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This review� of value at risk� or �VaR�� describes some of the basic issues involved

in measuring the market risk of a �nancial �rm�s �book�� the list of positions in vari�

ous instruments that expose the �rm to �nancial risk� While there are many sources

of �nancial risk� we concentrate here on market risk� meaning the risk of unexpected

changes in prices or rates� Credit risk should be viewed as one component of market

risk� We nevertheless focus narrowly here on the market risk associated with changes

in the prices or rates of underlying traded instruments over short time horizons� This

would include� for example� the risk of changes in the spreads of publicly traded corpo�

rate and sovereign bonds� but would not include the risk of default of a counterparty on
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a long�term swap contract� The measurement and management of counterparty default

risk involves a range of di	erent modeling issues� and deserves its own treatment��

Other forms of �nancial risk include liquidity risk 
the risk of unexpectedly large and

stressful negative cash �ow over a short period� and operational risk� which includes

the risk of fraud� trading errors� legal and regulatory risk� and so on� These forms of

risk are considered only brie�y�

This article is designed to give a fairly broad and accessible overview of VaR� We

make no claims of novel research results� and we do not include a comprehensive survey

of the available literature on value at risk� which is large and growing quickly�� While

we discuss some of the econometric modeling required to estimate VaR� there is no

systematic attempt here to survey the associated empirical evidence�

� Background

In managing market risk� there are related objectives

�� Measure the extent of exposure by trade� pro�t center� and in various aggregates�

�� Charge each position a cost of capital appropriate to its market value and risk�

�� Allocate capital� risk limits� and other scarce resources such as accounting capital

to pro�t centers� 
This is almost the same as ���

�� Provide information on the �rm�s �nancial integrity and risk�management tech�

nology to contractual counterparties� regulators� auditors� rating agencies� the

�nancial press� and others whose knowledge might improve the �rm�s terms of

trade� or regulatory treatment and compliance�

�� Evaluate and improve the performance of pro�t centers� in light of the risks taken

to achieve pro�ts�

�� Protect the �rm from �nancial distress costs�

�An example of an approach that measures market risk� including credit risk� is described in

Jamshidian and Zhu �	����

�Other surveys of the topic include Jackson� Maude� and Perraudin �	����� Linsmeier and Pearson

�	����� Mori� Ohsawa� and Shimizu �	����� Littlejohn and Fry �	���� and Phelan �	����
 For empirical

reviews of VaR models� see Hendricks �	����� Beder �	����� and Marshall and Siegel �	����
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These objectives serve the welfare of stakeholders in the �rm� including equity owners�

employees� pension�holders� and others�

We envision a �nancial �rm operating as a collection of pro�t centers� each running

its own book of positions in a de�ned market� These pro�t centers could be classi�

�ed� for example� as �equity�� �commodity�� ��xed income�� �foreign exchange�� and

so on� and perhaps further broken down within each of these groups� Of course� a

single position can expose the �rm to risks associated with several of these markets

simultaneously� Correlations among risks argue for a uni�ed perspective� On the other

hand� the needs to assign narrow trading responsibilities and to measure performance

and pro�tability by area of responsibility suggest some form of classi�cation and risk

analysis for each position� We will be reviewing methods to accomplish these tasks��

Recent proposals for the disclosure of �nancial risk call for �rm�wide measures of

risk� A standard benchmark is the value at risk 
�VaR��� For a given time horizon t

and con�dence level p� the value at risk is the loss in market value over the time horizon

t that is exceeded with probability �� p� For example� the Derivatives Policy Group�

has proposed a standard for over�the�counter derivatives broker�dealer reports to the

Securities and Exchange Commission that would set a time horizon t of two weeks and

a con�dence level p of �� percent� as illustrated in Figure �� Statistically speaking�

this value�at�risk measure is the ����� critical value� of the probability distribution of

changes in market value� The Bank for International Settlements 
BIS� has set p to

�� percent and t to �� days for purposes of measuring the adequacy� of bank capital�

although� BIS would allow limited use of the bene�ts of statistical diversi�cation across

�Models of risk�management decision making for �nancial �rms can be found in Froot and Stein

�	���� and Merton and Perold �	����
 The Global Derivatives Study Group� G�� �	���� reviews

practices and procedures� and provides a follow up survey of industry practice in Group of Thirty

�	����

�See Derivatives Policy Group �	����

�For more on capital adequacy and VaR� see Dimson �	����� Jackson� Maude� and Perraudin �	�����

and Kupiec and O�Brien �	����

�See the December 	� 	��� communiqu�e of the Bank for International Settlements� �announcing

an amendment to the Basle Committee on Banking Supervision�� from BIS Review� Number ���

December 	� 	���� Basle� Switzerland
 See also the draft ISDA response to the Basle market risk

proposal made in April� 	���� in a memo from Susan Hinko of ISDA to the Basle Market Risk Task

Force� July 	�� 	���
 The ISDA response proposes to allow more �exibility in terms of measurement�

but require that �rms disclose a comparison between the value�at�risk estimated at the beginning

of each period� and the ultimately realized marks to market
 This would presumably lead to some

discipline regarding choice of methodology
 Incidentally� VaR is not the di�erence between the expected
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di	erent positions� and factors up the estimated ���� critical value by a multiple of ��

Many �rms use an overnight value�at�risk measure for internal purposes� as opposed to

the two�week standard that is commonly requested for disclosure to regulators� and the

���percent con�dence level is far from uniformly adopted� For example� J�P� Morgan

discloses its daily VaR at the ���percent level� Bankers Trust discloses its daily VaR

at the ���percent level�

One expects� in a stationary environment for risk� that a ���percent ��week value�at�

risk is a ��week loss that will be exceeded roughly once every four years� Clearly� then�

given the over�riding goal of protecting the franchise value of the �rm� one should not

treat one�s measure of value�at�risk� even if accurate� as the level of capital necessary

to sustain the �rm�s risk� Value at risk is merely a benchmark for relative judgements�

such as the risk of one desk relative to another� the risk of one portfolio relative to

another� the relative impact on risk of a given trade� the modeled risk relative to the

historical experience of marks to market� the risk of one volatility environment relative

to another� and so on� Even if accurate� comparisons such as these are speci�c to the

time horizon and the con�dence level associated with the value�at�risk standard chosen�

Whether the VaR of a �rm�s portfolio of positions is a relevant measure of the

risk of �nancial distress over a short time period depends in part on the liquidity of

the portfolio of positions� and the risk of adverse extreme net cash out�ows� or of

severe disruptions in market liquidity� In such adverse scenarios� the �rm may su	er

costs that include margins on unanticipated short�term �nancing� opportunity costs

of forgone �pro�table� trades� forced balance�sheet reductions� and the market�impact

costs of initiating trades at highly unfavorable spreads� Whether the net e	ect actually

threatens the ability of the �rm to continue to operate pro�tably depends in part on

the �rm�s net capital� Value at risk� coupled with some measure of cash��ow at risk�� is

relevant in this setting because it measures the extent of potential forced reductions of

the �rm�s capital over short time periods� at some con�dence level� Clearly� however�

VaR captures only one aspect of market risk� and is too narrowly de�ned to be used

on its own as a su�cient measure of capital adequacy�

In order to measure VaR� one relies on

value and the �
�	�critical value� but rather the di�erence between the current portfolio value and the

�
�	 critical value at the speci�ed time horizon
 To the error tolerance of current modeling techniques�

and for short time horizons� there is not much di�erence in practice

�By �cash��ow at risk� we mean a �worst�case�� say �
�� critical value� of net �cash� out�ow over

the relevant time horizon
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Figure � Value at Risk 
DPG Standard�

�� a model of random changes in the prices of the underlying instruments 
equity

indices� interest rates� foreign exchange rates� and so on��

�� a model for computing the sensitivity of the prices of derivatives to the underlying

prices�

In principle� key elements of these two basic sets of models are typically already

in place for the purposes of pricing and hedging derivatives� One approach to market

risk measurement is to integrate these models across the trading desks� and add the

additional elements necessary for measuring risks of various kinds� Given the di�culty

of integrating systems from diverse trading environments� however� a more common

approach is a uni�ed and independent risk�management system� In any case� the chal�

lenges are many� and include data� theoretical and empirical models� and computational

methods�

The next section presents models for price risk in the underlying markets� The

measurement of market risk for derivatives and derivative portfolios are then treated
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in Sections � through ��

As motivation of the remainder� the reader should think in terms of the following

broadly de�ned recipe for estimating VaR

�� Build a model for simulating changes in prices across all underlying markets�

and perhaps changes in volatilities as well� over the VaR time horizon� The

model could be a parameterized statistical model� for example a jump�di	usion

model based on given parameters for volatilities� correlations� and tail�fatness

parameters such as kurtosis� Alternatively� the model could be a �bootstrap� of

historical returns� perhaps �refreshed� by recent volatility estimates�

�� Build a data�base of portfolio positions� including the contractual de�nitions of

each derivative� Estimate the size of the �current� position in each instrument


and perhaps a model for changes in position size over the VaR time horizon� as

considered in Section ���

�� Develop a model for the revaluation of each derivative for given changes in the un�

derlying market prices 
and volatilities�� On a derivative�by�derivative basis� the

revaluation model could be an explicit pricing formula� a delta�based 
�rst�order

linear� approximation� a second�order 
delta�and�gamma based� approximation�

or an analytical approximation of a pricing formula that is �splined� for VaR

purposes from several numerically�computed prices�

�� Simulate the change in market value of the portfolio� for each scenario of the un�

derlying market returns� Independently generate a su�cient number of scenarios

to estimate the desired critical values of the pro�t�and�loss distribution with the

desired level of accuracy�

We will also consider� in Section �� the accuracy of shortcut VaR approximation meth�

ods based on multiplication of an analytically estimated portfolio standard deviation

by some scaling factor 
such as ���� for the ���� critical value under an assumption of

normality��

� Price Risk

This section reviews basic models of underlying price risk� Key issues are �fat tails�

and the behavior and estimation of volatilities and correlations�
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��� The Basic Model of Return Risk

We begin by modeling the daily returns R�� R�� � � � on some underlying asset� say on a

continuously�compounding basis� We can always write

Rt	� � �t � �t�t	�� 
����

where

�t is the expectation of the return Rt	�� conditional on the information available at

day t� 
In some cases� we measure instead the �excess� expected return� that is�

the extent to which the expected return exceeds the overnight borrowing rate��

�t is the standard deviation of Rt	�� conditional on the information available at

time t�

�t	� is a �shock� with a conditional mean of zero and a conditional standard deviation

of one�

The volatility of the asset is the annualized standard deviation of return� The volatility

at day t is therefore
p
n �t� where n is the number of trading days per year� 
In

general� the annualized volatility over a period of T days is
q
n�T times the standard

deviation of the total return Rt	� � � � � � Rt	T over the T �day period�� �Stochastic

volatility� simply means randomly changing volatility� Models for stochastic volatility

are considered below�

One sometimes assumes that the shocks ��� ��� � � � are statistically independent and

have the same probability distribution� denoted �iid�� but both of these assumptions

are questionable for most major markets�

A plain�vanilla model of returns is one in which � and � are constant parameters�

and in which the shocks are �white noise�� that is� iid and normally distributed� This

is the standard benchmark model from which we will consider deviations�

��� Risk�Neutral Versus Actual Value at Risk

Derivative pricing models are based on the idea that there is a way to simulate returns

so that the price of a security is the expected discounted cash �ow paid by the security�

This distorted price behavior is called �risk�neutral�� The fact that this risk�neutral
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pricing approach is consistent with e�cient capital markets
 does not mean that in�

vestors are risk�neutral� Indeed the actual risk represented by a position typically

di	ers from that represented in risk�neutral models�

For purposes of measuring value�at�risk at short time horizons such as a few days

or weeks� however� the distinction between risk�neutral and actual price behavior turns

out to be negligible for most markets� 
The exceptions are markets with extremely

volatile returns or severe price jumps�� This means that one can draw a signi�cant

amount of information for risk�measurement purposes from one�s derivative pricing

models� provided they are correct� Because this proviso is such a signi�cant one� many

�rms do not in fact draw much risk�measurement information about the price behavior

of underlying markets from their risk�neutral derivative pricing models� Rather� it is

not unusual to rely on historical price data� perhaps �ltered by some sort of statistical

procedure� Option�implied volatilities are sometimes used to replace historical volatili�

ties� but the goal of standard risk�measurement procedures that are independent of the

in�uence 
benign or otherwise� of the current thinking of option traders has sometimes

ruled out heavy reliance on derivative�implied parameters� We shall have more to say

about option�implied volatility later in this section�

The distinction between risk�neutral and actual price behavior becomes increasingly

important over longer and longer time horizons� This can be important for measuring

the credit exposure to default by a counterparty� One is interested in the actual�

not risk�neutral� probability distribution of the market value of the position with the

counterparty� For that reason alone� if not also for measuring the exposure of the �rm

to long�term proprietary investments� it may be valuable to have models of price risk

that are not derived solely from the risk�neutral pricing of derivatives�

��� Fat Tails

Figure � shows the probability densities of two alternative shocks� The �thinner tailed�

of the two is that of a normally distributed random variable� Even though the fatter

tailed shock is calibrated to the same standard deviation� it implies a larger overnight

VaR at high con�dence levels� A standard measure of tail�fatness is kurtosis� which is

E
S�
t �� the expected fourth power of the shock� That means that kurtosis estimates

are highly sensitive to extremely large returns� For example� while the kurtosis of

	See Harrison and Kreps �	����
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a normally distributed shock is �� S�P ��� daily returns for ���� to ���� have an

extremely high sample kurtosis of ���� in large measure due to the exceptional returns

associated with the market �crash� of October� ����� The �Black�Monday� return

of this crash represents a move of roughly �� to �� standard deviations� relative to

conventional measures of volatility just prior to the crash�

If one is concerned exclusively with measuring the VaR of direct exposures to the

underlying market 
as opposed to certain non�linear option exposures�� then a more

pertinent measure of tail fatness is the number of standard deviations represented by

the associated critical values of the return distribution� For example� the ���� critical

value of the standard normal is approximately ���� standard deviations from the mean�

By this measure� S�and�P ��� returns are not particularly fat�tailed at the ���� level�

The ���� critical value for S�and�P ��� historical returns for ������� is approximately

���� standard deviations from the mean� The ���� �right�tail� critical value� which

is the relevant statistic for the value at risk of short positions� is only ���� standard

deviations from the mean� As shown in Figure �� the ���� and ���� critical values

of S�P ��� returns are in fact closer to their means than would be suggested by

the normal distribution� One can also can see that S�P ��� returns have negative

skewness� meaning roughly that large negative returns are more common than large

positive returns���

Appendix F provides� for comparison� sample statistics such as kurtosis and tail

critical values for returns in a selection of equity� foreign exchanges� and commodity

markets� For many markets� return shocks have fatter than normal tails� measured

either by kurtosis or tail critical values at typical con�dence levels� Figures � and

� show that many typical underlying returns have fat tails� both right and left� at

both daily and monthly time horizons� For the markets included�� in Figures � and ��

left tails are typically fatter at the ��� con�dence level� showing a predominance of

negative skewness 
especially for equities��

Fat tails can arise through di	erent kinds of models� many of which can be explained

�
Skewness is the expected third power of shocks

��The markets shown are those for equities� foreign currencies� and commodities shown in the table

of sample return statistics in Appenidx F� as well as a selection of interest rates made up of� US

��month LIBOR� US �year Treasury� US ���year Treasury� UK ��month Bank Bills� UK overnight

discount� German Mark ��month rate� German Mark ��year rate� French Franc 	�month rate� Swedish

discount rate� Yen 	�month rate� and Yen 	�year rate
 Changes in log rates are used as a proxy for

returns� which is not unreasonable for short time periods provided there are not jumps
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Figure � Left Tail Fatness of Selected Instruments
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Figure � Right Tail Fatness of Selected Instruments
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with the notion of �mixtures of normals�� The idea is that if one draws at random

the variance that will be used to generate normal returns� then the overall result is fat

tails��� For example� the fat�tailed density plotted in Figure � is that of a t�distribution�

which is a mixture of normals in which the standard deviation of the normal is drawn

at random from the inverted gamma�� distribution�

While there are many possible theoretical sources of fat tails� we will be emphasizing

two in particular �jumps�� meaning signi�cant unexpected discontinuous changes in

prices� and �stochastic volatility�� meaning volatility that changes at random over time�

usually with some persistence�

��� Jump�Di�usions

A recipe for drawing fat�tailed returns by mixing two normals is given in Appendix A�

This recipe is consistent 
for short time periods� with the so�called jump�di�usion

model� whose impact on value�at�risk measurement is illustrated in Figure �� which

shows plots of the left tails of density functions for the price in two weeks of ���� in

current market value of the underlying asset� for two alternative models of price risk�

Both models have iid shocks� a constant mean return� and a constant volatility � of

���� One of the models is plain vanilla 
normal shocks�� The price of the underlying

asset therefore has a log�normal density� whose left tail is plotted in Figure �� The

other model is a jump�di	usion� which di	ers from the plain�vanilla model only in the

distribution of shocks� For the jump�di	usion model� with an expected frequency of

once per year� the daily return shock is �jumped� by adding an independent normal

random variable with a standard deviation of � � ���� The jump arrivals process is a

classical �Poisson�� independent of past shocks� The jump standard deviation of ���

is equivalent in risk to that of a plain�vanilla daily return with an annual volatility

of ����� Because the plain�vanilla and jump�di	usion models are calibrated to have

the same annual volatility� and because of the relatively low expected frequency of

jumps� the two models are associated with roughly the same ��week ��� value�at�risk

measures� The jump�di	usion VaR is slightly larger� at ������ than the plain�vanilla

VaR of ������ The major implication of the jump�di	usion model for extreme loss shows

up much farther out in the tail� For the jump�di	usion setting illustrated in Figure ��

one can calculate that with an expected frequency � of roughly once every ��� years� one

��For early models of this� see Clark �	����
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will lose overnight at least one quarter of the value of one�s position� In the comparison

plain�vanilla model� one would expect to wait far longer than the age of the universe

to lose as much as one quarter of the value of one�s position overnight��� Appendix F

shows that there have been numerous daily returns during ���������� across many

markets� of at least � standard deviations in size� Under the plain�vanilla model� a

��standard�deviation return is expected less than once per million days� Even ���

standard�deviation moves have occurred in several markets during this ���year period�

but are expected in the plain�vanilla�model less than once every ���� days�

Jump�Di�usion
Plain�Vanilla

VaR � � �
�� �Plain�Vanilla�
� � �
�	 �Jump�Di�usion�

� � 	��
� � 	��
� � 	 per year

Change in Value ��� for a �	�� Position

P
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b
a
b
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y
D
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�		 �	� �� �� �� �� �� �� �� � �	

Figure � ��Week ����VaR for Underlying Asset

Figure � compares the same plain�vanilla model to a jump�di	usion with � jumps

per year� with each jump having a standard deviation of � percent� Again� the plain

vanilla and jump�di	usion models are calibrated to the same volatility� While the ���

��week VaR for the underlying asset is about the same in the plain�vanilla and jump�

di	usion models� the di	erence is somewhat larger than that shown in Figure �� The

��The expected frequency of an overnight loss of this magnitude in the plain�vanilla model was

verbally related to us by Mark Rubinstein
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implications of the jump�di	usion model for the value at risk of option positions can

be more dramatic� as we shall see in Section ��

��� Stochastic Volatility

The second major source of fat tails is stochastic volatility� meaning that the volatility

level �t changes over time at random� with persistence� By persistence� we mean that

relatively high recent volatility implies a relatively high forecast of volatility in the near

future� Likewise� with persistence� recent low volatility is associated with a prediction

of lower volatility in the near future� One can think of the jump�di	usion model

described above as approximated in a discrete�time setting by an extreme version of a

stochastic volatility model in which the volatility is random� but with no persistence�

that is� each day�s volatility is drawn at random independently of the last� as in the

example described in Appendix A�

Even if returns are actually drawn each day with thin tails� say normally distributed�

given knowledge of that day�s volatility� we would expect to see fat tails in a frequency

plot of un�normalized daily returns� because returns for di	erent days are generated

with di	erent volatilities� the usual �mixing�of�normals� story� If this were indeed the

cause of the fat tails that we see in Figures � and �� we would expect to see the tail

fatness in those plots to be reduced if we normalized each day�s return by an estimate

of the level of the volatility �t for that day�

The e	ect of stochastic volatility on left tail fatness and negative skewness could be

magni�ed over time by negative correlation between returns and changes in volatility�

which is apparent� for example� in certain�� equity markets�

We will devote some attention to stochastic volatility models� not only because of

the issue of fat tails� but also in order to address the estimation of current volatility� a

key input to VaR models�

While one can envision a model for stochastic volatility in which the current level

of volatility depends in a non�trivial way on the entire path that volatility has taken

in the past� we will illustrate only Markovian stochastic volatility models� those of the

form

�t � F 
�t��� zt� t�� 
����

��For the empirical evidence in equity markets of stochastic volatility and correlation of volatility

and returns� see for example Bekaert and Wu �	����
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where F is some function in three variables and z�� z�� � � � is white noise� The term

�Markovian� means that the probability distribution of the next period�s level of volatil�

ity depends only on the current level of volatility� and not otherwise on the path taken

by volatility� This form of volatility also rules out� for reasons of simpli�cation� depen�

dence of the distribution of changes in volatility on other possible state variables� such

as volatility in related markets and macro�economic factors� which one might actually

wish to include in practice�

In principle� we would allow correlation between the volatility shock zt and the

return shock �t of 
����� and this has important implications for risk management� For

example� negative correlation implies negative skewness in the distribution of returns�

So that the VaR of a long position could be more than the VaR of a short position of

equal size�

There are several basic classes of the Markovian stochastic volatility model 
�����

Each of these classes has its own advantages� in terms of both empirical reasonability

and tractability in an option�pricing framework� The latter is particularly important�

since option valuation models may� under certain conditions� provide volatility esti�

mates implicitly� as in the Black�Scholes setting� We will next consider some relatively

simple examples�

����� Regime�Switching Volatility

A �regime�switching� model is one in which volatility behaves according to a �nite�state

Markov chain� For example� if one takes two possible levels� va and vb� for volatility in

a given period� we can take the transition probabilities of �t between va and vb to be

given by a matrix

 �

�
 aa  ab

 ba  bb

�
�

For example� if �t � va� then the conditional probability
�� that �t	� � vb is  ab�

An example� with parameters estimated�� from oil prices� is illustrated in Figure ��

One may want to allow for more than � states in practice� The diagonal probabilities

��This �ts into our general Markovian template �
� by taking F �va� z� t� � va for all z � z�a� where

z�a is chosen so that the probability that zt � z�a is  aa� by taking F �va� z� t� � vb whenever z � z�a�

and likewise for F �vb� z� t�

��This and the other energy volatility estimates reported below are from Du�e and Gray �	����


For more extensive treatment of regime�switching models of volatility� see Gray �	���� and Hamilton

�	����
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Volatility of Oil

day t day t! 	

Figure � Regime�Switching Volatility Estimates for Light Crude Oil

 aa and  bb of the regime�switching model can be treated as measures of volatility

persistence�

����� Auto�Regressive Volatility

A standard Markovian model of stochastic volatility is given by the log�auto�regressive

model

log ��t � 	 � 
 log ��t�� � �zt� 
����

��



where 	� 
� and � are constants��� Volatility persistence is captured by the coe�cient


� A value of 
 near zero implies low persistence� while a value near � implies high

persistence� We always assume that �� � 
 � �� for otherwise volatility is �explosive��

The term structure of volatility is the schedule of annualized volatility of return�

by the time�horizon over which the return is calculated� For the stochastic volatility

model 
����� in the case of independent shocks to returns and volatility��� the term

structure of conditional volatility is

!vt�T �
s
vart
Rt	� � � � ��RT �

T � t

�

vuut ��

T � t

T�t��X
k��

���
k

t exp

�
�	
k
�� 


� ��
�k

�
�� 
��

�
� 
����

where

�� � exp

�
	

�� 

�
�

�

��

�� 
�

�

is the steady�state�
 mean of ��t �

For the case of non�zero correlation between volatility and shocks� one can obtain

explicit calculations for the term structure of volatility in the case of normally dis�

tributed shocks� but the calculation is more complicated��� Allowing this correlation

is empirically quite important�

��From �
	�� with constant mean returns� we may write log�Rt � ��� � log��t�� ! logS
�
t � Harvey�

Ruiz� and Shepard �	��� and Harvey and Shepard �	���� have shown that one can estimate the

log auto�regressive model coe�cients by quasi�maximum likelihood� which is indeed consistent under

certain technical restrictions
 Taking logS�
t to be normally distributed� this would be a standard

setup for Kalman �ltering of volatility
 In such a setting� we would have access to standard methods

for estimating volatility given the coe�cients �� 	� and 
� and for estimating these coe�cients by

maximum likelihood
 See� for example� Brockwell and Davis �	��	� for the consistency of the estimators

in this setting

��This calculation is repeated here from Heynen and Kat �	����

�	That is� �� � limtE��

�
t �


�
Kalman �ltering can be applied in full generality here to get the joint distribution of return shocks

conditional on the path of volatility
 With joint normality� all second moments of the conditional dis�

tribution of return shocks are deterministic
 At this point� one applies the law of iterated expectations

to get the term volatility as a linear combination of the second moments of the log�normal stochastic

volatilities� which is also explicit
 The same calculation leads to an analytic solution for option prices

in this setting� extending the Hull�White model to the case of volatility that is not independent of

shock returns
 See Willard �	����
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����� Garch

Many modelers have turned to ARCH 
autoregressive conditional heteroscedasticity�

models of volatility proposed by Engle "����#� and the related GARCH and EGARCH

formulations� because they capture volatility persistence in simple and �exible ways�

For example� the GARCH�� model of stochastic volatility proposed by Bollerslev "����#

assumes that

��t � 	 � 
Rt � ��� � 
��t���

where�� 	� � and 
 are positive constants� Here� 
 is the key persistence parameter A

high 
 implies a high carryover e	ect of past to future volatility� while a low 
 implies

a heavily damped dependence on past volatility�

One can estimate the parameters 	� � and 
 from returns data� For example�

estimated GARCH parameters associated with crude oil have maximum likelihood

estimates 
with t statistics in parentheses� from recent data�� given by

��t � �����

�����

� �����

�����


Rt � ��� � �����

�����

��t���

The estimated persistence parameter for daily volatility is ������

Under the �non�explosivity� condition � �  � 
 � �� the steady�state volatility��

is � �
q
	�
�� ��� One can show that the term structure of volatility associated with

the GARCH model is

vt�T �

s

T � t��� � 
��t	� � ���

�� �T�t

�� �
�

A potential disadvantage of the GARCH model� noting that the impact of the

current return Rt on ��t	� is quadratic� is that a day of exceptionally large absolute

returns can cause instability in parameter estimation� and from this �overshooting� in

forecasted volatility� For example� with any reasonable degree of persistence� a market

crash or �jump� could imply an inappropriately sustained major impact on forecasted

volatility���

��This is known more precisely as the �GARCH�	�	�� model
 For speci�cs and generalizations� as

well as a review of the ARCH literature in �nance� see Bollerslev� Chou� and Kroner �	���

��The GARCH model is in the class �
� of Markov models since we can write �t � F ��t��� zt� �

��! ���t��zt ! 	��t���
���� where zt � �t is white noise


��See Du�e and Gray �	����

��This is limT�� E���t �
 The non�explosivity condition fails for the parameter estimates given for

crude oil

��Sakata and White �	���� have therefore suggested �high�breakdown point� estimators in this sort

��



����� Egarch

A potentially more �exible model of persistence is the exponential Garch� or �EGARCH�

model proposed by Nelson "����#� which takes the form��

log ��t � 	 � 
 log ��t�� � �

�
Rt � �

�t��

�
� �

�
����� Rt � �

�t��

���� �
s
�

�

�
A �

The term structure of volatility implied by the EGARCH model is

vt�T �

vuutT�t��X
k��

Ck�
��k

t �

where Ck is a relatively complicated constant given� for example� by Heynen and Kat

"����#� Nelson "����# has shown that the EGARCH model and the log�auto�regressive

model 
���� converge with decreasing period length� and appropriate normalization of

coe�cients� to the same model�

����� Cross�Market Garch

One can often infer volatility�related information for one market from changes in the

volatility of returns in another� A simple model that accounts for cross�market inference

is the multivariate GARCH model� For example� a simple ��market version of this

model takes �
BB�
��a�t
�ab�t

��b�t

�
CCA � 	 � 

�
BB�

R�
a�t

Ra�tRb�t

R�
b�t

�
CCA� 


�
BB�
��a�t��
�ab�t��

��b�t��

�
CCA �

where

� Ra�t is the return in market a at time t

� Rb�t is the return in market b at time t

� �a�t�� is the conditional volatility of Ra�t

� �b�t�� is the conditional volatility of Rb�t

� �ab�t�� is the conditional covariance between Ra�t and Rb�t

of environment� and give example estimates for S�P ��� returns

��The term

p
� is equal to Et��j�Rt � ���t��j�


��



� 	 is a vector with � elements

�  is a �� � matrix

� 
 is a �� � matrix�

With  and 
 assumed to be diagonal for simplicity� a maximum�likelihood estimate

for the bivariate GARCH model for heating oil 
a� and crude oil 
b� is given by

�
�����������	

��a�t

�ab�t

��b�t



������������
�

�
�����������	

������

�������

������

�������

�������

�������



������������
�
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�����������	

������ � �
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�
�����������	
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��b� t��



������������
�

with t�statistics shown in parentheses�

One notes the di	erences between the univariate and multivariate GARCH param�

eters for crude oil 
alone�� In principle� cross�market information can only improve the

quality of the model if the multivariate model is appropriate�

��	 Term Structures of Tail�Fatness and Volatility

Like volatility� tail�fatness� as measured for example by kurtosis� has a term structure

according to the time horizon over which the total return is calculated� In the plain�

vanilla model� the term structures of both volatility and tail�fatness are �at� In general�

the term structures of tail�fatness and volatility have shapes that depend markedly on

the source of tail�fatness� Here are several cases to consider�

��



�� Jumps Consider the case of constant mean and volatility� and iid shocks with

fat tails� 
This could be� for example� a jump�di	usion setting�� In this case�

the term structure of volatility is �at� As illustrated in Figure �� the central

limit theorem tells us that averaging iid variables leads to a normally distributed

variable��� We therefore expect that the term structure of tail fatness for the

jump�di	usion model underlying Figure � to be declining� when measured by

kurtosis� This is borne out in Figure ��� For example� while the ������� sample

daily return kurtosis for the S�P ��� index is ���� at the monthly level� the

sample kurtosis for this period is ���� 
estimated on an overlapping basis�� If we

were to measure tail fatness by the number of standard deviations to a particular

critical value� such as the ���� critical value� however� the term structure of tail

fatness would �rst increase and then eventually decline to the normal level of

������ as illustrated in Figure ��� At the ���� critical level� for typical market

parameters such as those shown in Figures � and �� the likelihood of a jump on

a given day is smaller than ����� so the impact of jumps on critical values of the

distribution shows up much farther out in the tail than at the ���� critical value�

At an expected frequency of � jumps per year� we would expect the �����critical

value to be more seriously a	ected by jumps at a time horizon of a few weeks�

�� Stochastic Volatility Suppose we have constant mean returns and iid normal

shocks� with stochastic volatility that is independent of the shocks� The term

structure of volatility can have essentially any shape� depending on the time�

series properties of �t� �t	�� � � �� For example� under an autoregressive model


���� of stochastic volatility� the term structure of volatility 
���� approaches an

asymptote from above or from below� as illustrated in Figure ��� depending on

whether the initial volatility �t is above or below the stationary level� This plot is

based on a theoretical stochastic volatility model 
����� using as the parameters

the maximum�likelihood estimates 	 � ����� 
 � ����� and � � ���� for this

model �tted to the Hang Seng Index by Heynen and Kat "����#� The three initial

levels shown are the steady�state mean volatility implied by the model 
B�� one

standard deviation of the steady�state distribution above the mean 
A�� and one

��The theory of large deviations� outlined in Appendix B for a di�erent application� can be used

to address the speed of convergence to normal tails
 For special cases� such as our simple jump�

di�usions� the calculations are easy
 Figure � plots the densities of t�distributed variables with the

indicated degrees of freedom
 The case of �t ��� is standard normal
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standard deviation of the steady�state distribution below the mean 
C�� Starting

from the steady�state mean level of volatility� the term structure of kurtosis is

increasing and then eventually decreasing back to normal� as illustrated�� for

case �B� in Figure ��� This �hump�shaped� term structure of tail fatness arises

from the e	ect of taking mixtures of normals with di	erent variances drawn from

the stochastic volatility model� which initially increases the term structure of

tail fatness� The tail fatness ultimately must decline to standard normal� as

indicated in Figure �� by virtue of the central limit theorem��
 For typical VaR

time horizons� however� the term structure of kurtosis is increasing from the

standard normal level of �� as shown in Figure ��� This plot is based on three

di	erent theoretical stochastic volatilitys models� using as the parameters the

maximum�likelihood estimates for the British Pound 
A�� which has extremely

high mean reversion of volatility and extremely high volatility of volatility� the

Hang�Seng Index 
B�� which has more moderate mean reversion and volatility of

volatility� and the S�P ��� Index 
C�� which is yet more moderate��� Uncertainty

about the initial level of volatility would cause some variation from this story�

and e	ectively increase the initial level of kurtosis� as illustrated for the case �A�

of random initial volatility� shown in Figure ��� for which the initial volatility is

drawn from the steady�state distribution implied by the estimated parameters�

A caution is in order We can guess that the presence of jumps would result is a

relatively severe mis�speci�cation bias for estimators of the stochastic volatility

model 
����� For example� a jump would appear in the estimates in the form

of a high volatility of volatility and a high mean�reversion of volatility� The

presence of both jumps and stochastic volatility is anticipated for these three

markets� Evidence for both jumps and stochastic volatility 
modeled in the form

of a GARCH� is presented by Jorion "����#�

��This plot is based on a theoretical stochastic volatility model �
�� using as the parameters the

maximum�likelihood estimates � � ����� 	 � ��	�� and 
 � ��� for this model �tted to the dollar

price of the British Pound by Heynen and Kat �	����

�	We are grateful to Ken Froot for pointing this out
 We can rely on the fact that� over time

intervals of �large� length� the volatilities at the begining and end of the intervals are �essentially�

independent� in the sense of the central limit theorem for recurrent Markov processes

�
These parameter estimates are given above for the Hang�Seng Idex and the Pound� and for the

S�P ��� are � � ����	� 	 � ����� and 
 � ����� �tted by Heynen and Kat �	����
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�� Mean Reversion Suppose we have constant daily volatility and iid normal

shocks� but we have mean reversion� For example� let �t � 	
R� �Rt���� where

	 � � is a coe�cient that �dampens� cumulative total return Rt � R�� � � ��Rt

to a long�run mean R�� This model� which introduces negative autocorrelation in

returns� would be consistent� roughly� with the behavior explained by Froot "����#

and O�Connell "����# of foreign exchange rates over very long time horizons� For

this model� the term structure of volatility is declining to an asymptote� while

the term structure of tail fatness is �at�

��
 Estimating Current Volatility

A key to measuring VaR is obtaining an estimate of the current volatility �t for each

underlying market� Various methods could be considered� The previous sub�section

o	ers a sample of stochastic volatility models that can� in principle� be estimated from

historical data� Along with parameter estimates� one obtains at each time period an

estimate of the current underlying volatility� See Hamilton "����#� Other conventional

estimators for current volatility are described below�

����� Historical Volatility

The historical volatility %�t�T implied by returns Rt� Rt	� � � � � RT is the usual naive

volatility estimate

%��t�T �
�

T � t

TX
s�t	�


Rs � %�t�T �
��

where %�t�T � 
Rt	� � � � � � RT ��
T � t�� In a plain�vanilla setting� this 
maximum�

likelihood� estimator of the constant volatility parameter � is optimal� in the usual

statistical sense� If the plain�vanilla model of returns applies at arbitrarily �ne data

frequency 
with suitable adjustment of � and � for period length�� then one can learn

the volatility parameter within an arbitrarily short time interval�� from the historical

volatility estimator� Empirically� however� returns at exceptionally high frequency

have statistical properties that are heavily dependent on institutional properties of the

��Literally� limT�� #�t�T � � almost surely� and since an arbitrary number of observations of returns

is assumed to be possible within an arbitrarily small time interval� this limit can be achieved in an

arbitrarily small amount of calendar time


��



market that are of less importance over longer time periods���

For essentially every major market� historical volatility data strongly indicate that

the constant�volatility model does not apply� For example� the rolling ����day historical

volatility estimates shown in Figure ��� for a major Taiwan equity index� appear to

indicate that volatility is changing in some persistent manner over time��� Incidentally�

in the presence of jumps we would expect to see large upward �jumps� in the ����day

rolling historical volatility� at the time of a jump in the return� coupled with a downward

jump in the rolling volatility precisely ��� days later� which suggests caution in the use

of rolling volatility as an estimator for actual volatility�

Exponential weighting of data can be incorporated in order to place more emphasis

on more recent history in estimating volatility� This amounts to a restrictive case of

the GARCH model� and is the standard adopted by J�P� Morgan for its RiskMetrics

volatility estimates� 
See Phelan "����#��

����� Black�Scholes Implied Volatility

In the plain�vanilla setting� it is well known that the price of an option at time t�

say a European call� is given explicitly by the famous Black and Scholes "����# formula

Ct � CBS
Pt� �� ��K� r�� given the underlying price Pt� the strike price K� the time � to

expiration� the continuously compounding constant interest rate r� and the volatility

�� It is also well known that this formula is strictly increasing in �� as shown in

Figure ��� so that� from the option price Ct� one may theoretically infer without error

��When estimating �� in certain markets one can also take special advantage of additional �nancial

price data� such as the high and low prices for the period� as shown by Garman and Klass �	�����

Parkinson �	����� and Rogers and Satchell �	��	�

��Of course� even in the constant�volatility setting� one expects the historical volatility estimate to

vary over time� sometimes dramatically� merely from random variation in prices
 �This is sometimes

called �sampling error
�� One can perform various tests to ascertain whether changes in historical

volatility are �so large� as to cause one to reject the constant volatility hypothesis at a given con�dence

level
 For example� under the constant volatility hypothesis� the ratio Fa�b � #��t�a��T �a�#�
�
t�b��T �b� of

squared historical volatilities over non�overlapping time intervals has the F distribution �with degrees

of freedom given by the respective lengths of the two time intervals�
 From standard tables of the F

distribution one can then test the constant�volatility hypothesis� rejecting it at� say� the ���percent

con�dence level� if Fa�b is larger than the associated critical F statistic
 �One should take care not

to select the time intervals in question in light of one�s impression� based on observing prices� that

volatility apparently di�ers between the two periods
 This would introduce selection bias that makes

such classical tests unreliable
�

��
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the volatility parameter � � �BS
Ct� Pt� ��K� r�� The function �BS
 � � is known�� as
the Black�Scholes implied volatility� While no explicit formula for �BS is available� one

can compute implied volatilities readily with simple numerical routines���
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Volatility �

Figure �� Black�Scholes �Price of Volatility�

In many 
but not all� markets� option�implied volatility is a more reliable method

of forecasting future volatility than any of the standard statistical methods that have

been based only on historical return data� 
For the empirical evidence� see Canina

and Figlewski "����#� Campa and Chang "����#� Day and C�Lewis "����#� Jorion "����#�

Lamoureux and Lastrapes "����#� and Scott "����#�� Of course� some markets have no

reliable options data�

Because we believe that volatility is changing over time� one should account for this

in one�s option�pricing model before estimating the volatility implied by option prices�

For example� Rubinstein "����#� Dupire "����#� Dupire "����#� and Derman and Kani

"����# have explored variations of the volatility model

�t � F 
Pt� t�� 
����

��This idea goes back at least to Beckers �	��	�

��For these and many other details on the Black�Scholes model and extensions� one may refer to

Cox and Rubinstein �	����� Stoll and Whaley �	����� and Hull �	����� among many other sources
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where Pt is the price at time t of the underlying asset� for some continuous function F

that is chosen so as to match the modeled prices of traded options with the prices for

these options that one observes in the market� This is sometimes called the implied�tree

approach���

����� Option�Implied Stochastic Volatility

One can also build option valuation models that are based on stochastic volatility�

and obtain a further generalization of the notion of implied volatility� For instance� a

common special case of the stochastic volatility models of Hull and White "����#� Scott

"����#� and Wiggins "����# assumes that� after switching to risk�neutral probabilities�

we have independent shocks to returns and volatility� With this 
in the usual limiting

sense of the Black�Scholes model for �small� time periods� one obtains the stochastic�

volatility option�pricing formula

Ct � CSV 
Pt� �t� t� T�K� r� � E�

h
CBS
Pt� vt�T � T � t�K� r�

i
� 
����

where

vt�T �

s
�

T � t

��t � � � �� ��T��� 
����

is the root�mean�squared term volatility� CBS
 � � is the Black�Scholes formula� and
E� denotes risk�neutral expectation at time t� This calculation follows from the

fact that� if volatility is time�varying but deterministic� then one can substitute vt�T

in place of the usual constant volatility coe�cient to get the correct option price

CBS
Pt� vt�T � T � t�K� r� from the Black�Scholes model��� With the above indepen�

dence assumption� one can simply average this modi�ed Black�Scholes formula over all

possible 
probability�weighted� realizations of vt�T to get the result 
�����

For at�the�money options 
speci�cally� options struck at the forward price of the

underlying market�� the Black�Scholes option pricing formula is� for practical purposes�

essentially linear in the volatility parameter� as illustrated in Figure ��� In the �Hull�

White� setting of independent stochastic volatility� the naive Black�Scholes implied

volatility for at�the�money options is therefore an e	ective 
albeit risk�neutralized� fore�

cast of the root�mean�squared term volatility vt�T associated with the expiration date of

��See Jackwerth and Rubinstein �	���� for generalizations and some empirical evidence

��This was noted by Johnson and Shanno �	����
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the option� On top of any risk�premium�� associated with stochastic volatility� correla�

tion between volatility shocks and return shocks causes a bias in Black�Scholes implied

volatility as an estimator of the expectation of the root�mean�squared volatility vt�T �


This bias can be corrected� see for example Willard "����#�� The root�mean�squared

volatility vt�T is itself larger than annualized average volatility 
�t�� � ���T����
q

T � t�

over the period before expiration� because of convexity e	ect of squaring in 
���� and

Jensen�s Inequality�

The impact on Black�Scholes implied volatilities of randomness in volatility is more

severe for away�from�the�money options than for at�the�money options� A precise

mathematical statement of this is rather complicated� One can see the e	ect� however�

through the plots in Figure �� of the Black�Scholes formula with respect to volatility

against the exercise price� For near�the�money options� the plot is roughly linear� For

well�out�of�the�money options� the plot is convex� A �smile� in plots of implied volatil�

ities against exercise price thus follows from 
����� Jensen�s inequality� and random

variation in vt�T � We can learn something about the degree of randomness in volatility

from the degree of convexity of the implied�vol schedule��


It may be useful to model volatility that is both stochastic� as well as dependent on

the price of the underlying asset� For example� we may wish to replace the univariate

Markovian stochastic�volatility model with

�t � F 
�t��� Pt� zt� t��

so that one combines the stochastic�volatility approach with the �implied tree� ap�

proach of Rubinstein� Dupire� and Derman�Kani� To our knowledge� this combined

model has not yet been explored in any systematic way�

����� Day�of�the�week and other seasonal volatility e	ects

Among other determinants of volatility are �seasonality� e	ects� For example� there

are day�of�the�week e	ects in volatility that re�ect institutional market features� in�

cluding the desire of market makers to close out their positions over weekends� One can

��See� for example� Heston �	���� for an equilibrium model of the risk premium in stochastic volatil�

ity

�	We can also learn about correlation between returns and changes in volatility from the degree of

�tilt� in the smile curve
 See� for example� Willard �	����
 For econometric models that exploit option

prices to estimate the stochastic behavior of volatility� see Pastrorello� Renault� and Touzi �	���� and

Renault and Touzi �	���
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�correct� for this sort of �seasonality�� for example by estimating volatility separately

for each day of the week�

For another example� the seasons of the year play an important role in the volatilities

of energy products� For instance� the demand for heating oil depends on winter weather

patterns� which are determined in the winter� The demand for gasoline is greater� and

shows greater variability� in the summer� and gasoline prices therefore tend to show

greater variability during the summer months�

��� Skewness

Skewness is a measure of the degree to which positive deviations from mean are larger

than negative deviations from mean� as measured by the expected third power of these

deviations� For example� equity returns are typically negatively skewed� as show in in

Appendix F� If one holds long positions� then negative skewness is a source of concern

for value at risk� as it implies that large negative returns are more likely� in the sense

of skewness� than large positive returns�

If skewness in returns is caused by skewness in shocks alone� and if one�s model of

returns is otherwise plain vanilla� we would expect the skewness to become �diversi�ed

away� over time� through the e	ect of the central limit theorem� as illustrated in

Figure �� for positively skewed shocks��� In this case� that is� the term structure of

skewness would show a reversion to zero skewness over longer and longer time horizons�

If� on the other hand� skewness is caused� or exacerbated� by correlation between shocks

and changes in volatility 
negative correlation for negative skewness�� then we would

not see the e	ect of the central limit theorem shown in Figure ���

��� Correlations

A complete model of price risk requires not only models for mean returns� volatilities�

and the distribution of shocks for each underlying market� but also models for the

relationships across markets among these variables� For example� a primary cross�

market piece of information is the conditional correlation at time t between the shocks

in markets i and j� Campa and Chang "����# address the relative ability to forecast

�
Plotted in Figure 	� are the densities of V �n�n for various n� where V �n� is the sum of n

independent squared normals
 That is V � ��
n
 By the central limit theorem� the density of

p
nV �n�

converges to that of a normal
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Figure �� Skewness Correcting E	ect of Diversi�cation

correlation of various approaches� including the use of the implied volatilities of cross�

market options�

In order to measure value�at�risk over longer time horizons� in addition to the

conditional return correlations one would also depend critically on one�s assumptions

about correlations across markets between changes in volatilities�
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� VaR Calculations for Derivatives

This section is a brief review of delta and gamma�based VaR calculation methods for

options� As we shall see� as a last resort� one can estimate VaR accurately� given enough

computing resources� by Monte Carlo simulation� assuming of course that one knows

the �correct� behavior of the underlying prices and has accurate derivative�pricing

models� In practice� however� brute�force Monte Carlo simulation is not e�cient for

large portfolios� and for expositional reasons we will therefore take the delta�gamma

approach seriously even for a simple option�

We will explore the �delta� and �delta�gamma� approaches for accuracy in plain�

vanilla and in our simple jump�di�usion settings� It would be useful to go beyond this

with an examination of the accuracy of delta�gamma�based methods with stochastic

volatility and skewed return shocks of various sorts�

��� The Delta Approach

Suppose f�y	 is the price of a derivative at a particular time and at a price level y

for the underlying� Assuming that f is di�erentiable� the delta �
	 of the derivative

is the slope f ��y	 of the graph of f at y� as depicted in Figure �� for the case of the

Black�Scholes pricing formula f of a European put option�

For small changes in the underlying price� we know from calculus that a reasonably

accurate measure of the change in market value of a derivative price is obtained from

the usual rst�order approximation�

f�y � x	 � f�y	 � f ��y	x� ���	� ����	

where ���	 is the �rst�order� approximation error� Thus� for small changes in the

index� we could approximate the change in market value of a derivative as that of a

xed position in the underlying whose size is the delta of the derivative�

For spot or forward positions in the underlying� the delta approach is fully accurate�

because the associated price function f is linear in the underlying�

The delta approximation illustrated in Figure �� is the foundation of delta hedging�

A position in the underlying asset whose size is minus the delta of the derivative is a

hedge of changes in price of the derivative� if continually re�set as delta changes� and

if the underlying price does not jump�
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Figure ��� The Delta �rst�order	 Approximation

The VaR setting for our application of the delta approach� however� is perverse� for

it is actually the large changes that are typically of most concern� For a given level of

volatility� delta�based approximations are accurate only over short periods of time� and

even then are not satisfactory�� if the underlying index may jump dramatically and

unexpectedly� One can see from the convexity of option�pricing functions illustrated

in Figure �� that the delta approach over�estimates the loss on a long option position

associated with any change in the underlying price� �If one had sold the option� one

would under�estimate losses by the delta approach�	

The delta approach allows us to approximate the VaR of a derivative as the value�

at�risk of the underlying multiplied by the delta of the derivative��� Figure �� shows�

��See Page and Feng ������ and Estrella� Hendricks� Kambhu� Shin� and Walter �������
��It may be more accurate to expand the 	rst
order approximation at other points than the current

price x� We use the forward price of the underlying for these calculations at the value
at
risk time

horizon for these calculations� but the di�erence is negligible�
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Figure ��� ��Week Loss on ��� Out�Of�Money Put �Plain�Vanilla Returns	

as predicted� that the probability density function for the put price�� at a time horizon

of � weeks� shown as a solid line� has a left tail that is everywhere to the right of

the density function for a delta�equivalent position in the underlying� �The option is

a European put worth ����� expiring in one year� and struck ��� out of the money�

We use the plain�vanilla model for the underlying� at a volatility of ���� The short

rate and the expected rate of return on the underlying are assumed to be �������	 In

particular� the ��week VaR �at ��� condence	 of the put is ������� but is estimated

by the delta approach to have a VaR of ������� �representing a loss of more than the

full price of the option� which is possible because the delta�approximating portfolio is a

short position in the underlying�	 Figure �� shows the same VaR estimates for a short

position in the same put option�

We will discuss below the more accurate �gamma� approach�

��This can be calculated explicitly by the strict monotoncity of the Black
Scholes formula�
��The short rate and expected rate of return have neglible e�ects on the results for this and other

examples to follow�
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Figure ��� ��Week Loss on Short ��� Out�Of�Money Put �Plain�Vanilla Returns	

��� Impact of Jumps on Value at Risk for Options

Figure �� illustrates the same calculations shown in Figure ��� with one change� The

returns model is a jump�di�usion� with an expected frequency of � � � jumps per year�

and return jumps that have a standard deviation of � � ��� The total annualized

volatility of daily returns is kept at � � ���� The value�at�risk of the put has gone up

from ������ to ������� The delta approximation is roughly as poor as it was for the

plain�vanilla model� For these calculations� we are using the correct theoretical option�

pricing formula��� the correct delta��� and the correct probability distribution for the

��One can condition on the number of jumps� compute the variance of the normally distributed

total return over one year associated with k jumps� use the Black
Scholes price for this case� weight by

the probability of pk of k jumps� and add up for k ranging from � to a point of reasonable accuracy�

which is about �� jumps�
��The same trick used for the pricing formula works� as the derivative of a sum is the sum of the

derivatives�
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underlying price��� �We could also have done these calculations with the Black�Scholes

option prices and deltas� which is incorrect� We do not expect a signicant impact of

this error�	
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Figure ��� ��Week Loss on ��� Out�Of�Money Put �Jump�Di�usion	

��� Beyond Delta to Gamma

A common resort when the rst�order �that is� �delta�	 approximation of a derivative

revaluation is not su�ciently accurate is to move on to a second�order approximation�

For smooth f � we have

f�y � x	 � f�y	 � f ��y	x�
�

�
f ���y	x� � ���	� ����	

where the second�order error ���	 is smaller� for su�ciently small x� than the rst order

error� as illustrated by a comparison of Figures �� and ���

��Again� one conditions on the number of jumps� and adds up the k
conditional densities for the

underlying return over a two
week period� and averages these densities with pk weights� The resulting

density is a weighted sum of exponentials of quadratics� which is easy to work with�
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Figure ��� Delta�Gamma Hedging� second order approximation

For options� with underlying index y� we say that f ���y	 is the gamma ��	 of the op�

tion� In a setting of plain�vanilla returns� both the delta and the gamma of a European

option are known explicitly��� so it is easy to apply the second�order�	 approximation

����	 in order to get more accuracy in measuring risk exposure�

For value�at�risk calculations for the plain�vanilla returns model and plain�vanilla

options� gamma methods are �optimistic� for long option positions� because the ap�

proximating parabola lies above the Black�Scholes price� as shown in Figure ��� The

gamma�based value�at�risk estimate therefore under�estimates the actual value�at�risk��


We can see this in the previous two gures� Indeed the gamma�based density approxi�

��See� for example� Cox and Rubinstein �������
�	One might think that even higher order accuracy can be achieved� and this is in principle correct�

See Estrella� Hendricks� Kambhu� Shin� and Walter ������� One the other hand� the approximation

error need not go to zero� See Estrella �������
�
This is not just a question of convexity of the option price� it is a third
derivative issue�
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mations�� have a �funny tail�� corresponding to the �turn�back point� of the approxi�

mating parabola�

��� Gamma�Based Variance Estimates

Based on the gamma approximation� the variance of the revaluation of a derivative

whose underlying is y �X� where X is the unexpected change� is approximated from

����	� using the formula for the variance of a sum� by

var�f�y �X	� � Vf�y	 � f ��y	�var�X	 �
�

�
f ���y	�var�X�	 � f ��y	f ���y	 cov�X�X�	�

For log�normal or normal X� these moments are known explicitly� providing a simple

estimate of the risk of a position� This calculation is relatively accurate in the above

settings for typical parameters� One may then approximate the value�at�risk at the

��� condence level as ����
q
Vf�y	� taking the ���� critical value ���� for the standard

normal density as an estimate of the ���� critical value of the normalized density of the

actual derivative position� The accuracy of this approximation declines with deviations

from the plain�vanilla returns model� with increasing volatility� and with increasing time

horizon�

��� Delta�Gamma Exposures of Cross�Market Derivatives

Some derivatives are based on more than one underlying� For example� a cross�rate

option can be exposed to two currencies simultaneously� The delta approximation of

an option exposed to two factors� say marks and yen� is to treat the position as a

portfolio of two positions� 
i units of marks and 
j units of yen� where


i�yi� yj	 �
�

�yi
f�yi� yj	 �

f�yi � x� yj	� f�yi� yj	

x
�

and likewise for 
j�yi� yj	� where f�yi� yj	 is the price of the option at the respective

underlying indices yi and yj for marks and yen� respectively�

For a position or portfolio that is sensitive to two or more underlying indices� such

as an option on a spread� in order to estimate risk to second�order accuracy� one could

use the deltas and gammas with respect to each underlying� The second�order terms

��This can be calculated by the same method outlined for the delta case�
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would include the �cross�gamma� of a derivative with price f�yi� yj	 at underlying

prices yi and yj for markets i and j� The cross�gamma is dened as the derivative

�ij �
��

�yi�yj
f�yi� yj	 �


i�yi� yj � x	�
i�yi� yj	

x
�

For the case of i � j� this is the usual gamma �second derivative	 of the position with

respect to its underlying index�

��� Exposure to Volatility

For derivative positions� one may wish to include the �vega� risk associated with un�

expected changes in volatility��� That is� suppose the volatility parameter �t changes

with a certain volatility of its own� The sensitivity of the option price with respect

to the volatility� in the sense of rst derivatives� is often called �vega�� If volatility

is indeed stochastic� the Black�Scholes formula does not literally apply� although the

explicit Black�Scholes vega calculation is a useful approximation of the actual vega over

small time horizons�

Figure �� illustrates the sensitivity of an option to unexpected changes in the volatil�

ity of the underlying asset� All else the same� at�the�money options are more sensitive

to changes in volatility than are out�of�the�money options� This sensitivity is increas�

ing in the initial level of the underlying volatility� Figure �� shows� however� that per

dollar of initial option premium� the sensitivity in market value to changes in volatility

is greater for options that are farther out of the money� and for lower initial volatil�

ity� The distinction between the absolute and relative sensitivities of option prices to

volatility arises from the fact that an option�s price declines more quickly than does

its vega� as the option becomes more and more out�of�the�money and as the volatility

parameter is lowered�

For example� suppose the underlying volatility is ���� A call option struck ��� out

of the money with an expiration in � months has a market value that almost doubles

if the volatility increases unexpectedly from ��� to ���� For another case� in which

the underlying volatility is initially twice as big� the same option increases in market

value by roughly ��� under the same circumstances�

Even for a major liquid currency such as the Pound or Mark� the estimated daily

��See Page and Feng �������
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Figure ��� Sensitivity of Call Price to Volatility

volatility of the volatility can at times exceed�� ���� �annualized	� implying non�

trivial over�night exposure of an option portfolio to unexpected changes in volatility�

particularly for portfolios with a signicant fraction of their market value represented

by out�of�the�money options on low�volatility underlying assets�

��	 Numerical Estimation of Delta and Gamma

Other than for simple European options and certain exotics� the deltas and gammas

of derivatives are not generally known explicitly� These derivatives can be estimated

numerically from derivative�pricing models� For example� we can see in Figure �� that

a reasonable approximation of the delta is obtained by valuing the derivative price f�y	

at an underlying price y that is just below the current price� re�valuing the derivative

price f�y � x	 at a price y � x for the underlying that is just above the current price�

and then computing the usual rst�di�erence approximation


 � f�y � x	� f�y	

x
��See Heynen and Kat ������ for estimates of the volatility of volatility of certain exchange rates

and equity indices� One should of course beware of mis
speci	cation of the stochastic volatility model�
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Figure ��� Relative Sensitivity of Call Price to Volatility

of the rst derivative of f at y � x��� With more price information� or with an

estimate of gamma� one can do better than this simple method� There are related

nite�di�erence�based approximations for gammas�

In order to evaluate the derivative prices f�y	 and f�y � x	 for this application�

one may need to solve a partial di�erential equation� or to simulate the cash  ows

on the derivative at initial conditions x and x � y for the underlying� This is quite

computationally demanding�

Recent advances�� in an area of stochastic calculus called �stochastic  ows� allow

one to exploit a single simulation of the underlying price process from y� rather than

require separate simulation from y and from y � x� Using the single simulated path

from y� one can estimate the implied path from y�x� as illustrated in Figure ��� There

are also ways to simulate only the paths that �matter�� For example� with a put� one

can condition on the event that the price of the underlying drops� See� for example�

Fournie� Lebuchoux� and Touzi ������� We expect many new tools to emerge in this

direction���

��See� for example� Kunita ������� For an application to VaR� see Grundy and Wiener �������
��For a recent example� see Schoenmakers and Heemink ������� for a method that uses a 	nite


di�erence solution as a 	rst step in order to speed up the second
state Monte Carlo simulation through
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Figure ��� Using Stochastic Flows to Avoid Re�Simulation

��
 Impact of Intra�Period Position�Size Volatility

It is conventional to base value�at�risk calculations on the sizes of positions at the

beginning of the accounting period� ���day and ���day periods are common�	 If one

knows that the position size is expected to increase or decrease through the period�

then one can approximate the e�ect of changing position size �assuming no correlation

between changes in position size and returns	 by replacing the initial position size

with the square root of the mean squared position size over the accounting period�

For example� it is not unusual for broker�dealers in foreign exchange to have dramatic

increases in the sizes of their positions during the course of a trading day� and then to

dramatically reduce their positions at the end of the trading period in order to mitigate

risk over non�trading periods� If not accounted for� this could cause estimated VaR to

signicantly understate actual prot�and�loss risk�

Let us consider a simple example designed to explore only the e�ect of random vari�

ation in position size around a given mean� without considering the e�ect of changes in

the mean itself� Suppose the underlying asset returns are plain vanilla with constant

volatility �� We suppose that the position size is a classical log�normal process with

a control
variate variance reduction� See Ca�isch and Moroko� ������ for an example of �quasi


random� Monte Carlo methods�
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volatility V � We assume that the position size is constant in expectation �a �mar�

tingale�	� but �in the usual sense of returns	 has correlation 	 with the asset� The

VaR associated with the stochastic trading strategy is increasing in 	 and� if 	 
 �� is

increasing in V � If 	 � �� the e�ect of stochastic position size is ambiguous�

One can show that� over a trading period of length t� the impact of stochastic

position size on VaR is to multiply VaR by a factor of approximately��

q�V� 	� �� t	 �
e�t � �

�t
�

where � � �V � � �	V �� The �worst case� is 	 � �� Suppose 	 � � and � � ����� If

the standard deviation of the daily change in position size is �� percent of its initial

size� we have V � ����
p
��� � ���� For this case� a stochastic position size raises the

e�ective volatility by a factor of approximately

q����� �� ���� t	 �
e����t � �

����t
�

Over � day �t � �����	� we have a stochastic�size factor of ���� representing roughly

a �� percent higher VaR due to stochastic position size� Over � weeks� however� the

impact of stochastic position size in this example is a factor of ���� In other words�

even though the position size is not changing in expected terms� if one were to treat

the position size as constant over � weeks� the VaR would be low by a factor of ����

Even for small asset volatility �any non�zero � applies	 and zero correlation� we get a

��week �bias factor� of q����� �� �� ����	 � ��� for the same position size volatility of

�� percent per day� as shown Figure ���

In its recent disclosure documents regarding VaR� Banker�s Trust remarks on the

relevance of position size volatility� although no estimates of this e�ect are reported�

��From stochastic calculus� for a trading strategy funded by riskless borrowing or lending� with

quantity Qt of the underlying at time t and an asset with price Xt at time t� we have a variance of

gain or loss over the period from time � to time t of E�
R t


Q�

s�
�X�

s ds�� neglecting the e�ect of expected

returns on variance� which are truly neglible over typical value
at
risk horizons� Taking X and Q

to be log
joint
normal with the indicated parameters leads to the stated result by calculus� ignoring

e� � �� � �� for small �� We take ��t to be �small� for this purpose� but not �t� A precise caluclation

is easy but somewhat messier�
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Figure ��� Impact of Position Size Volatility on Value at Risk

� Portfolio VaR

Using modern portfolio methods� we could imagine a �grand unied� market�risk man�

agement model that covers all positions in all markets� In this section� we study the

estimation of the VaR for the entire portfolio� accounting for diversication e�ects� and

attempting to deal with the serious computational challenges� We will examine several

numerical approaches�

��� Risk Factors

The rm�s portfolio of positions has a market value that could be shocked by any of

a number of risk factors� such as the S!P ��� index� the ��year U�S� Treasury rate�

the WTI spot Oil price� the German Mark exchange rate� the Nikkei equity index� the

���year Japanese Government Bond �JGB	 rate� and so on� In practice� there could be

several hundred� or more� such risk factors that are actually measured� We can label

them X�� � � � � Xn� treating Xi as the �surprise� component of the i�th risk factor� that

is� the di�erence between the i�th risk factor and its expected value�

��



The covariances of the risk factors are key inputs��� The covariance Cij between

risk factors Xi and Xj is �i�j	ij� the product of the standard deviations �i of Xi and

�j of Xj with the correlation 	ij between Xi and Xj� Historically tted correlations

or standard deviations can be adjusted on the basis of option�implied information� or

adjusted arbitrarily�� for sensitivity analysis of the e�ects of changing covariances� as

explained in Section ���� While the risk factors are often taken to be market rates or

prices� there is no reason to exclude other forms of risk� such as certain volatilities�

that are not well captured directly by prices or rates�

Suppose� to take the simplest case� that the unexpected change in market value of

one�s portfolio is

Y � �X� � �X� � � � �� nXn�

where i is the direct exposure of the portfolio to risk factor i� which we assume for the

moment to be xed over the VaR time horizon� We measure i as the dollar change

in the market value of the portfolio in response to a unit change in risk factor i� Then

the total risk �standard deviation	 D of the portfolio is determined by�

D� �
nX

i��

nX
j��

ijCij�

If X�� � � � � Xn were to be treated as jointly normally distributed� then the value�at�

risk� at the ���pecent level� is simply the ���percentile change for a normally distributed

random variable with standard deviation D� which is approximately �����D� Suppose�

for example� that we estimate a standard deviation of D � �� million dollars on a

daily basis� Under a normal approximation for the ���� critical value� this means a

���percentile portfolio VaR of ����� million dollars� On a weekly basis� this is roughly

������
p
� � ����� million� and on an annual basis� this is roughly ������

p
�� � ���

million dollars� The notion that risks may be re�scaled by the square root of the

��For example� J�P� Morgan�s RiskMetrics provides much of necessary data that could be used to

construct a covariance matrix� allowing daily downloads of historical volatilities and correlations for

the major currencies� equity indices� commodity and interest rates�
��One cannot adjust covariances arbitrarily� for not every matrix is a legitimative covariance matrix�

Indeed� the data provided by RiskMetrics are not literally consistent with a true covariance matrix�

and simulating random variables consistent with the reported correlations can only be accomplished

after adjusting the correlations� One method that works reasonably well is an eigenvalue
eigenvector

decomposition of the covariance matrix� replacement of any negative values �which are in practive

small relative to the largest eigenvalues� with zero� and recomposition of the covariance matrix�
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time period is reasonable only if there is not signicant variation in standard devia�

tions� or correlation in price changes� over the time period in question� as discussed

in Section �� or signicant non�linearities in derivative prices as functions of under�

lying market prices� We will examine the quality of this scaling approximation in

Section �����

��� Simulating Underlying Risk Factors

The normal distribution is� in practice� only useful as a rough approximation� Fat

tails� as explained in Section � are common� A suggestion for simulating a fat�tailed

distribution is given in Appendix A� While fat tails may be important for exposure to a

single risk factor� they may be less critical for a well�diversied portfolio� because of the

notion of the central limit theorem� which implies that the sum of a �large� number of

independent random variables �of any probability distribution	 has a probability distri�

bution that is approximately normal� under technical regularity conditions��	 We will

soon see the quality of this analytical approximation� based on normal distributions�

in an extensive example�

In any case� regardless of the shape of the probability distributions� if one can

simulate X�� � � � � Xn� then one can simulate the total unexpected change in market

value� Y � �X�� � � ��nXn� One can then estimate the VaR as the level of loss that

is exceeded by a given fraction p of simulated outcomes of Y � Appendix B discusses the

issue of how many simulated scenarios is a su�cient number for reasonable accuracy�

Because of sampling error� one can do better than simply using the ���� critical value

of the simulated data to estimate the ��� VaR of the underlying distribution� See� for

example� Bassi� Embrechts� and Kafetzaki ������ and Butler and Schachter ������ for

methods that estimate �smooth� tails from sampled data�

�	See� for example� Durrett ������� This is not to suggest that the risk factors X�� � � � � Xn are

themselves independent� but rather that� in some cases� they may be approximately expressed in

terms of independent random variables Z�� � � � � Zk� for some k � n� �For VaR calculations� this idea

is pursued by Jamshidian and Zhu �������� The idea behind principal
component decomposition is an

example� The question at hand is then whether the portfolio risk is su�ciently �diversi	ed�� in terms

of dependence on Z�� � � � � Zk� to take advantage of the principle underlying the central limit theorem�
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��� Bootstrapped Simulation from Historical Data

In a stationary statistical environment� one can simulate underlying prices in an his�

torically realistic manner by �bootstrapping� from historical data� For example� one

can simply take a data�base of actual historical returns� unadjusted� as the source

for simulated returns� This will capture the correlations� volatilities� tail fatness and

skewness in returns that are actually present in the data� avoiding a need to parame�

terize and estimate a mathematical model� with the encumbent costs and dangers of

misspecication� J�P� Morgan� for example� reports that it uses actual historical price

changes to measure its VaR� For reasons of stationarity� use of historical returns is

usually preferred to use of historical price changes�

On the other hand� because of signicant non�stationarity� at least in terms of

volatilities and correlations� one may wish to �update� the historical return distribu�

tion� For example� suppose one wishes to update the volatilities� Rather than drawing

from the time series R�� R�� � � � of historical returns on a given asset� one could draw

from the returns "R�� "R�� � � � dened by

"Ri � Ri

"V

V
�

where V is the historical volatility and "V is a recent volatility estimate� for example a

near�to�expiration option�implied volatility�

Going beyond volatilities� one can update as well for recent correlation estimates�

For example� suppose C is the historical covariance matrix for returns across a group

of assets of concern� and "C is an updated estimate� Let R�� R�� � � � denote the vectors

of historical returns across these markets� The historical return distribution can be

updated for volatility and correlation by replacing Rt� for each past date t� with

"Rt � "C���C����Rt� ����	

where C���� is the matrix�square�root of C��� and likewise for "C���� The covariance

matrix associated with the modied data "R�� "R�� � � � is then
�


"C���C����C���C���C���� "C��� � "C�

�
We use the fact that� for a random vector X with covariance matrix C� and for any compatible

matrix A� the covariance of AX is ACA��

��



as desired� We have not explored the implications of this linear transformation for

skewness and tail behavior� As correlation estimates tend to be relatively unstable�

any corrections for estimated correlation should be adopted with caution�

��� The Portfolio Delta Approach

Unfortunately� the exposure i to a given risk factor Xi is typically not constant� as

assumed above� For example� if Xi is the unexpected change in the S!P ��� index and

one�s portfolio includes S!P ��� options� then i is not constant because the change

in market value of the options is non�linear in Xi� as illustrated in Figure ���

With certain types of options and other derivatives� for small changes in the un�

derlying� the delta approach is su�ciently accurate in practice� and one could think in

terms of the approximation

Y � 
iX� � � � ��
nXn�

where 
i is the delta of the total portfolio with respect to the i�th risk factor�

For a portfolio of k di�erent options or other derivatives on the same underlying

index� with individual price functions f�� � � � � fk� we can compute the delta of the

portfolio from the fact that

d

dy
�f��y	 � f��y	 � � � �� fk�y	� � f �

�
�y	 � f �

�
�y	 � � � �� f �k�y	� ����	

That is� the delta of a sum is the sum of the deltas� One can likewise add in deltas for

cross�market derivatives� as discussed in Section ����

��� A Working Example

In order to illustrate the implications of various methods for estimating the VaR of

derivatives portfolios� we will present an extensive hypothetical example� For this

example� there are total of ��� underlying assets� those covered by RiskMetrics on

July ��� ����� A portfolio of plain�vanilla options on these underlying assets was

simulated by Monte Carlo� with the following distribution�

� Option Type� Independently� any option is drawn with probabilities ��� of being

a European call� and ��� of being a European put�
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� Long or Short� Independently� an option position is long with probability ��� and

short with probability ���� We will also consider a portfolio dominated by long

option positions� obtained simply by reversing the signs of the quantities of all

options in the portfolio�

� Maturity� Independently� the time to expiration is � month with probability ����

� months with probability ���� � months with probability ���� and � year with

probability ����

� Moneyness� Independently� a given option has a ratio m of exercise price to

forward price that is log�normally distributed with mean � and ��� �volatility��

in the sense that log�m	 has standard deviation ����

� Quantity� Independently� the size Q of each option position is log�normally dis�

tributed� with log�Q	 standard normal�

The ��� underlying assets can be categorized into four groups� Commodity �CM	�

Foreign Exchange �FX	� Fixed Income �FI	� and Equity �EQ	� The portfolio that was

randomly generated using the above parameters has a total of ������ options� Table �

shows the number of options and underlying instruments in each of the four groups�

Within each group� there is an equal number of options on each underlying asset� One

can see in Tables � and � the approximate distribution of value and risk across the

four groups� The reported standard deviations and correlations were estimated using

delta approximations� and annualized� and were based on daily standard deviations

and correlations for the underlying ��� assets that were calculated from RiskMetrics

results on July ��� �����

Table �� Descriptive Statistics of the Reference Short Option Portfolio

CM FX FI EQ Total

Value ��	 ����� ����� ������ ������ �������

Standard Deviation ��	 ���� ���� ���� ���� �����

Number of Instruments �� �� ��� �� ���

Number of Options ��� ��� ���� ���� �����
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Table �� Approximate Correlation Matrix of the Portfolio Components

CM FX FI EQ

CM ���� ���� ����� ����

FX ���� ���� ���� ����

FI ����� ���� ���� ����

EQ ���� ���� ���� ����

��� Delta and Gamma �In the Large�

As a preview of the implications of value�at�risk estimation using approximations based

on deltas and gammas� we constructed a derivative portfolio on a single hypothetical

underlying� consisting of all ������ options that were randomly generated using the

algorithm described above� From the Black�Scholes formula� we can calculate the

value of the portfolio as a function of the underlying asset price� For this� we assumed

an underlying annualized volatility parameter of ������ which was the July ��� ����

RiskMetrics�based volatility estimate for S!P ���� Figure �� shows a plot of this total

value function� as well as its delta and delta�gamma approximations� assuming that

the underlying returns are plain vanilla���

One sees in Figure �� the overall concavity of the payo� function of an option

portfolio that is predominatly short� For such a portfolio� the delta approximation is

always above� and the delta�gamma approximation is always below� the actual value of

the portfolio� For the version of our portfolio that is predominantly long options� the

opposite conclusions apply�

Our VaR results are summarized in Appendix E� We will refer to a subset of them

in the following analysis of the quality of various VaR approximations for an option

portfolio�

��We have made the same calculation for the case of a jump
di�usion of the sort considered earlier

in Figure ��� using the correct pricing� deltas� and gammas associated with this model� To the eye� the

plots for the jump
di�usion case are virtually identical to those shown in Figure ��� and not reported�
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Figure ��� Value Approximations for a Random Portfolio of ������ options
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��	 The Portfolio Delta�Gamma Approach

For the case of a portfolio exposed to many di�erent underlying assets� one can compute

a delta�gamma�based approximation of the market value of the entire book in terms

of the deltas and gammas of the book with respect to each underlying asset and each

pair of underlying assets� respectively� The �i� j	�gamma of the entire book� for any i

and j� is merely the sum of the �i� j	�gammas of all individual positions� �Again� from

calculus� the derivative of a sum is equal to the sum of the derivatives�	

Combining all of the within�market and across�market deltas and gammas for all

positions �underlying and derivatives	� the total change in value of the entire book

�neglecting the time value� which is easily included and in any case is neglibile for

typical portfolios� for value�at�risk calculations	� has the delta�gamma approximation�

Y �
��	 �
nX

j��


jXj �
�

�

nX
j��

nX
k��

�jkXjXk� ����	

where �ij is the �i� j	�gamma of the entire book�

From ����	� we can compute the portfolio variance to second�order accuracy as

var�Y �
��		 �
X
j

X
k


j
kcov�Xj� Xk	 �
X
i

X
j

X
k


i�jk cov�Xi� XjXk	

�
�

�

X
i

X
j

X
k

X
�

�jk�k� cov�XiXj� XjXk	� ����	

The rst term of ����	 may be recognized as the rst�order estimate of the variance of

the book discussed in the previous section� The covariance terms involving products

of the form XiXj can be computed explicitly for the case of normal or our simple

jump�di�usion models of the underlying returns associated with X�� X�� � � � � Xn�

��
 Sample VaR Estimates for Derivative Portfolios

For our hypothetical option portfolio� we have computed value�at�risk estimates for all

combinations of the following cases�

�� short and long versions of the reference option portfolio�

�� at ��day and at ��week horizons�

�� at a range of condence levels�
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�� for plain�vanilla and various types of jump�di�usion return models�

We have results for each case above� for each of the following methods for estimating

the VaR�

�� �Actual� # Monte Carlo simulation of all underlying asset prices� and computa�

tion of each option price for each scenario by an exact formula� We take ������

independent scenarios drawn with Matlab pseudo�random number generators�

and use no variance�reduction methods�

�� �Delta� # Monte Carlo simulation of all underlying asset prices� and approxima�

tion of each option price for each scenario by a delta�approximation of its change

in value�

�� �Gamma� # Monte Carlo simulation of all underlying asset prices� and approxi�

mation of each option price for each scenario by the delta�gamma approximation

Y �
��	 of its change in value�

�� �Analytical�Gamma� # The explicit approximation c�p	�
q
var�Y �
��		� where

c�p	 is the p�critical value of the standard normal density �for example� ���� in

the case of a ��� condence VaR	� and where var�Y �
��		 is calculated in ����	�

For cases �� � and �� we take the p�critical value of the simulated revaluations as

our VaR estimates� although kernel or other quantile�estimation methods might be

preferred in practice��� The quality of the �analytical�gamma� approximation ��	 of

VaR for our reference portfolio of options� relative to a reasonably accurate Monte

Carlo estimate ��	� is illustrated in Figure ��� for the case of a plain�vanilla model

for the underlying returns and a ��day horizon� For example� the actual ��� VaR is

approximately ���� of the initial market value of the portfolio� while the analytical�

gamma VaR approximation is about ����� �See Table � of Appendix E�	 The quality for

a ��week horizon ����� actual VaR versus ���� analytical�gamma VaR approximation	

is shown in Figure ��� and tabulated in Appendix E� The �simulation�gamma� VaR

approximation ��	 is reasonably accurate for both the ��day and ��week horizons�
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Figure ��� Value at Risk of Long Option Portfolio # Plain�Vanilla Model

�� Exposure to Correlated Jumps

Figure �� shows the accuracy of gamma�based approximations for a jump�di�usion

setting� calibrated to the same RiskMetrics�based covariance matrix for returns used

to generate Figure ��� based on the questionable assumption that the relative sizes

of volatilities and the correlations of the returns across markets are not a�ected by

jump events� This example �the third of three jump�di�usion examples summarized

in Appendix E	 is designed to be extreme� in that half of the variance of the annual

return of each asset is associated with the risk of a jump� with an expected arrival

rate of � jump per year� The results for this extreme jump example provide a more

dramatic comparison of the various methods� especially for the ��week VaR� as shown

in Figure ���

Our results for cases with less extreme jumps� or jumps that are independently

timed across markets� summarized in Appendix E� show a distinction from the plain�

��See Bassi� Embrechts� and Kafetzaki ������ and Butler and Schachter �������
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Figure ��� Value at Risk of Long Option Portfolio # Plain�Vanilla Model

vanilla case that is more moderate�

���� Two�Week VaR by Scaling One�Day VaR

A typical short�cut to estimating the risk of a position over various time horizons is

to scale by the square�root of the ratio of the time horizons� For example� a two�week

����day	 standard deviation or VaR can be approximated by scaling up a one�day

standard deviation or VaR� respectively� by the factor
p
��� For our sample portfolio

setup� this shortcut is actually quite accurate for the plain�vanilla model� The results

are summarized in Appendix E� For the unrealistically extreme correlated�jump model

described in the previous subsection� the shortcut method is less accurate� as shown

in Figure �� and Appendix E� There are two sources of error in this case� one being

the non�linearity of the options$ the other being the impact of lengthening the time

horizon on the likelihood of a jump within the time horizon�
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Figure ��� Value at Risk for Short Option Portfolio # Jump�Di�usion Model �

���� Exposure to Volatility

For option positions� one may wish to include the �vega� risk associated with changing

volatilities� as addressed for a single derivative in Section ������ In principle� that means

doubling the number of underlying risk factors� adding one volatility factor for each

underlying market� The empirical evidence is that changes in volatility are correlated

across markets� and correlated with returns within markets� That means a rather

extensive addition to the list of covariances that would be estimated�

In its risk disclosure� Banker�s Trust reports that it measures and accounts for

stochastic volatility risk factors in its value�at�risk reports�

���� Revaluation of the Book for Each Scenario

Rather than using deltas and gammas to estimate VaR to second order� one could

estimate the actual value�at�risk by simulating the market value of the entire book� If

��See also Page and Feng �������
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Figure ��� Value at Risk for Short Option Portfolio # Jump�Di�usion Model �

the prices of individual instruments are also computed by Monte Carlo� this can involve

a substantial computational burden� For example� suppose that one uses ���� scenarios

to estimate the market value of the book as the expected �risk�neutral	 discounted cash

 ow� at given levels of the underlying indices� X�� � � � � Xn� One must then simulate the

underlying indices themselves� say ���� times� and then value the book for each such

simulation� As illustrated in Figure ��� this implies a total of ��������� simulations�

each of which may involve many time periods� many indices� and many cash� ow

evaluations�

An alternative is to build an approximate pricing formula for each derivative for

which there is no explicit formula� such as Black�Scholes� at hand� For VaR purposes�

this may be more accurate than relying on the linear or parabolic approximations that

come with delta and gamma approximations� especially for certain exotic derivatives�

For instance� by Monte Carlo or lattice�based calculations� one can estimate the price

of a derivative at each of a small number of underlying prices� and from these t

a spline� or some other low�dimensional analytic approximation� for the derivative
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Figure ��� Value at Risk of Long Option Portfolio� Jump�Di�usion Model �

price� Then� when estimating VaR� one can draw a large number of scenarios for

the underlying market price and quickly obtain an approximate revaluation of the

derivative in question for each scenario�

As to how many simulations is enough for condence in the results� a possible

approach is described in Appendix B� In general� measuring risk exposure to a large

and complex book of derivatives is an extremely challenging computational problem�

���� Testing VaR Models

Statistical tests could be applied for the validation of value�at�risk models� For example�

if daily marks to market are iid� such tests as Kullback discrepancy or Kolmogorov�

Smirnov could be used to compare the probability distribution of marks�to�market

implied by the VaR model to the historical distribution of marks� The iid assumption�

however� is unlikely to be reasonable�

A simpler test� which does not require the iid assumption for marks to market� is
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Figure ��� Many Scenarios for Value�at�Risk Estimation

motivated by the industry practice of verifying the fraction of marks�to�market that

actually exceed the VaR� For example� under the null hypothesis that the VaR model

is correct� and stationarity� the fraction of days on which the ���percent VaR for each

day is exceeded by the actual mark to market for that day will converge over time to

� percent� If the fraction di�ers from � percent by a su�ciently large margin in the

available sample� one would reject the null hypothesis� The condence level of this sort

of test can be computed under simplifying assumptions� For example� suppose we have

��� days of prot�and�loss data� and only ���� of the days had losses in excess of the

VaR estimate for that day� �Under the hypothesis that the VaR model is unbiased� the

expected fraction is ��� so perhaps the VaR model is over�estimating risk�	 Assuming

that the daily excess�of�VaR trials are unbiased and independent� the probability that

only ���� percent or less of the sampled days would have losses in excess of the ��

VaR is approximately ����� �See Appendix B�	 At typical statistical condence levels�

we would therefore reject the hypothesis that the VaR model is unbiased�

J�P� Morgan�s annual report for ���� indicates that its ��� daily VaR estimate was

exceeded on �� of the trading days in ����� �With this� one would fail� on the basis

of the test abone� to reject the unbiasedness assumption for the VaR model at typical

condence levels�	 This simple test may not have as much power as possible to reject

��



poor VaR models� as it uses relatively little of the available data� More complicated

tests could assume that the distribution of marks�to�market is iid after some normal�

ization� For example� one could apply a test for matching certain moments of the

historical prot�and�loss distribution after daily normalization by current estimates of

standard deviations� Condence levels might be computed by Monte Carlo�

���� Volatility as an Alternative to VaR

Volatility is a natural measure of market risk� and one that can be measured and tested

with more condence than can VaR� Tail measures of a distribution� such as VaR� are

statistically estimated with large standard errors in this setting� whereas volatility is

measured with relatively smaller standard errors�

While it is useful to measure and report volatility regularly� it may be advisable

to undertake periodic �or better� randomly timed� given adverse selection for trader

behavior	 studies of what a given level of volatility means� in terms of the likelihood

of losing a level of capital that would cause signicant damage to the rm�s ability

to operate protably� over a time horizon that re ects the amount of time that would

be needed to reduce the rm�s balance sheet signicantly� or to raise more capital� or

both� Is a volatility of � percent of the rm�s capital �large� or �small� relative to the

threshold for distress% Value�at�risk is more to the point on this issue�

Moreover� volatility alone� as a measure of risk used for allocating position limits�

would not discourage traders from adopting positions of a given standard deviation that

have fat�tailed distributions� Such positions are sometimes called �peso problems� by

economists� because of the fat�tailed empirical distribution of Mexican peso returns�

for example� as shown for ����#���� in Appendix F�

���� Marginal Contribution to VaR of a New Position

In the plain�vanilla setting for returns� the marginal contribution to the VaR of the

entire book of adding a new position� provided it is not large relative to the book�

can be computed to rst order with calculus to be approximately 	V � where 	 is the

correlation between the new position and the rest of the book� and V is the VaR of

the new position on its own� If the position is large relative to the entire book� or if

plain�vanilla returns do not apply� or if the time horizon t is long� a more accurate

estimate should be considered� and can be done more laboriously�
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� Scenario Exposures

For some applications� we may be concerned� for various risk�management applications�

with the expected change in market value of a portfolio to a change in only one of the

underlying risk factors or parameters� For example� it may be useful to know the

expected change in market value of the portfolio in response to a given change in

some market index� yield curve� or volatility� Most banks� for example� estimate the

�PV��� of their domestic xed�income portfolios� meaning the change in market value

associated with a ����basis point parallel shift of the yield curve�

��� Cross�Market Exposure Through Correlation

Even if a particular position is not a cross�market derivative� it may have cross�market

exposure merely from the correlation of the underlying returns� For example� as the

Lira and Mark have correlated returns� we expect a Lira position to be exposed� in

expected terms� to a revaluation of the Mark�

Suppose� for example� that Xi is the unexpected change in price of the German

mark� We consider the exposure of� say� � billion Italian lira options� whose delta with

respect to the underlying Lira is ���� We let Xj denote the unexpected change in the

Lira price� Under normality of Xi and Xj� the expected change in the Lira per unit

change in the Mark can be estimated from a �regression� of the form

Xj � bXi � e�

where b is the coe�cient of the regression�� and e is the portion of the change in the

Lira that is uncorrelated with �or� equivalently� unexplained by	 the change in the

Mark� The regression coe�cient is b � Cij�Cii � �j	ij��i� �For �������� for weekly

return data� the least�squares estimate of b is ����� One would not actually need to use

historical regression to estimate b� Rather� one could use option�implied parameters or

econometric models for correlations and volatilities�	 For motivation only� the idea of

estimating b through least�squares regression is illustrated in Figure ���

For our example� to a rst�order approximation� the expected exposure of the Lira

��There is no constant �intercept� term in the regression because we are measuring unexpected

changes only� Without normality� bXi is the minimum
variance linear predictor of Xj given Xi�

although it need not be the conditional expectation�
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Lira Surprise

Xj

�Xj

e

�
b

Mark Surprise Xi

Figure ��� Regressing Lira �Surprises� on Mark �Surprises�

option portfolio to the mark is

� � ���� �� b billion�

the delta of the Lira option times the number of options �� billion	 times the regres�

sion coe�cient b associated with Lira and Mark prices� These are readily estimated

coe�cients� If� for instance� the expected exposure of the Lira option portfolio to the

Mark is � � ��� billion� then we expect to lose approximately � million dollars for each

��penny change in the price of the Mark� in addition to changes in value that are un�

correlated with the Mark� This sort of scenario analysis could be useful in a discussion

of the potential loss or gain of our option position in response to a piece of market

news specically regarding the German exchange rate� such as an announcement by

the German central bank that is not directly related to the Lira�

In general� a trading rm may wish to estimate exposures to many scenarios� For

example� one may wish to have at hand a table of scenario exposures to unit changes in

each risk factor� separately� The total scenario exposure to the bookXi� the unexpected

change in the Mark price� would be estimated to rst order by

�i �
nX

j��

j
Cji

Cii
�
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where j is the direct exposure to Xj on a delta�equivalent basis� For example� if

�i � ��� billion� then an unexpected change in the Mark price of Xi � ���� dollars

would generate a total expected change in the value of the book of approximately �

million dollars� plus some �noise� that is uncorrelated with the Mark price� In other

words� insofar as the value of the rm depends on the Mark only� one could think of the

total book as approximately the same as a pure ��� billion spot Mark position� Some

of this exposure may actually be pure Mark positions� some of it may be e�ective Mark

exposure held in other positions such as Mark derivatives� German government bonds�

German equities� other European equities� and so on�

One can also estimate the portion of total risk of the book� in the sense of standard

deviation� that is attributable to a given risk factor� If the volatility of risk�factor i is

�i� the risk attributable to this risk factor is �i�i� This attributions of risk by factor

do not add up to total risk� because of the e�ects of diversication and correlation�

��� Exposure Limits

While it is natural to allocate and measure risk by trading area� there are good reasons

to also measure and control total exposure to a market risk factor� including those

induced by cross�market correlations� In practice� however� computational limits do

not always allow for this �unied� approach� as there may simply be too many risk

factors to capture all cross�market e�ects� Rather� Mark exposures would be measured

for only a subset of positions� and indirect Mark exposures would be measured via only

a subset of other risk factors�

��� Multiple�Factor Scenario Analysis

For purposes of scenario analysis� one may wish to take as the scenario a given change

in several risk factors simultaneously� For example� with a xed�income portfolio� one

may be interested in the expected change in market value of the entire book associated

with a shift of a given vector of U�S� forward rates� such as given parallel and non�

parallel shifts� or some multiples of the rst several principle components� This idea is

worked out in Appendix C�
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Appendices

A� Simulating Fat Tailed Distributions

Suppose one wants to simulate a random variable of zero mean and unit variance�

but with a given degree of tail fatness �fourth moment�� Sticking to the more�or�less

�bell�curved� shapes for the probability density of returns �and ignoring skewness��

one could adopt the following approach��� based on the idea that a random variable

has fat tails if it can be expressed as a random mixture of normal random variables of

di�erent variances�

First draw a random variable Y whose outcomes are 	 and 
� with respective prob�

abilities p and 	� p� Independently� draw a standard normal random variable Z� Let

� and � be the standard deviations of the two normals to be �mixed�� If the outcome

of Y is 	� let X � �Z� If the outcome of Y is 
� let X � �Z� We want to choose �

and � so that the variance of X is 	� We have var�X� � p�� � �	� p��� � 	� so that

� �

s
	� p��

	� p
�

Now we can choose p and � to achieve a given kurtosis or 
� critical value� The

kurtosis of X is E�X�� � ��p�� � �	� p�����

B� How Many Scenarios is Enough�

This appendix shows how to compute an answer to the following sort of question� which

can be used to decide how many scenarios is �su�cient� for measuring the percentile

measure for the loss on a given portfolio of positions�

�Suppose an event occurs with probability p� With k independent trials� what is the

likelihood ��k� that we estimate p to be � or larger��

For the case of risk management� the event of concern is whether losses are no

greater than some critical level� The danger to be avoided is over�estimation of the

��This approach was suggested by Robert Litterman of Goldman Sachs at a meeting in March ����

of the Financial Research Initiative at Stanford University�
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probability of this event� for it would leave a �rm�s risk manager with undue con�dence

regarding the �rm�s risk� For example� The key �error likelihood� ��k� depends of

course on the number k of scenarios simulated� As k goes to in�nity� the law of large

numbers implies that ��k� goes to zero� For example� we can show the following� If

p � 
�� and � � 
���� then regardless of the distribution of the underlying market

values of positions in the book� ��k� � e������k� With 	


 scenarios� for instance� the

error probability is less than ��� parts per 	
�


�

We obtain this upper bound on ��k� along with the following general result� which

allows us to derive error probabilities for other cases of estimated percentile and as�

sumed true percentiles than p � 
�� and � � 
���� For example� with p � 
�� and

� � 
���� the number of scenarios necessary to keep the error probability below 
�
	

is approximately ��

�

In order to state the general result� we suppose that Y�� Y�� � � �� is an independently

and identically distributed �i�i�d�� sequence of random variables� with E�Yi� � �� We

know that b��k� � �Y� � � � � � Yk��k � � almost surely� but at what rate� We let g

denote the moment�generating function of Yi� that is�

g�	� � E�exp�	Yi���

Large Deviations Theorem� Under mild regularity���

P �b��k� � �� � e�k���	�

where 
�	� � �	 � log�g�	���

We can get an optimal upper bound of this form by maximizing 
�	� with respect

to 	� Under purely technical�
 conditions� the solution 	� provides an upper bound

exp��k
�	��� that� asymptotically with k� cannot be improved�

In our application� we suppose that X is the random variable whose percentiles

are of interest� We let Yi be a �binomial random variable� �that is� a �Bernoulli

trial��� with an outcome of 	 if the i�th simulated outcome of X is above the cuto�

percentile level� and zero otherwise� The probability that Yi � 	 is some number p�

the true quantile score for this cuto�� which is 
�� in the above example� We letbp�k� � �Y� � � � �� Yk��k� be the estimate of p� We are checking to see how likely it is

that our estimate is larger than �� which is 
��� in the above example�

��For details� see Durrett �������
��Again� see Durrett �������
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Optimizing on 	� we have

P �bp�k� � �� � exp��k���

where

� � � log � � �	� �� log�	� ��� � log p� �	� �� log�	� p��

With p � 
�� and � � 
���� � � 
�

�� We can now solve the equation exp����

k� � c for k� For a con�dence of c � 
�� we see that

k � �
	

�
log�c� � ��� simulations�

That is� the probability that bp�k� � 
��� is roughly exp����� � 
�

�� � 
�
	� For

� � 
��� in order to achieve �percent con�dence� k � ��

 simulations are suggested�

C� Multi�Factor Scenarios

Continuing the discussion of scenario analysis begun in Section �� we could consider the

expected change in the Canadian Government forward curve conditioned on a given

move in the U�S� forward curve� For illustration� we could suppose that the risk factors

associated with the U�S� forward rate curve are unexpected movements of X�� � � � � Xm

basis points at each of k respective maturities� and that the scenario outcome for the

forward curve shift is the vector x � �x�� � � � � xm� of basis point changes at the respective

maturities� For example� x could be the forward curve shift vector associated with the

�rst principle component of U�S� forward curve changes�

For some other given risk factor Xk� say the unexpected change in the Canadian

��year forward rate� we are interested in computing the expected change in Xk given

the outcome X� � x�� X� � x�� � � � � Xm � xm� Assuming joint normality of the rates�

we have

E�Xk jX�� X�� X�� � � � � Xm� � �X�� � � � � Xm�
�A��q�

where A � cov�X�� � � � � Xm� is the k � k covariance matrix of X�� � � � � Xk� and q is the

vector whose i�th element is cov�Xi� Xm�� Evaluating this conditional expectation at

the scenario shift �X�� � � � � Xm� � �x�� � � � � xm�� we have the desired result� One can

do this for each Canadian rate to get the expected response of the Canadian forward

curve� An approximation of the re�valuation of Canadian �xed�income products at this

shift can be done on a delta basis� �For straight bonds� this is an easy calculation��

��



Of course� our focus in this example on Canadian and U�S� forward rates is simply

for illustration� We could have used equity returns� foreign exchange rates� or other risk

factors� The only necessary information is the covariance matrix for the risk factors�

and the scenario of concern�

D� Tail�Fatness of Jump�Di�usion Models

The calculations for tail�fatness of the jump�di�usion model considered in Section �

are shown below for reference only�

D�� Critical Values

We consider the return on the asset that undergoes a jump di�usion

St � S� exp��t�Xt�

Xt � �Bt �
N�t	X
k��

�Zk� �	�

where B is a standard Brownian motion and N�t� is the number of jumps that occur by

time t� Each jump �Zk is normally distributed with mean zero and standard deviation

�� The arrival rate of jumps �Poisson� is �� Then the total volatility  is de�ned by

� � �� � ���� ���

We are interested in the critical value� at con�dence p and time horizon t� that is�

Cp�t � fx � P �Xt � x� � pg� Using the law of iterated expectations and conditioning

on the number of jumps�

P �Xt � x� �
�X
k��

p�k� t�P �Xt � xjN�t� � k�

�
�X
k��

p�k� t�N�
�
q
��t � k��� x�� ���

where p�k� t� is the Poisson probability of k arrivals within t units of time� given by

p�k� t� �
��t�ke��t

k�
���

and N�a� s� x� is the probability that a random variable that is distributed normally

with mean 
 and standard deviation s has an outcome less than x�

��



D�� Kurtosis

The normalized kurtosis is de�ned by

Kt �
E�X�

t �

�V ar�Xt���
�

E�X�
t �

�t�
� ���

After tedious calculation� the numerator can be shown to be

E�X�
t � � E���Bt �

N�t	X
k��

Zk�
��

� E�����t �N�t������ � ����t� � ��� ��t���t� ������t��� ���

E� Option Portfolio Value�at�Risk

Table � is a summary of the moments of the simulated distribution of the �short�

option portfolio described in Section ���� based on di�erent models for the underly�

ing� Speci�cally� in Jump�di�usion Model 	� the di�usion part is simulated using the

RiskMetrics covariance matrix for July �� 	�� while each asset jumps independently

with poisson arrival of intensity � � 	 per year� The standard deviation of jumps size

for each asset is taken to be half of the corresponding RiskMetrics standard deviation�

So� in this example� the total covariance matrix is not matched to that of RiskMetrics�

Jump�di�usion Models � and �� however� are parameterized in such a way that the

total covariance matrix of the underlying assets is matched to that of RiskMetrics�

Model � has one��fth of its total covariance coming from jumps� and four��fths from

di�usion� while in Model � half of the total covariance comes from jumps� and half

from di�usion� The moments for the long portfolio are of exactly the same magnitude�

except for sign reversals for odd moments �mean and skewness��

Table � shows the estimated 	� and 
��� values at risk �critical values� of the

�predominantly short� option portfolio� designated �Portfolio S�� over time horizons

of one day and two weeks� The portfolio is normalized to an initial market value of

�	

 dollars� The �predominantly long� option portfolio� designated �Portfolio L��

has a total market value of �	

� Of course� the left tail of the distribution of value

changes for Portfolio L can be obtained from the right tail of Portfolio S� Table � shows

the estimated 	� and 
��� critical values for Portfolio L over one day or two weeks�

estimated by the various approximation methods described in Section ��
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Table �� Moments of the Simulated Distribution

Time Span Model Method mean s�dev skewness kurtosis

pl� vanilla Actual �	

�
� 
�� �
�	� ��
�

Gamma �	

�
� 
�� �
�	� ��
�

Delta ���� 
�� �
�
� ��
�

jump�du�sion Actual �	

�
� 	�
� �
�	� ����

Overnight �Model 	� Gamma �	

�
� 	�
� �
��� ����

Delta ���� 	�
� �
�
� ����

jump�du�sion Actual �	

�

 	�	
 ����� ������

�Model �� Gamma �	

�
	 	�	� �		��� ������

Delta ���� 
�� �	�� ��	�

jump�du�sion Actual �	

�
	 	�	� ����� 	
����

�Model �� Gamma �	

�
� 	��� ����� 	�����

Delta ���� 
� 	�
� ����	

pl� vanilla Actual �	

��� ���� �
��� ���


Gamma �	

��� ��
 �
��	 ����

Delta ���	� ���� �
�
� ��
�

jump�du�sion Actual �	

��� ��� �
��� ����

� Weeks �Model 	� Gamma �	

�� ���	 �
��� ���

Delta ���
 ��	 �
�
� ��	�

jump�du�sion Actual �	

��� ���� ����� 	��
	

�Model �� Gamma �	

��� ���� ����� ����

Delta ����� ���	 �
�	
 ���

jump�du�sion Actual �	

��� ��� ����� 	��
�

�Model �� Gamma �	

��� ���� ����
 �	���

Delta ����� ��� �
�	� ��

F� Sample Statistics for Daily Returns

For reference purposes� we record in the table below some sample statistics for daily

returns for the period 	�� to 	� for a selection of equity indices� foreign currencies�

and commodities� The statistics for foreign equity returns are in local currency terms�

The raw price data were obtained from Datastream�
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Table �� Critical Values of the �Short Option� Portfolio

Overnight � Weeks

Model Method 	� 
��� 	� 
���

Analytical Delta ���� ���� ���
 	����

Gamma ���� ���� �	� 	��	�

pl� vanilla Actual ���	 ���
 	
��� 	��	�

Simulation Gamma ���� ���	 	
�	 	����

Delta ��	� ���	 ��	
 ����

Analytical Delta ��	 ��	� ���� 	��	�

jump�di�usion Gamma ���
 ��	� ���	 	���


�Model 	� Actual ���	 ��
� 	
��� 	����

Simulation Gamma ���
 ��	
 		��� 	��
�

Delta ���� ���
 ��� ����

Analytical Delta ���� ��� ���� 	���

jump�di�usion Gamma ��� ���
 �	� 	���


�Model �� Actual ��	� ���� 	���� ���	�

Simulation Gamma ��	� ���� 	���
 ����	

Delta 	�� ���� ���	 		��


Analytical Delta ��� ���
 ���� 	����

jump�di�usion Gamma ���
 ���	 �	 	����

�Model �� Actual ��
� ���� 	��� ���
	

Simulation Gamma ��
� ��� �	��� �����

Delta 	��� ���
 ��� 	����

Shown are the annualized sample standard deviation �volatility�� the sample skew�

ness� sample normalized kurtosis� the number of days on which the return was more

than 	
 sample standard deviations below the mean� the number of days on which the

return was more than � sample standard deviations below the mean� the number of

days on which the return was more than � sample standard deviations above the mean�

the number of days on which the return was more than 	
 sample standard deviations

above the mean� the number of standard deviations to the 
�� percent critical value

of the sample distribution� and the number of standard deviations to the �� percent
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Table �� Critical Values of the �Long Option� Portfolio

Overnight � Weeks

Model Method 	� 
��� 	� 
���

Analytical Delta ���� ���� ���
 	����

Gamma ���� ���� �	� 	��	�

pl� vanilla Actual ��	� ���� ���� ��	�

Simulation Gamma ��	 ���� ���� ���

Delta ���	 ���� 	
�� 		��

Analytical Delta ��	 ��	� ���� 	��	�

jump�di�usion Gamma ���
 ��	� ���	 	���


�Model 	� Actual ��� ���	 ��� ����

Simulation Gamma ���
 ���
 ��	� ��

Delta ���� ��� 		�	� 	���


Analytical Delta ���� ��� ���� 	���

jump�di�usion Gamma ��� ���
 �	� 	���


�Model �� Actual 	� ���� ��	� ���

Simulation Gamma 	� ���� ���� ��	�

Delta ���
 ���	 		�
� 	��		

Analytical Delta ��� ���
 ���� 	����

jump�di�usion Gamma ���
 ���	 �	 	����

�Model �� Actual 	��� 	�� ���
 ����

Simulation Gamma 	��� 	�� ���
 ���	

Delta 	��� ���� 	���� 	���


critical value of the sample distribution�

�



Table �� Sample Return Statistics for Selected Markets

Daily Return Statistics  1986-1996
Vol. < - 10 < - 5 > 5 > 10

Name (Annual) Skew Kurtosis sd sd sd sd 0.4% 99.6%
S&P 500 15.9% -4.8 110.7 1 5 3 0 -3.64 2.76
NASDAQ 15.2% -5.1 109.7 2 2 2 0 -3.57 2.62

NYSE All Share 14.7% -5.2 121.4 1 5 2 0 -3.54 2.68
Mexico Bolsa (Pesos) 26.3% -0.2 7.8 0 3 4 0 -3.59 3.75

Mexico Bolsa (US$) 32.0% 0.0 14.9 0 6 4 0 -3.98 3.44
FTSE 100 15.0% -1.7 28.6 2 4 3 0 -3.37 2.94

FTSE All Share 13.6% -1.9 29.1 2 5 4 0 -3.94 2.94
German DAX 30 Perf. 19.7% -0.9 15.6 1 7 8 0 -4.25 3.37

France DS Mkt. 17.5% -0.9 13.1 0 7 4 0 -3.72 3.14
France CAC 40 19.4% -0.6 10.9 0 6 4 0 -3.37 3.17

Sweden Veckans Aff. 18.4% -0.4 12.1 0 8 9 0 -4.76 3.96
Milan B.C.I. 20.3% -0.9 13.3 1 5 1 0 -3.58 3.25
Swiss Perf. 15.6% -2.6 32.0 3 8 3 0 -4.65 3.71

Australia All Ord. 17.1% -7.8 198.3 1 7 3 0 -3.54 2.34
Nikkei 500 20.4% -0.4 34.8 2 4 6 1 -3.70 3.50

Hang Seng 26.7% -6.4 143.6 2 6 1 0 -4.08 2.93
Bangkok S.E.T. 25.0% -0.6 9.8 0 9 5 0 -4.86 3.59

Taiwan Weighted 36.1% -0.1 5.0 0 0 1 0 -3.08 3.20
US$ : English Pound 11.0% -0.2 5.9 0 1 1 0 -3.60 3.20

US$ : Mexican New Peso 18.9% -8.1 217.5 4 12 8 1 -5.15 3.20
US$ : German Mark (DM) 11.3% -0.1 5.3 0 0 1 0 -3.40 3.40
US$ : French Franc (FF) 10.9% 0.0 5.7 0 0 2 0 -3.50 3.45

US$ : Swedish Krone (SK) 10.5% -0.6 10.9 1 3 4 0 -3.50 3.30
US$ : Italian Lira 11.3% -0.6 8.6 0 4 0 0 -3.60 3.30

US$ : Swiss Franc (SF) 12.6% 0.0 4.9 0 0 1 0 -3.20 3.30
US$ : Australian Dollar 9.4% -0.7 8.1 0 4 1 0 -4.30 2.75

US$ : Japanese Yen 11.1% 0.4 8.1 0 3 5 0 -3.10 3.68
US$ : Hong Kong Dollar 0.8% -0.6 17.4 0 11 10 0 -5.40 4.30

US$ : Thai Baht 2.4% 0.7 33.8 1 9 13 2 -4.80 4.95
US$ : Canadian Dollar 4.4% -0.1 7.2 0 3 6 0 -3.80 3.25

Gold (First Nearby 13.4% -0.7 11.4 0 4 3 0 -4.24 3.44
Oil (First Nearby) 38.7% -0.8 21.8 1 7 7 0 -4.14 4.07
Oil (Sixth Nearby) 27.5% -0.6 15.6 1 3 3 0 -3.82 3.82
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