2046

TIEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Delay Stability of Back-Pressure Policies in the
Presence of Heavy-Tailed Traffic

Mihalis G. Markakis, Member, IEEE, Eytan Modiano, Fellow, [EEE, and John N. Tsitsiklis, Fellow, IEEE

Abstract—We study multihop networks with flow-scheduling
constraints, no constraints on simultaneous activation of dif-
ferent links, potentially multiple source—destination routes, and
a mix of heavy-tailed and light-tailed traffic. In this setting, we
analyze the delay performance of the widely studied class of
Back-Pressure scheduling policies, known for their throughput
optimality property, using as a performance criterion the notion
of delay stability, i.e., whether the expected end-to-end delay in
steady state is finite. Our analysis highlights the significance of
“bottleneck links,” i.e., links that are allowed to serve the source
queues of heavy-tailed flows. The main idea is that traffic that has
to pass through bottleneck links experiences large delays under
Back-Pressure. By means of simple examples, we provide insights
into how the network topology, the routing constraints, and the
link capacities may facilitate or hinder the ability of light-tailed
flows to avoid bottlenecks. Our delay-stability analysis is greatly
simplified by the use of fluid approximations, allowing us to derive
analytical results that would have been hard to obtain through
purely stochastic arguments. Finally, we show how to achieve the
best performance with respect to the delay stability criterion, by
using a parameterized version of the Back-Pressure policy.

Index Terms—Back-Pressure, delay stability, fluid approxima-
tions, heavy-tailed traffic, multihop networks.

[. INTRODUCTION

E STUDY scheduling problems arising in multihop

wireline networks with a mix of heavy-tailed (i.e.,
arrival processes with infinite variance) and light-tailed
traffic and, potentially, multiple source—destination routes
for each traffic flow. We analyze the delay performance of
the widely studied class of Back-Pressure policies, known
for their throughput optimality property. (More concretely,
we focus on a particular variant of Back-Pressure poli-
cies, known as “Max-Pressure.”) Classical results, e.g., the
Pollaczek—Khinchin formula, imply that heavy-tailed flows ex-
perience large delays, infinite in steady-state expectation. Thus,
we focus on the (policy-dependent) impact of heavy-tailed
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traffic on light-tailed flows, using as a performance criterion the
notion of delay stability, i.e., whether the expected end-to-end
delay of a traffic flow in steady state is finite.

The class of Back-Pressure policies was introduced in the
seminal work of Tassiulas and Ephremides [21], and since then
numerous studies have analyzed these policies in a variety of
settings; see [6] for an overview. A remarkable property of
Back-Pressure policies is their throughput optimality, i.e., their
ability to stabilize a queueing network whenever this is pos-
sible. Moreover, Back-Pressure policies have been combined
with congestion control in “cross-layer control” schemes that
are provably stabilizing and utility-optimizing, e.g., see [5]
and [18].

We are motivated to study networks with a mix of
heavy-tailed and light-tailed traffic by empirical evidence of
strong correlations and statistical similarity over different time
scales in real-world networks. This observation was first made
by Leland et al. [13] through analysis of Ethernet traffic traces.
Subsequent empirical studies have documented this phenom-
enon in other networks, while accompanying theoretical studies
have associated it with bursty/heavy-tailed arrivals.

The impact of heavy tails has been analyzed extensively
in relatively simple queueing systems, e.g., single- or mul-
tiserver queues; for an overview of existing results, see [1]
and the references therein. Moreover, as alluded to above,
there is vast literature on the performance of Back-Pressure
policies under light-tailed traffic. However, the delay anal-
ysis of Back-Pressure policies in networks with a mix of
heavy-tailed and light-tailed traffic has only recently attracted
attention. Jagannathan et al. [9] consider a system with two
parallel queues, receiving heavy-tailed and light-tailed traffic
while sharing a single server, and determine the queue-length
asymptotics under the Generalized Max-Weight policy. In
follow-up work, Jagannathan et al. [10] study the case of a
server with intermittent connectivity to the queues, and explore
the impact of connectivity on queue length asymptotics. In a
similar setting, Nair et al. [17] analyze the role of intraqueue
scheduling, i.e., the way that jobs are served within each queue,
on the response time asymptotics.

Closer to the present paper comes our earlier work [15],
which studies the delay stability of Max-Weight policies (the
single-hop equivalent of Back-Pressure) in networks with
a mix of heavy-tailed and light-tailed traffic. In single-hop
networks, the decision problem reduces to link-scheduling, i.e.,
which subset of communication links to activate at any given
time-slot. This determines directly which traffic flows are to
be served because in single-hop networks there is a one-to-one
correspondence between links and flows. However, in multihop
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networks, multiple flows may traverse the same communication
link. Thus, apart from link-scheduling, the decision problem
in multihop networks has an additional dimension, that of
flow-scheduling: given the links to be activated, which flow to
send through each of them. This can be interpreted as a joint
scheduling and routing decision. This added dimension makes it
very difficult to follow the stochastic dynamics of the systems,
thus requiring new methodology for delay analysis. In partic-
ular, in this paper we utilize fluid approximation techniques
that facilitate delay analysis without resorting to tracking the
stochastic dynamics. Moreover, since the link-scheduling part
of the problem has been analyzed extensively in [15] and [16],
here we consider a wireline multihop network model, where
only the flow-scheduling part remains relevant. Thus, in the
present paper we focus only on phenomena and insights that
originate from the multihop nature of the network.

The main contributions of the paper can be summarized as
follows.

1) Through simple examples, we provide insights into how
the network topology, the routing constraints, the arrival
rates, and the link capacities may affect the delay per-
formance of the Back-Pressure policy in the presence of
heavy-tailed traffic.

2) We illustrate the value of the fluid approximation
methodology, developed in the companion paper [16],
for the delay analysis of multihop networks with
heavy-tailed traffic. More specifically, fluid approxima-
tions simplify significantly the analysis and allow us to
obtain results that would have been hard to prove solely
through stochastic arguments.

3) We show how one can achieve optimal performance
with respect to the delay stability criterion by using a
parameterized version of the Back-Pressure policy, pro-
vided the parameters are chosen suitably.

The remainder of the paper is organized as follows.
Section II includes a detailed description of a multihop wireline
network, together with some useful definitions and lemmas. In
Section III, we present briefly the fluid model of this multihop
network and state two essential results, from the companion
paper [16], that associate fluid approximations to delay sta-
bility. In Section IV, we show through simple examples which
“system parameters” may affect the delay performance of the
Back-Pressure policy and in what way. Section V contains a
delay-stability analysis of the parameterized Back-Pressure-a
policy. We conclude with a discussion of our findings in
Sections VI and VII.

II. MULTIHOP WIRELINE NETWORK UNDER THE
BACK-PRESSURE POLICY

We start with a detailed description of the multihop switched
queueing network studied in this paper. Subsequently, we
present the Back-Pressure policy and we provide some useful
definitions and lemmas.

We denote by R, Z, and N the sets of nonnegative reals,
nonnegative integers, and positive integers, respectively. Also,
[#]" represents max{z, 0}, the nonnegative part of scalar z.
Finally, 1£ stands for the indicator variable of event .
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The network operates in discrete time-slots, which we index
by t € Z,. The topology of the network is captured by a di-
rected graph G = (N, L), where N is the set of nodes and £
is the set of directed links. Nodes represent the physical or vir-
tual locations where traffic is buffered before transmission, and
edges represent communication links, i.e., the means of trans-
mission. With few exceptions, we use variables ¢ and j to rep-
resent nodes, and (7, j) to denote a directed link from node i to
node j.

Central to our model is the notion of a traffic flow
f € F,where F={1,...,F}, F € N, which is a long-lived
stream of packets that arrives to the network according to a
discrete-time stochastic arrival process {Af(t); t € Z.}.
Each traffic flow f € F has a unique source node sy € N
where it enters the network, and a unique destination node
dy € N where it exits the network. The quantity A;(¢) can
be interpreted as the random number of packets that flow f
brings (exogenously) to sy at the end of time-slot . We use
A(t) to represent the vector (Af(¢); f = 1,...,F). In the
remainder of the paper, we use the terms “flow” and “traffic
flow” interchangeably, while we often use “traffic” to refer to a
specific collection of traffic flows. (To what collection we refer
will be clear from the context.)

We assume that all arrival processes take values in Z ;. and are
independent and identically distributed (IID) over time. Further-
more, different arrival processes are independent. We denote by
Ar = E[A[(0)] > 0 therate of traffic flow f and by A = (Ay; f
=1,..., F) the vector of the rates of all traffic flows.

Definition 1: (Heavy Tails): A nonnegative random variable
X is heavy-tailed if E[X?] is infinite, and is light-tailed oth-
erwise. Moreover, X is exponential-type (light-tailed) if there
exists § > ( such that E[exp(0X)] < oc.

An IID traffic flow is heavy-tailed/light-tailed/exponen-
tial-type if the distribution that underlies the corresponding
arrival process is heavy-tailed/light-tailed/exponential-type,
respectively. We note that there are several definitions of
heavy/light tails in the literature. In fact, a random variable
is often defined as light-tailed if it is exponential-type, and
heavy-tailed otherwise. Definition 1 has been used in the litera-
ture on data communication networks, e.g., see [19], due to its
close connection to long-range dependence.

For technical reasons, we assume the existence of some
€ (0,1) such that [E[A}J“A’(O)] < o0, forall f € F.

Each traffic flow f has a predetermined set of links £L; C L
that it is allowed to access. We assume that sy # d and that
there exists at least one directed path from s to dy within the
links in £ 7. If the set £ includes exactly one directed path from
source to destination, we say that flow f has fixed routing.

Node i belongs to set NV if there exists a directed path from
s to 4 that includes only links in £y. Thus, Ny C N is the set
of nodes that traffic flow f can access. Note that the source node
sy is trivially included in Ny, while the destination node dy is
included in Ny, due to our assumptions on L.

An additional assumption is that there are no “dead-ends,”
i.e., from every node in i € N there exists a directed path
within the links in £ that leads to dy.

Traffic flow f maintains a queue at every node i € Ny. We
refer to this queue as queue (f,7) and denote its length at the
beginning of time-slot ¢ € Z by Q¢ ;(t). We emphasize that
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queue (f,i) buffers only packets of flow f. The service dis-
cipline within each queue is “First Come, First Served.” We
use the shorthand notation Q(t) for the set of queue lengths
{Qy.i(t); i € Ny, f € F}. We also denote by F; the o-al-
gebra generated by Q(0), A(0),...,Q(t — 1), A(t — 1),Q(%),
which should be distinguished from the set of traffic flows F.

Traffic may arrive to queue (f,4) either exogenously, if 7 is
the source node s, or endogenously, through a link in £ ¢ whose
destination node is i. We refer to queue (f, sy) as the source
queue of traffic flow f. We denote by Sy ; ;(¢) the number of
packets that are scheduled for transmission from queue (7, )
through link (4, j) € Ly, at time-slot ¢. These packets serve as
(potential) departures from queue (f,¢) and arrivals to queue
(f,7), at time-slot t. We use the shorthand notation S(t) for
the set of scheduling decisions {Sy; ;(¢); (i,7) € Ly, [ €
F}, t € Z,. For simplicity, we assume that the capacity of all
links is equal to one packet per time-slot.

We assume that all links can transmit packets simultaneously,
and that all attempted transmissions are successful. Thus, our
queueing model is suitable for several wireline applications (al-
though not in the presence of “interference constraints” between
links, as for example in switches).

Each link can only serve one traffic flow at any given time-
slot, giving rise to flow-scheduling constraints. The set of de-
cisions regarding which flow is scheduled through each link
can be interpreted as joint scheduling and routing. A scheduling
vector S(t) is feasible if:

1) Sy (t)€{0,1}, forall (i,5) € Ly, f € F;
2) YrerSrag(t) <1, forall (i, ) € £;
3) Ej:(i,j)eﬁf Sti(t) < Qyi(t), foralli e Ny, feF.

A queue length-based policy is a sequence of mappings from
the history of queue lengths {Q(7); 7 = 0,. .., ¢} to scheduling
decisions S(t),t € Z. For much of the paper, we focus on a
particular stationary and Markovian queue-length-based policy,
the Back-Pressure policy: At each time-slot ¢, S(¢) is a feasible
scheduling vector that maximizes the aggregate Back-Pressure
in the network, i.e.,

Sy eargmax d > (Qrilt) = Q1) Sris(1)-
JEF (i,j)eLy
If the solution is not unique, then each of the maximizing sched-
uling vectors is chosen with equal probability.

We note that the above description, which is referred to as
Max-Pressure in [4], is slightly different from the original, and
most studied, version of Back-Pressure [21]. The original policy
is a greedy one, in the sense that it maximizes the “back-pres-
sure” on individual links, one at a time. It is not hard to see that
on certain occasions, namely when queues have few packets to
transmit but many outgoing links, the original Back-Pressure
policy may result in different scheduling decisions compared to
our version. However, in the regime of large queue lengths/de-
lays that we are interested in this paper, the two policies are
indistinguishable.

With slight abuse of notation, i.e., if we now let S(¢) represent
the final scheduling decisions made by the Back-Pressure policy
at time-slot ¢, the dynamics of the multihop switched queueing
network can be written in the following form:

Qpa;(t+1)=Qray(H)— Y Spapi(®)+ A1) (D

Ji(ss.d)ELy
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and
Qrat+1)=Qpi()— Y Sra;t)+ D Srsilt)
JiG)ELy Ji(geLly
forall i € Ny \ {sy,dy}. Finally, by convention 2)
Qfa;(t) =0  VfelF. 3

The initial queue lengths are arbitrary nonnegative integers.

Coming to the issue of delays, a batch of packets arriving to
the network at any given time-slot can be viewed as a single
entity, e.g., as a file that needs to be transmitted. We define the
end-to-end delay of a file of flow f to be the number of time-
slots that the file spends in the network, starting from the time-
slot right after it arrives at sy, until the time-slot that its last
packet reaches dy. For k € N, we denote by Dy (k) the end-
to-end delay of the k*” file of flow £, and use the vector notation
D(k) = (Dy(k)i f = 1,...,F).

Finally, the amount of traffic that can be stably supported by
the network is captured by the notion of stability region.

Definition 2: (Stability Region): An arrival rate vector
A = (A1,..., Ap) is in the stability region A of the multihop
switched queueing network described above if there exist
Crij = 0, f € F, i,j € N, such that the following set of
constraints is satisfied:

1) Flow Efficiency Constraints:

Cii =Cris; =Crdpi =0  VieN, VfeF.
2) Routing Constraints:
Crag =0 V(i,j) &Ly, VfeF.
3) Flow Conservation Constraints:
N CraitAr Limay = Crig  ViFdg, VfEF.

JEN JEN

4) Link Capacity Constraints:

Z Craq <1

feF

Y(i,j) € L.

The auxiliary ¢ variables via which we define the stability region
are often interpreted as “multicommodity flows,” e.g., see [6].

If an arrival rate vector A belongs to the stability region A,
then there exists a policy that stabilizes the network, in the sense
that the sequences {Q(t); t € Z, } and {D(k); k € N} con-
verge in distribution.! This can be shown by arguing similarly
to [6, Corollary 3.9] and by utilizing the independence assump-
tions that we made regarding the arrival processes, which imply
that the underlying Markov chain is aperiodic.

Lemma 1: (Throughput Optimality of Back-Pressure): The
multihop switched queueing network described above is stable
under the Back-Pressure policy, for all A € A.

Proof: In the case of light-tailed traffic, the result is well
known [21]; in the presence of heavy-tailed traffic, the result

1Qur definition of stability as positive recurrence of the underlying Markov
chain of the network (cf. the weaker notion of “rate stability”) is precisely the
reason that we assume strict inequalities for the link capacity constraints in the
definition of the stability region.
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follows from the findings of [4]. For a formal proof, the reader
is referred to [16]. u

All the networks that we analyze in this paper are under the
assumption of an arrival rate vector in the respective stability re-
gion. We denote by Q¢ ; the steady-state length of queue (£, %),
while we reserve Dy for the steady-state end-to-end delay of
traffic flow f. The dependence of these random variables on the
scheduling policy that is applied has been suppressed from the
notation, but will be clear from the context.

Definition 3: (Delay Stability): Traffic flow f is delay stable
under a specific policy if the network is stable under that policy
and E[Dy] is finite; otherwise, f is delay unstable.

Similarly, queue (f, ¢) is delay stable if E[Q ¢ ;] is finite, and
delay unstable otherwise. We note that the latter notion of delay
stability is related to the delay of packets, whereas the former to
the delay of files.

Theorem 1: (Delay Instability of Heavy Tails): Consider the
multihop switched queueing network described above under
any scheduling policy. The source queue of every heavy-tailed
flow is delay unstable. Consequently, every heavy-tailed flow
is delay unstable.

Proof: Consider the best case for the source queue of a
heavy-tailed flow, which is that it is served at each time-slot.
Then, this queue is a discrete-time M/G/1 queue with infi-
nite variance of service time (here, a customer is equivalent to
a file). The Pollaczek—Khinchin formula [20] implies that this
queue is delay unstable. Then, the BASTA property (e.g., see
[15, Theorem 5]) implies that the heavy-tailed flow is delay un-
stable as well. This argument can be formalized in exactly the
same way as in the proof of [15, Theorem 1]. [ |

Since there is little that can be done regarding the delay sta-
bility of heavy-tailed flows, we turn our attention to light-tailed
traffic. It is well known that in a multihop network with just
light-tailed traffic and under the Back-Pressure policy, all traffic
flows are delay stable [21]. However, the existence of flow-
scheduling constraints couples the evolution of different queues
and flows. In what follows, we show that this coupling may
cause light-tailed flows to become delay unstable, giving rise
to a form of propagation of delay instability.

III. DELAY STABILITY ANALYSIS VIA FLUID MODELS

Before we proceed to the findings of this study, we briefly
present the Fluid Model (FM) of the multihop network de-
scribed above. Fluid models of multihop networks with fixed
routing under the Back-Pressure policy have been employed
in previous works in order to show stability, e.g., see [3], [11],
[12], and [14]. The FM presented below is derived from that
in [4], which studies a stochastic processing network (SPN)
under the Max-Pressure policy. We note that the SPN in [4] is
a quite general model that includes our multihop network as a
special case, and which allows for multiple source—destination
paths, as well as a variety of other capabilities beyond the
scope of switched networks. We also state two results, from the
companion paper [16], that relate fluid approximations to delay
stability. We will make frequent use of these results throughout
the paper since they simplify significantly our delay stability
analysis. An in-depth discussion about the derivation of the
FM equations and the justification of the fluid approximation
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(existence of fluid limit, existence and uniqueness of fluid
model solution) can be found in [16].

The FM of the multihop network of Section I under the Back-
Pressure policy is a deterministic dynamical system that aims
to capture the evolution of its stochastic counterpart on longer
timescales. Fix 7" € Ry. The FM is defined by the following
relations and differential equations, for every time ¢ € [0,7]
that the derivatives exist (such ¢ is often called a regular time):

drat)=— D SriiO+ D SpB)FArlmsyy
J:(i,4)eLs JGaELy
“4)
gs,i(t) >0 (5)
Sf’,'J(O):O and S'f’,'d'(t)ZO (6)
S st <1 (M
f:(5,5)ELy
3t qpilt) —qp () > 00 = > spt)=1 (8)
Fi@g)ely

laa®) ~api)< | max, {lara(t)-ars )] "))

— dpras() = 0. )

In the equations above, i # dy, gy, (t) represents the length
of queue (f,4) at time ¢ and s ; ;(f) represents the amount of
time that link (¢, j) € £ has been serving queue (f,#) up
to time ¢. Equations (8)—(9) are the fluid model equations for
the variant of Back-Pressure (Max-Pressure) that we use in this
paper.

Our convention regarding zero queue lengths in destination
nodes provides a final equation for the description of the FM

qf,ds (t) =0. (10)

Henceforth, we use the shorthand notation g(t) for the set of
queue lengths {q;(t); i € Ny, f € F}, and s(t) for the
set of scheduling decisions {s¢; ;(¢); (i,7) € Ly, f € F}.
A Lipschitz continuous function (g(-), s(-)) satisfying (4)—(10),
for all t € [0,T7, is called a Fluid Model Solution (FMS).

The following result illustrates how fluid models can be used
for proving delay instability in the presence of heavy-tailed
traffic.

Theorem 2 (Delay Instability via Fluid Models [16]): Con-
sider the multihop network of Section II under the Back-Pres-
sure policy, and its FM described above. Let h € F be a heavy-
tailed traffic flow, and g*(-) be the (necessarily unique) queue-
length part of an FMS from initial condition gj; . (0) = 1 and
zero for every other queue. If there exists 7 € [0, 7] such that
q3;(7) > 0, then queue (f, 1) # (h, sp) is delay unstable.

Proof (Outline): Suppose that there exists 7 € [0, T'] such
that g} ;(7) > 0. The results of [4] establish the existence of
a fluid limit and, consequently, of an FMS. This, together with
the uniqueness of the queue-length part of an FMS (which is es-
tablished in [16]) imply that after a big arrival to queue (h, s3),
queue (f, #) builds to the order of magnitude of the heavy-tailed
queue with high probability. In turn, renewal theory and Little’s
Law provide the desired delay instability result. For a formal
proof, the reader is referred to [16]. [ ]
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Finally, the result that follows is helpful in proving delay
stability in networks with a mix of heavy-tailed and exponen-
tial-type light-tailed traffic.

Theorem 3 (Delay Stability via Fluid Models [16]): Consider
the multihop switched queueing network of Section II under the
Back-Pressure policy and its FM described above. Consider also
a piecewise linear function V : Ri — R, of the form

Viz) = :
() =max § >, cisas
feF

where J = {1,...,J} is the set of indices of the dif-
ferent pieces of the function, and where ¢;; € R, for all
j€J, f€F. Suppose that there exists [ > 0 such that, for
every initial condition ¢(0) and regular time ¢ > 0, the FMS

satisfies V (¢q(t)) < —I, whenever V(g(t)) > 0. Then, there
exist a, ¢ > 0 and by € N such that

E[V(Q(t+b)) — V(Q(1) +b¢; V(Q(E) > ab| F] <0

for all b > by. This implies that the sequence {V(Q(¢)); ¢ €
Z,} converges in distribution to the random variable V(Q),
where @ is the limiting distribution of Q(¢).

Moreover, if ¢y > 0, for some j € J, only when f € F
is an exponential-type traffic flow, then there exists § > 0 such
that E[exp(6V(Q))] < .

Proof (Outline): The first part of the result is established
by showing that if a continuous and piecewise linear Lyapunov
function can be found for the FM, then the same function is a
Lyapunov function for the stochastic system. The second part
is established using results from [7] by showing that if this
Lyapunov function has exponential-type “upward-jumps,” then
its stationary version is also exponential-type, which, in turn,
leads to delay stability. For a formal proof, the reader is referred
to [16]. ]

IV. DELAY STABILITY ANALYSIS OF BACK-PRESSURE

We start by analyzing the performance of the Back-Pressure
policy with respect to the delay stability criterion. By means
of simple examples, we investigate the role of the network
topology, the routing constraints, and the arrival rates relative
to link capacities on the delay stability of queues and flows.
Our analysis highlights the importance of links that are allowed
to serve the source queues of heavy-tailed flows, which we call
bottleneck links. If h € F is a heavy-tailed traffic flow, the set
of bottleneck links associated with 4 is defined as follows:

By, = {(sn,1) : (sn,i) € Lp}.

To illustrate the importance of bottleneck links let us con-
sider the simple system of Fig. 1, which includes two traffic
flows, the heavy-tailed flow 1 and the light-tailed flow 2. Both
flows arrive exogenously at node 1, their packets get buffered
in the respective queues, eventually get transmitted through link
(1,0), and exit the network as soon as they reach node 0. Link
(1,0) is a bottleneck link since it is allowed to serve the source
queue of flow 1. It is not hard to see that this model is equiv-
alent to a single-server system of two parallel queues, where
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Node 1 Node 0

Fig. 1. Single-server system with two parallel queues, cast as a multihop net-
work. Traffic flow 1 is heavy-tailed, and traffic flow 2 is light-tailed. Since the
network has single-hop traffic, the Back-Pressure policy reduces to Max-Weight
scheduling. The findings of [15] imply that the light-tailed flow is delay unstable.

Fig. 2. Heavy-tailed flow 1 enters the network at node 1 and exits at node 0.
The light-tailed flow 2 enters the network at node 2, and passing through node 1,
it also exits the network at node 0. Traffic flow 2 is delay unstable under the
Back-Pressure policy because it has to pass through the bottleneck link (1, 0).

the Back-Pressure policy reduces to Max-Weight scheduling.
Theorem 2 of [15] implies that the light-tailed flow 2 is delay
unstable. The main idea behind this result is that queue (1,1)
is occasionally very long due to the heavy-tailed arrivals that
it receives exogenously. During those time periods, flow 1 has
very large differential backlog over link (1,0), which implies
that under the Back-Pressure policy, queue (2, 1) is deprived of
service until it builds up a comparable backlog.

In general, light-tailed flows experience large delays when-
ever they have to traverse bottleneck links. Consequently, the
delay performance of Back-Pressure depends crucially on the
ability of light-tailed flows to avoid bottlenecks, in static or dy-
namic ways. This ability is dictated by a number of “system pa-
rameters,” as we show in the following.

A. Role of Network Topology

We start by illustrating the role of network topology in the
delay stability of light-tailed flows. Consider the “line” network
depicted in Fig. 2. The heavy-tailed flow 1 arrives exogenously
at node 1, eventually gets transmitted through link (1,0), and
exits the network as soon as it reaches node 0. The light-tailed
flow 2 arrives exogenously at node 2, eventually gets trans-
mitted through link (2, 1) first, and through link (1, 0) next, and
exits the network when it reaches node 0. We are interested in
the delay stability of flow 2 under the Back-Pressure policy.

Proposition 1: Consider the network of Fig. 2 under the
Back-Pressure policy. Traffic flow 2 is delay unstable.

Proof: Thisresultis aspecial case of Theorem 4, which fol-
lows shortly. Here, we sketch the proof for the network topology
of Fig. 2. The main idea behind it is that queue (2, 1) becomes
very long, occasionally, because it competes with the heavy-
tailed queue (1, 1) for link (1, 0). During those occasions, there
are no transmissions from queue (2, 2) to queue (2, 1) under the
Back-Pressure policy, unless queue (2, 2) builds up to the order
of magnitude of the heavy-tailed queue. This leads to the delay
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Fig.3. Boththe heavy-tailed flow 1 and the light-tailed flow 2 enter the network
at node 1 and exit at node 0. They are both allowed to access all links of the
network. Traffic flow 2 is delay unstable under the Back-Pressure policy because
it has to pass through, either link (1, 2) or link (1, 3), which are both bottleneck
links.

instability of both queues (2,1) and (2,2), and as a result of
flow 2 as well. ]

The reason that traffic flow 2 is delay unstable is the topology
of the network, and more specifically the fact that the only
source—destination path of flow 2 includes a bottleneck link.
We will see shortly that this condition leads to delay instability
more generally.

B. Role of Routing Constraints

We continue with the role of routing constraints. Consider
the network of Fig. 3: The heavy-tailed flow 1 arrives exoge-
nously at node 1, and may reach its destination node 0 through
the path ((1,2), (2,0)) or through the path ({1, 3), (3,0)). The
same applies to the light-tailed flow 2. In other words, both flows
have dynamic routing. We are interested in the delay stability of
flow 2 under the Back-Pressure policy.

Proposition 2: Consider the network of Fig. 3 under the
Back-Pressure policy. Traffic flow 2 is delay unstable.

Proof: This result is another special case of Theorem 4,
so here we only sketch the proof for the network topology of
Fig. 3. The main idea behind it is that whenever the heavy-tailed
queue (1, 1) receives exogenously a very large batch of packets,
it creates simultaneously a very large differential backlog over
links (1,2) and (1, 3). Thus, under the Back-Pressure policy
queue (2, 1) will be denied access to both of those links, unless
it builds up to a similar length. ]

The reason that traffic flow 2 is delay unstable in Fig. 3 lies in
the routing constraints of the heavy-tailed flow 1, or, more ac-
curately, the lack of constraints. By not restricting the links that
flow 1 is allowed to access, both links (1,2) and (1, 3) become
bottleneck links. In turn, all feasible source—destination paths of
flow 2 pass through bottleneck links.

Similar conclusions can be reached if we force both flows 1
and 2 to follow the same fixed route to their destination node.
The insights derived from the simple examples of Figs. 1-3 can
be unified in a general result. We say that traffic flow f € F has
to pass through a set of links L' C L, if every packet arriving
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at queue (f, s¢) must traverse one of the links in L' in order to
reach dy.

Clearly, whether a traffic flow has to pass through a given
set of links or not depends on the network topology, the routing
constraints, and the routing policy applied.

Theorem 4: Consider the multihop switched queueing net-
work of Section II under the Back-Pressure policy. Let f € F
be a light-tailed traffic flow. If there exists a heavy-tailed flow
h € F such that f has to pass through the set of bottleneck links
B, then f is delay unstable.

Proof: The proof of this result is based on Theorem 2, i.e.,
we study the evolution of the fluid model of the network from
initial condition g, s, (0) = 1 and zero for all other queues.

At time zero, the differential backlog of flow & over every
link in /3, is 1, while the differential backlog of flow f over any
of those links is zero. Moreover, the differential backlog of flow
h can decrease at a rate no more than 2|8} (since the capacity
of all links is equal to one), while the differential backlog of
flow f can increase at rate no more than A ¢. Hence, there exists
7 > 0 such that

an,i(t) = an,i(t) > qri(t) — gz, ()

for all ¢ € [0,7], for all (§,j) € B,,. Equation (7) implies
that flow f receives none of the available capacity of links in
By, during [0, 7] under the Back-Pressure policy. Therefore, the
traffic of flow f that arrives exogenously at queue (f, s#) cannot
move past queue (f, sp) during the interval [0, 7].

Now it is useful to view the total traffic of flow f between
the source node s and the bottleneck node s, (the source node
of flow h) as one fictitious queue, whose length at time ¢ is de-
noted by §¢(¢). The argument above implies that this queue has
arrivals at rate Ay > 0 and no departures during the interval
[0, 7]. Hence, §¢(7) = Ay7 > 0, so according to Theorem 2 the
fictitious queue is delay unstable. This also implies the delay
instability of flow f since the delay experienced in the ficti-
tious queue bounds from below the end-to-end delay, sample
path-wise. [ |

C. Role of Link Capacities

In this section, we illustrate the impact of link capacities, rel-
ative to the arrival rates, on the delay stability of light-tailed
flows. Let us consider a variation of the network of Fig. 3, where
the heavy-tailed flow 1 has to reach node 0 through the path
((1,2),(2,0)), whereas the light-tailed flow 2 can access all
links.

Let us first look at the case where A1, A2 < 1. The impor-
tance of this assumption lies in the fact that, with high proba-
bility, it allows flow 2 to route all its traffic through the path
((1,3),(3,0)) whenever the path of the heavy-tailed flow is
congested.

Proposition 3: Consider the network of Fig. 3 under the
Back-Pressure policy, where flow 1 has fixed routing, along
the path ((1,2), (2,0)), and flow 2 has dynamic routing. If the
arrival rates satisfy A, A2 < 1, then traffic flow 2 is delay
stable.

Proof: Without loss of generality, we assume that all
queues are empty at time-slot zero. First, notice that no more
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than one packet per time-slot arrives at nodes 2 and 3 because
that is the capacity of links (1,2) and (1,3). Moreover, traffic
departs from each of these nodes at rate of one packet per
time-slot, as long as there are packets waiting for transmission.
This is due to the fact that both flows exit the network at node 0,
so whenever packets are available, there is positive differential
backlog over links (2, 0) and (3, 0). Therefore, it can be easily
verified that

Q2.:(t) <1 Yt ey, Vi €4{2,3}.
Furthermore, Lemma 1 implies that the queue-length pro-
cesses {Q22(1); t € Z4 } and {Q23(t); t € Z} converge to
some limiting distributions Q2 » and )2 3, respectively. Hence

E[@;] <1  Vie{2,3}.

Little’s Law implies that both queues (2,2) and (2, 3) are
delay stable. In order to show that flow 2 is delay stable, it suf-
fices to show that queue (2, 1) is delay stable as well.

Link (1, 3) is allowed to transmit only packets of flow 2, and,
as we showed above, the length of queue (2, 3) is never more
than one packet. Hence, under the Back-Pressure policy

Qg_l(t) >1 — 527173(75) =1, YVt € Z+.
Consider the candidate Lyapunov function V() = Q3 (%).
Through simple algebra, it can be verified that

EV(E+1) = V() V(E) > 1] F
—Q[E[(Sz 12(1)+52,1,3(t) = A2(2)) Q2,1 (1); V() > 1 | i

2
E[(A2(2) +2)% V(1) > 1| F
< 2[E[(52,1,3(t) — A2(1))Q2,1(t);
+E[(42(t) +2)% V() > 1| F]
= (—2(1 = A2)@Q2.1(¢) + E[(A2(0) + 2

(We recall that F; is the o-algebra generated by
Q(0), A(0),..., Q(t — 1), A(t - 1),Q(1).)

Notice that \s < 1, E[A3(0)] < oo, and {Q2:1(t) < 1}
is a finite set. Then, the Foster—Lyapunov stability criterion
and moment bound (e.g., see [8, Corollary 2.1.5]) implies that
[E[Qg,l] < ©o0. Thus, all queues of flow 2 are delay stable,
implying that traffic flow 2 is delay stable. ]

Now let us consider the case where Az > 1. It is intuitively
clear that irrespective of the specific routing decisions made at
each time-slot, a nonvanishing fraction of the traffic of flow 2
has to pass through the bottleneck link (1, 2). This fraction of the
traffic experiences large delays under the Back-Pressure policy,
which implies that the delays of flow 2 are, on average, large as
well.

Proposition 4: Consider the network of Fig. 3 under the
Back-Pressure policy, where flow 1 has fixed routing, along the
path ((1,2),(2,0)), and flow 2 has dynamic routing. If Ay > 1,
then traffic flow 2 is delay unstable.

Proof: We will make use of Theorem 2, i.e., we will con-
sider the FM of the network of Fig. 3, with initial conditions
¢1,1(0) = 1 and zero for all other queues. Equation (7) implies
the existence of 7 > 0, such that 35 1 2(t) = 0 for all £ € [0, 7].
In turn, (4) and (6) imply that

V() > 1] F]

)2]) . 1{Q2,1(t)>1}‘

do1(t)=X2—-1>0 vt € [0, 7].
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Fig. 4. Heavy-tailed flow 1 enters the network at node 2 and exits at node 3.
The light-tailed flow 2 enters the network at node 1 and exits at node 3. The
light-tailed flow 3 enters the network at node 1 and exits at node 4. Traffic flow 3
is delay unstable under the Back-Pressure policy if its arrival rate is sufficiently
high.

Therefore, ¢2.1(7) > 0, which implies that queue (2, 1) is delay
unstable according to Theorem 2. Consequently, flow 2 is delay
unstable since its end-to-end delay is bounded from below by
the delay experienced in its source queue. [ |

D. Impact of Heavy Tails on Cross-Traffic

Consider the multihop network of Fig. 4, which includes three
traffic flows: the heavy-tailed flow 1 and the light-tailed flows 2
and 3. The source of flow 1 is node 2, whereas the source of
flows 2 and 3 is node 1. The destination of flows 1 and 2 is
node 3, whereas the destination of flow 3 is node 4.

Clearly, traffic flow 2 is delay unstable because it has to pass
through the bottleneck link (2, 3). Thus, the remaining question
concerns the delay stability of flow 3, which serves as cross-
traffic to flow 2. The following results establish that flow 3 has
a nontrivial delay stability region and provide a sharp charac-
terization of it.

Proposition 5: Consider the network of Fig. 4 under the
Back-Pressure policy. If A3 > (2 4+ Ay — 2)y)/3, then traffic
flow 3 is delay unstable.

Proof (Outline): The proof of this result is based on
Theorem 2, i.e., we study the evolution of the fluid model of the
network of Fig. 4, from initial condition ¢1 2(0) = 1 and zero
for all other queues. We show that there exists 7 > 0 such that
g3,1(7) > 0, which implies the delay instability of the source
queue of flow 3 and, thus, the delay instability of flow 3 itself.
A detailed proof can be found in Appendix I. [ |

Proposition 6: Consider the network of Fig. 4 under the
Back-Pressure policy. If A3 < (2 + A; — 2X;)/3 and flows 2
and 3 are exponential-type, then traffic flow 3 is delay stable.

Proof (Outline): The proof of this result relies on
Theorem 3, i.e., we show that the function

H(q(t)) = V(a(®)) + G(q(t))

where

V(g(t)) = max{[gs 1 () — gs.2(6)] ", [a2.1(t) — a22(2)] T}
=max{g31(t), [g2.1(t) — q2.2(t)] "}
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Fig. 5. Heavy-tailed flow 1 enters the network at node 1 and exits the network
after it gets transmitted from node 4. Flow 1 is allowed to access all links in the
network. Queues (1,2), (1, 3), and (1, 4) are delay unstable under the Back-
Pressure policy because the two alternative paths of flow 1 intersect.

and

G(q(t) =[a22(t) — q1,2(0)]"

is a Lyapunov function for the FM of the network of Fig. 4.
Note that this function is also continuous, piecewise linear, and
has exponential-type “upward-jumps” in the stochastic domain
because flows 2 and 3 are assumed to be exponential-type. Thus,
the steady-state length of queue (3, 1) is exponential-type and,
consequently, flow 3 is delay stable. A detailed proof can be
found in Appendix II. [ |

The above example illustrates that under the Back-Pressure
policy, heavy-tailed flows may affect light-tailed flows directly,
if the latter have to pass through bottleneck links, or indirectly,
if they serve as cross-traffic to other light-tailed flows that have
become delay unstable.

E. Role of Intersecting Paths

Finally, consider the network of Fig. 5: The heavy-tailed
flow 1 enters the network at node 1 and exits the network
as soon as it reaches node 5. Flow 1 is allowed to access all
links, so packets can get to node 4 either through the path
((1,2),(2,4)) or through the path ((1,3),(3,4)). After they
reach node 4, though, they have to pass through link (4,5) in
order to reach their destination. In that sense, the two paths of
flow 1 intersect.

Theorem 1 implies that queue (1,1) is delay unstable, but
provides no information regarding the other queues of flow 1,
namely queues (1,2), (1,3), and (1,4). Since all links have fi-
nite capacities, the endogenous arrivals to those queues are, by
definition, light-tailed. Hence, one might argue that these queues
are delay stable. Somewhat surprisingly, we show that these
queues are also delay unstable. This is due to the dynamics in-
duced by the Back-Pressure policy, and the fact that multiple
paths intersect. In particular, the queue at node 4 builds up,
and this effect propagates backwards to cause the buildup of
queues 2 and 3.

Proposition 7: Consider the network of Fig. 5 under the
Back-Pressure policy. All queues are delay unstable.
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Proof: Again, we make use of Theorem 2 to simplify the
proof of this result. More specifically, we consider the fluid
model of the network of Fig. 5 from initial condition ¢; 1 (0) = 1
and zero for all other queues. Since queues (1,2) and (1, 3)
cannot grow at rate higher than one (the capacity of the respec-
tive links), there exists 7 > 0 such that g1 1(¢) > ¢1.2(¢) and
q11(t) > g1.3(), forall ¢ € [0, 7]. Equations (6) and (7) imply
that

él‘lyz(t) = él‘lyg(t) =1 YVt € [O,T}.

On the other hand, $; 45(¢) = 1, forall ¢ € [0, 7], so it is
clear that on aggregate traffic is accumulating at rate one be-
tween queues (1,2), (1,3) and (1,4) during that interval. As
a consequence of (7), it follows that traffic does not flow from
node 2 (or 3) to 4 when the queue length at node 2 (or 3) exceeds
that of node 4. As a result, the three queues grow at the same
rate, i.e., §12(t) = ¢13(t) = ¢1.4(f) = 1/3, forall t € [0, 7].
Therefore, g1 2(7) = q1,3(7) = q1.4(7) = 7/3, so all three
queues are delay unstable according to Theorem 2. [ |

In contrast, if node 4 was the destination node of flow 1, then
it is easy to show that queues (1, 2) and (1, 3) would have been
delay stable. Thus, it is precisely the intersection of paths, com-
bined with the dynamics imposed by Back-Pressure, that causes
the delay instability.

Theorem 1 states that the traffic of heavy-tailed flows ex-
periences large end-to-end delays overall, and definitely at the
source queues. Whether these large delays are experienced only
at the source queues, or at several other queues as well, is not
as important from a practical standpoint. What is important,
though, is the case of intersecting paths in networks with mul-
tiple flows. There, the delay unstable queues that are created by
the intersecting paths may cause cross-traffic light-tailed flows
to be delay unstable, similarly to the network of Fig. 4. We con-
jecture that, again, the delay stability of cross-traffic flows de-
pends on the exact values of the arrival rates.

V. BACK-PRESSURE-«x POLICY

The results and discussion presented above suggest that the
Back-Pressure policy may perform poorly in the presence of
heavy-tailed traffic. The reason is that by treating heavy-tailed
and light-tailed flows “equally,” there are long stretches of time
during which the source queues of heavy-tailed flows dominate
the service. This creates bottleneck links, which, in turn, may af-
fect the delay stability of light-tailed flows directly or indirectly.

Intuitively, by discriminating against heavy-tailed flows, one
should be able to eliminate bottlenecks and improve the overall
performance of the network. One way to do this would be
by giving preemptive priority to light-tailed flows. However,
priority policies are undesirable because of fairness considera-
tions, and also because they can be unstable in many network
settings [10].

Motivated by the Max-Weight-a scheduling policy, studied
in [15] in the context of single-hop networks, here we consider
the Back-Pressure-a policy: Instead of comparing the differen-
tial backlogs of the various flows, we compare the differential
backlogs raised to different a-powers, smaller for heavy-tailed



2054

flows and larger for light-tailed flows. In that way, we give par-
tial priority to light-tailed flows.

More concretely, fix ay > 0, for every traffic flow [ € F.
Under the Back-Pressure-a policy, S(t) is a feasible scheduling
vector that maximizes the aggregate a-weighted Back-Pressure
in the network, i.e.,

S(t) e argmax 3 Y (Q;“_g (t) - Q% (t)) Spas(b).

FEF (i,5)eLy

If the solution is not unique, then each of the maximizing sched-
uling vectors is chosen with equal probability.

Before we state our main result regarding the Back-Pres-
sure-¢¢ policy, we make an additional assumption: The set of
links that flow f is allowed to access, £, together with the as-
sociated nodes form a directed acyclic graph (DAG) in which
nodes sy and dy are the only source and sink nodes, respec-
tively. While most of the proof of Theorem 5 goes through
without it, the DAG assumption is required in the derivation of
(23), which helps translate the admissibility of the arrivals into
negative drift of the considered Lyapunov function.

Theorem 5: Consider the multihop switched queueing net-
work of Section II with the additional DAG assumption, under
the Back-Pressure-a policy. If E {Aj}f“(())] is finite, for all
f € F, then the network is stable and

Z Z E {Q;}fz} < 00.

fEF ieNy

Proof: See Appendix III. [ |
Corollary 1: (Delay Stability Under Back-Pressure-ov):
Consider the multihop network of Section II with the additional
DAG assumption, under the Back-Pressure-a policy. If the
a-parameters of all light-tailed flows are equal to one, and the
a-parameters of heavy-tailed flows are sufficiently small, then
all light-tailed flows are delay stable.

Proof: We recall our standing assumption that all traffic
flows have (1 + v) moments, for some «y > 0. If the a-parame-
ters of all light-tailed flows are equal to one, and the a-param-
eters of heavy-tailed flows are less then -y, then Theorem 5 and
Little’s Law imply that every queue of every light-tailed flow
is delay stable. The linearity of expectations implies the delay
stability of all light-tailed flows. [ |

Combining Corollary 1 with Theorem 1, we conclude that the
Back-Pressure-a policy achieves the best possible performance
with respect to the delay stability criterion, provided the a-pa-
rameters are suitably chosen.

A special case of the Back-Pressure-a policy has been con-
sidered by Bui et al. [2], where all a-parameters take the same
value. We note that their setting includes just light-tailed traffic
and, additionally, the existence of congestion controllers. Thus,
the insight that smaller parameter values should be used for
heavy-tailed flows, so that light-tailed flows are given some
form of priority, does not arise in their setting.

VI. RELATIONSHIP TO PRIOR WORK

The present paper naturally builds upon and extends pre-
vious works that have analyzed single-hop networks with
heavy-tailed traffic under Max-Weight-type policies [9], [15].
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As a consequence, certain similarities with existing literature
can be found at the technical level, e.g., sample path argu-
ments are used to prove delay instability under Max-Weight
and Back-Pressure; drift analysis of a-weighted Lyapunov
functions is used to prove delay stability under Max-Weight-a
and Back-Pressure-a. Moreover, some parallels can be drawn
in terms of high-level insights, e.g., a light-tailed flow passing
through a bottleneck link resembles, to some extent, the no-
tion of conflict between heavy-tailed and light-tailed flows,
cf. [15, Theorem 2]; the fact that light-tailed flows must be
given some form of priority over heavy-tailed traffic is the
main reason that both the Back-Pressure-a policy and the
Max-Weight-a policy perform well. However, the concrete
insights that we derived regarding the impact of network
topology, routing constraints, and link capacities on the delay
performance of Back-Pressure policies, and the corresponding
“network design guidelines,” are meaningful only in a multihop
setting and, thus, novel compared to prior work on single-hop
networks.

In terms of methodology, by employing the advanced ma-
chinery of fluid approximations for delay stability analysis
developed in the companion paper [16], we are able to ob-
tain results that would have been difficult to prove through
the direct stochastic analysis adopted in prior works, e.g.,
Propositions 5 and 6. Moreover, the drift analysis of piecewise
linear Lyapunov functions, such as the one we introduce in the
proof of Proposition 6, provides a systematic way for the delay
analysis of the Back-Pressure policy in networks with a mix of
heavy-tailed and exponential-type traffic.

In this work, we have attempted to illustrate the behavior of
multihop networks with heavy-tailed traffic under Back-Pres-
sure policies in the clearest and most concrete way. Thus, we
focused on phenomena and insights whose origin is precisely
the multihop nature of the network and the corresponding
flow-scheduling constraints. We believe the behavior of
more complex network models that include a combination
of flow-scheduling and link-scheduling constraints, can be
understood in terms of the insights derived here as well as
in previous papers. For example, [15, Theorem 2] implies
that if a link conflicts with a bottleneck link, then it becomes
a bottleneck link itself. As another example, we expect that
the Back-Pressure-a: policy performs well even in multihop
networks with link-scheduling constraints, at least for arrival
rates that can be stably supported by these networks.

VII. CONCLUSION

The main objective of this paper was to obtain insights on
the delay performance of multihop networks with heavy-tailed
traffic under the widely studied class of Back-Pressure poli-
cies. Our analysis highlighted the significance of “bottleneck
links,” i.e., links that are allowed to serve the source queues
of heavy-tailed traffic flows. The fundamental insight was that
traffic flows that have to pass through bottleneck links expe-
rience large delays under Back-Pressure. We then investigated
reasons that may force a light-tailed flow to pass through a bot-
tleneck link, identifying the following: 1) the network topology,
i.e., the source—destination paths that the network offers to the
given flow; 2) the routing constraints, i.e., the a priori decisions
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regarding which links the particular flow is allowed to traverse;
3) the link capacities relative to the arrival rates, i.e., whether the
combined capacity of nonbottleneck paths is sufficient to sup-
port the arrival rate of the flow.

These insights can be interpreted as rough “network design
guidelines.” For example, in a multihop network under the
Back-Pressure policy, heavy-tailed flows should be relatively
constrained in terms of the links that they are allowed to access,
whereas the network should provide multiple source—des-
tination paths to light-tailed flows; the latter flows should
be left unconstrained to dynamically find their way around
heavy-tailed traffic. Moreover, these alternate paths should
have enough capacity to support the rates of light-tailed traffic.
In contrast, leaving heavy-tailed flows unconstrained while
forcing light-tailed flows to compete with them could be detri-
mental to the overall delay performance of the network.

An alternative way to achieve good delay performance in a
multihop network with heavy-tailed traffic is through the param-
eterized Back-Pressure-a policy. We showed that this policy
can delay stabilize all light-tailed flows in the network, provided
that its a-parameters are chosen suitably. In order to pick ap-
propriate parameter values, though, some knowledge of higher
order moments of the different traffic flows is required.

The results of this paper were consistently presented in
terms of delay stability, a rather crude performance metric
that attempts to capture the notion of large delays in a binary
manner. However, many of them can be significantly refined.
For instance, if we generalize the notion of a heavy-tailed
flow to be one that has infinite (k¥ 4+ 1)st moment of arrivals,
for some k € N, then any light-tailed flow that has to pass
through the bottleneck links of a heavy-tailed flow has infinite
kth moment of steady-state aggregate queue length under
the Back-Pressure policy; this can be established through a
straightforward extension of Theorem 2. Under certain regu-
larity assumptions, this approach could also give lower bounds
on queue length asymptotics. Moreover, regarding networks
with a mix of heavy-tailed and exponential-type traffic, delay
stability can be proved via drift analysis of piecewise linear
Lyapunov functions. As Theorem 3 suggests, this type of
analysis guarantees not only the delay stability of light-tailed
flows, but also exponential upper bounds on the respective
steady-state queue-length asymptotics; see [7, Theorem 2.3].

Finally, while strictly speaking the existence of heavy-tailed
traffic, i.e., arrival processes with infinite variance, could be a
subject of debate, our results can be directly interpreted in the
context of a network with a mix of bursty and nonbursty traffic,
a setting that is prevalent in data communication networks.

APPENDIX I
PROOF OF PROPOSITION 5

The proof of this result is based on Theorem 2, i.e., we study
the evolution of the fluid model of the network of Fig. 4, from
initial condition ¢; 2(0) = 1 and zero for all other queues. We
distinguish between two phases in the evolution of the (fluid)
system.

In the first phase, the length of queue (1,2) is greater than
the length of queue (2,2) due to the initial conditions, so (7)
implies that the service capacity of link (2, 3) is allocated solely

2055

to flow 1. Moreover, link (2,4) transmits only traffic of flow 3,
which results in queue (3, 2) being always empty. Equation (7)
implies that Back-Pressure splits the service capacity of link
(1,2) in such a way so that the differential backlogs of flows 2
and 3 over that link remain the same, i.e., zero. Consequently,
queues (2, 1) and (2, 2) build up together and at a constant rate
throughout this phase. In mathematical terms, (4) implies that
¢1,2(t) < 0, whereas g2 2 = §21(t) > 0. Therefore, there exists
7' > 0 such that g1 2(7') = g2.2(7") = g21(7") > 0.

In the second phase, the differential backlog of flows 1 and 2
over link (2, 3) is the same, so (7) implies that this link serves
both flows simultaneously until one of the two queues empties.
Throughout this interval, the arrival and service rates need to
satisfy the following linear system:

(A2 —8212(t)) — (521,2(t) — $223(t)) = A3 — 83,1.2(F)

(11)

M — 31,23(t) = 3212(t)—52.2.3(F) (12)
521.2(8) +831,2(t) =1 (13)
51,23(t) + $223(t) =1. (14)

Equation (11) follows from (7) and is due to the fact that the
Back-Pressure policy tries to keep the differential backlogs of
flows 2 and 3 over link (1, 2) the same. We note that queue (3, 2)
remains zero throughout both phases, so that the rate of change
of its length is also zero. Equation (12) follows from a similar
argument for link (2, 3). Equations (13) and (14) result from (6).

The above equations and some simple algebra imply that

R 24+ X2 —2X 2+ 23
537172(t) = 5 .

Therefore
A3 > égvl‘z(t) < A3 > M

Finally, notice that the duration of the second phase is
bounded away from zero since the queue lengths gy 2(7')
and g 2(7") are also bounded away from zero. Therefore, if
As > (24 A1 — 2)2) /3, then there exists 7 > 7' such that
gs1(t) > 0, for all ¢ € [7,7], because of (4). Therefore,
g3,1(7) > 0, which implies that queue (3, 1) is delay unstable
according to Theorem 2. Flow 3 is, thus, delay unstable since
the delay experienced in the source queue bounds from below
the end-to-end delay.

APPENDIX II
PROOF OF PROPOSITION 6

Consider the candidate Lyapunov function for the FM
H (q(t)) =V (q(t)) + G (4(t))
where G (g(t)) = [2.2(t) — 1,2(2)]  and
V(a(t) = max {[a5,1(t) ~ @52 (0] 21 () — @22(0)] " }
= max {g5.1(8), la2.1(0) — a22(8))" }

Note that this function is continuous, piecewise linear, and
has exponential-type “upward-jumps” in the stochastic domain,
because flows 2 and 3 are assumed to be exponential-type. Thus,
by means of Theorem 3, it suffices to show that H () is, indeed,
a Lyapunov function for the FM.
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Our proof strategy is as follows. First, we distinguish cases
regarding the derivatives of the two terms of H(-): cases (a),
(b), and (c) pertaining to term V'(-), cases (1), (2), and (3) per-
taining to term G(-). Then, we combine these cases to compute
the derivative of H(-) in the different regions of the state space.

Case (a) If (]371(t) > [Q2,1(t) — g2, (t)rr, then V (q(t)) =
g3,1(t) > 0, which implies that

V() =Xx3—-1<0.
Case (b): 1f q31(t) < [g2,1(t) — Q2,2(t)}+,
g21(t) — ¢2.2(¢) > 0, which implies that
V(g(t)=(a—1)— (1 — $223(t)) = Az + $2.2,3(t) — 2 < 0.
Case (C) If qgl(t) = [qu(t) — QQ72(1€)]+, then V' (q(t)) e
g3,1(t) = g2,1(t) — g2,2(¢), which implies that
v (q(t)) = A3 — 331,2(t)
= (A2 = 8212(1) —
where the service rates satisfy (11).

Case (I) If q2_2(t) > qu(t), then G (q(t)) = q272(t) _
¢1,2(t) > 0, which implies that

G (q(t)) = $2.12(t) — 1 — X < 0.
Case (2): 1f g3.5(t) < g1.2(t), then G (¢(t)) = 0, and also

G (4t)) = 0.
Case (3): If g2 2(t) = q1 2(¢), then G (g(t)) = 0, but now

G(q(t) = (s21,2(F) = 52,2,3(8)) — (A1 — $1,23(8)) = 0
according to (12).

Now, in order to show that 77 (-) is a Lyapunov function for
the FM, we have to show that its derivative is negative and
bounded away from zero in all nine regions of the state space,
whenever H(-) is greater than zero. We note that the stability
conditions in this example translate to A; + Ay < 1 and Ay +
Az < 1.

Region (a,1):

Gt) =A3 —1+32120) — 1A =3 —
Region (a,2): G (g(t)) = As — 1 < 0;
Region (a,3): G (g(t)) = As — 1 < 0;
Region (b,1):

G(q(t)) = Ao + $223(t) — 2+ 3912(t) —1— X <0,

Region (b,2): G (qt)) = Ao+ $223(t) —2 <05

Region (b,3): G (q(t)) = Ay + S223(t) —2 < 0;

Region (c,1): G (q(t)) = Ny — A1 — 4212(2).

We note that in this region we have that g31(t) =
[g2,1(t) — go.2(t)]" > 0. Thus, 521 2(t) satisfies (11) and (13)

then V (q(t)) =

(32,1,2(t) — $2.25(1))

A1 —2<0.

with $323(¢) = 1. The solution to this linear system gives
521.2(t) = (2+ X2 — A3)/3, which implies that
. 2+ Xy — A
O P
230 20+ A
N 3
< 0.

Region (¢,2): G (q(t)) = A2 — 2821 2(t).
Here, we have to assume that g¢31(¢) =
[g2.1(t) — g22(8)]" > 0, otherwise H(-) would have

TIEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

zero value. Thus, $51(¢) satisfies (11) and (13) with

$223(t) = 0. The solution to this linear system gives
$21.2(t) = (1 + Az — A3)/3, which implies that

. 242X —2A —24 Ay +2X

G (qlt) = Ag — 2 2 + 3” 5 <o,

Region (¢,3): G (q(t)) = Ag — $3.12(¢).

Similarly to the previous case, we have to assume that
Q371(t) = [QQ71(t) —qlg(t)]—,— > (0, otherwise H() would
have zero value. Thus, §3.12(t) satisfies (11)~(14). The solu-
tion to this linear system, as we saw in Proposition 6, gives
331,2(t) = (24 A1 — 22 + 2)3)/5, which implies that

G (q(t) <0

precisely when Ag << (2 4+ Ay — 2)A3)/3.

APPENDIX III
PROOF OF THEOREM 5

Under the dynamics induced by the Back-Pressure-« policy,
the sequence {Q(t);¢t € Z} is a time-homogeneous, irre-
ducible, and aperiodic Markov chain on a countable state space.
We will show that this Markov chain is also positive recurrent,
and we will obtain moment bounds on the steady-state queue
lengths, through drift analysis of the candidate Lyapunov
function

=22 O]

fE]:lENf f+l

Throughout the proof, we use the shorthand notation
Tri(t)= > Spis(t)
Ji(Eg)eLy
for the departures from queue (f,4), and
Rps(t)= > Spii(t)+Ap(t) - Lmspy
Jigi)eLy

for the arrivals at queue (f, ¢), at time-slot .
Moreover, we let

Vie (@) = Q).

The Lyapunov function can be written in the form

)= > Vi (Q)

fEFieN;

which implies that
EV(QE+1) - V(QW®)|F]
=D D E[Vn@E+1) -
FEF ieNy
We will perform the drift analysis of function V'(-) by upper-
bounding the terms on the right-hand side of (15).

Using the notation above and the dynamics of the multihop
network, we have that

Vi Q)| 7] - (15)

(Qpit) + A1)
(16)

E (V7 (@ + 1) 7] = ——
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where Ay ;(t)
three cases:
1) if i = dy then (3) implies that

E [V, (Qt+1)) — (17)

2) if i # dy and oy < 1, then we consider the zeroth-order
Taylor expansion of the right-hand side of (16) around

Qri(t)
1 (Qr.i(t) + Af’i(-t))af+1

= Ry i(t)—TY%.:(t). Now we distinguish between

Vi, (Q) | Fi] = 0;

1
af +

QYT (1) + Apit) - €2

- ap+1
which implies that
E [V (QEt+ 1) |F] < V5 (Q() +E[Api(t) - €27 |F]

for some & € [Qy.i(t) — Tyi(t), Qr.i(t) + Ryi(t)].
Consider the event I'y ;(t) = {A; ;(¢) < 0} and its com-
plement. The expression above can be written in the form

E [Vi: (Q(t+ 1)) |F]
<vf,< (®)
FE[A7400 (@ralt) = Tra(0)* sT1a(0)| 7]

FE [Ag(1) (Qilt) + Rpa()™

Note that Q¢ ;(¢), Ry,:(t), and T ;(t) are nonnegative in-
tegers, Ty ;(t) < Qy,(t), and Tt ; (t) < dmax, Where dyax
is the maximum number of outgoing edges of any node in
G. It can be verified that

(Qri(®) + Rps(8)™ <Qpi(t) + Ryi(D)

L TS(1) ‘ ]—"t] .

and
(Qri(t) = Tra()™ > Qi (t) — dichc.
Using these inequalities, we can write

E[Vyi (Q(t+ 1)) |F]

<Vfi(Q())+[E[Afi \Fe] - Q55
|:Af,1 ) Ffz ‘ft]
+E[Agi(t) REL0:T.(0)| 7]

which implies that
E[Vy: (Qt+1)) |7
<Vii Q) +E[Afi()|F] -
+E [R5 0| R

QTL() + dit’

Since E {A;}fﬂ(o)] is finite and all arrivals processes

are mutually independent and IID over time-slots,
art+1 c

E [ng; (1T N(t)\ft]

finite constant cy ; such that

E [V (QEt+1)) -

is finite. Thus, there exists a

Vi (Q(t)) | 7]

<E[Api(0)|F]-QY(E) +epas (18)

2057

3) if i # dy and oy > 1, then we consider the first-order
Taylor expansion of the right-hand side of (16) around

Qr:(t)
7 (Qralt) + Agi(t) T

af +

_ as+1 ) «
= OO ALmeT -

which implies that
E [Vii (QU+ 1) |F] < Via (QU))+E [Afa(t)| 7] QF5(1)
+%[E [Afﬁi(t) cop - g0 ‘}}}

for some £ € [Qyi(t) — T,:(1), Qri(t) + Ry i(t)].
Since ay > 1, the last term can be bounded from above as
follows:

1 o
SE[A%(0) ap -7
1 . e
< E[AT. (00 (Q1u(0) + Rys)* !
It can be verified that

(@ralt) + Rpat)™ " <274 (o) + 7L )

and

A7)
2

.af.gaffl

7

7.

A1) < R3(1) + dpase
Using these inequalities, we can write
%{E[A%i(t) cap-¢27 F
<207 % ap- (E [R}(0|F] + d) Q517
12952 g ([E [R;‘j;“(t) ]-"t]
{R;g*l(t)‘ J—'t] )

Thus, for every ¢ ; > 0 there exists a constant ¢y ; (yfl) such
that

CE A% ap g0

+d?

max

! ft] <yrn Q750 +eri(yra)-

2
Consequently
E[Vyi (Qt+1)) = Vi (Q(1) | 7]
SE[Api®)F] - Qi) vypm - Q75 +erilyrs). (19

Equations (15) and (17)—(19) imply that, for every § > 0,
there exist constants ¢y ;(8), ¢ € Ny, f € F, such that

E[V(Qt+1)) - V(Q) |7

<-E[X Y ero

feEF ieNy
> Sniit) = Y Spalt) ft}
Gilid)ELs J(Gi)ELs
+3° 3 QYW E A1) i =55 | B
fEFiENS
+03° 3 Q5O+ D Y ) (20)
JEF ieN} FEF ieNy
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Now, for notational convenience, define the quantity
max () — (¢ ] .
f:.5)ELy [Qf’l( ) Qf’J( )

Through simple algebra, and using the fact that under our
policy S¢; ;(t) is set to 1 for some f that attains the maximum
in the definition of W; ;(¢), we have that

E[Y Y efie

fefié./\/f

Wi ;(t) =

S Spai® - Y. St

J:(G,5)eLy J:(G)eLy

—{22(

feF (i.j)eLly

7

- Qi) sf,i,ju)(ft}

> W) 1)
(i.d)eL
On the other hand
SN Q¥ E A i=sp [F] =Y MQ%, ().
fEFieNs fer
(22)

Let P; be the set of distinct source—destination paths of traffic
flow f € F. The fact that the arrival rate vector A is in the
stability region of the network implies the existence of constants

¢>0and (s, > 0, forp € Py, f € F, such that
> lpp  VfEF
PE'Pf

Crig= D, Crp o V§) €Ly, VfEF

pi(i,3)€P

and
Y Crig<l-e V(i) eL

fi@.d)eLy
Thus
DONQIL M) =D Y (R, 1)
feFr fEF peP;

SY Y Y (@30 - @)

feF pePy (i,5)ep

<D LW

JEF (1,5)eLs

S W)

(4,3)EL f:(1.5)ELy

< (l — E) Z I’Vi_j (t)

(4,5)€L

(23)

Equations (20)—(23) imply that

E[V(Q(+1) - V(Q®) |F]
< —e¢ Z Wi ;(t) +5Z Z Q?,j;(t)
(i,j)eL fEFiENT

+ Z Z Cfﬂ'((S)

fEF ieNs
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Finally, since Qy 4, (t) = 0, the sum of the a-weighted dif-
ferential backlogs along any (directed and acyclic) source—des-
tination path in £y upper-bounds the «y-power of each of the
queue lengths of flow f along that path. Hence, it can be veri-
fied that there exists a large enough ¢’ > ( such that

NN QW< Y Wiyt

FEF ieNy (i.d)ecL

If 4 is chosen sufficiently small, there exist constants v > 0
and 3 < oo such that

EV(Qt+1)-

D) |F <=7 Y Q7

feF ieNy

Then, the Foster—Lyapunov stability criterion and moment
bound (e.g., see [8, Corollary 2.1.5]) implies that the queueing

network is stable and that 3, 3, en, E [Q?ﬂ is finite.
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