equal to λ.

The desired specification is an estimator that for any A matrix in An,k(λ) achieves uniformly

ε-accurate estimates with probability 1− δ. In order to obtain a lower bound on the number of

experiments needed to meet this specification, it suffices to obtain a lower bound on the number

of experiments needed to meet the following looser specification: we let the A matrix be generated

uniformly at random from the sub-class Aconst
n,k (λ) and require that with probability at least 1− δ

the first row of A is correctly recovered to uniform ε-accuracy. Because A∈Aconst
n,k (λ), all elements

of A are either exactly 0 or λ, and since ε ∈ (0, λ/2), achieving uniform ε-accuracy is equivalent

to perfectly recovering A, which is also equivalent to perfectly recovering the sparsity pattern of

A (i.e., identifying the locations of all nonzero entries). Let Rconst
1 denote the event of exactly

recovering the sparsity pattern of the first row of an A matrix chosen uniformly at random from

Aconst
n,k (λ).
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We now focus on the event Rconst
1 and find an upper bound on its probability. Within the sub-class

Aconst
n,k (λ), there are exactly N ,

(
n
k

)
possible sparsity patterns for the first row of any A matrix.

Moreover, because all nonzero entries are equal to the same value λ, each unique sparsity pattern

corresponds to a unique row vector, and vice versa. Suppose that we randomly choose the first row

a′1 by choosing one of the N possible sparsity patterns uniformly at random. We can then view the

sparsity pattern recovery problem as a channel coding problem. The randomly selected sparsity

pattern θ ∈ {1, . . . ,N} is encoded, using a sequence of s experimental decisions X ∈ Rn×s, into

codewords r = a′1X = (r1, r2, . . . , rs) ∈ Rs. These codewords represent the uncorrupted percentage

change in demand for product 1 in each of the s experiments. The codewords are sent over a

Gaussian channel subject to noise w = (w1,w2, . . . ,ws) ∼ N (0, c2I) ∈ Rs and received as noisy

measurements y = r + w = (y1, y2, . . . , ys) ∈ Rs, which are equal to the observed noisy percentage

change in demand, ∆q1. The goal is to recover the pattern θ from the measurements y.

The power of a Gaussian channel is given by P = 1
s

∑s

t=1 r
2
t . Since a′1 is k-sparse and any decision

x is bounded in [−1, ρ̃], we have that |rt| ≤ kλρ̃ for all t, and hence P ≤ k2λ2ρ̃2. From standard

results (Cover and Thomas 1991), the capacity of a Gaussian channel with power P and noise

variance c2 is 1
2

log
(
1 + P

c2

)
. Therefore, the capacity of our particular channel is

C ≤ 1

2
log

(
1 +

k2λ2ρ̃2

c2

)
.

From Fano’s inequality (Cover and Thomas 1991), we know that the probability of error, Pe, of

a decoder that decodes the sparsity pattern θ from noisy measurements y ∈ Rs is lower bounded

as

Pe ≥
H(θ | y)− 1

logN

=
H(θ)− I(θ;y)− 1

logN

=
logN − I(θ;y)− 1

logN

= 1− I(θ;y) + 1

logN
,

where H denotes entropy and I denotes mutual information. The first equality is by the definition

of mutual information, and the second equality follows from the fact that θ is chosen uniformly

over a set of cardinality N . We can upper bound the mutual information between θ and y as

I(θ;y) ≤ I(r;y) (EC.6)

= h(y)−h(y | r)

= h(y)−h(w)
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≤
s∑
t=1

h(yt)−
s∑
t=1

h(wt) (EC.7)

=
s∑
t=1

[h(yt)−h(yt | rt)]

=
s∑
t=1

I(rt;yt)

≤ sC, (EC.8)

where h denotes differential entropy, (EC.6) follows from the data processing inequality, (EC.7)

follows from the independence of the wt’s and the fact that the entropy of a collection of random

variables {yt} is no more than the sum of their individual entropies, and (EC.8) follows from the

definition of channel capacity as the maximal mutual information. And so by Fano’s inequality,

the probability of error is lower bounded by

Pe ≥ 1− sC + 1

logN
,

which immediately gives the following upper bound on the probability of Rconst
1 :

P(Rconst
1 ) = 1−Pe ≤

sC + 1

logN
.

Therefore, achieving the looser specification of uniform ε-accurate estimates of the first row of

a random A ∈ Aconst
n,k (λ) with probability 1− δ implies the following condition on the number of

experiments, s:

1− δ≤ sC + 1

logN
=⇒ s≥ (1− δ) logN − 1

C
.

Consequently, achieving the stricter original specification of an estimator that for all A matrices

in An,k(λ) achieves uniformly ε-accurate estimates with probability 1− δ also requires the number

of experiments to satisfy the above condition.

With some simple rearrangement, and noting that logN = log
(
n
k

)
≥ k log(n/k) and δ ∈ (0,1/2),

we obtain the desired lower bound:

s≥ (1− δ) logN − 1

C
≥ 2(1− δ)k log(n/k)− 2

log(1 + k2λ2ρ̃2/c2)
≥ k log(n/k)− 2

log(1 + k2λ2ρ̃2/c2)
. �


