N°7 J. Phys. France 50 (1989) 707-716 ler AVRIL 1989, PAGE 707

Classification
Physics Abstracts
72.15N - 64.60

Short Communication

, Renormalization group for a quasiperiodic Schrodinger
38). operator

L.S. Levitov
Structures in
> be published L.D. Landau Institute for Theoretical Physics, Moscow, U.S.S.R.
ences therein.
ove a given N, ‘ (Regu le 18 octobre 1988, accepté sous forme définitive le 8 février 1989)

sal'Académie Résumé.— Nous construisons un groupe de renormalisation dans Pespace réel pour
hamiltonien de Fibonacci généralisé. Nous montrons que le spectre a la structure hiér-
the avalanche archique d’un ensemble de Cantor de mesure nulle lié 3 la représentation en fraction
. continue de la fréquence incommensurable du probléme. Nous discutons des propriétés
fractales du spectre.
Lett. '
Abstract.— The real-space renormalization group for a generalized Fibonacci Hamil-
tonian is constructed. The spectrum is shown to have the hierarchical structure of a
zero-measure Cantor set guided by the continuous fraction representation of the in-
commensurate frequency w of the problem. The fractal properties of the spectrum are
discussed.

1. Introduction.
In this work we study the one-dimensional discrete Schrédinger equation
E ¥r =tk -1 + tht1 Y (1.a)
with a quasiperiodic sequence of hopping amplitudes £ :
h=V(wk + ¢) (1.b)

where w is an irrational number and V(z) is a periodic function ((z + 1) = (z))
taking two values :

i,0 < z <w
V(z) = (L)
Vo, w <z <1
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This problem and related ones were intensively studied recently in connection with
quasicrystals both analytically [1, 3-8, 11, 14] and numerically [2, 4, 8-13]. The works
[1-14] mainly concern the “golden mean” case: w = (V5-1)/2.

The most important analytic result obtained for this problem is that the recursion
relation for the traces of the transfer matrices has an invariant function J (Kohmoto,
Kadanoff, Tang [1]). This “conservation law” results in nonuniversal scaling properties
of the spectrum and eigenfunctions of the problem (1), since the invariant J for it is

given by
) ()
=== =1 1- 2
752 [(Vz) t\m @
It was pointed out in section 2 of [4] that the conservation law found in [1] exists
not only for w = (\/5 - 1) /2 but for all irrational w as well. Thus one can expect
nonuniversal scaling results for the problem (1) with an arbitrary w.
In this Letter the J > 1 limit of the problem (1) is studied. Treating 1/J as a small

parameter we extend the renormalization scheme developed in [4] for w = (V5-1) /2
to all irrational w.

2. Geometrical formulation of the problem.

Let us consider the interger lattice 72 in the plane R?. We define an (e, c)-strip
as thie set of points (z, y) such that

az + c<y<axr+ct+l+a (3)

(a is irrational, c is chosen so that no integer points belong to the boundary of the
strip). Then we find a continuous chain consisting of horizontal and vertical segments
of Z? (denoted “h-segments” and “y.segments”) lying inside the strip. This chain
always exists and is defined unambiguously. One can see that the alternation order
of h-segments and v-segments in the chain coincides exactly with the alternation law
for the hopping amplitudes V;, V2 given by (1.b, ) provided w = 1/(1 + o).

Hence, instead of problem (1) we can consider the tight binding problem for an
electron moving along the chain so that a) it is allowed to stay at the vertices of the
chain only ; b) the amplitudes of hopping across the segments are Vi (for h-segments)
and V; (for v-segments). /

Remark.— Our results will depend neither on the phase ¢ in (1.b) nor on the
strip position c in (3). Therefore we neglect ¢ and ¢ everywhere below for the sake of
brevity (e.g. we write “a-strip” instead of “(a, c)-strip”).

In accordance with this remark any problem (1) is completely defined by three
numbers : Vi, Va, a. It is convenient to use the following parametrization : Vi =
AV, V, = V,a = mp + 1/(n2 +.. = (3, ng...)) (the continued fraction
expansion). We will work with triplets [V1/V2, Vo, a] = [\, V, (n1, n2..)}.

We are going to study the J > 1 -sector of the problem. This implies Akl
or A>1 since J = F(A+ A~2) (see (2)). The problems [Vi/Va, Va, a] and
[V2/Vh, V1, 1/c] are equivalent (they are related by the permutation of the z-axis
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and the y-axis), so we will study the A <« 1 -case only, i.e. we assume that the
coupling across h-segments is much weaker that that across v-segments.

3. Renormalization procedure.

We study separately two possible situations : < 1 and a > 1.

I. a>1(n3 # 0).— Let us consider the problem [\, V, (ny, n,,...)] (A € 1)
in the zero-order approximation, i.e. put A = 0. This means that all h-segments are
erased and we are left with “molecules” consisting of n; and n; + 1 v-segments as

shown in figure 1 (denote them “n; — molecules” and “ny + 1 — molecules”). Their
energy levels are given by

Em = 2V cos ("—;n—) m=1.,n-1, (4)

wheren = n; + 2 for nqy — molecules,n = n; + 3 for (n; + 1)— molecules. The
normalized eigenfunction corresponding to the m-th level (4) is given by

o (k) = \/gsin (ln"lk) kE=1,.,n-1 (5)

where k is the number of the site.

/

Fig. 1.— The strip (3) with the corresponding chain of horizontal and vertical segments is
shown. Vertical segments form ny—molecules and (n; + 1)—molecules(n; = 3 in the picture).
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Since A # 0 but very small, each of 2n; + 3 levels (4) splits into subbands.
To find this splitting we apply the standard quantum mechanical perturbation proce-
dure : we treat exactly the interaction of degenerated levels, whereas the interaction
of nonresonance levels is taken in the lowest nonvanishing order of A-expansion. This

method is reliable if
|<m lffl m’)l &L |Em — Epy| (6)

for all eigenstates |m) , |m') such that E,, # Ey:. Let us estimate the LHS and RHS of
(6). For thelevels E, and Ep, of the neighboring n; —molecule and (n; + 1)—molecule

we obtain
En—-FEn. =2V (cos (n;r:-nz) — cos (nzr:z-'B)) - (7.a)
<m Iﬂl m'> =AV Y (1) Y (n1 +2) =
2 sin ( m ) sin ( mm’ ) (7.b)
= (=)™ AV n1+2 n +3

V(m +2)(n1 +3)
Easy but long calculations show that

el )] ¢o

Em_ m’

Since A <1 we can apply the perturbation theory to derive the effective Hamiltonijans
for the subbands (4).

First we sutdy how n; —molecules and (n; + 1) —molecules alternate in the chain.
Let us attribute the vectors

e = y €2 = (8)
np+1 ny

to the molecules. The chain of segments (8) shown in figure 2 gives the alternation

1
law we are interested in. After the coordinates are changed so that e; —» ,
0
0 .
e —> we obtain the chain corresponding to the standard strip (2) with
1

a replaced by 8 = (n; — 1, n3,...). The v-segments and h-segments of the 3-strip
obtained represent n; —molecules and (n; + 1) — molecules respectively. Two different
situations for B are possible: <1 (np = 1)and > 1 (n2 # 1). They must be
studied separately.
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Fig. 2.— The chain of the segments e;, ez given by (8) gives the law for the alternation of
ny — molecules and (n; + 1) — molecules in the standard chain.

a) B<1.— Let us take the m-th level of (n; + 1) — molecules and find the
effective Hamiltonian for the corresponding subband.

The neighboring (n; + 1) — molecules are either adjacent or separated by one
n1 — molecule. The amplitude V), of hopping to the adjacent (n; + 1) — molecule is
given by

- — (_1ym+l1 2 sn2 m
Voo = AV (1) Y (m + 2) = (-1) /\an + 3 s (nl + 3) ®)

The amplitude A7, V,, of hoping across one n; — molecule is given by

AV = XV (1) ¥ (n1 + 2) gny (), (10)
where 1 1
e = Y LlUHE-L (11)
. . p=l,..,n-1 P

n = n; + 2, the eigenstates 1, and the energy levels E,, of n; — molecule are defined
by (4), (5). One can prove the remarkable identity

_ m+1
gus (Bn) = B (12

(see Appendix). Taking (10), (11), (12), into account, we obtain

A = (D)™, (13)
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i.e. the absolute value of the ratio V; /V, of the hopping amplitudes is not renormalized.
Let us find how the amplitudes (9), (10) alternate in the sequence of (n; + 1)—
molecules. We introduce the vectors

€1 = (14)

I
®
)
|

and the chain of segments (14) shown in figure 3. This chain gives the alternation of

the amplitudes (9), (10), e1 — segments and e; — segments corresponding to A}, V,,

and V/, respectively. One finds immediately that, after the coordinates are changed
1 0

so that ey — , €3 — , our chain is transformed into the standard
0 1

chain corresponding to the a’-strip, where

o = (n3—1, ng,..) (15)

We see that the Hamiltonian for the m-th band corresponds to the triplet [AL,, V., o]
given by (9), (13) and (15).

€
e, e
n
e '3+ 4
e; o *
r———.———_‘J h
! 3
h

Fig. 3.— The ordering of the segments of the chain 1 gives the law for the alternation of
(n1 + 1)—molecules (h-segments) and n; — molecules (v-segments). The chain 2 corresponds
to the sequence of (n; + 1) — molecules : a) the vertices are associated with (n; + 1) —
molecules ; b) the segments e;, ez given by (14) correspond to the hopping amplitudes Vy,
(e2 — segment) and A/ V., (e; —segment). '

Remark.— The perturbation theory gives not only the hopping amplitudes but
also the corrections to the energy levels E,,,. One can see that these corrections coincide
for all (n; + 1) — molecules to our accuracy, so they only shift the levels slightly
Em — E:n = Em + AEn‘u 'AEml < IEm - m:i:1|

but do not contribute to the splitting.
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..Now we have to consider.n; —molecules.-Each two neighboring n; = molecules are
separated by ng oring H: L(m154:-1)--molecules.Let usfind the hopping-amplitudes for
the m-th level.of nyi+ molecples.n'l‘he a.mphtude wV of hoppmg across n3 (ur::-l- 1)=
molecules is glven DY 0B TIRSHIN R T

AR AR

= QwyH " 1) 1 + Dlgmn (Em)l : fl"f-f:*ii‘é)'

SR CEPIN i R Y ¥

where 1/:,,, is the exgenfunctloh\of Ethe m-th level, g,.,+1 (E) is glven by (11) w1th n =
ny + 3, Epand ¢, Pemg the:energy. levels and’ elgenstates of the (nj;+ 1)- molecule.
The amphtude ALV of hoppmg a,cross the n3 +.1 (n1 + l) - molecules is given by

{ Wi \[ ""-Z<v<}'* . ‘L“‘? '; é,. 5 _:‘ 3 :.‘(,\‘ ciat
X = ()\V)"“J'2 ¥ (1) ¢m (nl +- 1)[gu,+1 (E) ]"“+1
Ta.kmg mto account the ,ldentlty ib

9n1+1 (lE :T/_

we. ﬁnd the renorma.hzed va.lues of ‘,\'« vVl- Ash P

' na+1 m(na+l)+1 2 . 2 rm (19)
V = A V( 1) o ——+ 2 sin (———nl n 2)

One checks easlly tha.t the alternation of . the amplxtudw A' V! and V' coincides
exactly with the sequerice of the h-segments and v-segments of the chain correspondmg
to the a’-strip, where citastan

N ot i
AN G i ’3\:

ISR \' _\\‘ R P r:;'_s"\j_).zlft —"

o (n4 fand 1 ns,...) T (20)

We see that: the: m-thlband’ls desc bed’bythe Ha‘lnﬂtoman a,ssocla.ted thh the triplet
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In the author’s opinion, case a) takes place, although this is not proven yet.
The reason for such a belief is that the problem has a conservation law (see [4]).
One can think that the conservation of |A| obtained at the first order of perturbative
approximation reveals the (exact) conservation of the quantity J = tr LSABA 1 B71)

(ASB' ‘§fe transfer’matrices & see [1 4]. Assummg that thi¥’is true we' onjecture that
X% °% 0 hnd ‘midréover >"‘/\ : 24y uniformly for’ all f:wh%v" 1.8 HUr“’ e
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Let us prove the identity

o k+1 -V2’ 7"_]‘_
1 (-1)""" sin ( n)

"% cos 8 — cos<7r—k-)
n

(the sum is taken over k = 1,..., n—1).
Proof.— Let us replace exp(zﬂ) by zin (Al). Both the LHS and RHS of (Al)
are rational ana.lytlc functions of z taken as a complex variable. It is kniown that two

sin 8

sin(n 6)

(A1)

analytic functions f; (2), f2 (2) suchthat lim  fi(2) = 0, lLim fi(2) =
z :
coincide if and only if their poles and cor;e-s_)pondmg residues C(;)mde A simple

calculation shows that this is true for the RHS and LHS of (Al). The identity is

proven. _
am

The xdentm& (12), (18) are lmmedlately obtained by substituting 6, = ;57
in (A1), since
sin 0 m
= = F (-1) (A2)

sin(n 0,,)
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