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ABSTRACT

Given a Fredholm integral equation with a Toeplitz plus Hankel kernel,

we show that the solution may be described in terms of two coupled linear

partial differential equations. These equations generalize the Levinson

equations for the Toeplitz case and admit a fast numerical solution. We

also obtain partial differential equations for the resolvent of the kernel

and derive a representation of it. The study of Toeplitz plus Hankel

kernels is motivated by a sufficiently long list of applications.
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I. Introduction

The subject of this paper is the solution of the Fredholm integral

equation

f(t) + J K(t,s) f(s) ds = g(t) 0 < t, s < T (1.1)

0o

when K(t,s) is the sum of a Toeplitz and a Hankel kernel, i.e.

K(t,s) = Kl(t-s) + K2(t+s) 0 < t, s < T . (1.2)

The solution of equation (1.1) has many useful applications in such diverse

fields as scattering theory, fluid dynamics and linear filtering theory.

An extensive literature exists concerning the particular cases when K(t,s)

is a Toeplitz kernel (K(t,s) = Kl(t-s)) [9, 11, 15] or a Hankel kernel

(K(t,s) = K(t+s)) [2]. Results also exist for the case where K(t,s)

Kl(t-s) + Kl(t+s) [7, 12, 161 i.e. the Toeplitz and the Hankel kernel are

generated by the same function K1. To motivate the present paper, we proceed

by reviewing the range of applications and approaches related to our

work.

In the inverse scattering problem a wave is scattered by a potential

and the asymptotic phase of the wave, atx= -a and x = +co is measured, as a

function of the frequency of the wave [4, 5]. This determines a so called

scattering matrix or, differently said, the reflection and transmission

coefficients of the wave. The problem then consists of determining the

scattering potential from the knowledge of the scattering matrix. This

problem is equivalent to the inverse Sturm-Liouville problem [17] in which

one is asked to determine a second order differential operator from know-

ledge of the spectral distribution function of that operator. All known
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procedures start by transforming the scattering matrix coefficients from

the frequency domain to the time domain; a certain kernel is defined and

an integral equation is introduced. The solution of this integral

equation determines in a straightforward way the desired potential. In the

Gelfand-Levitan approach [41 the kernel K(t,s) turns out to be a Toeplitz

kernel whereas in the approach of Marchenko [1] it is a Hankel kernel.

Equation (1.1) also arises in linear filtering of stationary random

processes with observations on a bounded interval, In that case K is a

covariance (and in particular Toeplitz) kernel. Krein [13] has studied

this problem by introducing a string associated to the spectral distribution

of the kernel K, but this approach hasn't found its way to applications.

Levinson',s approach [15] reduces the problem to an appealing set of first

order partial differential equations. These equations admit a recursive

(as T increases) and '!fastt"' numerical solution-? and have been of particular

use in the field of fast signal processing [9].

If, in the above estimation problem, observations are obtained on an

interval [-T, T] symmetric around the origin and one is interested in

estimating symmetric functionals of the signal as well, we are led to

equation (1.1) with K(t,s) = K1(t-s) + K1 (t+s), where K1 is the covariance

kernel. The symmetry of the problem may be exploited to yield an elegant

solution. In [16] the solution is obtained by purely time domain mani-

pulations and a correspondence is established with the string formalism

of Krein [13] who solves it in a transformed domain by means of a symmetric

(cosine-like) and an antisymmetric (sine-like) transform.

A solution of the symmetric estimation problem may be also obtained

using the fact that solving (1.1) with K(t,s) = Kl(t-s) + Kl(t+s) is
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equivalent to solving (1.1) with K(t,s) = Kl(t-s), provided that T is

changed to 2T and the forcing function is appropriately modified [12].

This fact is, however, no more true when K1 and K2 are generated by a

different function. (This is the reason why the results of this paper

cannot be derived from already known results on Toeplitz or Hankel

kernels).

We should point out that this close similarity between inverse

scattering and estimation problems is not accidental, nor entirely formal.

In fact the inverse scattering problem for a quantum mechanical particle

of zero angular momentum scattered by a central potential is identical to

a linear estimation problem with anti-symmetric observations, as will be

made precise in a forthcoming paper.

Toeplitz plus Hankel kernels also appear in the study of a circular

punch penetrating a finitely thick elastic layer resting on a rigid founda-

tion [14], in the study of atmospheric scattering [3] and in rarefied gas

dynamics 17].

Equation (1.1) with K(t,s) = Kl ( tt -slj + K2 (t+s) has been investigated

1 -
in [7], under the assumption that Kl(s) l eS/Z w(z)dz and K (z) = e-s/z

w(z)r(z)dz, for some functions w, r. Our approach is, however, very different

and leads to a different numerical algorithm. Finally, Friedlander and

Morf have independently derived results in the same spirit as ours [6] in a

discrete framework, where operators are replaced by finite matrices.
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II. Solution for certain choices of the forcing function.

The solution of (1.1) may be obtained, for any g(t) from the know-

ledge of the resolvent kernel H of K defined by (I-H) (I+K) = I. In

that case, f is simply given by (I-H)g, However, in most applications it

is not necessary to evaluate H because the forcing function g(t) is

related to the kernel K and this may be successfully exploited, Such is

the case, in particular, in symmetric estimation problems and in the

integral equations arising from the inverse scattering problem. We

therefore start by investigating the particular cases where g(t) = K(0,t)

and g(t) = K(T,t).

We pause for a moment to introduce certain conditions that will be

assumed throughout this paper: (Al) .f(t) and K2(t) are twice continuously

differentiable over all R .

A 2 2
(A2) The operators I+K and I+K, mapping L [0,T] into itself (where K is an

integral operator with kernel K(t,s) = K (t-s) - K2(t+s) , O < s, t < T)

are invertible for all T > 0,

Assumption (Al) is rather restrictive and is far from being necessary

for the results to be derived. Krein's solution of estimation problems,

for example, is valid for any covariance kernel whose spectral distribution

function Wobeys f (l+w )dW(w) < - [13]. Our exposition, however is greatly
-CO

simplified with this smoothness assumption.

Assumption (A2) is guaranteed to be true in symmetric estimation problems

where both K and K turn out to be covariance kernels. It is also always true

for the Marchenko solution of the inverse scattering problem [2].

We investigate solutions of (1.1) as T increases. For this purpose,

we make the dependence of f(t) on T explicit by writing f(T,t).

Consider the equations
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rT

f(T,t) + T K(t,s) f(T,s)ds = K(t,O) (2.1)
Jo

T
g(T,t) + JK(t,s) g(T,s)ds = K(t,T) (2.2)

o

To (2.1) and (2.2), we associate the auxiliary equations

f(T,t) + | K(t,s) f (T,s)ds = K(t,>) (2.3)
Jo

IT
g(T,t) + { K(t,s) g (T,s)ds =(t,T) (2.4)

o

Equations (2.1) - (2.4) have a unique solution, by assumption (A2).

Moreover, their solutions are twice continuously differentiable, as a

consequence of (Al). Observe that

K (t,s) + DK (t,s) = 0 (2.5)

9K (t,s) + K (t,s) = 0 (26)

We differentiate equations (2.1) and (2.3) with respect to T, to obtain

fT (T,t) + K(t,T) f(T,T) + K(t,s) T (T,s) ds = 0 (2.7)

a~~T aT~~~T

(T, KtT) + K(t,s) - (T,s) ds = 0 . (2.8)

Then, by uniqueness of solutions of equations (2.2) and (2.4) we obtain

(T,t) = - f(T,T) g(T,t) (2.9)

D (T,t) = -f(T,T) g(T,t) (2.10)aT~~~~~~~~~~~~~~~~(.0
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We differentiate equation (2.2) with respect to T and equation (2.4)

with respect to t, to obtain

-g (T,t) K(t,T) Tg
(T,t) + K(_t,T) g(T,T) + K(t,s) ay (T,s) ds = -- (t,T) (2.11)

DT DT '

+ (t,s) g(T,s) ds = (t, T) (2.12)

The integral in equation (2.12) is equal (using (2.6) and integration by

parts) to

T

K(ts) s g(Ts)ds + K(t,O) g(T,O) - K(t,T) g(T,T) . (2.13)

We now add (2.11), (2.12), using (2.13) and using (2.6) to cancel the

right hand side. Then by uniqueness of solutions of equations (2.1), (2.2)

we obtain

(T,t) + (T,t) = - (g(T,T) - g(T,T)) g(T,t) - f(T,t) g(t,0) . (2.14)

By a symmetrical argument, we obtain

3g (T,t) + T (T,T) - g(T,T) (T,t) (T,t) g(T,,O) .(2.15)
Dt ( T

The differential equations (2.9), (2.10), (2.14), (2.15) together with

initial conditions that can be obtained directly from the integral equations

(2.1) - (2.4) provide a solution to our problem and lead to a natural and

efficient numerical procedure to be discussed in the next section.
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Let us now consider a few particular cases.

A) K2(t) - O. In that case K - , f - f, g g. Equations (2.10) and

(2.15) are replicas of (2.9) and (2.14) which in turn coincide with the

well-known Krein-Levinson equations of linear filtering [9].

B) K (-t) - Kl(t) - K2(t). Here, R(t,) -- K(O,t) - 0 and by uniqueness

of solutions to (2.3), we obtain f(T,t) - 0. Moreover, letting t = O in

equation (2.5) we obtain g(T,O) = 0. Then, equations (2.14) and (2.15)

become

+ - q(T) g(T,t)
DT at

St +T = q(T) a(T,t)
3t 3T

with q(T) = g(T,T) - 4(T,T) which are the equations that were derived in

116] for the symmetric estimation problem.



-10-

III. Numerical Solution

A straightforward procedure for the numerical solution of equation

(2.1) is by discretizing the interval [0, T] to a set of points O,A,...,NA,

where NA = T. We then obtain from (2.1) a system of N + 1 linear algebraic

equations to be solved. Although this procedure is very simple, it is

rather inefficient since it requires O(N3 ) operations. Moveover, in

signal processing and other applications one is often interested in a

recursive solution as T increases., Such a solution is provided, for

example, by the Levinson algorithm [8' for the inversion of Toeplitz

matrices, which is the discrete time analog of the inversion of a Toeplitz

operator I + Kl(t-s). We now suggest a similar procedure for the problem

of the last section.

We start by discretizing all functions involved. In particular,

fixx some A > 0, let G(m, n) = g(mA, nA) and define similarly G, F, F.

Suppose that the values of G, G, F, F have been obtained for m = 0,1,...,M

and m = 0,l,...,M. We discretize equations (2.14), (2.15) and obtain,

for n = 0,1,,..,M-11

G(M+l,n) = G(M,n) + G(M,n) - G(M,n+l) -

(G(M,M) - G(M,M)) G(M,n)- F(M,n) G(M,O)

G(M+W,n) = G(M,n) + G(M,n) - G(M,n+l) 1 by discretizing equations

(G(M,M) - G(M,M)) G(M,n) - F(M,n) G(M,O) .

We may then compute G and G for n = M and n = M+1 by discretizing equations



(2.2) and (2.4):

M+l

G(M+l,n) + *Z K(nA,iA) G(M+l,i) = K(nA, (M+1)A), n=M, M+l
1=0

and similarly for G. We finally update F and F by

F(M+l,n) = F(M,n) - F(M,M) G(M,n) n = 0,1,...,M

F(M+l,n) = F(M+l,n) - F(M,M) G(M,n) n = 0,1,...,M

and obtain the boundary values F(M+l, M+1) and F(M+l, M+l) by discretizing

equations (2.1) and (2.3) and letting T = t = (M+L)A.

It is not hard to see that the number of operations needed to update

A A

F, F, G, G when M is increased by one is of the order of M. Therefore

our recursive scheme requires only 0(M2 ) operations which is a significant

improvement over the simple procedure discussed at the beginning of this

section.
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IV. Generalization of the Sobolev Identity and Representation of

the Resolvent.

In this section we consider the resolvents of K and K and obtain

a generalization of the Sobolev identity, originally derived for the

resolvent of a Toeplitz kernel [9]. We then integrate that identity

appropriately to obtain a representation of the resolvent as a sum of

products of operators.

A A

The resolvents H and H of K and K are, respectively, the solutions

of the integral equations

H(t,s; T) + K(t,u) H(u,s; T) du = K(t,s) (4.1)

H(t,s; T) + JK(t,u) H(u,s; T) du = k(t,s) . (4.2)

Differentiating (4.1) and (4.2) with respect to t and s, respectively,

we have

DH TK
(t,s; T) + (t,u) H(u,s; T) du = (t (4.3)

_H (t,s; T) +
a (ts T) + T K(t,u) a (u,s; T) du = (t,s) . (4.4)3s Ds 's

The integral in (4.3) may be rewritten, using (2.5) and integration by

parts as

T ^

K(t,u) a- (u,s; T)du + H(O,s; T) K(t,O) - H(T,s; T) K(t,T) (4.5)

We now add (4.3) and (4.4) and use the expression (4.5). The right hand

side of the resulting sum vanishes, therefore
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^ T

H as (t,s; T) + K(t,) + (u,s; T) du =

= H(T,s; T) K(t,T) - H(O,s; T) K(t,O)

and by uniqueness of solutions of (4.2) we obtain

aH 3H ^
(at + ) (t,sy T) =H(T,s; T) H(t,Ts; T) - H(O,s; T) H(t,OT; T) (4.6)

and by symmetry

( + ) (t,s; T) -= (T,s; T) H(t,T; T) - H('O,s; T) H(t,O; T) (4,7)

In the case where K2 0, we have H - H and any one of equations (4.6),

(4.7) concides with the Sobolev identity derived for the Toeplitz case.

Equations (4,6) and (4.7), viewed together, are a generalization of that

identity.

Equations (4.6) and (4.7) as they now stand cannot be integrated to

yield a representation for H, H. More suitable expressions may be obtained

by adding and substracting them. We also drop the argument T, for

convenience, so that

(t + ) (H+H) (t,s) = H(T,s) H(t,T) - H(O,s) H(t,o) +

+ H(T,s) H(t,T) - H(O,s) H(t,O0) (4.8)

A Aat 9a ) (H-H) (t,s) H(T,s) H(t,T) - H(O',s) H(t,O)
- H(T,s) H(t,T) + H(O,s) H(t,O) . (4.9)

We define H(t,s) and H(t,s) to be zero whenever (t,s) g [0,T] x [O,T].

We integrate equation (4.8) to obtain
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H(T-(s-t), T) + H(T,T-(t-s)) + H(T-(s-t), T) + H(T,T-(t-s)) =

= H(t,s) + H(t,s) +

+ I H(t+u,T) H(T,s+u) - H(t+u,0) H(O,s+u) +
Jo

+H(t+u,T) H(T,s+u) - H(T+u,0) Hf(0,s+u) du . (4.10)

(Note that for u > min(T-t,T-s) the integrand is identically zero).

We also integrate (4..9) to obtain

H(T-(t+s.), 0) + H(T, t+s-T)- - H(T-:.(t+s),0) - H(T,t+s-T)

- H(t,s) -:-H(t,s) +

+ H(t+u,T) H(T,s-u) - H(t+u, ) H(Y,s-u) -
0

- H(t+u, T) H(T,s-u) + H(t+u,O) H(O,s-u) du . (4.11)

Equations (4.10) and (4.11) provide a representation of H + H and

H - H as a sum of convolutions of triangular Toeplitz and Hankel

kernels. Using the fact that kernel convolution corresponds to

operator multiplication, we will rewrite (4.10) and (4.11) in operator

notation.

From now on we assume that the kernels K(t,s) and K(t,s) are

symmetric. Then, the resolvent kernels H and H are also symmetric.

Let A+, B+, C+, D+, E+ be the operators corresponding to the following

kernels:

A+(t,s) = H(T,T-(t-s))

B+(t,s) = H(0.,T-(t-s))

C+(t,s) = H(T,t+s-T)

D+(t,s) = H(D,T-(t+s))

E+(t,s) = H(O,(t+s)-T) (4.12)



We also define A_,...,E_ in the same way except that we use H instead

of H in (4.12). Finally, if an operator G is given by a kernel G(t,s),

let G* denote the adjoint operator, given by the kernel G*(t,s) =

G(s,t). Observe that A+, B+ are Toeplitz operators and C+, D+, E+

are Hankel operators.

With this notation, (4.10) can now be written as

A + A* + A + A * = H + H + A *A + A *A - B *B - B *B (4.13)
+ + - + + - _ + + -

Rearranging terms in (4.13), we finally obtain

(I-H) + (I-H) = (I-A+*) (I-A+ ) -

- (A+ - A)* (A+- A_) - (B++B_)* (B++B_) +

+ B+*B+ + B *B (4.14)

Equation (4.11) can be also rewritten as

D + C - D - C = H - H + A *C : A *C - B *E + B *E (4.15)+ + - _ _ + + .. . + + -

which after rearrangement yields

(I-H) - (I-H) = (I-A+*) C - (I-A *) C++D - D+

B *E + B *E (4.16)
- + + -

Finally, we may add (4.13) and (4.15) to write

H A + + A- + + + - + *+C+ ) - -A + C+

- A+ * (A - C ) + B * (B+ + E+) + B * (B - E )] . (4.17)

Equation (4.17) shows that H is the sum of a) Toeplitz and Hankel

operators, b) Products of Toeplitz with Toeplitz plus Hankel operators.
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Moveover, all kernels involved are by definition (4.12) triangular, As

a conclusion, Toeplitz plus Hankel operators have algebraic properties

very similar to those of purely Toeplitz kernels. This agrees with the

results obtained in [6] concerning Toeplitz plus Hankel matrices.
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5. Concluding remarks

Kailath et. al. have shown [11] that the set of symmetric operators

3K 3K
with kernel 3(t-s) + K(t-s) having the displacemenet property a- + a =

z ~. (t)4 (s) for some finite integer C is an algebra (i.e. closed
i=l i i

under addition, composition and inversion) which contains all Toeplitz

operators. Analogous results also exist for the corresponding discrete

case where operators are replaced by matrices [10].

Equations (4.6) and (4.7) provide us with insight as to how an

algebra containing Toeplitz plus Hankel operators may be defined.

Namely, we may define the elements of our algebra to consist of those

symmetric kernels S(t-s) + K(t,s) such that there exists a new symmetric

kernel K(t,s) satisfying

aK 3K

at Z i (s) si (t)3t + as i=li=l

We shall say that I + K is invertible in the algebra if both operators

I + K and I + K are invertible. In that case, an approach similar to

the derivation of the generalized Sobolev identity shows that our algebra

is indeed closed under inversion. Closure under operator multiplication

(kernel composition) is much easier to verify.
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