A Neuro-Dynamic Programming Approach to
Call Admission Control in Integrated Service

Networks: The Single Link Case !

Peter Marbach and John N. Tsitsiklis
Laboratory for Information and Decision Systems

Massachusetts Institute of Technology
Cambridge, MA 02139

e-mail: marbach@mit.edu, jnt@mit.edu

Abstract: We formulate the call admission control problem for a single link
in an integrated service environment as a Markov Decision Problem. In prin-
ciple, an optimal admission control policy can be computed using methods of
Dynamic Programming. However, as the number of possible states of the un-
derlying Markov Chain grows exponentially in the number of customer classes,
Dynamic Programming algorithms for realistic size problems are computation-
ally infeasible. We try to overcome this so-called “curse of dimensionality” by
using methods of Neuro-Dynamic Programming (NDP for short). NDP employs
simulation-based algorithms and function approximation techniques to find con-
trol policies for large-scale Markov Decision Problems. We apply two methods of
NDP to the call admission control problem: the TD(0) algorithm and Approxim-
ate Policy Iteration. We assess the performance of these methods by comparing
with two heuristic policies: a policy which always accepts a new customer when
the required resources are available, and a threshold policy.

I This research was supported by a contract with Siemens AG, Munich, Germany.

1 Introduction

Markov Decision Problems have been a popular paradigm for sequential de-
cision making under uncertainty. Dynamic Programming [1] provides a frame-
work for studying such problems, as well as algorithms for computing optimal
decision policies. Unfortunately, these algorithms become computationally in-
feasible when the underlying state space is large. This so called “curse of dimen-
sionality” renders the classical methods of Dynamic Programming inapplicable
to most realistic problems. As a result, control policies for practical large-scale
sequential decision problems often rely on heuristics.

In recent years, a new methodology called Neuro-Dynamic Programming
(NDP for short) [2] has emerged. NDP tries to overcome the curse of dimen-
sionality by employing stochastic approximation algorithms and function ap-
proximation techniques such as neural networks. The outcome is a methodology
for approximating Dynamic Programming solutions with reduced computational
requirements.

Over the past few years, methods of NDP have been successfully applied
to challenging problems. Examples include a program that plays Backgam-
mon [3], an elevator dispatcher [4], a job scheduler [5], and a call admission
control policy in wireless communication networks [6]. Despite these successes,
most algorithms proposed in the field are not well understood at a theoretical
level. Nevertheless, the potential of these methods for solving systematically
large-scale Markov Decision Problems and the successful experimental work in
the field has drawn considerable attention.

In this paper, we apply methods of NDP to the call admission control prob-
lem in an integrated service environment. In particular, we consider a single
communication link with a given bandwidth that serves several customer classes
of different values. The customer classes are characterized by the following para-
meters: bandwidth demand, arrival rate, departure rate and a reward we obtain,
whenever we accept a customer of that class. The goal is to find a call admission
control policy which maximizes the long term reward. Related work has been
done by Nordstrom et al. [7] and [8] .

The paper is structured in the following way: in Section 2, we state the call
admission control problem. A brief review of Dynamic Programming is given in
Section 3. Section 4 introduces two methods of NDP: the TD(0) algorithm and
Approximate Policy Iteration. In Section b, we describe two parametric forms
used to approximate the reward (value) function of Dynamic Programming: mul-
tilayer perceptron and quadratic parameterizations. We formulate in Section 6
the call admission control problem as a Markov Decision Problem. Section 7
defines two heuristic control policies for the call admission control problem: a
policy which always accepts a new customer when the required resources are
available, and a threshold policy. Experimental results of two case studies are
presented in Section 8.

2 Call Admission Control

We are given a single communication link with a total bandwidth of B units.
We intend to support a finite set {1,2,.., N} of customer classes. Customers of
the different classes request connections over the link according to independent
Poisson Processes. The arrival rate of customers of class n is denoted by A(n).
When a new customer requests a connection, we can either decide to reject that
customer, or, if enough bandwidth is available, to accept it (call admission con-
trol). Once accepted, a customer of class n seizes b(n) units of bandwidth for
t units of time, where ¢ is exponentially distributed with parameter v(n), inde-
pendently of everything else happening in the system. Furthermore, whenever
we accept a customer of class n, we receive a reward ¢(n). The goal is to exercise
call admission control in such a way that we maximize long term reward.

In this problem formulation, the reward ¢(n) could be the price customers of
class n are paying for using b(n) units of bandwidth of the link. This models the
situation, where a telecommunication network provider wants to sell bandwidth
to customers in such a way, that long term revenue is maximized.

The reward ¢(n) could also be used to attach levels of importance/priority
to the different service classes. This reflects the case where one wants to provide
the different customer classes different qualities of service; e.g. customers of a
class with a high reward (high importance/priority level) should be less likely
to be blocked than customers of a class with with a low reward (low import-
ance/priority level).

Furthermore, the bandwidth demand b(n) could either reflect the demand
associated with the peak transmission rate requested by customers of class n,
or a so-called “effective bandwidth” associated with customers of class n. The
concept of an effective bandwidth has been introduced and extensively studied
in the context of ATM (see for example [9]). ATM (Asynchronous Transfer
Mode) is a technology which implements integrated service telecommunication
networks. In ATM, the notion of an effective bandwidth 1s used to encapsule cell-
level behavior such as multiplexing. This separation of cell-level and call-level is
important for the tractability of the call admission control problem.

Although one is ultimately interested in applying call admission control (com-
bined with routing) to the case of an integrated service network, we focus here
on the single link case. This allows us to test algorithms of NDP on a problem,
for which good heuristic policies are available, and for which (if the instance is
fairly small) an optimal control policy can be computed. Furthermore, results
obtained for the single link case can be used as a basis for solving the network
case.

3 Markov Decision Problems and Dynamic Pro-
gramming

In this section, we give a brief review of Markov Decision Problems and Dy-
namic Programming. Markov Decision Problems have been a popular paradigm
for sequential decision making problems under uncertainty. Dynamic Program-
ming [1] provides a framework for studying such problems, as well as algorithms
for computing optimal control policies.

We consider infinite-horizon, discrete-time, discounted Markov Decision Prob-
lems defined on a finite state space S and involving a finite set U of control ac-
tions. Although we formulate the call admission control problem as a continuous-
time Markov Decision Problem, it can be translated into a discrete-time Markov
Decision Problem using uniformization [1]. Therefore, we can without loss of
generality limit our framework to discrete-time Markov Decision Problems.

For every state s € S, there is a set of nonnegative scalars p(s, u, s'), such
that for all control actions w in U, >, s p(s,u,s’) is equal to 1. The scalar
p(s, u,s') is interpreted as the probability of a transition from state s to state
s’ under control action u. With a state s and a control action u, we associate a
real-valued one stage reward g(s, u).

A stationary policy is a function g : S — U. Let M be the set of all possible
stationary policies. A stationary policy u defines a discrete-time Markov Chain
(Sk) with the transition probabilities

P{Sk41 =5 |Sk = s} =p(s,p(s),s)

With a stationary policy 1 € M and a state s € .S, we associate the reward-
to-go function

T
Ju(s) = lim F Zakg (Sk, 1(SK)) 150 = s
k=0

T—oo

where the discrete-time process (Sg) evolves according to the Markov Chain
defined by the policy p and where « € [0, 1) is a discount factor.

Our objective is to maximize the the reward-to-go function J,(s) simultan-
eously for all states s € S. A stationary policy p* such that

Ju+(8) > Jyu(s), forall se€ S and forall pe M

18 said to be an optimal policy.

We can think of the reward-to-go function associated with a policy pu as a
mapping J, : S — R. It is well known that if x is optimal then J, satisfies
Bellman’s equation

—_ / /
J(s)_zneag g(s,u)—i—asZE:Sp(s,u,s)J(s) , forallse S

It is also known that Bellman’s equation has an unique solution J*, called the
optimal reward-to-go function.

Given a function J : S — R, we define a greedy policy for J to be a policy
1 which has the following property

u(5) = arg max [g(s, u)+ o Z p(s,u, 5’)J(3/)]

U
ue s'es

It is well known that a greedy policy for the optimal reward-to-go function J* is
an optimal policy. This means that the knowledge of the optimal reward-to-go
function J* allows us to derive an optimal policy p*.

For a function J : S — R, a stationary policy p : S — U, and for every state
s € 5, we denote

T(J)(s) = max [g(s, u) + a Z p(s,u, 5’)J(5’)]

Tu()(s) = gls,n(s)) +a D pls,u(s),s)J(s)

s'es

The optimal reward-to-go function J* and the reward-to-go function J, of a
policy p have the following property

J*(s) = T(J")(s), forevery state s € S
Ju(s) = Tu(Ju)(s), forevery state se S

There are several algorithms for computing J* and determining an optimal
policy p*, but we will only consider Value Iteration and Policy Iteration.

The Value Iteration algorithm generates a sequence of functions Ji : S — R
according to

Je41(8) =T (Jx)(s), forallse S

It is well known that for discounted, infinite-horizon Markov Decision Problems
which evolve over a finite state space .S and which involve a finite set U of control
actions, the Value Iteration algorithm is guaranteed to converge to the optimal
reward-to-go function J*.

The Policy Iteration algorithm generates a sequence of policies p : S — U
by letting

pi1(s) = argmax | (s, u) + a Zsp(s, u, 8') I, (")
s'e

It is well known that for discounted, infinite-horizon Markov Decision Problems
which evolve over a finite state space S and which involve a finite set U of

control actions, the Policy Iteration algorithm is guaranteed to terminate with
an optimal policy p* in a finite number of iterations.

The reward-to-go function J,, can be obtained by solving the linear system
of equations

Tu(s) = g(s,p(5)) +a > p(s, p(s), ') I (')
s'es

(as discussed earlier), or by an algorithm which generates a sequence of functions
Ji + S — R according to

Jet1(s) =T, (Jx)(s), forallse S

Note that this iteration can be viewed as a special case of Value Iteration applied
to a problem with no control options. Therefore, the convergence result for Value
Iteration applies also here.

In principle, an optimal control policy can be obtained by means of the Value
Iteration algorithm or the Policy Iteration algorithm. However, this requires the
computation and storage of J*(s) and J,, (s), respectively, for every state s € S.
For Markov Decision Problem evolving over a large state space, these algorithms
become computationally infeasible.

4 Neuro-Dynamic Programming

Instead of computing the reward-to-go function for every state s € S, methods
of NDP use a parametric representation j(, r) to approximate J* and J,. In
particular, we approximate J*(s) and J,(s) by a suitable approximation archi-
tecture j(s,), where r is a vector of tunable parameters (weights).

We present two NDP methods: TD(0) and Approximate Policy Iteration.
TD(0) is related in structure to Value Iteration, whereas Approximate Policy
Tteration emulates Policy Tteration. The TD(0) algorithm belongs to the class
of Temporal Difference algorithms [10] (often referred to as TD(A) algorithms),
which are the most widely used NDP methods. Here, we will only state the
iteration rule of the TD(0) algorithm; for a more comprehensive treatment of
Temporal Difference methods, we refer to [2].

4.1 Temporal Difference Algorithm: TD(0)

The TD(0) algorithm is related to Value Tteration and can be used to find an
approximation of J*.

Let J : S x R = Rbea family of parametric representations such that
Vrj(s,r) exists for every state s € S and every parameter vector r € R,
Choose an initial parameter vector 7y € R¥ and an initial state s; € S. We
generate a sequence (rg) by the following recursive procedure:

L. Assume that we are given state sy and parameter vector ry; choose a
control action uy according to a greedy policy for J(-, rg)

uk_argmaxl g(sp,u) + o E p(sk, u, 5 5 rk)]
s'es

2. Choose the next state spy1 at random, according to the transition prob-
abilities p(sg, g, Sk41)-

3. Update r; by the following rule:

dp, = (g(Sk,Uk) + ad (k11 75) — J (s, m))
Pee1 = e+ de Vo (sk,)

where 4 > 0 is a small step size parameter and o € [0, 1) is the discount
factor. The scalar di is referred to as the temporal difference at iteration
step k.

In general, the convergence results of Value Tteration do not apply to TD(0).
However, for some classes of Markov Decision Problem, one can derive conver-
gence results. We refer to [2] for a more detailed discussion of this issue.

4.2 Approximate Policy Iteration Using TD(O0)

The general structure of Approximate Policy Iteration is the same as in ordinary
Policy Iteration. Again, we generate a sequence of stationary policies pg : S —
U. However, in Approximate Policy Iteration, we replace the exact reward-to-go
function J,, of the policy ., by an approximation j(, L)

uk+1()_argmax (s,u —|—OzZ s,u,8)J (s, 75)
s'eS

An approximation j(, r) of J,. () for given policy p can be obtained using TD(0),
by setting

uk = (o)
in step 1 of its iteration rule.

_ Starting with an initial policy po and with the functional approximation
J(-,70) of Ju,, we generate a sequence of policies in the following way:

1. Assume that we are given a policy p and a functional approximation
J(-,r) of J,,. Choose ppy1 to be a greedy policy for J(-,)

Hiy1(s)—argmax (s,u —|—OzZ s,u,8)J (s, 75)
s'es

2. Compute the approximation j(, Teg1) of Jyup

In general, Approximate Policy Iteration does not terminate, nor is the al-
gorithm guaranteed to improve the reward-to-go function of the corresponding
policies at each iteration step. Under certain assumptions however, bounds on
its performance can be derived [2].

5 Architectures for Approximating J* and J,

In this section, we describe the two parametric forms j(, 7) We use to approx-
imate the optimal reward-to-go function J* and the reward-to-go function J, of
a stationary policy p. They are multilayer perceptron and quadratic parameter-
izations.

A common nonlinear architecture for function approximation is the multilayer
perceptron. Under this architecture, the input vector s € R is transformed by
a matrix to give a vector v € R:

N
v(l) = r(ln)s(n)
n=1
Each component of the vector v is then transformed by non-linear sigmoidal
function ¢ : R — R, which is differentiable, monotonically increasing, and has
the property:
—o0o < lim o(z) < lim o(z) <4+

r——00 r—4oo

The sigmoidal function we use is given by the following rule:
1
o(z)

1 +e®
The sigmoidal function o is used to transform the vector v € R” to a new vector
w € R* such that

w(l) = o)) =0 (Z r(l, n)s(n))

n=1

The components of the vector w € R are then linearly combined using coeffi-
cients r(!) to produce the output

J(s,7) = r(0) + Z r(Dw(l) = r(0) + Z r(l)o (Z r(l, n)s(n))

=1 n=1

The quadratic approximation for an input vector s € R is given by the following

rule
N

j(s, r)=r(0)+ Z r(n)s(n) + Z Z r(m,n)s(m)s(n)

n=1 m=1n=1

5.1 Input and Output Scaling

Input and output scaling can have a significant effect on the performance of
training methods (such as TD(0)) for function approximations. Typically, the
objective of input and output scaling is to force each component of the input
and output vector to lie in the interval [—1,1].

Let j(, r) : RN — R be an approximation architecture; let s € RY be an
input vector, let m, € RN o, € RV, my € R, and oy € R be scaling vectors.
Then the scaled input and output are given as follows

Loy s = man)
(n) oo ()
Yy = oyJ(s,r)+my

6 Formulation of the Call Admission Control Prob-
lem in ATM networks as a Markov Decision
Problem

In this section, we formulate the call admission control problem for a single link
in an integrated service environment as an infinite-horizon, discounted Markov
Decision Problem. We will initially adopt the framework of continuous-time
Markov Decision Problems and later transform the problem into a discrete-time
Markov Decision Problem through uniformization.

We describe the state of the single communication link by an N-tuple s =
(s(1),...,s(N)), where s(n) denotes the number of customers of class n currently
using the link. The state space S is given by

SI{SERN

> s(n)b(n) < B, s(n) €{0,1,2, }}

n=1

where b(n) is the bandwidth demand of a customer of class n, and B is the total
available bandwidth of the communication link. Let s; denote the state of the
system at time ¢ € [0, +00).

A control action v = (u(1), ..., u(N)) is an N-tuple such that each u(n) equals
either 0 or 1. Given a control action u, we accept a new connection request of
a customer of class n, if u(n) equals 1, and reject a new customer of class n,
otherwise. Let U denote the set of all possible control actions:

U={u| ue{0o,1}V}

We say that an event occurs at a certain time if a customer departs from the
system or a new customer requires a connection over the communication link.

Let #; be the time of the kth event. By convention, we start the system at time
tg = 0; t; is the time when the first event occurs. We identify an event by the
N-tuple w = (w(1),...,w(N)) where w(n) equals 1 if a new customer of class n
requests a connection; w(n) equals —1 if a customer of class n departs from the
system and w(n) equals 0 otherwise. Let © denote the sets of all possible events:

N
Q= {w we{-10, 11N, Y |w(n)| = 1}

n=1
Let si; be the state of the system in the interval (¢, %5 4+1]. Note that if the system
18 in state sg, the probability that the next event will be a specific event w is
determined by the arrival rates A(n) and the departure rates v(n).
Given a state s € S, an event w € Q and a control action u € U, the next
state s’ is given by a function f : .S xQ x U — S such that if s’ equals f(s,w,u),
then the following holds:

s(n) ifw(n) =0
s(n) ifw(n) =1and u(n) =0
s'(n)=< s(n)+1 ifw(n)=1and u(n)=1
s(n) —1 ifw(n) =—1and s(n) >0
s(n) ifw(n) =—1and s(n) =0
We associate a one stage reward g(s,w,u) with a state s, an event w, and a

control action u, according to the formula:

g(s,w,u) = { ¢(n) ifw(n)=1and u(n)=1

0 otherwise

Here, ¢(n) is the reward associated with admitting a customer of class n.

A stationary policy is a function g : S — U and induces a Markov Process
on the state space S.

With a stationary policy p and a state s we associate the discounted reward-
to-go J,(s):
(o]

Ze_ﬁtk+lg(5kawk+laﬂ(5k)) |so = s
k=0

Ju(s) = FE

where the following condition is satisfied:

Sk+1 = f(Sk,wkH,ﬂ(Sk))

and where 3 1s a positive real number, called the discount rate. Note that in this
formulation the first stage reward is discounted.

With every state s in the state space, we can associate a so called rate of
transition v(s) given by

v(s) = 3 M) + s(n)w(n)]

n=1

10

Using uniformization, the continuous-time Markov Decision Problem can be
transformed into an equivalent discrete-time Markov Decision Problem with a
state-dependent discount factor

_ v
B+ u(s)

In particular, Bellman’s equation takes the form

a(s)

J(s) = a(s)max | Y p(s,w) [g(s,w,u) + T (f(s,w,)]

uel ven
where the probabilities p(s,w) are given as follows

A R
UJ(%) ifwn) =1
9= v
% ifw(n) =-1

Note that the cardinality of the state space increases exponentially with the
number of customer classes. Therefore, for call admission control problems
which involve a fair number of customer classes, the classical methods of Dy-
namic Programming are not feasible.

6.1 Formulation of the TD(0) algorithm for the Call Ad-
mission Control Problem

In this section, we describe how one implements the TD(0) algorithm for the call
admission control problem.

Let J : S x RE — R be a family of parametric representations such that
Vrj(s,r) exists for every state s € S and every parameter vector r € R,
Choose an initial parameter vector 7y € R¥ and an initial state s; € S. We
generate a sequence (rg) by the following recursive procedure:

1. Assume that we are given state s; and parameter vector r;: choose the
next event wy41 at random, according to the probabilities p(sy,wi41).

2. If the next event wyy1 corresponds to a departure of a customer, set the
control action uy equal to 0. If the next event wyy1 corresponds to an
arrival of a new customer of class n, choose the control action uy as follows:

en If j(sk,rk) — j(sk +en,ri) < e(n)
up = and 0 55 (n)b(n) < B — b(n)

0 otherwise

where e, 1s the nth unit vector.

11

3. Set sp41 equal to f(sg, Wrt1, uk).

4. Update ri by the following rule:

d, = (a(s) {g(sk,wkH, up) + JN(skH, rk)} — j(sk, rk))

Phpr = e+ wde Vo (sg,78)

7 Heuristic

In order to assess the policies we obtain through NDP, we compare them with
two heuristic control policies: one which we will call the “Always Accept” policy,
and one to which we refer as the “Threshold” policy.

The Always Accept policy accepts a new customer of class n if the required
bandwidth b(n) is available, and otherwise rejects it; e.g. if at time ¢ a customer
of class n requires a connection over the link, the new customer is accepted to the
system if B(¢t)+b(n) < B and is otherwise rejected. Here, B(t) is the bandwidth
used at time ¢:

B(t) = si(n)b(n)

The Threshold policy specifies for each customer class n a threshold para-
meter h(n) > 0, in units of bandwidth. If a customer of class n requests a
new connection at time ¢ over the communication link, we accept 1t only if

B(t) +b(n) + h(n) < B.

8 Case Studies

In this section, we present two case studies: one involving 3 customer classes,
and one involving 10 customer classes. A description of the parameters of the
case studies is given in Section 8.1; a discussion of the results is provided in
Section 8.2. Numerical results are reported in the Appendix.

For both cases, we implemented the TD(0) algorithm with the two approx-
imation architectures described in Section 5 and Approximate Policy Iteration.
The control policies obtained by these methods of NDP are compared with the
Always Accept policy and Threshold policy. Simulating the policies of NDP,
we could observe which customer classes get sometimes rejected, and what per-
centage of customers of a particular class gets rejected. This insight guided
the tuning of the threshold parameters h(n) of the Threshold policy, which was
carried out manually. In particular, we don’t expect our choices of h(n) to be
optimal.

As the state space in the first case study is relatively small, we are able to
compute an optimal control policy using exact Dynamic Programming and to
compare it with the policies obtained through NDP.

12

We use the average reward per unit time and the lost average reward per
unit time as performance measures to compare the different policies. Based on
a trajectory of N simulation steps, we obtain the average reward for a stationary
policy p as follows

N
1
E;g(sk,wkﬂ,ﬂ(%))

and the lost average reward by

N

[9(si,wht1, (1, 1,0, 1)) = g(sk, wipt, plsn))]
k=0

1
TN

where

N
=23

k=0
Note that the lost average reward refers to the additional reward that would have
been obtained if no customer was ever rejected, 1.e. if we had an infinite band-
width link. To evaluate the average reward and the lost average reward, we used
a trajectory of 4,000,000 simulation steps, which starts with an empty system.
The trajectory was generated using a random number generator, initialized with
the same seed for each evaluation.

8.1 Parameters

Here we give a brief description of the parameters used in the two case studies,
the complete definition of the parameters can be found in the Appendix in Table
1,3,5and 7.

In the first case study, we consider a communication link with a total band-
width of 12 units. We intend to support 3 customer classes on that link. The
discount rate was set to be 0.001. As a multilayer perceptron for TD(0) and
Approximate Policy Iteration, we used an architecture with 5 hidden units.

In the second case study, we consider a communication link with a total
bandwidth of 600 units. We intend to support 10 customer classes on that
link. We varied the arrival rates of the different customer classes to yield three
different scenarios: a highly loaded, a medium loaded and a lightly loaded link.
The discount rate was set to be 0.1 for the highly loaded and medium loaded
scenarios, and to 0.01 for lightly loaded scenario. As a multilayer perceptron
for TD(0) and Approximate Policy Iteration, we used an architecture with 10
hidden units. The parameters which characterize the different service types are
chosen in such a way, that there are pairs of service classes which differ only in
the reward c(n). Here, we interpret the reward c¢(n) as a “virtual” reward. If
the customer class n has a higher reward ¢(n), but the same bandwidth demand
b(n), the same arrival rate A(n) and the same departure rate v(n) as the customer

13

class m, then customers of class n should get a higher quality of service than
customers of class m. This should be reflected by a good call admission control
policy by blocking less customers of class n than customers of class m.

The stepsize parameter 4 in the iteration rule of the TD(0) algorithm was
chosen in the following way: we define an initial stepsize parameter v, a mul-
tiplication factor § and a positive integer A. Every A steps, we update ¥ to
d.

We use in the Appendix “API” as an abbreviation of Approximate Policy
Iteration; the parameters mg, 0, my and oy refer to the scaling vectors defined
in Section 5.1.

8.2 Results

The experimental results are given in the Appendix in Table 2, 4, 6, and 8§,
and in Figure 1 through Figure 3. Here, we will provide some more detailed
information concerning the simulation runs and the experimental results.

In the iteration rule of the TD(0) for finding a functional approximation of J*
and J,,; the initial state sg was set equal to (0,0, ...0), the state which corresponds
to an empty system and the initial parameter vector rg was chosen at random.

In Figure 1 through Figure 3; for the TD(0) algorithm, the lost average
reward was taken to be the corresponding average over a time window. The
length of the time window is indicated in the label of the figures.

For the Approximate Policy Tteration algorithm, the performance results (Per-
centage of Customers Rejected, Percentage of Customers Rejected by Control,
Average Reward and Lost Average Reward) correspond to the policy which
attained the best performance among all the policies obtained through the iter-
ation. Note that “Customers Rejected by Control” are those customers who are
rejected even though the required bandwidth was available.

The main conclusions from the experimental results are the following:

e Methods of NDP seem to be promising for the call admission
control problem for a Single Link. In the two case studies, methods
of NDP lead to significantly better results than the heuristic Always Ac-
cept policy, except for the case of a lightly loaded link which supports 10
different customer types, where the performance of the two policies was
the same. In particular, in all cases (except for the above mentioned case)
the lost average reward due to rejection of customers, could be reduced by
10% — 35%. Furthermore, for the case of 3 customer classes, essentially
optimal performance was attained.

e Methods of NDP can provide insight into a problem at hand,
which allows to design good heuristic policies. In our case, sim-
ulation of control policies obtained with NDP revealed that only a few
customer classes get rejected by the control. This observation lead to the

14

formulation of the heuristic Threshold policy and guided the tuning of the
threshold parameters.

Among the methods of NDP, Approximate Policy Iteration led
to the best results. However, Approximate Policy Iteration led to only
slightly better policies than the ones obtained from TD(0) methods.

The performance of the policies obtained through Approximate
Policy Iteration can oscillate significantly. This is consistent with
experience in other contexts, as well as with the analysis provided in [2].

The heuristic Threshold policy led to the best system perform-
ance in all cases. However, this may not be the case for more complex
problems, where good heuristic policies are hard to design. Furthermore,
as mentioned earlier, NDP can be used in the design of powerful heuristics.

Exploration of the state space can be important. We have noted
that NDP methods did not lead to improvement for a lightly loaded system
with 10 customer classes. The natural explanation is that a lightly loaded
systemn rarely becomes full and therefore very little training takes place at
these states where the control policy matters (near full system). How to
sample the state space in places that have low probability under the policy
employed, while preserving the stability of the algorithms employed is an
intricate subject that is poorly understood at present.

15

Appendix

Customer Classes

Customer Band- Arrival Departure | Reward
Class width, 6(n) | Rate, A(n) | Rate, v(n) c(n)
1 3.0 0.5 4
2 2.0 0.8 15
2 2.5 0.9 12
| Scaling Vectors |
My [0,0,0]
o [12,6,6
My 40300
oy 50
Methods |
Method Architecture | Parameters
Always Accept
Threshold Policy h = [11; 0; 0]
DP
TD(0) MLP ~ = 0.01
=108
A = 1,000,000
TD(0) Quadratic ~ = 0.01
=108
A = 1,000,000
API MLP ~ = 0.01
=108
A = 1,000,000

Table 1: Case study for 3 different customer classes.

16

Percentage of Customers Rejected |

1 2 3
Always Accept 26.1 | 47.8 | 47.9
Threshold Policy | 100.0 | 21.1 | 21.2
DP 100.0 | 21.1 | 21.2
TD(0): MLP 98.6 | 21.3 | 21.4
TD(0): Quadratic | 98.6 | 21.3 | 214
API: MLP 100.0 | 21.1 | 21.2

Percentage of Customers Rejected

by Control
1 2 3
Always Accept 0.0 |1 0.0 0.0
Threshold Policy | 78.8 | 0.0 0.0
DP 78.8 1 0.0 0.0
TD(0): MLP 78.7 1 0.0 0.0
TD(0): Quadratic | 78.7 | 0.0 0.0
API: MLP 78.8 1 0.0 0.0
| Performance |

Average Lost

Reward | Average

Reward
Always Accept 40.09 31.86
Threshold Policy 47.23 24.72
DP 47.23 24.72
TD(0): MLP 47.19 24.76
TD(0): Quadratic 47.19 24.76
API: MLP 47.23 24.72

Table 2: Case study for 3 different customer classes.

17

—_
o

Parameter Value
LN
o o

(&3]

Parameter Value
1
ol o

TD(0): MLP

—

N

0 1000 2000
Simulation Steps x10%4

3000

TD(0): Quadratic

———

1000 2000 3000
Simulation Steps x1074

o

Lost Average Reward Lost Average Reward

Lost Average Reward

S

wW

no

=N

wW

no

wW

TD(0): MLP
0 : :
! w
0 L L
0 1000 2000 3000
Simulation Steps x10%4
TD(0): Quadratic
0 : :
: M
0 L L
0 1000 2000 3000
Simulation Steps x1074
API: MLP
0 : :
NN
0 L L L
2 4 6 8
Policy lteration Number

Figure 1: Case study for 3 different customer classes.

| Customer Classes |

Customer Band- Arrival Departure | Reward
Class width, 6(n) | Rate, A(n) | Rate, v(n) e(n)
1 2 15.0 1.0 2.0
2 2 15.0 1.0 1.4
3 4 12.0 0.8 5.0
4 4 12.0 0.8 2.5
5 6 10.0 0.6 10.0
6 6 10.0 0.6 4.0
7 8 6.0 0.4 20.0
8 8 6.0 0.4 7.0
9 10 4.0 0.2 5.0
10 10 4.0 0.2 16.0

| Scaling Vectors |

My [0,0,0,0,0,0,0,0,0,0]
o | [300,300,150,150,100,100,75,75,60,60]
My 4800
oy 10
| Methods |
Method Architecture | Parameters
Always Accept
Threshold Policy h = [0;0;0;79;0;594;0;592;0;140]
TD(0) MLP ~ = 0.001
§d=0.8
A = 1,000,000
TD(0) Quadratic ~=0.1
6§ =0.5
A = 1,000,000
API MLP ~ = 0.001
§d=0.8
A = 1,000,000

Table 3: Case study for 10 different customer classes: highly loaded link.

19

Percentage of Customers Rejected

1 2 3 5 6 7 8 9 10
Always Accept 13.88 | 13.78 | 25.73 | 25.83 | 35.95 | 36.05 | 45.21 | 45.04 | 53.05 | 52.81
Threshold Policy | 1.04 | 1.03 | 2.16 | 69.18 | 3.23 | 100.00 | 4.45 | 100.00 | 5.57 | 98.96
TD(0): MLP 2.42 2.66 7.28 | 79.84 | 8.36 94.06 | 10.49 | 92.94 | 13.23 | 73.09
TD(0): Quadratic | 0.92 | 0.90 | 1.89 | 99.99 | 2.86 | 99.99 | 3.90 | 99.99 | 4.88 | 99.97
APL: MLP 1.03 1.01 213 | 71.71 | 3.22 99.99 4.39 99.99 5.43 | 99.99
Percentage of Customers Rejected by Control
1 2 3 4 5 6 7 8 9 10
Always Accept 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Threshold Policy | 0.00 | 0.00 | 0.00 | 67.06 | 0.00 | 96.67 | 0.00 | 95.51 | 0.00 | 93.30
TD(0): MLP 0.00 | 0.26 | 2.26 | 74.82 | 0.77 | 86.43 | 0.00 | 82.42 | 0.00 | 59.82
TD(0): Quadratic | 0.00 | 0.00 | 0.00 | 98.09 | 0.00 | 97.13 | 0.00 | 96.12 | 0.00 | 95.02
API: MLP 0.00 | 0.00 | 0.00 | 69.60 | 0.00 | 96.83 | 0.00 | 95.69 | 0.00 | 94.56
| Performance
Average Lost
Reward | Average
Reward
Always Accept 412.77 293.15
Threshold Policy 518.17 187.67
TD(0): MLP 505.46 | 200.34
TD(0): Quadratic 511.45 194.71
APL: MLP 517.38 188.54

Table 4: Case study for 10 different customer classes: highly loaded link.

20

TD(0): MLP TD(0): MLP

ey
o

~
(=)
o

iy S

I
—_
o

0 " "
0 1000 2000 3000
Simulation Steps x10%4

1000 2000 3000
Simulation Steps x10%4

o

D
©
3 :
g i
S q)
g0 §200 e
£ g
5 N
o 7]
(o}
|

TD(0): Quadratic

TD(0): Quadratic

0 " "
0 1000 2000 3000
Simulation Steps x10%4

(9]
o

N
o
o

Parameter Value
&
o o

100 200 300
Simulation Steps x10%4

o
Lost Average Reward
S
o

°

]

8

0:400

¢ w
2200

)

>

< ol— i :

b7 2 4 6 8
(o]

|

Policy Iteration Number

Figure 2: Case study for 10 different customer classes: highly loaded link.

21

| Customer Classes |

Customer Band- Arrival Departure | Reward
Class width, 6(n) | Rate, A(n) | Rate, v(n) e(n)
1 2 15.0 1.0 2.0
2 2 15.0 1.0 1.4
3 4 10.0 0.8 5.0
4 4 10.0 0.8 2.5
5 6 7.0 0.6 10.0
6 6 7.0 0.6 4.0
7 8 3.0 0.4 20.0
8 8 3.0 0.4 7.0
9 10 1.8 0.2 5.0
10 10 1.8 0.2 16.0

| Scaling Vectors |

My [0,0,0,0,0,0,0,0,0,0]
o | [300,300,150,150,100,100,75,75,60,60]
My 3800
oy 10
| Methods |
Method Architecture | Parameters
Always Accept
Threshold Policy h = [0;0;0;0;0;29;0;31;0;0]
TD(0) MLP ~ = 0.01
6§ =0.5
A = 1,000,000
TD(0) Quadratic ~=0.1
6§ =0.5
A = 1,000,000
API MLP ~ = 0.01
6§ =0.5
A = 1,000,000

Table 5: Case study for 10 different customer classes: medium loaded link.

22

Percentage of Customers Rejected

1 2 3 4 5 6 7 8 9 10
Always Accept 245 | 2.41 | 4.91 | 4.89 | 7.16 | 7.36 | 9.61 | 9.92 | 12.27 | 11.90
Threshold Policy | 0.77 | 0.78 | 1.63 | 1.62 | 2.53 | 30.01 | 3.49 | 35.63 | 4.73 4.71
TD(0): MLP 143 | 1.39 | 293 | 2.89 | 443 | 20.86 | 6.13 | 1879 | 8.00 | 11.21
TD(0): Quadratic | 0.76 | 0.74 | 1.58 | 1.54 | 2.39 | 99.98 | 3.14 | 3.16 4.18 3.91
APL: MLP 0.13)1 0.13 | 0.28 | 2.39 | 0.42 | 31.35 | 0.60 | 41.94 | 0.85 | 33.11
Percentage of Customers Rejected by Control
1 2 3 4 5 6 7 8 9 10
Always Accept 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Threshold Policy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 27.47 | 0.00 | 31.71 | 0.00 | 0.00
TD(0): MLP 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 16.40 | 0.00 | 12.60 | 0.00 | 3.42
TD(0): Quadratic | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 97.68 | 0.00 | 0.00 | 0.00 | 0.00
APL: MLP 0.00 | 0.00 | 0.00 | 2.14 | 0.00 | 30.91 | 0.00 | 41.31 | 0.00 | 32.27
| Performance
Average Lost
Reward | Average
Reward
Always Accept 389.53 34.31
Threshold Policy 396.68 26.97
TD(0): MLP 393.68 29.87
TD(0): Quadratic 385.39 38.63
APL: MLP 394.18 29.34

Table 6: Case study for 10 different customer classes: medium loaded link.

23

—ry
o
o

Parameter Value
o

0 1000 2000 3000
Simulation Steps x10%4

0 1000 2000 3000
Simulation Steps x10%4

Lost Average Reward
(€2
o

ke)

S TD(0): Quadratic g TD(0): Quadratic

g T T ¢ 100 ¥ ¥

- O [0)

g -10 g 50

£-20 o

© >

5-30 : : < 0 : :

a 0 1000 2000 3000 ‘g 0 1000 2000 3000
|

Simulation Steps x1074 Simulation Steps x1074

o
o

o

2 4 6 8
Policy Iteration Number

Lost Average Reward

Figure 3: Case study for 10 different customer classes: medium loaded link.

24

| Customer Classes |

Customer Band- Arrival Departure | Reward
Class width, 6(n) | Rate, A(n) | Rate, v(n) e(n)
1 2 16.0 1.0 2.0
2 2 16.0 1.0 1.4
3 4 12.0 0.8 5.0
4 4 12.0 0.8 2.5
5 6 7.0 0.6 10.0
6 6 7.0 0.6 4.0
7 8 2.4 0.4 20.0
8 8 2.4 0.4 7.0
9 10 1.1 0.2 5.0
10 10 1.1 0.2 16.0

| Scaling Vectors |

My [0,0,0,0,0,0,0,0,0,0]
o | [300,300,150,150,100,100,75,75,60,60]
My 3580
oy 10
| Methods |
Method Architecture | Parameters
Always Accept
Threshold Policy h = [0;0;0;0;0;29;0;27;0;0]
TD(0) MLP ~vo = 0.01
§d=0.8
A = 10,000,000
TD(0) Quadratic v = 0.1
6§ =0.5
A = 10,000,000
API MLP ~vo = 0.01
§d=0.8
A = 10,000,000

Table 7: Case study for 10 different customer classes: lightly loaded link.

25

Percentage of Customers Rejected

1 2 3 4 5 6 7 8 9 10
Always Accept 0.7410.74 | 1.50 | 1.48 | 2.28 | 2.24 | 3.13 | 3.21 | 3.98 | 4.0
Threshold Policy | 0.20 | 0.20 | 0.43 | 0.41 | 0.68 | 11.86 | 0.96 | 12.03 | 1.28 | 1.30
TD(0): MLP 0.7410.74 | 1.50 | 1.48 | 2.28 | 2.24 | 3.13 | 3.21 | 3.98 | 4.0
TD(0): Quadratic | 0.74 | 0.74 | 1.50 | 1.48 | 2.28 | 2.24 | 3.13 | 3.21 | 3.98 | 4.0
APL: MLP 0.7410.74 | 1.50 | 1.48 | 2.28 | 2.24 | 3.13 | 3.21 | 3.98 | 4.0
Percentage of Customers Rejected by Control
1 2 3 4 5 6 7 8 9 10
Always Accept 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [0.00 | 0.00 | 0.00
Threshold Policy | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 11.21 | 0.00 | 11.10 | 0.00 | 0.00
TD(0): MLP 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [0.00 | 0.00 | 0.00
TD(0): Quadratic | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
API: MLP 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [0.00 | 0.00 | 0.00
| Performance
Average Lost
Reward | Average
Reward

Always Accept 370.82 8.89

Threshold Policy 372.40 7.70

TD(0): MLP 370.82 8.89

TD(0): Quadratic 370.82 8.89

API: MLP 370.82 8.89

Table 8: Case study for 10 different customer classes: lightly loaded link.

26

©
3 % TD(0): MLP
g & 20 T
— q)
2 g10
E 0
>
§ 40 : : : <0 : ~ :
a O 500 1000 1500 3 0 500 1000 1500
Simulation Steps x5*10%4 S Simulation Steps x5*10%4
°
S TD(0): Quadratic % TD(0): Quadratic
g i : g 50 : i
- 0 Q
2 g 0
g-10 0
[\ = >
5-20 ' ' <-50 ' '
a O 1000 2000 3000 % O 1000 2000 3000
Simulation Steps x1074 3 Simulation Steps x1074

e
o

(2]

2 3 4 5
Policy Iteration Number

Lost Average Reward
o

Figure 4: Case study for 10 different customer classes: lightly loaded link.

27

References

(1]

[2]

D. P. Bertsekas, “Dynamic Programming and Optimal Control”
Athena Scientific, 1995.

D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-Dynamic Programming,”
Athena Scientific, 1996.

G. J. Tesauro, “Practical Issues in Temporal-Difference Learning,”
Machine Learning, vol. 8, 1988.

R. H. Crites and A. G. Barto, “Improving Elevator Performance Using
Reinforcement Learning ,” Advances in Neural Information Processing
Systems 8, MIT Press, 1996.

W. Zhang and T. G. Dietterich, “High Performance Job-Shop Schedul-
ing with a Time-Delay TD(X) Network,” Advances in Neural Inform-
ation Processing Systems 8, MIT Press, 1996.

S. Singh and D. P. Bertsekas, “Reinforcement Learning for Dy-
namic Channel Allocation in Celluar Telephone Systems,” Advances
in Neural Information Processing Systems 9, MIT Press, 1997.

E. Nordstrom, J. Carlstrom, O. Gallmo and L. Apslund, ” Neural Net-
works for Adaptive Traffic Control in ATM Networks” TEEE Com-
munication Magazine, Oct. 1995.

E. Nordstrom and J. Carlstrom, ” A Reinforcement Scheme for Ad-
aptive Link Allocation in ATM Networks” Proceedings of the Inter-
national Workshop on Applications of Neural Networks to Telecommu-
nications 2, 1995.

IEEE J. Select. Areas Commun., vol. 13, nos.6-7, Aug-Sept 1995.

R. S. Sutton, “Learning to Predict by the Methods of Temporal Dif-
ferences” Machine Learning, vol. 3, 1988.

28

