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Abstract

In this thesis, I study the problem of offline tracking for a moving object in space
and time. I setup a prior “motion probability model” describing how the object we
wish to track moves at each time step, and a noisy “measurement probability model”
describing the possible pixel values that can be measured as a function of the object’s
location. Given measurements over time, I am interested in finding the MAP estimate
of the true path and the MAP estimate of a d-neighborhood that contains the true
path for all time.

It is not clear how to obtain these estimates in polynomial time in the parameters
of the problem if there are an exponential number of paths and neighborhoods' to
optimize over. Therefore, in this thesis I analyze the complexity of such problems and
do the appropriate experiments. I focus on the role of the prior “motion probability
model” in reducing the computational complexity of the problem.
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Chapter 1

Introduction

1.1 Motivational background

1.1.1 How did I choose this research problem?

Bayesian tracking is an extremely active area of research that I stumbled upon through
my interest in online handwritten signature verification [11, 12, 13, 18, 1]. My re-
search in online handwritten signature verification led me to conjecture several new
invariants in people’s handwritten signatures [16]. However, these invariants required
real-time measurements of the kinematic state of the hand. Initially, I wanted to
build a marker-based vision tracking system in order to track features of the hand
as it was signing and demonstrate my conjectured invariants [14, 8]. In modelling
the tracking problem, I treated the features of the hand as separate ping pong balls
in three dimensional space that I wanted to track. However, the more [ abstracted
away the physical details of the problem, the more I realized the complexity of the
tracking problem I confronted and tracking problems in general [7, 19, 4]. In this
thesis, I analyze different formulations for the abstract tracking problem and analyze
how complexity increases in the abstract tracking problem as one changes the prior
“motion probabilty model” that describes how the object we wish to track moves at

each time step.



1.1.2 The Bayesian Tracking Problem and its intricate ques-
tions

In order to visualize the abstract tracking problem, imagine the following scenario.
A white ping pong ball slides on a uniformly black table as a human tugs at it via
an attached invisible string. A camera, oriented such that its image plane is roughly
parallel to the table top and such that it is suspended above the table top, records
the motion of the ball. The camera has only the black table top and the white ping
pong ball in its field of view at all instances of time. Given the sequence of images
that the camera records, how can we best determine the location of the ping pong
ball in the sequence of images for all time? How meaningful is such an estimate? How
robust is such an estimate to noise?” What would be a more robust estimator? What
is the complexity of such estimates? How do the answers to these questions change
if we change the prior “motion probability model”? These are the questions that
bolstered my interest in the abstract tracking problem. I will address these questions
throughout the thesis.

For the sake of notational simplicity and building intuition, I will analyze these
questions for the case where the ping pong ball is one pixel wide and its movement is
limited to one dimension, a line. Then after having built some intuition, I will look
to extend my results to the case where the ball can move in two or more dimensions.
Therefore, imagine a one pixel wide object moving on a line. Let us assume a prior
“motion probability model” for the motion of the object, and a noisy “measurement
probability model” for measurement of pixel values in the camera with the addition
of shot noise. Within that framework, what are good formulations for tracking the
object’s path? How do we devise efficient algorithms to find estimates of the object’s
path as defined by the formulation? Are those algorithms generalizable to prior
“motion probability models” that allow motion in more than one dimension? What
changes in our prior “motion probability model” can alter the optimality of simple
efficient algorithms? These are the main questions that drive the organization of this

thesis.



1.1.3 Further details on the organization of this thesis

In this chapter, I propose different optimization formulations for the abstract track-
ing problem, discuss the advantages and disadvantages of the different formulations,
look at their connections, choose a formulation to explore deeply in this thesis, and
analyze the complexity of that formulation. Furthermore I consider several shot-noise
“measurement probability models” and choose one to utilize throughout the thesis.
In addition, I consider several “motion probability models” and choose a class of ran-
dom walks to utilize throughout the thesis. Lastly on this class of random walks, I
define three prior “motion probability model” regimes in order to analyze the opti-
mality and efficiency of deterministic algorithms that aim to solve the optimization
problem exactly for the class of motion models that I shall define. The analysis and
realizability of optimal and efficient algorithms that solve the formulation in these
three “operating regimes” will be the basis for our phase transition analysis at the
end of the thesis.

In chapter two, three, and four I will look at each of these “operating regimes”

separately. In chapter five I will assess the results and offer the “bigger picture”.
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1.2 Setting up the mathematical infrastructure

In order to offer different formulations for the Bayesian Tracking Problem, we need
to setup some mathematical infrastructure to refer to pixels, measurements on those

pixels as a function of time, and the object’s possible location as a function of time.

1.2.1 Defining the lowest level of abstraction: the available

data, the labelling

Therefore let

SeN

S={n|1<n<S,neN}

TeN

T={t|1<t<T,teN)

QcN|9 eN
:SXT—=>QCN
[: S xT — {0,1}

The set S represents the pixels in space from which we obtain image intensity
measurements. Throughout this thesis, let us assume that this set of pixels lies on a
line as opposed to a plane, in order to initially analyze the one dimensional tracking
problem. The set 7 represents the time instances over which we obtain image mea-
surements. The function i(s,{) returns the quantized image intensity measurement
for pixel s at time ¢. And the function [(s,t) labels pixel s at time ¢t as either a
background pixel (represented by 0) or an object pixel (represented by 1).

Given the sets S, 7, Q, and measurements i(s,t) V(s,7) € S x T, the Bayesian

Tracking Problem is related to estimating the unknown labelling I(s,t) V(s,t) € SxT.

11



In order to finish setting up the problem, we have to decide on a model for how the
measurements (represented by the function 7 evaluated on & x T) are related to the

unknown labelling (represented by the function I evaluated on S x T).

1.2.2 A higher level of abstraction: the measurement matrix,

the object’s path

Let us simplify the problem and assume the labelling, [, has a special form: 3L
V(s,t) € 8§ x T such that,
s,8) 1if Xi—:<s< X, +%
0 otherwise

X; € & represents the centroid in image intensity of the object we wish to track at
time ¢. L is the length of the tracking window whose center is the centroid of the
object and which encloses the object and a few background pixels. Assuming the
labelling has a fixed size window which contains most of the object for all time is
a realistic assumption because the object moves in a plane parallel to the camera’s
image plane and hence its size doesn’t change much. But for the purposes of this
thesis we will simplify the labelling [ even further by assuming the object is one pixel
wide, so that L = 0. If we estimate the vector X £ (X,..., X71) € 8T, we will have
estimated [. Let us assume throughout this thesis that we know the object’s initial
location at time £ = 0 and let X denote the object’s initial location.

Let us define another way to refer to the image intensity measurements, Y;(t): 7 —
Q ,Vt € T,Vs € S such that Y,(t) £ i(s,t) over the domain 7. In order to finish
setting up the problem, let us define a prior motion probability model, P(X), that acts
as a prior for the likely positions (and hence motions), X, and a noisy measurement
probability model, P(Y | X), that relates the data we measure, the T x S matrix ¥
whose t™ row equals Y (t) £ (Yi(¢),..., Ys(t)): T — Q° or equivalently whose (¢, s)
element Y; ¢ equals Y;(), to what we wish to estimate, X. I will present examples of

different motion and measurement probability models in the following sections. Later

12



we will choose amongst different models and analyze the complexity and realizability
of an “optimal” deterministic algorithm in solving a formulation that we shall soon

define.

1.2.3 The highest level of abstraction: sets of possible paths,

and sets of possible neighborhoods for paths

The prior “motion probability model” will aid us in defining a set of possible paths
for the object. Given a prior “motion probability model”, M, let us define the sct of
possible paths for the object as P(M) C S'.

In our formulation we will be interested in describing neighborhoods of paths as
opposed to paths. These neighborhoods will be parameterized by vectors that lie in
ST. For future reference, for a given prior “motion probability model”, M, let us
define the set of possible neighborhood parameters (each parameter corresponding to
a unique neighborhood with d pixels at each time instant) as A(M,4d) C ST.

We have set up the mathematical infrastructure for the problem. We now have a
probability distribution on the set of problem instances that any algorithm is likely to
encounter, namely P(X,Y), because we have defined the prior “motion probability

X). All that

model”, P(X), and the noisy “measurement probability model”, P(Y

remains is a mathematical formulation for the problem we wish to solve.

1.3 Different mathematical problems with the same
stated goal

For the meantime let us assume that we fix a prior “motion probability model”, M,
and a noisy “measurement probability model.”

We want to know the location of the object for all time, X', given measurements,
Y. There are many different ways of obtaining an estimate of the true path X,

[, . Xo)e P(M). Some such estimates of the true path, X, are

.
)
e
~
=

= arg maxXgep(a) P[K = X ):]s

13



2. ;\Em = argmaxgepon P13, Ki — Sl Xi| < 8),Vt € T | Y],

<(3)

3. X =aryg MaxXgep(M) P[(|f_§ = llee < 5) | L]
4. :\\—(‘” = (I,'I'_(}_;_\:ep(A\”(P[E = & | ;] >1— 6),

(5)

5. S = (l'l‘_(];\'e-p(/\[)(])[u Z'::l K; — Z:_—l ‘Yil < (5)\// cT | 2_—] >1- (.),

6)

v ol . ” ;
6. X = a'rggep(.«.,)(l’[(\!x_— Xl < 6) | L] > L=ig).

What do these estimates mean? What are the connections between them? What
are their differences?” Which ones are robust to noise? First note that the last
three estimates are relaxations of the first three estimates. So we might expect it
to be more difficult in terms of complexity to solve the first three problems than
their corresponding relaxed versions. In the following subsections, I analyze each of
the estimates and the conditions they satisfy in order to determine the connections

between the estimates.

1.3.1 Estimates that maximize the probabilty of exact matches

Initially, one might hypothesize that finding the maximum a posteriori estimate

. 3 {=X|Y
argﬁg;,a(jg_,)P(l_ X|Y)

and its relaxation

argxepm)(P[K = X | Y] ».1=g)

are the best ways to formulate tracking problems in the sense described in the in-
troduction. However, such estimates might not be unique. In fact, there may be an
exponential number (in the parameters S and T) of paths that all have the same max-
imizing value. Secondly, such an estimate need not be robust; a small perturbation
in the noise measurements may lead to a completely different path estimate. Thirdly,
for the chosen estimate X = (;\\’1, ...,)?T) € P(M) the value P(X = X | Y) might

be small and close to the a posteriori probability value for other possible estimates,

14



leading to an ambiguity in the quality of X as an estimate for the problem described
in the introduction even though at first glance in terms of mathematical symbols it
seems to formalize the problem we described. The ambiguity might be resolved if we
knew the distribution of possible paths and their probabilities but this could be a

large computational cost [17].

1.3.2 Estimates that maximize the probability of having a

small absolute value of the integral of signed error
So consider estimating the object’s path {X; |1 <t < T} with

k k
(L )1<t<T P K@) - X <o),VkeT|Y]>1-¢}
1

1= i=1

where Y is the T X S matrix of pixel value measurements whose t" row equals

Y(t) & (Vi(t),...,Ys(t)): T — Q5. Since i is a function of Y, I write i as X():)
and call it a decision rule. I shall not always explicitly denote the estimate as a
function of the measurements, ¥, because we always will fix the measurements before
conducting any analysis. Now how do the estimates, the X\'t’s, relate geometrically to
the object’s actual position at each point in time, the X,’s? The following conditions

are equivalent:

|Zx })—Zm <68),VkeT

i=1
=
k ~~
(I (X)) - X)) <o), VkeT
i=1
=

k
max | Y (Xi(¥) - Xy)| < 6.
=1

keT

Note that (;\\'i(g) — X;) is the signed error in length at time instant 7. So

|Zf=|(i\’z()__) — X,)| is the absolute value of the integral of signed error over the

—
()]



time instances {1,2,...,k}. We would like this discrete integral to be small Vk € T.
That would imply that every estimated motion subpath, P £ Xy, .\A’k), wiggles

around the true motion subpath, P, £ (X1,...,Xx) Vk € T. Does this condition

constrain the estimated path X' & (X1, ..., X7)to be within some distance of the true

path for all time?

1.3.3 [Estimates that define “high probability” neighborhoods

Now instead of looking for estimates that have a high probability of having a small
absolute value of the integral of signed error, we could look for estimates that have a
high probability of having a small absolute error at all time instants. In that spirit, a
different criterion is one that states that the estimated path i = (j\;u K"T)should

be within a distance ¢ of the true path for all time:
(1Xk(Y) - Xi| <0),Vke T

—

ax A ) — X, <
rpggl\k(;) Xi| <6

At this point let us define an (¢, §)-optimal algorithm, as an algorithm that outputs
such an estimate 4 = (A, .., Ap)for X £ (X1, ..., X7)with (e, d)-error, such that

A £ (A A= arggeron(PlIK — X < 6) | Y] > 1 —¢€). We can think of

this vector A as the index or parameter for a neighborhood or tube that includes the
actual path X with high probability.

Now we still may have the problem that the estimate may not be unique but
since we are utilizing many paths that collectively form a neighborhood or tube in
order to determine the solution to our optimization problem, the axis for the best
neighborhood 4 £ (Aq, ..., A7), the solution should be more robust to noise and
have much higher probability values associated with it making it a higher “quality”
estimate and setting it apart from other possible axes and hence neighborhoods that

aim to optimize this criterion.

16



In order to quantify the error between the estimated path and the true path using
the geometrical idea of “closeness” at every point in time, we should choose a variant

of this criterion as the optimiziation criterion for this thesis.

Relationships between the absolute value of the integral of signed error

and the absolute value of error

For completeness and to answer the previous question, how are the conditions

k k
D X@ - Xi|<o),VkeT
i=1 =1

(1Xk(Y) — Xi| <0),Vke T
related? Lets look at the implication of each condition:

L (IXk(Y) - Xkl <0),VkeT
= (1T X% - T Xl < TE 1K) - Xil < 16),Vk e T-

o

(T, X5 -8 Xl =T (K@ - X) <6, VEeT

= (20 <Y1 m(\ Y) - X;) <20),Ym<n;mneT
= (|X(): - X)) <28),VieT.

The above implications illustrate that the condition (| E_IX( ) — Zl . & s

0)Vk € T is more restrictive over time than the condition (l)\k(g —-Xi| <9),VkeT.
This result agrees with our intuition that the absolute value of the integral of signed
error can increase over time even though the absolute value of error at each time
instant is bounded.

If we let § = 0 then the optimization problem associated with both of these crite-
rions reduces to finding our other estimate that maximizes the probability of equalling
the true path X at all time instants. So the optimization problem arg maxgepv) PK =
X | Y] is a simplified version of the optimization problems associated with the crite-

rions discussed in this segment.

17



Finding the neighborhood that maximizes the probability that the actual path
X will stay within the neighborhood for all time instants is not necessarily easier
than finding estimates that satisfy the other two main criterions. But given that such
a neighborhood-based estimator! aggregates many paths ? that are spatially close
together in order to make a probabilistic statement about the true path lying within
the associated neighborhood, a neighborhood-based estimator seems more robust to

noisy measurements.

1.3.4 The route to the mathematical problem addressed in

this thesis

The potential robustness to noise, the real world physical interpretation associated
with the optimization statement, and the possibility that the best neighborhood
would have a relatively larger probability of containing the true path then the next
less optimal neighborhood bolstered my interest in the estimate A £ (A, ..., A;)=
m‘gig.p(l‘,)(P[(L_-{:():’) — Xl £0) | Y] > 1 ¢) and algorithms that can find such an
estimate.

Why is the estimate and its associated neighborhood meaningful?

Exact tracking is not always necessary and noisy measurements can restrict any
algorithm to low certainty estimates for an object’s path. For some applications it
suffices to know that an object’s actual space-time trajectory, X, lies within a o-
radius cylinder (tube) with probability at least 1 — e. Let us refer to the process
of finding such a tube as approximate tracking or (e,d)-optimal tube tracking. For
example, in collision avoidance systems (ie automated highways) the system tracks
an object and is only interested in knowing that its path lies in some “region” (ie
cylinder) that doesn’t contain obstacles. In surveillance (ie aerial) applications, one
is interested in approximate paths/locations of an object in order to determine if

an object enters a designated “region”. In real-time data acquisition systems for

'namely the estimate that indexes or parametrizes the “optimal” neighborhood
*Note that the number of paths in a neighborhood could be exponential in the parameters of the
problem and hence on the same order as the number of possible paths.

18



controlling experimental setups (ie wafer polishing sensor systems that collect sensor
data in order to decide when to stop polishing a silicon wafer), the system needs to
act differently when the system’s state trajectory enters a critical data “region” for
the first time. Instead of finding an exact path with low certainty, we can aggregate
the possible paths and find a d-radius cylinder (tube) that contains the true path with
high certainty. Hence finding a d-cylinder may benefit many engineering systems and
it should prove to be a robust estimator with meaningful mathematical properties.

Initially it seemed that finding a rough cylindrical boundary for the true path
would be computationally less expensive than estimating a single path for the actual
path hence making such a formulation ideal for real-time systems. However at the
end of this thesis we discovered that the complexity for the most efficient algorithms
for these formulations has the same order of growth in terms of the parameters of
the problem. This does not necessarily imply that there is not a faster solution for a
neighborhood formulation compared to an exact path formulation.

For real-time applications, where we also have to quantize our measurement values
and sample them in space, finding a d-cylinder may be more robust; the exact path
may become partially “sampled” or “quantized” out, whereas aggregate collections
of paths that are near one another are more resistant to these alterations.

This forumlation helps us model away some of the complex realities of real world
systems such as camera jitter and object jitter since localization noise shouldn’t per-
turb our d-cylinder too much if our neighborhood size’s are larger than the jitter sizes.
Instead we can focus on modelling the physics of the problem.

In terms of error analysis, we would like to know how likely it is that an object’s
space-time trajectory lies outside a cylinder of interest at any point in time. This
formulation would allow us to make such exact statements.

Hence with that motivation, the formulation of the tracking problem as the prob-
lem of finding these high probability neighborhoods (I also refer to them as tubes and
cylinders) under different circumstances (probability models) and finding a “reason-
able” algorithm (in terms of complexity) to solve that problem commenced the work

of this research.
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Therefore, 1 started studying the unrelaxed version of this problem. Namely, how
do we find an efficient (in space and time), deterministic, offline algorithm that given
sensor input matrix , ¥, will output A £ (Ay,..., A7) such that A £ (Ay,..., A7)=
argmaxgepar Pl(|K — X]o < 0) | Y].

Since A is a function of Y, I will occasionally write A as f__l(}:") and call it a decision

rule. Therefore, more compactly, I wanted the output A(Y) to satisfy

A(Y) =arg max P|X € Cs(a) | Y],
AY)=a o Dax [X € Cs5(a) | X,
where the d-cylinder with center @ is defined as Cs(a) = {y € 8T | |y — ale < 6}

Then if such an A satisfies
Pl|AY) — X <8) | Y] > 1—¢

I have a decision instance that is an (e, d)-optimal estimate.

Finding (¢,0) estimates efficiently in terms of time and space complexity is not
obvious. For any reasonable motion model there are an exponential number (in T)
possible paths. For example, if the motion model allowed the object to move from
any element in S to k elements in S, then there are kT possible motion paths. In
general, without a motion model there are ST possible motion paths. Can (¢, d)-
optimal estimates be found in polynomial time and space for our problem? How
efficiently can the unrelaxed version be solved for different probability models? This
unrelaxed problem is the problem that is tackled in this thesis. In the next sections, we
explore the probability models that will completely define the optimization problem

that we aim to solve.

1.3.5 Introducing the é-neighborhood

Let us first fix a motion model, M. There are many ways to parametrize the optimal-
neighborhoods that we seek. The d-cylinder is parameterized by the center of of the

cylinder and has a d-radius at each point in time. Instead we will define and utilize a
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d-neighborhood, Ns(a), thronghout the rest of the thesis. A d-neighborhood ,Ns(a),
is a neighborhood with ¢ pixels at each point in time parameterized by the left most

path that lies inside the neighborhood for all time or more formally,
Ns(a) £{yeP(M) |0< v —a <5—1,Vte T}

We will use this formalization of neighborhood throughout the rest of the thesis
because it is defined by the number of space pixels a neighborhood contains. This
concept will be useful for our phase transition analysis later.

Now what are the possible parameters a for our neighborhoods Ns(a)? They are
defined to be the elements of the set A(M,J).

In terms of this formalization, we wish to find

A(Y) =arg max P[X € Ns(a) | Y]*.
AY) org puax. P[X € Ns(a) | Y]*

1.4 Possible motion models

Now, let us explore various prior “motion probability models”, P(X). The need for
a prior for the path, X £ (X1, ..., X1), surfaces in this problem domain because there
are ST possible motion paths in general. However, realistically all those paths are
not likely. Therefore as a mechanism to reduce any algorithm’s time complexity in
estimating X, it makes sense for an algorithm to use a prior on the motions, P(X),
to “prioritize” the search space.

One realistic probabilistic motion model defines a probability mass function on the
next likely position conditioned on an object’s previous position, velocity, acceleration,
and jerk. For example, if an object’s current acceleration is greater than zero, and its
current velocity is greater than zero, then we know that at the next time instant the
object will most likely be to the right of its previous position with a variance related to
its jerk, acceleration, and velocity. This intuition translates into a probability model
P(Xpi1 | Xo, Vi, An, J,), where X, is the position at time instant n, V,, is the velocity

at time n, A, is the acceleration at time n, .J,, is the time difference of acceleration
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between times n and n+ 1 (also referred to as the jerk). In essence, the above motion
probability model translates into a Markov chain with |S| X g X ga X ¢, states
(qx = the cardinality of the set of possible quantized values that can be assigned to
K;,¥i € T). This Markov chain and initial conditions define P(X).

A simpler yet less realistic probabilistic motion model allows an object to move
left with probability p, right with probability p, and stay in the same position with
probability 1 — 2p. The number of paths with nonzero probability is 37. Despite
the fact that the model is unrealistic, it is useful; the conditional probability mass
function can be an analyzable decision mechanism in the first part of a “divide-and-
conquer” search heuristic used in answering the question, “Did the object move? If
so, did it move left or right?” If we add memory (velocity, acceleration, ... of the
object) to this model, then it will resemble the first model more closely and hence
become more realistic.

This latter model will be the starting point in our definition of a class of prior
“motion probability models” that we will continually refer to throughout the thesis.
Let this class of motion models be parameterized by a parameter, A, that defines the
maximum step size in space pixels that the object can move at each point in time.
More precisely, a prior “motion probability model” M, is defined in the following

way:
e X, € S is the known initial location of the object at time t=0,

e the motion of the object is described by the following first order markov chain:

( 3
2A1+1 if Xosi =Xs — 11 € {1,200}
4 if X=X
P(-Xn-H | —’Yn) = { 2A-+1 n+l1 n .
m o Xonn =X +14,1€{1,2,...,A}
0 otherwise
> /

1<n<T.

Therefore M, denotes the prior “motion probabillity model” that describes the
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ability of an object to stay in the same position, move one step left, or move one step

right with equal probability at each time instant.

1.5 Possible measurement models

The noisy “measurement probability model”, P(Y | X), describes how an object and
its trajectory are related to what a camera senses. In their least filtered form, our
measurements are the elements of a T x § matrix Y. whose (t,s) element is Y,(t) =
i(s.t).

For example, a model for noisy measurements that are minimally filtered is Y;(¢) =
o(s — Xy) +ng(t) where o(s): Z — Q is a template of the object that an algorithm is

tracking. Modelling the image of a ping pong ball, we could define the template

I!"

Py A(1 + cos 2115) if —2 <5< '“2—°
o(s) =
0 otherwise

)

t

where A is the brightness intensity at the center of the one dimensional ping pong
ball and L, is the length (in pixels) of the object. Simply rewriting o(s) as o(s) and
replacing s in the definition with ||s||?, we could define o(s) for a two dimensional ping
pong ball. Note that this particular template o(s) implies the fact that brightness
measurements tend to be concave near the maximum intensity and convex near the
“edges”. A and L, are unknowns that can be learned from training data. ny(t) is a
discrete-space-time noise process where ng, (t;) and n,(t2) are iid random variables
V(s1,t1), (s2,t2) € S x T whose distribution is determined empirically from training
data.

An alternative noisy “measurement probability model” relates measurement data
filtered through system H, H(Y), to the object’s positions over time, X. For example,
system H with input Y(t)Vs € C' C S may output a quantized scalar yc, (or more
generally, a lower dimensional vector) that represents a feature. The set C represents
the fact that an algorithm may not need all the intensity measurements in space to

accurately determine the location of the object and that certain data combinations
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may be more important for tracking. Using a scalar measurement for each time
instant may lead to a simpler estimator A(Y’) and the ability to design filters whose
scalars inform a “local” algorithm which direction to search for the object in order to
locate the object with high probability. Also, learning a scalar (or lower dimensional
vector) measurement’s distribution is easier than learning the distribution for a vector
of measurements. So for example, a filter whose impulse response is h(s)=(d(s) —
§(s— %))+ (6(s) — (s + 5)) gives us scalar measurements for the object. The filter
will usnally give the highest response for the ping pong ball image at pixel s if s
corresponds to the point of maximum intensity (the center of the ball). Thus the
filter’s response at different time instants can be calenlated and used for determining
the ball’s position. This filter can be generalized and visualized as an octopus that
is centered at the center of the ball with tentacles that reach out. The statistics of
these “tentacle” measurements are the outputs of this filter.

Matched filters are another method that can be used to determine an object’s
path in a noisy image. Different matched filters will cost different amounts in terms
of time and space complexity, and probability of error for an (e, d)-optimal estimate
or an approximation of one.

In this thesis we will utilize a simple template for our noisy “measurement prob-
ability model” assuming that the object is one pixel wide with uniform intensity. We
do this because we want to isolate the effect of different motion models on the com-
plexity of the problem, and hence altering the noise models is not our prime concern.
The measurement model employed throughout this thesis will be formally described

in the next section.

1.6 Tracking algorithms

Now that we have explored different models for motion and measurement, the question

arises: How do we use these models to come up with an efficient, deterministic, offline
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algorithm that given sensor input Y,

will output A £ (Ay, ..., Ar)such that

A(Y) =arg max P[X € N;(a) | Y](%)

T ac A(M,0)

1.6.1 Brute force analysis
Any deterministic decision rule, :XQ_) Q5T — 8T, has | Q[T elements in its domain.
So unless the decision rule has an analytic form, in terms of space complexity an
algorithm would have to carry around a large table to define the decision rule.

How long would a brute force algorithm take to find a deterministic decision rule,
A(Y), that satisfies condition (%)? There are S7'2 different decision rules. So in the
worst case, a brute force algorithm would need to go through each of those decision
rules and for each decision rule, A, it would need to calculate P[X € Ns(A) | Y],

which could also be expensive depending on the form of P(X,Y).

1.6.2 Simplifying model assumptions

For the purposes of devising an efficient algorithm, I will simplify the problem with

some assumptions about the formulation setup which can be relaxed later:

e First, throughout the thesis let us assume our measurements are binary such

that the quantized image intensity measurements come from the set Q = {0, 1}.
e Next, let us assume the object’s length is one pixel wide (L = 1).

e Also let us assume the initial position Xj is known and choose the M, prior
“motion probability model” that states that the object moves left, right, or

stays in the same position with equal probability:

4 1 X )
3 if an—l :/Yn—l
l lf AX—n ¥ = Xn.
Pl [X)=4 B * L 1<n<(T=1).
% lf X71+1 - /\’n + 1
i 0 otherwise J




Therefore, the true path X is a member of the set of possible paths

P(M)={y € ST v = Xo,|vj — vl <L,VjeT}rc S

In the next chapter of this thesis, we will utilize the M, prior but in later
chapters we will change the prior “motion probability model™ to M for general

A. In that case,

PMp)={y€S |v=Xo;lvj—v-1l <A, jET}C S

Initially, let us assume a noise-free measurement model that states that if the
object is present at position X, at time ¢, then we should measure an image
intensity of 1 at that location in space-time and for all other locations we should
measure a () at time ¢. So let us define a simple object template, o(s): Z — Q,
where

1 if 8=

o(s) =

0 otherwise

Figure 1-1 shows a noise-free measurement, Y, in space-time sampled from our

motion model.

Let us assume a simple noisy “measurement probability model” that states that
the noise corrupts the measurements by flipping bits. Relating the template to
our measurements and the positions, Y;(t) = (o(s — X;) + n,(t)) mod 2, where
ns(t): T — Q is discrete-time noise process such that ng, (t;) and n,(t2) are
iid Bernoulli random variables V(s,t)), (s2,%2) € S x T. More specifically let
P(nys(t) =1) = a and P(ns(t) =0) =1 - a.

26



Figure 1-1: The noise-free measurement matrix associated with an object’s sample
trajectory.

Time (in frames)

Object Path (without Noise)

10 20 30 40 50 60 70 80 90 100
Spatial Location (in pixels)

This implies that

l —a if X;=sandY,(t)=1
—_— ; Q if Xy=sand Y,(t)=0 X
P(Y;(t)|X,) = V(s, 1) eSxT.
Il —a if X;#sand Y,(t) =0
{ e} it X, 7:‘ s and 85(7‘) =]

X)), lets look

Lastly in order to fully write out the measurement model, P(} |

at the consequences of the probabilistic model we chose:

(A) The image measurements at time ¢ only depend on the position measure-
ments at time ¢ and not at any other times. Formally, Y (¢;) and X, are

conditionally independent given X, if ¢, # t,.
(B) Also Y (¢,) and Y (#,) are conditionally independent given X, if t; # t,.

(C) And Y, (#) and Y5, (t) are conditionally independent given X,.



This implies

PY|X) = P(X(T),...X(Q)|X)
= [l B @) | Y —1):X (1), X)) PY(1) | X)
= Lo PIYE) | Y& =1) 50 Y1) Xiyoory X)) IPYAL) | Xiyeoey Xi)

X
= [T P(Y(t) | Y (£ = 1), ..., Y (1), X)) P(Y(1) | X3)

= [l PY@) | X)) 5
= [Ii., P(Yi(t), ..., Ys(t) | Xo)
= I 1o POA®) | X0) C

Figure 1-2 shows our space-time measurement data, Y, for the trajectory depicted
in the previous figure but now corrupted with our noisy “measurement probability

model”.

Figure 1-2: The noisy measurement matrix associated with an object’s sample tra-

jectory.

Object Path (w/ Noise, v=.03)

10 20 30 40 50 60 70 80 90 100
SpatialLocation (in pixels)

e Throughout the thesis we will also place a continuity constraint on the neigh-
borhood parameters. a € A(M, ) that parameterize/index the neighborhoods
Ns(a). Namely we will impose the constraint

- o . . ) e
A(_\[A.()) = {“_ eS l IA,"';/ = ";,‘_]| S IV] = TZ Yo = _\() = L‘)I} Cor.

28



1.6.3 Mathematical simplification

With our simplifying assumptions we are interested in devising an efficient, determin-
sy . . . . - . A 4

istic, offline algorithm that given sensor input Y, will output A = (A, ..., Ar)such
that

AV — e v ” N 4
AlY) = org. Jmsx 6)P[A € Ns(a) | Y](%)

So using Bayes Rule let us rewrite P[X € Njs(a) | Y]:

2aensa) PY)
P(Y)

Zlexdu_.) P(Y|7)P(7)

Z’_fG?’(M) P(Y]1)P(7)

2 eng(a) Pl ;
—Z%ﬁ (motion model — constant P(7))
2€P(! ==l S

P(X € N5(a) |1 Y) =

Therefore

AY) = argmaxeeamsPLX € No(g) | Y]
= argmaXge A(M,5) Z"_jENJ(u) P(; I l)

s ,
= argmaXee A(M,5) DX yeN;(a) [Ti=1 [T5-1 P(Ys(2) | %)

So how do we find A(Y)? And once we do that, how do we compute P(X ¢
Ns(A) | Y) given that its denominator in the Bayes Rule manipulation is a sum over
an exponential number of paths? These questions will be addressed for the special

case of 0 = 0 in the next chapter.

Further mathematical simplication using the simplified model

In this section, we would like to rewrite the term zgeN‘;(a) T B PG | )
stated in the last section more explicitly in terms of the noise level a and the individual
measurements Y .

So let us start by defining a function that takes a time ¢, set of measurements at
time ¢, say Y (t) = (Y1, Y2, ..., Yis) and a possible location for the object at time ¢,
say [, € &, and outputs the number of local (in time) undamaged measurement bits

at time {.
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Therefore 1 define

s
N Y (1), 1) 28 =Y Y+ I(t,Yiy,, ly) = O(t, Yiy,, n)
=1
where I(t,Y},,, () is the indicator function that returns 1 if the measurement Y3, is
a one and 0 otherwise. Likewise O(t,Y,,,,(;) is the indicator function that returns 1
if the measurement Y3, is a zero and 0 otherwise.

Therefore we can rewrite

Nt Y(t),h) = S—3 0 Yu+Yy —(1-Yy)
= S-S, Y +2Yy, -1

So for example say S = 9 and T = 5. Then we have a 5x 9 matrix of measurements
which are Os and 1s. Say the initial location is X; = 5. Then at time ¢ = 1, the
object can be either at position 4,5, or 6. If the measurements at time ¢t = 1 are
Y (1) =(0,0,1,0,1,1,0,0,0) then the respective number of local undamaged bits for
a path going through location s = 41is N(1,Y(1),4) = 1+1+04+0+0+0+1+1+1 = 5.
Similarly, for the same measurements at time £ = 1, the number of local undamaged
bits for a path going though location s = 51is N(1,Y(1),5) =1+140+1+1+0+
1+1+4+1=7.

Now let us use the above formalism to simplify the optimization problem even

further:

AY) = argmaxgeams P[X € Ns(a) | Y]
= argmaXae (M) ZzeNg(g) P(Y | )
= argmaXgea(M,s) ZzeNé(g) HI.—.] Hi:l P(Y;(t) | )
= argmaxeeanns) oenye T (1 — @) NELOM oS- NEXOm)
S — Z;,eNé(g)(l — )T NEY (000 o SIy (5= N (0m))

;S 6T 1y~
= arg maerA(M,J) Z’yGNg(g)(l = a)2'2,=1 Yt a—l 2i=1 Yt

- 1—a\257T_, Y,
= argMaXee AM,5) Loyeny(a)( o) 2=t Y
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This simplified version is friendlier to work with because the individual measure-
ment values on the paths of interest in a given cylinder show up directly in the
optimization problem.

For example, if the noise paramater that flips bits is a = %, then
A(Y) = argmaxeeams) Leng(a) 420 e

So notice that if the noise level o < .5 then we roughly want to find the region
with the most number of 1s but more precisely the region parametrized by A with
many paths with 1s. And if .5 < o we roughly want to find the region with the most
number of 0s but more precisely the region with parametrized by A with many paths

with 0s.

1.6.4 The combinatorial optimization problem

In this section, for completeness I will summarize the combinatorial optimization
problem we confront without reference to probability models. So I will discuss the
pure optimization problem with minimal reference to any tracking problem. This
section is therefore completely self contained although its purpose is to solve the
problem set out. Therefore, the notation may be a bit different than the rest of the
thesis.

We have a set of points & = {1,2,...,S} and a set of points 7 = {l1,2,...,T}.
Their cross product 7 x § defines a lattice of points. We can spatially order and
hence visualize these points on the lattice as shown in figure 1-3. The lattice point
indexed by (¢, s) can be found by looking at the circle located in the t** row and the
5™ column.

On this lattice there are measurements. For each lattice point (¢,s) € T x S we
have a one bit measurement Y, ; which is either a 0 or a 1. Fix these measurements
Y;V(t,s) € T x S. Let us collect these measurements into a T x S matrix Y such
that (Y),s = Y.

In this optimization problem we will be interested in finding a vector A € ST that
maximizes some cumulative value function. The cumulative value function takes as

input the vector 4 and outputs a score based on the number of lattice points in the
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Figure 1-3: The lattice that defines the space-time landscape for an object’s trajectory.
3 4 9 10 11 12

OO00000O0O0000 .. 0O
OO OQOOOQLL O OO
;OO0 000000 O OO
LO0000000 O OO
sSO00000O0 O OO
LOO0O0O0000 O OO
O

O
O
O
O
O O
O000000 O OO

O
OO0
OO0
OO000O
O0O0O0O
OCO00O

2000000000000 0O
2000000000000 ~ 00
L000000000000 0O

enclosed region defined by A that have a 1 measurement bit associated with them
and the pattern of those 1s.

I will describe the closed region that A parameterizes on the lattice and then I
will later explain the cumulative value function. But first let us look at the space
of possible As. First fix any point Xy € & such that it is sufficiently far from the

boundaries 1 and S. A is constrained to be a “continuous” vector in
. . )
AG) £ {y €87 by =3l SLVG € Timo=Xo = 5]} € 67

So let us define the closed region that A € A(J) parameterizes via a left and right
boundary. There is a left boundary, L € 8", associated with the closed region that
A parameterizes where L, = A;,Vt € T. And there is also a right boundary, R € ST,
associated with that region where R, = A, +90 — 1,Vt € T.

Now we can visualize the region defined by these left and right boundaries on

the lattice in the following way for the given A and the subsequently defined left
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boundary, L, and right boundary, R. In figure 1-4 we illustrate with an example
where § = 1, the region has a one unit wide radius. Also we fix T=7, S = 12, and

A=(7,7,6,7,8,8,7).

Figure 1-4: A neighborhood in the lattice with left and right boundaries depicted.

OQO0000LO®OOO
,O00000LO®OOO0
;O0000B0O0®OOOO
LO00000VO®OOO
sO000000LO®OO
LOOO00000WLWO®OO
O00000O®OOO

At this point I will focus on describing paths that follow the M; motion probability
model as described earlier in the thesis to avoid complications for people that want
to understand the main difficulty of the optimization problem we confront.

Now I shall describe the cumulative value function. First we shall define a path
in the region parameterized by A in the following way. The set of possible paths

contains paths p £ (p1,p2, .-, pr) that are defined via these constraints:
pr=Xo—1orp = Xporp =Xo+1such that L; <p; < Ry

p2 =p1 — 1 or pp =p; or po =p; + 1 such that L, < p, < Ry

p3 =p2 — 1 0r p3s = ps or p3 = ps + 1 such that Lz < p3 < Ry

pr = pr—1 — 1 or pr = pr—; or pr = pr-1 + 1 such that Ly < pr < Ry

Thus a region of the lattice parameterized by the vector A contains a large subset of
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the set of all possible paths. Let us define the set of all such possible paths p in the
region parameterized by A or equivalently L and R as Ns(A). More formally,

Ns(A)={peS"|Ip—Xo| <L Ipa=ps| < 1,..., Ipr = pra| < 15

Lt :At,Rt = At‘f'(s— 1,L£ Spg S I‘Zz,VtE 7—}

Now let us define a value function v(p) : §* — Q. v(p) takes as input a path p
and outputs a number that is exponentially related to the number of 1s that lie on

the path, p. Namely,

l—« T -
o(p) = (<=2 Ebm Yo,

Now the cumulative value function, ¢(A4) : A(J) — Q, cumulates the value func-

tions of all paths that lie in the region defined by N;(A) in the following way.

c(4)= Y vp)
PENs(A)
Now the problem can be stated precisely as finding the vector A*, which param-
eterizes a neighborhood region, from the set A(¢), that maximizes the cumulative
value function ¢(A).

Therefore, A* = argmaxac 4.5 ¢(A).
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Chapter 2

Movement Range=Neighborhood
Size=1

2.1 Introduction

In this chapter we will utilize the M, prior “motion probability model” which allows
the object to move one unit to the left or right, or to stay in the same position at
each point in time and additionally we will fix our neighborhood size to be 6 = 1. As
with many reductionist engineering approaches, understanding this special case and
developing an algorithm for it will lead us to algorithms that will generalize to other
prior “motion probability models” M, and neighborhood sizes, 0.

Under these conditions, let us find an efficient algorithm that will calculate the

parameter A(Y) € A(M;,d = 1) for the MAP neighborhood N;(A) where

T S
AY)=a ax PlX € N§(a) | Y] = a P}
A =arg gz, P Nta) | ) =ers g, 32 TTTTPOSO 1)

We will find an efficient algorithm that finds A(Y)) and analyze the algorithm’s

complexity. Then we will discuss how to calculate

P[x_‘{el\gl |)]—'



which at first glance looks like it is not computable in polynomial time since the
denominator is a sum over an exponential number of paths (in T) regardless of the
neighborhood parameter, A, or the neighborhood, Ns(A).

Then we will end this chapter with some experimental results and a generalization
of the algorithm to motion in more than one dimension so that we can begin to
consider tracking two dimensional motions such as a ping pong ball moving against

the black background.

2.2 Algorithm for finding a MAP neighborhood

2.2.1 Mathematical simplification resulting from 6 =1

If the neighborhood size at each point in time is § = 1, then the neighborhood N;(a)
parameterized by a € A(AM,, 1) has only one path, namely the parameter a. That is
Ny(a) = {a}. So our optimization problem simplifies in the following manner:

LI l-«

» > nadl! © T /
A(Y) =arg max HHP()‘S(t) | @) = arg max (——)2%e=1Yee

ac A(My,1) acP(My) Y
t=1 s=1

T
=iy ek )(; Yiai)-
The above simplification assumes that o < .5, which we can assume without loss of
generality. How do we find the best path, A(Y)) amongst the exponentially many (in
T) possible paths in P(M;)?

Can the optimization problem be separated in time so that we find the best path
up to time n and use the results to efficiently find the best path up to time n+17 In
order to investigate this possibility let us formally define the set of paths starting at

time step 1 and stopping at time step ¢ that follow motion model M4 as
PuMp)={y €S | =Xo;l1i— 111 <A 1<Lj <t S

The ability to separate the optimization problem in time means that in order
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to find the best path for time steps 1 through n + 1. arg Inﬂxggpn_'_l(,\:]l)(zyi']l ¥ )
we would use the results from finding the best path for time steps 1 through n,
arg maXeep, (M) re1 Year)-

Indeed the problem can be separated in time in such a way and that ability to
divide up the problem in time is what allows us to devise an efficient algorithm to
solve the problem. For example, without loss of generality assume that o < .5. In
that case, we want to find the path with the most number of 1s on its path. We can
divide up the problem in time in the following manner. At time step n, if for each
reachable location in space, we know the best path that goes through it taking into
consideration only measurements up to time n (ie the path with the most number of
1s on its path up to time step n), then we can calculate the best path going through
each of the reachable locations in space at time step n + 1 using measurements at
time step n + 1 and the best path going through each reachable location at time step
n using only measurements up to time step n. This is due to the fact that the above
sum can be broken up in time. This will all be made more formal, but the idea behind
the algorithm can be summarized as optimizing for each reachable location in space
at each time step using only the previous time steps optimization results. Keep this

in mind as you read the following formalization.

2.2.2 Defining the Algorithm

First, let us define the set of possible paths that start at position X, and end at

position s at time ¢ obeying the proposed motion model M, as
Pt,s) ={y eS8 |7 =Xo; |7 — vl £1,1<j < tim = s}

Therefore, an object whose trajectory commences at position Xy and ends up at
position s at time step t could have taken any path p € P(t,s) C S* to reach that

position. Similarly let us remind ourselves of the definition for the set of possible
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paths that start at position Xy and terminate at time ¢ under motion model M;:
PuMa) ={y €8 |70 =Xo; |7 —vj-1] <A 1<j <t} C S

Also let us define the set of possible locations for the object at time 1 <t < T—1

given the object’s position at time ¢ + 1 is [ as
LE+1,)={seS||s—Xo| <t |s—1 <1}

For example, an object that is at position /; at time step 4 could have come from
any position I3 € £(4,1) in the previous time step (as dictated by the motion model
M;). Finally, let us define the set of possible locations at final time T as £; =
{s € S| |s—Xo| <T} aud let us define the set of possible locations at time ¢ as
Ly={seS||s— Xo| <t}

We now need to define some functions to keep track of the results of our optimiza-
tion at each time step with the aim of reusing these results in the next time step of
the optimization (which will have been “separated in time”). Let M,(s) : S — S" be

a sequence of functions for 1 < n < T such that

M,(s) = arqaexg?;}h)P[a | Y] = m(}aengg:(g) Z),a,)

M, (s) represents a path that maximizes the objective function f,(a) £ (30, Yia,)
over all @ € P(n,s). We are interested in searching amongst the paths in the set
{'y vy = Mz(s),s € L1} and outputting a path that maximizes f(a Z, ¢ Yoise)
In order to devise an efficient algorithm to calculate Mr(s)Vs € ﬁT, we will use use
M,(s)¥s € L, in order to determine My, (s)Vs € L, for all times ¢t € 7. That is
the idea behind separating the optimization problem in time. Now why and how can
this be done?

It can be accomplished because of the mathematical structure of the objective

function fu(a) = (3°)-, Yia,) and the fact that the measurements are non-negative.
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More formally, it can be shown that

B S) = ) LNY A 2 a’ n— :‘/Tl— l , S
M,(s) = CO C—lT[mgM” :{};f}gﬁ(n,s)f' (M1 (1)), s]

where CONC AT is a function that takes two finite vectors and outputs a vector that
is the concatentation of the two. The validity of the above step can be ascertained
via a proof by induction.

So the pseudo code for the algorithm that will solve the optimization problem can

be written down concisely:

;’1’[1(‘\'0 - l) = (‘\'0 == 1),
M 1 (.\.—()) = (;\’0);
A‘.’[I (.X() = 1) = (_\’0 + l)

for-t:i=:2 to:'T

begin
forse L, CS
begin

M,(s) = CONCAT (arg maxyy, ,qyiecq,s) fr-1(Mi-1(1)), s);
end
end

return arg maxag () ec, fr(Mr(l));

The above algorithm finds the optimizing route through every node at each point
in time and works its way down in time, reusing the work from the previous time
step. In that sense we have been able to “separate the problem in time”. An actual
implementation of the algorithm is coded in MATLAB and included in Appendix A.
Note that in order to achieve maximal performance with that implementation the
for loops must be transformed to matrix operations. However the code serves the

purpose of defining the pseudo code in more detail.
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2.2.3 Complexity Calculations

Again we are assuming S is much larger than T. If this is the case then the above
algorithm looks at only a pyramid of points in the lattice (which are reachable from
Xoy). Therefore, there are O(T(—T.;-Q) = O(T?) points. For any given point in the
pyramid the algorithm does at most three comparisons of objective function values
for different paths that could have reached the given point. Therefore the algorithm
takes O(T?) time.

In terms of space complexity, at any given time step ¢ we only need to keep track
of M, ((l)Vl € L,-,. Since the cardinality of the set £,_; is 2(t — 1) + 1 = O(t) and
M;_ (1) is just a (t — 1)-vector of numbers in S, we have that the space requirements

are O(T?log(8)).

2.3 Calculating the probability in polynomial time

Now we have an algorithm that calculates the parameter, A, of the MAP neighbor-

hood for the special case when § = 1. But how do we calculate

Zzem(d) PQ_: | %)
Zzep(ml) P(L )

P[X € N;(4) | Y] =

for the special case of & = 1 which initially appears to not be computable in polynomial
time since the denominator is a sum over an exponential number of paths (in T)
regardless of the parameter, A, or the neighborhood, N;s(A).

Is the numerator computable in polynomial time? It should be because it is the

probability of a single path. And indeed the numerator simplifies since § = 1 so that
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the d-neighborhood with parameter A is precisely the vector A and therefore,

Yemw PEIy) = PRE|A)
= Hg ]Hq lP I 4)
= [0 —0)‘\ (LY(0),A) o (S=N(LY(1),Ar))
= (1 — @)Ti= NELOA) Tiny (S-NEX(A)

T(S-1)- sum})TZZ! W Y, T+sum(Y)- 23 _y Y2, 4,

= (l-«a Aty

)
. ( (y) ( ) —~T- sum())(l (1)22, 1 YA,

83

where sum(Y) £ 377, S°°_ ;. So indeed the numerator is computable in polyno-

mial time.

However, is the denominator computable in polynomial time? How can an algo-
rithm efficiently count and determine Z’IEP(Mx) P(Y | 7) without going through all
the possible paths v € P(M,)?

If we can change the sum over paths into a sum over equivalence classes for paths
where the number of equivalence classes is small (namely polynomial in T and S) and
z);

(so that the sum over the equivalence classes is easy to calculate) then we may be

each path, z, in an equivalence class has the same conditional probability, P(}

closer to an answer. But what equivalence relation (property) do we need to have
a “favorable” structure for our equivalence classes? We need an equivalence relation
(property) such that the number of equivalence classes for paths is polynomial (in S
and T) and such that it is easy to count the number of paths in each class.

So if we find a property for a path z such that

e two paths z(!) and z(? are in the same equivalence class if they have the same

property,

e P(Y | z) is the same for all paths z in the same equivalence class and efficient

to calculate for any path in any equivalence class,
e there are a polynomial number of equivalence classes (in S and T),
e and the number of paths in each equivalence class can be calculated efficiently,
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for example “recursively” or “iteratively” in polynomial time (in S and T),

then the transformation of the sum will allow us to efficiently calculate the denomi-
nator.

There does exist such a property (that induces an equivalence relation) for any
path z £ (2, 29,...,07) € P(M,;). That property relates the path, z, to the mea-

surement data, Y. Specifically, define

T
I(z) £ ) Yie,
t=1

so that 7(z) is the number of 1s on the path z.
Then we can define the equivalence relation:
2V~ 2® o (20 = 1(2®).

Intuitively the number of 1s on the path z is related to the number of undamaged

measurement bits, S°;_, N(¢,Y(t), z,), if z was indeed the true path. Namely,

X
Y ONEGLY(t),2) =T(S = 1) — sum(Y) +2)_ Yig,.
t=1 t=1

Therefore the number of 1s is related to the number of undamaged measurement
bits via the addition of a constant term that is independent of the assumed path, z.
Now we can index the equivalence classes uniquely in the following way: take a path
z in any equivalence class, then the equivalence class [z] will have an integer index
k= Zle Yiz. € {1,2,3,...,T}. And I define the cardinality of the equivalence class
with index k, [k], to be C(k).

So my point is that given ¥ and I(z), we can rewrite ) P(Y | 2) as

T
‘| z) = V(1 — o) TS (L -T-sum(y) L = @\ ok
:L(;”P(YZIQ—ZC(A)O ) ) )( ki e T

z€ k=0 &

Note that our first three requirements for the equivalence relation were needed in
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order to transform the sum over an exponential number of objects to a sum over a
polynomial number of objects (in T). It only remains to show that our fourth require-
ment can be met so that C'(k) can be calculated efficiently for all £ € {0,1,2,3,..., T},
hence allowing us to calculate Z;ner'(Atl) P(Y | z) efficiently.

Is there an efficient way to calculate C'(k) for all £ € {0,1,2,3,..., T} using the
set of all paths X € P(M,;)? Again that seems difficult due to the fact that there
are an exponential number of possible paths in P(M,). Nonetheless, the following
algorithm is inspired from the algorithm for calculating Pascal’s triangle. First let
me recursively define

1

Cl(s, k) £ CU V(s + 1,k - Y

l=-1
where C'(s, k) =0,Vs € §,Vk € {0,1,...,T} if s > (Xg+1) or s < (Xy — 1)

. if k=0,5= X,
and C"(s, k) =

0 otherwise
such that C(k) = Z C"(s, k).
seS
Note that C'(s, k) is the number of paths through time ¢ that go through pixel s and

have colored k pixels as 1s along their paths.

2.3.1 Complexity calculations

We can do the counting iteratively at each time step so that calculating C"(s, k)Vs €
S,Vk € {0,1, ..., T} can be done in time O(T?). This is possible because at each time
step t we update order ¢* function values corresponding to the set {C'(s,k) : s €
{Xo—t,Xo—t+1,...Xo+t}; k€ {0,1,2,...,t}.

The space requirement of this algorithm is O(T?). This can be seen because at
each time t the algorithm only needs to keep track of order t pixels (the ones that
may have paths going through them) and for each of those pixels indexed by (¢, s) we

need to keep track of the values {C*(s,k) : k € {0,1,2, ..., ¢} which sum to at most 3
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(which requires at most ¢ bits).
So indeed, C(k)Vk € {0,1,...,T} can be calculated efficiently. And we therefore
have an efficient algorithm that calculates Zze‘r’(:\h) P(Y | z) without enumerating

the probabilities associated with each of the possible paths z in the large set P(AM).

2.4 Simulation

In figure 2-1 the top subplot shows the object’s path, the middle subplot shows the
measurement matrix corrupted with shot noise, and the bottom subplot shows the
estimate for the object’s path. Regardless of the high noise level, in this particular
instance the estimate nearly tracked the object’s actual trajectory.

However, the probability of the trajectory equalling the object’s actual path given
the noisy measurements is only 0.0167 and many other trajectories have a relatively
close probabilty associated with them. But if we put a neighborhood that is centered
about this estimate and that contains five pixels at each point in time, the probabilty
that this particular tube contains the object’s actual trajectory for all time is 0.9655.
Note that this probability is a lower bound for the probability associated with the
best tube that has a five pixel neighborhood size at each point in time.

Now in one simulation, I ran the problem independently 500 times with noise
«a = .1 and found the best paths and the their associated probabilities. Let us look
at a histogram of those values on the bottom subplot of figure 2-2. Notice that the
values have a rather wide experimental variance compared to the histogram of the
probabilities associated with the tubes (with § = 5) that are placed around those
paths. The histogram of the probabilities associated with the tubes is illustrated in

the top subplot of figure 2-2.

2.5 A generalization to motion in two dimensions

The results we have obtained thus far can be extended to an object moving in more

than one dimension. For notational simplicity, I will show how to extend the results
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Figure 2-1: The noise-free and noisy measurements along with the associated estimate

for the object’s sample trajectory.
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for an object moving in two dimensional euclidean space. Other dimensions and

spaces can be approached in a similar fashion.

2.5.1 Setting up the problem

Let us use the formalism we have already setup and simply change the object S and
the objects that pertain to that set. We will still use a set S of points. But these
points will now be in some bounded region of two dimensional euclidean space as

opposed to some bounded region of one dimensional euclidean space. Therefore let
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Figure 2-2: The histogram of probability values associated with the best paths and
neighborhood placed around them.
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us formally redefine S = {(m,n) | 1 < m,n < S,m,n € N}. An object’s location at
time 7 is represented by (my,n:). And the path of the object is stored in the vector
X2 (X1, Xy, ..., X1), where X, £ (my, ).

We have a three dimensional cube of measurements. Namely because for each
time instant, we have a two dimensional lattice of measurements, corresponding to
the two dimensional pixel value measurements. Let us denote our measurements by
the T X S x S matrix Y.

Now we make our usual simplifying assumptions with slight twists:

e Let us assume the initial position Xy € S is known and choose the two di-
; . g o 55 w20 :
mensional prior “motion probability model”, ;\«[]( ), that states that the object

moves west, southwest, south, southeast, east, northeast, north, northwest, or
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stays in the same location with equal probability:

( 3
s if M1 =My — 1, N1 = My
% if myg=my—1ne=n—1
s if Mey1 = My, Mgy = Ty — 1
s if Myy =my+ 1, =ng — 1
L ——_— ; axuas

P(Xeor | X)) = g if Mypr =My + 1,00 =ny L 1<t (To1)

s if My =My + 1,0 =0+ 1
é if Mypp1 = Mg, Ny = N+ 1
s if My =My — Lng 1 =ng + 1
s if Mip1 = My, Mgyl = T

| 0 otherwise |

Therefore, the trne path X is a member of the set of possible paths
PMIP) ={7€8 | 10=Xo, e — 11| S L,VE€ T} C S™

Note that the norm used in the definition for the set of possible paths is a
discrete norm whose isocontours are discrete points on the set of squares that

surround the origin.

e Also let us formalize the two dimensional notion of d-neighborhoods. A two
dimensional d-neighborhood, Ns(a), is a neighborhood with ¢ pixels in the x-
direction and § pixels in the y-direction, at each time instant, parameterized
by the path that occupies the lower left corner of the neighborhood (inside the

neighborhood) for all time or more formally,

Ni(a) & {y € P(MED) | 0 < |y—ae] < 5-1,¥¢ € T (a)z > (1)es (@)y > (10)y}-

e We shall impose the continuity constraint on the neighborhood parameters, a,

contained in the set .A(Ml(w),é) that parameterizes the neighborhoods Nj(a).
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Namely we will impose the constraint

; , . 0
./-1(.\[1(21)),(5) = {7€ ST Iﬁ— Yi-1] £1,V5 € T;7% = Xo — ([§J~ |

| &4

N}cs.

N

e As usual let us assume our measurements are binary such that the quantized

image intensity measurements come from the set Q = {(), 1}.
e Next, let us assume the object’s length is one pixel wide (L = 1).

e Now, let us assume a noise-free measurement model that states that if the object
is present at position X; at time ¢, then we should measure an image intensity
of 1 at that location in space-time and for all other locations at time ¢ we should

measure a 0. So let us define a simple object template, o(s): Z x Z — Q, where

1 if D= (-”'1’ sy) = (010)

0 otherwise

Figure 2-3 shows the noise-free measurements associated with an object’s path

as projected into the XY plane (without keeping track of time).

Figure 2-4 shows the noise-free measurements associated with an object’s path

projected into the X-time plane.

And similarly figure 2-5 shows the noise-free measurements associated with an

object’s path projected into the Y-time plane.

Let us utilize a simple noisy “measurement probability model”, generalized for
two dimensions, that states that the noise corrupts the measurements by flipping
bits. Relating the template to our measurements and the object’s trajectory, Y,(t) =
(o(s — Xi) + ng(t)) mod 2, such that ng(t): 7 — Q is a discrete-time noise process
where 7, (t,) and n, (t) are iid Bernoulli random variables V(sy, ), (s2,t2) € Sx T.

More specifically let P(ny(t) =1) = a and P(ns(t) =0) =1 - a.
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Figure 2-3: The noise-free measurement matrix associated with an object’s sample
trajectory as projected onto the XY plane.
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This implies that

(1-a # X,—sand¥()=1
) « if X;=sandY(t)=0
P(Ys(t)|Xe) = — - 0o V(st) €S XT.
l-a if X,#sandY(t)=0
| @ if &#ganin(t):lj

Note that we still have a one dimensional signal. Only the dimension of the space
it is embedded in has more dimensions and hence the number of pixels in which noise
can occur has increased. Yet the number of “signal” pixels has remained constant
(namely T). However if we had used a noise model that wasn’t merely shot noise,

but also localization noise, depending on the radius of the the localization noise, we
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Figure 2-4: The noise-free measurement matrix associated with an object’s sample
trajectoryv as projected onto the XY plane.
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Figure 2-5: The noise-free measurement matrix associated with an object’s sample
trajectory as projected onto the XY plane.
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would have many more signal pixels that would increase with each dimension we add
to the problem.

Lastly in order to fully write out the measurement model, P(Y | X), lets look at

the consequences of the probabilistic model we chose:

(A) The.image measurements at time ¢ only depend on the position measurements
at time ¢ and not on any other times. Formally, Y (¢,) and X, are conditionally

independent given Xy, if ¢, # ¢,.
(B) Also Y (¢,) and Y (#2) are conditionally independent given Xy, if 6y # 1.

(C) And Y5, (t) and Y, (t) are conditionally independent given X;.



This implies

PY|X) = PX(T),..XQ1)|X)
= [Te PX@®) | X(t—1),... X(1), X)IPX () | X)
= [T P(X(®) | X(¢ - 1), ..., X(1), Xu, ., X)) P(X(1) | Xy, -0, Xo)
= [T PX(®) | X(2 = 1), ... X(1), X)IP(X(1) | X)) A

= [l P(Vay i) -+ Yiss)(t) |
= Ht:l Hm_lnn 1P (m,n) ( )

‘—I)
X) g

2.5.2 Mathematical objective

With our simplifying assumptions we are interested in devising an efficient, determin-
istic, offline algorithm that given sensor input ¥, will output A 2 (Ay, ..., A7) such
that

AY)=arg max P[X € Ns(a) | Y](Fk)
= acA(M{*P) 5) =

So using Bayes Rule let us rewrite P[X € Nj(a) | Y]:

XZENO-(Q) P(l:_):_')
PY)
> en;@ PEPQ)

- Zvemm(“’) p(’ [)P(1)
L‘7€N5(a) () h) .
= = 50y motion model — constant P
S reraneon PED (7))

P(X € N;(a) |£) =

Therefore

A(Y) = argmax

P[X € Ns(a) | Y]

acP(M{*?)
= arg maxgep(Ml(w)) Zj_eNa(g) P(é [ l)

T s ) 2
= arg nlanE,PUWIQD)) Z’_YEN&(Q) Ht:] Hm:l l-.[n,zl P(y(m,n)(t) | l)

Now let us rewrite the term ZZGN,,-(Q) M I T P(Yimm) (2) | %) more ex-
plicitly in terms of the noise level o and the individual measurements Y} ;.

So let us start by defining a function that takes a time ¢, set of measurements at
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time ¢, say Y(t)=

Yoany Yiaz - Yian
Yieny Yiez - Yien
Yoany Yoo - Yiam

and a possible location for the object at time ¢, say |, = (m,n;) € S, and outputs
the number of local (in time) undamaged measurement bits at time ¢.

Therefore I define

S S
N(t, Y.(2), (me, ) 2 82= N Y, tmmy I (t, Yasimeineys (M, 1)) =O(t, Vi imeme)s (s 10))

m=1 n=1

where I(t,Y} (m,n,), (e, 7)) is the indicator function that returns 1 if the measure-
ment Y} s, n,) is @ one and 0 otherwise. Likewise O(t, Y}, n.), (my, ny)) is the indi-
cator function that returns 1 if the measurement Y} (,,,, »,) is a zero and 0 otherwise.

Therefore we can rewrite

[V.(t’ g(t)’ (ml" nl)) = 82 - Z?ﬂ:] lel:l ”L(m)n) + Y’lv(n“\"“) - (1 = y'tv(mh"l))
= 82— Y Yot Yimm) + 2¥e(meny) — 1

So for example say S = 9 and T = 5. Then we have five 9 x 9 matrices of
measurements which are Os and 1s.
Now let us use the above formalism to simplify the optimization problem even

further:



AY) = argmax,  p ),

= argmax, PMED)) Zyef\’a(a) P(L ’ 1)

= argmax, o), ZZE“’J(@) s H;S,,l - P(Yimn)(t) | 1)

= Grgmax,.pip) ZzeNa(_@) H:=1(1 — a)'v(t'gt)”')cxs(sz‘N“‘L(”’l”

= AgMAKep (20 2 ezl = a) Eimt VL2 o TSP =N (L (1) .30))
= argmax,.p o)) 2 senya)(l — )2 Ei=1 Yoo g2 e Vi

= » . ) - '2ZI=1’?--‘:
= (ngmaxgep(/\jl(zn)) ZIGNA(O)( o ) -

PIX € Ny(a) | Y]

This simplified version is friendlier to work with because the individual measure-
ment values on the paths of interest in a given cylinder show up directly in the
optimization problem.

For example, if the noise paramater that flips bits is o = %, then

/ 7Y — . awv . / ZL. Yﬂ.”y:
A(S:) =arg mdkaE'P(.’\Il{w)) ZleNﬁ(g) 4 =,

So notice that if the noise level v < .5 then we roughly want to find the region
with the most number of 1s but more precisely the region parametrized by A with
many paths each with many 1s. And if .5 < a we roughly want to find the region with
the most number of Os but more precisely the region with parametrized by A with
many paths each with many 0s. So we have generalized the solution to the problem
for motion in two dimensions. However, the problem becomes more difficult because
we now have to search for a one dimensional signal in three dimensions of noise as

opposed to two in our lower dimensional version of the problem.

2.5.3 Algorithm for finding a MAP neighborhood

Now assuming without loss of generalization that our noise level & < .5, our opti-
mization problem is reduced to finding A such that:
l -«

T
> 23T A .
AY)=arg max (——)*Z=1" = grg  max ( E Yia)-
= acP(M*P) @& acP(M{*P) o T



Let us now generalize our one dimensional definitions to two dimensional defini-
tions because we will show that our one dimensional algorithm generalizes to solve
the two dimensional problem.

First, let us define the set of possible paths that start at position X and end at

position s at time ¢t obeying the proposed motion model M, as
P(t,s) ={yeS |n=Xgly—%ual L1 <ty = s}

Also let us define the set of possible locations at time 1 < ¢ < T — 1 given the

position at time ¢ + 1 is [ as
Lit+1,1)={seS||s—Xo| <t]s-1 <1}

Finally, let us define the set of possible locations at final time T as Lr = {s € S|
|s — Xo| < T} and let us define the set of possible locations at time ¢ as £; = {s €
5| 1s~ Xol < t}.

In order to keep track of the results of our optimization at each time step with the
aim of reusing these results in the next step of the optimization (which will have been
“separated in time”). Let M,(s) : § — 8™ be a sequence of functions for 1 <n < T
such that

M,(s) =arg max P Y= aj Y,
n(8) g Hosx la]Y] a?‘gger;;(n‘fé)(; ac)

And again it can be shown that

Y n\S) = A(V B, ¢ n— i , S
f.(g8) =00 (‘AT[argMn_lg;ié(an’s)f 1 (Mp_1(1)), 8]

where CONC AT is a function that takes two finite vectors and outputs a vector that
is the concatentation of the two. The validity of the above step can be ascertained
via a proof by induction. This leads us to our generalization of the one dimensional
algorithm for the two dimensional problem:

for i=-1 to 1



begin

for j=-1to 1

begin
Mi(Xo = (5,9)) = (Xo — (i,));
end
end
fort=2toT
begin
forse L, CS
begin
M,(s) = CONCAT (arg maxpayz, _, 1) tecit,s) fi—-1(Mi-1(1)), 8);
end
end

return arg maxag ) iec, fr(Mz(l));

Complexity calculations

Again we are assuming each dimension of S is much larger than T. If this is the case
then the above algorithm looks at only a pyramid of points in the lattice (which are
reachable from Xj). Therefore, there are O( iT;—l)z) = O(T*) points. For any given
point in the pyramid the algorithm does at most nine comparisons of objective func-
tion values for different paths that could have reached the given point. Therefore the
algorithm takes O(T*) time. Note that the running time increases with the dimension
of the problem.

In terms of space complexity, at any given time step ¢ we only need to keep track
of M;_1(I)Vl € L,_;. Since the cardinality of the set £,_, is (2(t—1)+ 1)2 = O(#?) and
M, (1) is just a (t—1)-vector of numbers in S, we have that the space requirements are
O(T3log(S)). Note that the space required increased too. This may not be practical

but it is interesting from a complexity point of view.
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2.5.4 Calculating the probability in polynomial time

Now we have an algorithm that calculates the parameter, A, of the MAP neighbor-

hood for the special case when 0 = 1. But how do we calculate

ZEGM;(_A) P()_—/ I l)
> erau, P 1)

P[X € N;(4) | Y] =

for the special case of 6 = 1 which initially appears to not be computable in polynomial
time since the denominator is a sum over an exponential number of paths (in T)
regardless of the parameter, A, or the neighborhood, N;(A).

Is the numerator computable in polynomial time? Yes because it is the prob-
ability of a single path. Indeed the numerator simplifies since & = 1 so that the

d-neighborhood with parameter A is precisely the vector A and therefore,

2361\'1(-;1) P(L 7)) = P(}: | A)

T S S e
— Hf,-:«l Hm:l Hn:l P( (m,n)(t) | ﬂ)
s H'T_l(l e Q)N(LX(t),ég)a(Sg—N(te_)i(t)sﬁJ)
= (1 — Q)ZL] N(t“"(t)‘ﬂ)aZLn(~92'*N("=£(‘)’-—‘_r))
_ (1 B a)T(Sg—l)—sum(é)-ﬂ Yy }",‘,\_,aT+squ:'_')-2 oz Yia,

— (1 _ Q)TSZ(%)_T 51:,771(2)(1--0)221;1 Yf.if_

x

N A T S S . A
where sum(Y) = >, > > Yi(mn). So indeed the numerator is computable
in polynomial time.
However, is the denominator computable in polynomial time? How can an algo-

rithm efficiently count and determine -y 5 amy P

X) without going through all
the possible paths X € P(M;)?
The equivalence class approach naturally generalizes to solve this higher dimen-

sional problem. Define
T
I(@) &) Vig,
t=1

so that I(z) is the number of 1s on the path z.



Then we can define the equivalence relation:
£(1) = £('2) & ]@(1)) I(z (2))

Intuitively the number of 1s on the path z is related to the number of undamaged

measurement bits, ZL N(t, Y (t),z;), if z was indeed the actual path. Namely,

N(t, Y (t),z) = T(S* — 1) — sum(Y) —+—‘7Z}”,

HMH

Therefore for two dimensional motion, the number of 1s is related to the number of
undamaged measurement bits via the addition of a constant term that is independent
of the assumed path, z. Now we can index the equivalence classes uniquely in the
following way: take a path z in any equivalence class, then the equivalence class ]
will have an integer index k = EZ] rar € {1,2,3,...,T}. And I define the cardinality

of the equivalence class with index k, [k], to be C(k).

So my point is that given Y and I(z), we can rewrite ZI&.,P(A/I(‘ZD)) P(Y | z) as
— = 1 —
= 1 -« 1l —«
) TS? — O —T—sum(Y. =X 7
>, PLlz) =} Clh)~a) (=) B2y
zeP(M2)) k=0

Is there an efficient way to calculate C'(k) for all k € {0,1,2,3,...,T} using the
set of all paths X € P(M ,(w) )7 Again that seems difficult due to the fact that there
are an exponential number of possible paths in ’P(Ml(w)). Nonetheless, the following
algorithm is inspired from the algorithm for calculating Pascal’s triangle. First let

me recursively define

1 1
Cls,k) £ ) Y C¥D(s+(U,m), k- Yiy)

l=—1m=-1
where C*(s, k) = 0,Vs € S,Vk € {0,1, o T}if 52 > ((Xo)z + )

or sz < ((X - ’5) or sy > ((‘XO) ) or sy < ((&)v - t)



1 if k

(),2 == ‘\—0

and C°(s, k) =

0 otherwise
such that C'(k) = Z C(8.k):
sES
Note that C*(s, k) is the number of paths through time ¢ that go through pixel s and

have colored k pixels as 1s aloug their paths.

Complexity Calculations

We can do the counting iteratively at each time step so that calculating C*(s, k)Vs €
S,Vk € {0,1,..., T} can be done in time O(T*). This is possible because at each time
step t we update order #* function values corresponding to the set {C'(s, k) : s, €
{(Xo)e—t, (Xo)e—t+1, ..., (Xo)s+1}; 5y € {(Xo)y—t, (Xo)y—t+1, ..., (Xo)y +t}; k €
10,1, 2wt} )

The space requirement of this algorithm is O(T?). This can be seen because at
each time ¢ the algorithm only needs to keep track of order #* pixels (the ones that
may have paths going through them) and for each of those pixels indexed by (t, s) we
need to keep track of the values {C*(s, k) : k € {0,1,2,...,¢} which sum to at most 9
(which requires at most t bits).

So indeed, C'(k)Vk € {0,1,..., T} can be calculated efficiently in terms of time. We

therefore have an efficient algorithm that calculates ) P(Y | z) without

zeP(MPP))
enumerating the probabilities associated with each of the possible paths z in the
large set P(MI(QD)).

Nonetheless as our calculations illustrate, the complexity of our algorithm in-

creases with the dimension of movement that is allowed in the motion model.

2.6 Summary

In this chapter, we have discovered that for the prior “motion probability model”

M, (and its two dimensional equivalent, M,(QD)) and for a neighborhood size 6 = 1

instead of a brute force search over an exponential number of paths we can devise
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an algorithm that finds the MAP neighborhood in polynomial time. After conversing
with colleagues and reading the relevant articles, I found out that this algorithm that I
discovered is actually the Viterbi Algorithm or a special case of dynamic programming
used to solve several hidden markov modelling problems [2]. Our problem can also
be cast as a hidden markov model because the state (the actual path) is hidden from
us and instead we have a matrix of measurements from which we are asked to infer
the best neighborhood for the state variable.

Furthermore, [ discovered a polynomial time algorithm to calculate the denomiator
in the probability calculation. At first glance this is a surprise because the sum is
a sum over an exponential number of objects, but through equivalence classes a
polynomial-time algorithm manifested itself.

In the next chapter, I will change the motion model to Ma and seek a MAP
neighborhood with size ¢ allowed to be values other than 1, but with the restriction
that 6 < A. Can we can achieve the same efliciency in finding the optimal MAP

neighborhood and calculating its probability for those parameters of the problem?
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Chapter 3

Movement Range > Neighborhood

Size > 1

3.1 Introduction

In this chapter, we look at another operating regime for our one dimensional track-
ing problem. Namely, we will analyze the complexity of our optimization problem if
the prior “motion probability model” we utilize is restricted to have a motion range,
A, that is greater than or equal to the neighborhood size, 6. Therefore, for a mo-
tion model M, and a neighborhood size § where A > § > 1, we seek the MAP

neighborhood, N;(4), parameterized by A(Y) € A(Ma,d) where

A(Y) =arg max P[X € Ns(a) | Y] = P(Y,(
A(Y) arg Max (X € Ns(a) | Y] =arg 9, max E%; )HH (Ys(t) | 72)
94 s\a

We will find an efficient algorithm that finds A(Y) and analyze the algorithm’s
complexity. It will turn out that the algorithm will be similar to the algorithm we
found for the operating regime where A = § = 1. Then we will discuss how to

calculate

2ensa) P T)
ij_eP(MA) PY.|9)

which, again, at first glance looks like it is not computable in polynomial time since

P[X € Ns(A) | Y] =
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the denominator is a sum over an exponential number of paths (in T) and in addition
for 6 > 2 the numerator is a sum over an exponential number of paths.

Then we will end this chapter with some insights regarding this operating regime
for the tracking problem.

In this chapter, when we fix § to be greater than one we gain what we had been
seeking in a formulation: a formulation that sought out optimal regions as opposed to
optimal paths. At the same time we will allow our prior “motion probability model”
to have a wider range of motion modelling the idea that our object can travel to more
pixels at each point in time. With this increased motion range and neighborhood size

will the problem become harder to solve?

3.2 Algorithm for finding a MAP neighborhood

3.2.1 Some mathematical simplifications

In the previous chapter we had a sum of products that we had to optimize which in
general is a difficult problem depending on the domain that the indices are summing
and multiplying over and the connection between the domains. However, because ¢ =
1 our “external” summand over the paths contained in a d-neighborhood disappeared.
What mathematical simplifications can we do for this regime of the problem, where
the external “summand” need not disappear?

Recalling our previously defined notion of number of local (in time) undamaged

measurement bits at time t, N(¢,Y(¢),l;), we can make the following simplifications:

AY) = argmaxeeamrs) PlX € Ns(a) | Y]
= argmaxgea(m.s) Z’_YGN.s(g) P(Y |9)
= argmaXqeA(M.6) Ez,@v&(g) [Ti=: [T5=) P(YL(2) | 72)
= argmaxea(nms) quzva(g) H}:x(l _ a)N(t,l(t)m)a(.s*_zvu,}_‘(t)-'n))
= argmaxgeanms [l Zi;g(l — @) NEX(Dac+k) o (S=N(LY().actk) ()

T -1 : " —NIEY(D).00+k
= argmaXge AM,p) Dp—1 109(3 4o (1 — ) VELI k) o(S=N(X (D). th)))

61



Why does the simplification happen?

The step in the above simplification labelled with (<) was feasible because the motion
model allowed enough movement in comparison to the size of the §-neighborhood. We
can make this more clear with an example. Let us fix T =4, S = 12, X; = 8, and
a = (7,7,6,7). Then we have a region of the lattice bounded by the left and right

boundaries, L and R respectively as we see in figure 3-1. Note that we have picked a

Figure 3-1: An example of the lattice and the boundaries that define a region.
3 4 6 10 11 S=12

OO0000LWO®OOO
,O000000O0®
O0000LO®O
OO0 000BO®

0 = 3 size neighborhood. So let us assume a motion model M4 such that A > § = 3.

O
O OO0
© OO0
OO0

In particular let us assume A = 3.

Now we can assign every pixel (¢, s) in that neighborhood a value that only depends
on the position of the pixel and its local measurement value, Y, ;). Let us assign pixel
(t,s) with value (1—q)NEX15)o(S-NEY(0):9))  Using simpler notation, let us write the

values for each of the pixels in the §-neighborhood on top of the pixels in figure 3-2.

Figure 3-2: An example of the lattice and the boundaries that define a region and

the values assigned to the pixels therein.
11 S=I12

OQO0000BE®®OOO
0000000000
O0000®O 000
000000 ®E@®dO0O0

Now we see that 3o [17-, (1 — a)NEX @) o(S=NEY(0.3) s just the sum over
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the set {B; « Cj * Dy« Ey : 1 < i,j,k,l <3} which can also be rewritten as
(By + By + B;;) * (C'Y| + Co + C3) * (Dl + Dy + Dg) % (E1 + E, + E3)

which is precisely []/_, i;é(] — ) VXD aetk) o (S=N(EX(0).ac+k)) () This sketch can
be expanded to a proof, but this sketch is meant to give intuition for the step labelled

with a (<) symbol.

3.2.2 Defining the algorithm

In this section, we will give various definitions with the aim of devising an algorithm

where we can separate the optimization in time as we accomplished in chapter two.
First, let us define the set of possible parameters for d-neighborhoods that start at

position Xy — l_%] and end at position s at time ¢ obeying the “continuity” constraint

imposed on d-neighborhoods:

. , 0
A(Mp,0,t,8) ={y €S | |7 — =1l S 1,1 < j < t;7 = Xo — l515 7 = s}.
Also let us define the set of possible values for the t* component of the parameter

vector, 1 <t < T — 1, given the value of the (¢ + 1)”‘ component is [ as
Lt+1)={seS||s—v|<t|s—1 <1}

Finally, let us define the set of possible locations at the final time T for the param-
eter vector a, parameterizing the neighborhood Nj(a), as Ly = {s € S | |s — v| < T}
and let us define the set of possible locations for the parameter vector at time ¢ as
Li={s€S||s— | <t}

We now need to define some functions to keep track of the results of our optimiza-
tion at each time step with the aim of reusing these results in the next step of the

optimization (which will have been “separated in time”). Let M,(s) : S — &" be a
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sequence of functions for 1 < n < T such that

n
M,(s) = ar ax  PlX € Nj(a) | Y] = ar ax i a
(S) arg QEA(IArllli},n.s) [_— = 6(_) |:] arggGA(lx’l\('lld},n,s)(; !/( UL))

where ¢(t, a;) £ log( i;g( 1 — @) VLX) ar+k) o (S-N(LY (D) ,ar-+k)))

Therefore, M, (s) represents a parameter that maximizes the objective function
fala) & (300, g(t.a)) over all @ € A(Ma,d,n,s). We are interested in searching
amongst the parameters in the set {y : v = My(s),s € L1} and outputting a path
that maximizes f(a) = (E,Tzl 9(t,a;)). And in order to devise an efficient algorithm
to calculate Mz(s)Vs € L, we will use use M;(s)Vs € L; in order to determine
Myy1(s)Vs € L4y for all times ¢ € 7. That is the idea behind separating the
optimization problem in time. Now why and how can this be done?

It can be accomplished because of the mathematical structure of the objective
function f,(a) = (3.}, 9(t,a;) and the fact that the measurements are non-negative.

More formally, it can be shown that

M,(s) = CONCAT|arg Mn_&g’z}éxﬁ(n’s) Jno1 (M1 (1)), 8]

where CONC AT is a function that takes two finite vectors and outputs a vector that
is the concatentation of the two. The validity of the above step can be ascertained
via a proof by induction.

So the pseudo code for the algorithm that will solve the optimization problem can

be written down concisely:

Mi(Xo-1)=(Xo— 3])) -1
My(Xo) = Xo - |3);
M(Xo+1)=(Xo— [§))+1;
fort=2toT
begin

forse L;,C S
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begin
M,(s) = CONCAT (argmaxyy, ,qyicc(t,s) fr-1(Mi-1(1)), s);
end
end

return arg max(ece fr(Mr(l));

The above algorithm finds the optimizing route through every node at each point
in time and works its way down in time, reusing the work from the previous time

step. In that sense we have been able to “separate the problem in time”.

3.2.3 Complexity calculations

Again we are assuming S is much larger than T. If this is the case then the above
algorithm looks at only a pyramid of points in the lattice (which are reachable from
Xo — |3]). Therefore there are ()(@) = O(T?) points. For any given point in the
pyramid the algorithm does at most three comparisons of objective function values for
different parameter trajectories that could have reached the given point. Therefore
the algorithm takes O(T?) time.

In terms of space complexity, at any given time step ¢t we only need to keep track
of My 1(1)Vl € L, . Since the cardinality of the set £,_; is 2(t — 1) +1 = O(t) and
M, (1) is just a (t — 1)-vector of numbers in S, we have that the space requirements

are O(T?log(8)).

3.3 Calculating the probability in polynomial time

Now we have an algorithm that calculates the parameter, A4, of the MAP neighbor-

hood for the special case when A > § > 1. But how do we calculate

2

Z'_rENJ(A) P(}: —)
ZZQ’P(!\IA) PY |9)

P[X € Ns(4) | Y] =



for that special case? Well from chapter two, we know that we can calculate these at
first glance “difficult” enumeration problems with equivalence classes. So let us reuse
our results with modifications to account for the fact that the paths now are contained

in neighborhoods and the paths have a general M, prior “motion probability model”.

3.3.1 Calculating the numerator

The numerator is now a sum over an exponential number of paths in Ns(A4). Can
that be calculated in polynomial time? The answer turns out to be yes if we utilize
our equivalence classes in a different fashion.

How can an algorithm efficiently count and determine Zzé“ﬁs(;ﬂ) P(Y | v) without
going through all the possible paths v € Ns(A).

If we can change the sum over paths into a sum over equivalence classes for paths

where the number of equivalence classes is small (namely polynomial in T and §) and

each path, z, in an equivalence class has the same conditional probability, P(} | z),

(so that the sum over the equivalence classes is easy to calculate) then will find an
answer as we did in chapter two. But what equivalence relation (property) do we
need?

We use the property discussed in chapter two. Namely, define

T
Hzy2 Y %
t=1

so that /(xz) is the number of Is on the path z.

Therefore, we define the equivalence relation:
g(l) ~ 1(2) o ](g(l)) - ](£(2)).

Now we can index the equivalence classes uniquely in the following way: take a
path 2 in any equivalence class, then the equivalence class [z] will have an integer
index k = Z:—x Yiz, € {1,2,3,...,T}. And I define the cardinality of the equivalence
class with index k, [k], to be C'(k).
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So my point is that given Y and I(z), we can rewrite ch.rv\-(.*x) P(Y | z) as

T
l—a. . ~ 1l — ..
} T — Cv 1, s (l lS =T—sum(Y) 2k
S Pz =S Ck) (—) (—)
zENs(A) k=0
We do require that C'(k) only count paths that lie in the d-neighborhood. And
this will be shown as we demonstrate how C(k) can be calculated efficiently for all
k€ {0,1.2,3,..., T}, hence allowing us to calculate 35 .\ 4 P(Y | z) efficiently.

First let me recursively define

A
Cis,k) & Y CtV(s+1k-Y,)

I=—A
where C*(s,k) = 0,Vk € {0,1,...,T} if s > (Xp +tA) or s < (X, — tA)
or s S (A[ — 1) or s Z (.’11 + (5)

0 1 if k=0,s=X,
and C"(s, k) =
0  otherwise

such that C(k ZCT (s, k).
seS
Note that C*(s, k) is the number of paths through time ¢ that go through pixel s and

have colored k pixels as 1s along their paths.

3.3.2 Calculating the denominator

How can an algorithm efficiently count and determine 5 xepmy) (Y| X) without
going through all the possible paths X € P(M,)?
Using an equivalence relation resembling the equivalence relation used in the pre-

vious section, the following recursively defined value

A
D'(s,k) £ Y D" V(s+ 1,k - Y,,)
I=—A

where D'(s, k) = 0,Vk € {0,1,...,T} if s > (Xo + tA) or s < (Xo — tA)
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. 1 if k=0,5s =X,
and D"(s,k) =
0 otherwise

such that D(k) £ Z DY(s, k).
SES

then we will have transformed - p ) P(Y | 2) into

1)(1\,)(1 . a)’]’S(l — O'/)—’I‘—.sum(L)(l — C)')’Zk

(&3 (@}

>
1l ]
o

hence calculating the denominator.

Complexity Calculations

We can do the counting iteratively at each time step so that calculating C(s, k)Vs €
S,Vk € {0,1,...,T} can be done in time O(T*A?). This is possible because at each
time step ¢ we update order A function values corresponding to the set {C*(s. k) :
s€{Xo—tA, Xo—tA+1,...,Xo+tA}; k€ {0,1,2,...,t} by looking at O(A) tables
at the previous time step in order to define C*(s, k).

The space requirement of this algorithm is O(T?Alog(A)). This can be seen
because at each time ¢ the algorithm only needs to keep track of order tA pixels
(the ones that may have paths going through them) and for each of those pixels
indexed by (,s) we need to keep track of the values {C(s,k) : k € {0,1,2,...,1}
which sum to at most O(A") (which requires at most tlog(A) bits).

So indeed, C'(k)Vk € {0,1,...,T} can be calculated efficiently. And we therefore

have an efficient algorithm that calculates P[X € N5(A4) | Y] for a given A.

3.4 A Generalization to motion in higher dimen-
sions

The generalization for higher dimensional motion follows the generalization that was

done in chapter two very closely. Therefore, it will not be repeated here.

68



3.5 Summary

Allowing prior “motion probability models”, Ma, in our formulation, where A >
0 > 1 did not alter our ability to come up with an efficient algorithm to solve the
optimization problem. In a sense we have seen that if we make the motion model
more flexible so that the object can move at least the size of the neighborhood in
pixels in either direction, then we can still solve this problem of finding the “best”
neighborhood. In chapter two we saw that if the object moves 1 step in any direction
at each point in time then we can find the “best” neighborhood that is 1 pixel wide
at each time instant. Therefore chapter two was a special case of chapter three.
Likewise we found that if the maximum allowable movement for an object at each
time instant is greater than or equal to the number of pixels in the neighborhood
at each time instant then the problem can be efficiently solved in a similar manner.
This accounts for the most common cases in which this formulation would be useful.
However for theoretical interest what if the motion model was not as flexible and
instead the motion at each time step was confined to step sizes that were smaller
than the cardinality of the number of pixels in the neighborhood at a fixed point in
time? Would the problem still be “separable in time” and efficiently solvable? We

shall investigate this problem regime in the next chapter.
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Chapter 4

Neighborhood Size > Movement
Range > 1

4.1 Introduction

In this chapter, we look at another operating regime for our one dimensional tracking
problem. Namely, we will analyze the complexity of our optimization problem if the
prior “motion probability model” we utilize is restricted to have a motion range, A,
that is strictly smaller than the neighborhood size, 6. Therefore, for a motion model
M, and a neighborhood size ¢ where 06 > A > 1, we seek the MAP neighborhood,

Ns(A), parameterized by A(Y)) € A(Ma,0) where

T S
A(Y)=arg max P[X € Ns(a)|Y]=arg ms P(Y;(1) | 7).
AY) =arg max  PX € Ny(a) |Y] “’ggeﬂ(l&’im%; )HH (Ya(t) | %)
YEN;(a) t=1 5=

Now we would hope that the algorithm in chapter two and three could be further
generalized to solve the problem formulated with our less flexible ! motion model.

But how would this work? Let us look at the mathematics and see if this is possible.

Irelative to our neighborhood size
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Let us start with our usual simplification steps:

AY) = argmaxgeanr,.s P[X € Ns(a) | Y]
= argmaXgc A(Mu.0) Zze;\‘&(g_,) P(Y | v)
= argmaxee s Loenyiw e [Tie POY() | %)
= argmaXgeA(M, ) ZweN,,-(g) H;r:n(l — ) NBX()7) o (S=N(LY() 7))
# argmaxgeamss) [Timg Thoo(l — o) VL@ ek o(S-NELH) a-k)

= argmaXgeA(Ma,d) Zle log( 2;:)(1 i a)N(t.L(t.),m—k)(_y(S—N(z.)_'_(:)._m~ k)))

Because of the inequality we can not generalize our previous algorithm for the
flexible motion model. Intuitively, at time ¢, our algorithm kept track of the states
for each “optimal” tube going through each pixel at time ¢. These “optimal” tubes
were found by selectively extending “optimal” tubes from the previous time ¢ —1 based
on their states. Each pixel from the previous time ¢t — 1 only had one path to offer
as a candidate path for the reachable pixels at time ¢. The state space we used does
not generalize to the long range time dependencies inherent to this problem regime.
Therefore an algorithm similar to the algorithms of chapter two and chapter three
will not solve the problem in this operating regime. Thus, if we seek an optimization
algorithm, it can not be accomplished by separating the problem in time and using
only the past to make a decision at the current point in time. In fact this long
range dependance property hints at the use of matrices and graphs (as constraints)

to reformulate the optimization problem.

4.2 Reformulation as a Graph Problem

So let us reformulate the problem with A = 1, and 6 = 3 in a different language,
namely matrices and graphs. An object is probabilistically moving from the set of
discrete points S = {1,2,...,8} to S at each discrete point in time 7 = {1,2, ..., T}.
The object’s location is described by a random vector X = (X, Xs, ..., X7).
[ assume the initial position Xy is known and choose a simple probabilistic motion

model, M;, that states that the object moves left, right, or straight ahead with equal
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probability,

( _ ) ) \
?l; if -Xn.»H = -\n ).

i i 13 if Kt =Xy _
P(“\ru»l‘-\n):< ' i i h >11§”§(T—1)-
;’;‘ if -X71+1 =X, +1

0 otherwise
\ y

Therefore, the true path X is a member of the set of possible paths
P={1€S8 | [ni—Xol <i—-1, [y =l <1} CS"

We do not observe the object’s path X. Instead we observe a matrix of measure-
ments, Y. These measurements depend probabilistically on the object’s path X in

the following way:

{ )
l-a if X;=sandY;,=1
i « if X,=sandY;=0
P(Y:.: X)) = ¢ ' > V(s,t) e S xT.
l-a if X;#sandY;;=0
| @ if Xy#sandY, ;=1 )

For notational convenience let us define the sequence of functions: Yi(s) : § —

{0,1},t € T defined such that Y;(s) = Y ;.

4.2.1 Optimization Problem

Fix a parameter called 6 = 3 that is a positive integer. I am interested in finding a
parameter A from the set P that best parametrizes a cylinder C5(A), hence finding
the best cylinder. Intuitively, a cylinder is a set of paths that are spatially close to
each other. More formally, Cs(a) £ {y € P | |y — @l < d}.

So the problem is to devise an efficient, deterministic, offline algorithm that given
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sensor input Y, will output A £ (Ay, ..., Ar)such that

AY) = arg max P[X € Cs(a) | Y]()

— aE

4.2.2 Problem Simplification

Let us define a function that takes a time ¢, set of measurements at time ¢, say
Y, = (Y1, Y:2,....Y,s) and a possible location for the object at time ¢, say [, € S,
and outputs the number of local (in time) undamaged measurement bits at time ¢.

Therefore I define

s
N(Y, 1) 28 =Y Y+ It Yay, ) — O(t, Yiy,, b)
=1
where I(t,Y},,.l;) is the indicator function that returns 1 if the measurement Y}, is
a one and 0 otherwise. Likewise O(t,Y},,,[;) is the indicator function that returns 1
if the measurement Y3, is a zero and 0 otherwise.

Therefore we can rewrite

NtY, ) = 8=, Y1)+ Yi(ly) — (1 - Yi(l))
= §=Y5 Yi(l)+ 2Y(l) - 1

So for example say S = 9 and T = 5. Then we have a 5 x 9 matrix of measurements
which are 0s and 1s. Set the initial location to be Xy = 5. At time t = 1, the
object can be either at position 4,5, or 6. If the measurements at time ¢ = 1 are
Y(1)=(0,0,1,0,1,1,0,0,0) then the respective number of local undamaged bits for
a path going through location s = 4is N(1,Y(1),4) = 1+14+0+0+0+0+1+1+1 = 5.
Similarly, for the same measurements at time ¢ = 1, the number of local undamaged
bits for a path going though location s =51is N(1,Y(1),5) =1+1+0+1+1+0+
1+14+1=T.

Now let us use the above formalism to simplify the optimization problem even

further:
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A(Y) = argmaxyep P[X € Cs(a) | Y]
= argmaXgep Zlec‘&(g) PY | 2)
= argmaXgep Z*_/EC&((_A) I, T2, P(Yi(s) | %)
= argmaXgep Zvc(.;;(g) H,T:l (1 — @) NEXe7) o(S=N(EY )
= argmaxgep Z;EC’,_;((I)(]‘ — @) Zia1 NEXem) o Elay (SN (LX)

o T v T A
= argmaX,cp Z’rGC,;(a)(l — @)2Ze=1 Y1) o2 X Vi)

— 1-0\25T v,
= argmaXg.ep Z’YEC};(Q)(TQ) 2= Ye(rt)

This simplified version is friendlier to work with because the individual measure-
ment values on the paths of interest in a given cylinder show up directly in the
optimization problem

For example, if the noise paramater that flips bits o = 1‘ then

A(Y) = argmax 4= Yelm)
A(Y) argmax Z

4.2.3 A Shortest/Longest Path Problem

Remember that the measurement values, Y}, can only take on values in the set {0,1}.
Fix the measurements. For simplification of notation, without loss of generality let
us assume o = l} And also let us assume § = 3 so that at any point in time, all of
the cylinder’s paths go through three consecutive points in S. Also to avoid worries
about the boundary cases, let us assume S is much bigger than T and that the initial
location, Xy, of the object is somewhere in the middle of {1,2,3, ...,S}.

Now let us create a directed graph G. Consider the lattice of points 7 x S. Let
each of those points (¢,s) € T x S define a vertex in graph G. Define the edges of G

in the following manner:

e add one node to the lattice and label it (¢t = 0, s = Xj).

e create edge e (0, X) that leaves vertex (0, X;) and points left to vertex (1, Xy —

1), edge eo(0, Xo) that leaves vertex (0, Xy) and points straight to vertex (1, X,),

74



edge €,(0, Xp) that leaves vertex (0, X) and points right to vertex (1, Xy + 1).

e now for every vertex (s,t) whose time index ¢ < T — 1 and that has an edge
pointing to it, create three edges pointing away from it. Namely create edge
e_1(t, s) that leaves vertex (t,s) and points to (t + 1, s — 1), create edge eo(t, s)
that leaves vertex (¢, s) and points to (£ + 1,s), and create edge e;(t,s) that

leaves vertex (f, s) and points to (¢t + 1,5+ 1).

In the formulation that is about to take place, we will be looking to find the path
in the graph from (1, Xj) to (T, s) that maximizes some value function for all s’s that
are “reachable” from X;. Then we will say that the path amongst all those paths

with the maximal value is the A(Y’) we were seeking in the first place.
So let us associate a 3 x 3 matrix E;(t, s,Y) with each edge ¢;(t, s) in the following
manner:

With edge e_,(t,s) we associate matrix

AYt+1,s-2 0 0
Bot,s,Y) = | 4o goen g

4Yt+1,s 4Yt+1.s 4Yt+1s

With edge eq(t, s) we associate matrix

4Yf+1.s—l 4Y!+l,s—l 0
E()(t,-S',)_,) — 4Yt+l.a 4)'14-1,.; 4)'14-1..«;
0 AYe+15+1 AYt+1,541

With edge e, (¢, s) we associate matrix

4Ye+1s gYir1s 4Ye+1,s
El(t, S, Y) = 0 AYt+rs+1 4Ye+1541

0 0 4Yt+1.542

Now let us say that we are at some node (¢, s) and have some taken some path



(t—1.51-1)....(1, Xg) to get there then there is a 3 x 1 value vector v; associated with

the path so far. I will explain how to obtain this value vector for a path inductively:

o If at node (¢, s) we decide to go to node (¢ + 1,8 — 1) then the value vector

v = E_1(8, 8, Y)v;.

e [f at node (¢, s) we decide to go to node (f + 1, s) then the value vector v, =

Eo(f,: S, ;) Ut.

e If at node (¢,s) we decide to go to node (£ + 1,s + 1) then the value vector

Vi1 = Er(t, 8, Y)v,.
e The value vector v; for the initial subpath (1, Xo) is v; = (4¥1:X1-1, 4Y1.x0 4Y0x0400),

Now the value of a path that has an associated valune vector vr = (a,b,¢) is
(a+b+c). So looking at the last result of the last section, finding A(Y) amounts to
finding the ordered set of nodes on the path from (1, .Xy) to a node indexed at time

T such that the path has highest value amongst all such paths.

4.3 Difficulty of Problem

This problem is much tougher than the previous two regimes of the problem that were
discussed in chapter two and chapter three. Iteration of matrices in general is NP-
hard. I have not shown this difficulty for this problem but finding an optimal sequence
of matrices has only been studied in terms of joint spectral radius and control theory
and in both cases very limited problems have been solved [6]. This regime of the
problem however is interesting precisely because it reduces to a problem of picking

an optimal sequence of matrices.

4.4 Heuristics

The heuristics described in this section rely on finding a ¢’ sized nieghborhood and

then modifying the neighborhood so that the result is a d-neighborhood that hopes
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to approximate the probability of the MAP d-neighborhood. These heuristics could
experimentally be shown to work well for small values of a.

One such heuristic is to fix ' = 1 and solve the problem exactly as in chapter
two to find an A’. The heuristic outputs the d-neighborhood centered about A’.
The probability that the true path is contained within that region may be a very
good lower bound for the probability that the true path is contained in the MAP
o-neighborhood depending on the level of noise, «.

Another heuristic is to set ¢’ = A and to solve the problem exactly as in chap-
ter three and obtain a ¢’-neighborhood. The heuristic would output as an answer

a d-neighborhood that results from growing the ¢’-neighborhood uniformly in both

directions until it is a delta sized neighborhood.

4.5 Summary

Let us explain why this problem regime is difficult using linear algebra. We showed
that our problem was equivalent to finding an “optimal” sequence of matrices. Imag-
ine you were working with the space of 2x2 rotation matrices and try analyzing the
effect of a rotation transformation on the norm of a state vector. The norm changes
in manner that is difficult to write down in closed form. If we could find a decompo-
sition for matrices into a product of matrices where the effect of the matrices on the
norm is either invariant or multiplicative by a scalar 2, then we could make further
progress on this problem.

Without knowing about future rotations one would have to resort to a randomized
strategy to have any hope of achieving a value close to the maximum. Our problem is
easier than the rotation matrices problem because our matrices have a special form.
Nonetheless it is more much difficult than the problem regimes in chapters two and

three.

2that is solely defined by the matrix
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Chapter 5

Conclusions

In this thesis we have seen that we can devise an efficient algorithm for the problem
of finding the d-neighborhood that contains the object’s true trajectory with max-
imal probability for a class of prior “motion probability models”, M4, given noisy
sensor measurements. We found that this optimal algorithm generalizes for problems
involving higher dimensional motion with only polynomial growth in complexity. We
also witnessed a phase transition in the problem when the movement range, A, is
strictly less than the neighborhood size, §. This phase transition made that problem

regime a more difficult combinatorial optimization problem.

5.1 The problem’s phase transition

What does all of this mean?

Well it has to do with model flexibility. If your motion model is very restrictive on
a micro-scale relative to the macro-scale optimization problem, then the optimization
problem becomes difficult due to their dependencies. In this particular problem, we
realized this lesson with M when we varied A in relation to §.

This lesson is very similar to the importance of the signal to noise ratio in esti-
mation. There has been work done on analyzing phase transitions that are based on
the signal to noise ratio [20]. In nonlinear estimation problems it turns out that the

signal to noise ratio tells you how good an estimator you can have [9]. Similar phase
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transition findings in percolation theory are still being discovered [17]. In our work it
turns out that the flexibility of our motion model in comparison to the neighborhood

size is the signal strength. This notion can be formalized further.

5.2 Lessons in algorithmic design

Algorithmic design is an art. Devising an efficient algorithm for a problem requires
constant feedback to the problem formulation. You can visualize an algorithmic design
box as a black box. As input it has the parameters of the problem formulation ! and it
outputs an algorithm that you design that you hypothesize finds some value efficiently.
If you find that for certain input parameter values your black box doesn’t provide
vou with an efficient algorithm you have to redefine your box to accept different
parameters or you have to give vour black box more tools to work with. After enough

iterations of this process, interesting results come about.

5.3 Open problems

Now let us discuss some questions and hence open problems in this work.

5.3.1 The formulation

Initially when formulating the mathematical optimization problem it seemed that
finding a neighborhood that was highly likely to include the object’s actual trajec-
tory and hence “approximately” defined the object’s path would be computationally
less expensive than finding the exact path. In general this was not the case and
depended heavily on the probability models employed. That is not a problem since
there were more important motivating factors for our formulation and the complexity
was approximately the same.

However an interesting extension of our formulation would be to allow neighbor-

hoods that varied in size according to the level of noise at each time instant. It seems

Hfor example, § and A
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that one could find non-trivial useful regions that contained the actual path with

extremely high probability.

5.3.2 Motion probability models

Also using a probability model where all paths were equally likely was not very
constraining because we could have accounted for the case where they had different
probabilities. However, the notation would have become messy.

But it would be an interesting extension to solve our problem assuming other
prior “motion probability models”. For example, if one uses the the prior “motion
probability model” that is a markov chain that relates position, velocity, acceleration,

and jerk, more real world tracking problems could be solved.

5.3.3 Another possible noise model

In the area of algorithmic design an open problem is to change our noise model and
see how well any algorithm can still do. For example, we could restate the problem
with a “shot noise” model and a “localization noise” model. Effectively the “shot
noise” model will be the same source of noise as described in our formulation and
the “localization noise” model will say that bits are less likely to get flipped as you
move away from the object’s actual location. So let us describe the problem with this
model.

An object is probabilistically moving from the set of discrete points S = {1, 2, ..., S}
to § at each discrete instant of time 7 = {1,2, ..., T}.

The object’s location is described by a random vector X = (X5 X005, %)

[ assume the initial position X, is known and choose a simple probabilistic motion

model that states that the object moves left, right, or straight ahead with equal
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probability,

4 ~ 3\
;l; if f\’n+1 =Xn =1
. l; if -X’vH-l = -‘{n
P("\‘Il-‘:l |‘Yn) = < ‘ >r1 SHS (T—l)'
% lf '\’71.~9-1 = -\’u + 1
0 otherwise
\ Y,

Therefore, the true path X is a member of the set of possible paths
P={yeS ||n—Xo| <i,|v; — 1| <1} c S".

We do not observe the object’s path X. Instead we observe a matrix of measure-
ments, Y. These measurements depend probabilistically on the object’s path X in

the following way:
s = (Lo,x, + Qe(s — Xy) + Wy s) mod 2

where the indicator function

1 if Xi=s
Is,Xg = V(S,t) €S X 7-,

0 otherwise
and the space localization noise

1 if |I| < 35 with probabilit 4
Qul) = < B Y P lyes

0 otherwise

and the shot noise

1 with probability o
Wy = e y
0 otherwise

Let all the usual iid assumptions be made.
For notational convenience let us define the sequence of functions: Y;(s) : & —

{0,1},t € T defined such that Y;(s) = Y.
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Optimization Problem Associated with that Change

Fix a parameter called ¢ that is a positive integer. It would be interesting to find a

parameter A from the set P that best parametrizes a cylinder Cs(A), a set of paths

that are spatially close to each other. More formally, C;(a) L£{yeP||y—ale <4}
So the problem is to devise an efficient, deterministic, offline algorithm that given

sensor input ¥, will output A £ (A,...., A)such that
A(Y) = argmax P[X € Cy(a) | Y](#)

It should be possible to use “statistical” differences in the noise in order to find
out where the object would not be with high probability so that we could find the
tube that contains the true path more efficiently. Hence with this change in the noise

model we may be able to find a more efficient optimal algorithm.

5.3.4 Finding optimal sequences of matrices

The final problem regime that we explored in this thesis is related to another open
problem of how one can find optimal sequences of matrices that maximize some norm

or more formally how one can optimize over semi-groups.
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Appendix A

Source Code

%clear workspace. . .you can also use who to see what is defined.

clear

% e -———————————SETUP
% set the space and time variables

S=100;

T=50;

InitialPosition=>50; 10

A e GENERATE THE DATA
% initialize the SpaceTime data Y, and the path to the init pos
X=zeros(T);

X0=InitialPosition;

Y _noise_free=zeros(T,S);

% generate the random path according to the prior and generate the noise matriz 20
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path=random('Uniform',0,1,T.1);
noise=random('Uniform',0,1,T,S);
if path(1) > 2/3
X(1)=X0 + 1,
Y _noise_free(1,X(1))=1;
elseif path(l) > 1/3
X(1)=XO0;
Y _noise_free(1,X(1))=1;
elseif path(1l) > 0
X(1)=X0 —1;
Y _noise_free(1,X(1))=1;
end
for t=2:T
if path(t) > 2/3
X(t)=X(t-1) + 1;
Y _noise_free(t,X(t))=1;
elseif path(t) > 1/3
X(t)=X(t—1);
Y _noise_free(t,X(t))=1;
elseif path(t) > 0
X(t)=X(t—1) —1;
Y _noise_free(t,X(t))=1;
end

end

% display the random path without noise, note that gtext is cool
colormap(gray);

figure(1);

imshow (Y _noise_free);

axis on;
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title('Object Path (without Noise)');
xlabel('Spatial Location (in pixels)');

ylabel('Time (in frames)');

% add the noise, and display the random path immersed in the noise
% let alpha=.03
alpha=.03;
Y=zeros(T,S);
for t=1.T
for s=1:S 60
if noise(t,s) < alpha
Y (t,s)=mod(Y _noise_free(t,s)+1,2);
else
Y (t,s)=Y _noise_free(t,s);
end
end
end
figure(2);
imshow(Y);
axis on; 70
title('Object Path (w/ Noise, \alpha=.03)');
xlabel('Spatial Location (in pixels)');

ylabel('Time (in frames)');

% ———————————————————— START ALGORITHM
% now lets start find the best path. formally lets find
% argmaz_{X \in SetOfPossiblePaths} P(X | Y)

% since P(X | Y) = P(Y |X) P(X) /| sum_{z in SetOfPossiblePaths} [P(Y | z) P(z)] s



P(Y |X) | sum_{z in SetOfPossiblePaths} P(Y | z)

%

% the algorithm we need will have two sub-algorithms:

% 1) we need DenomTable to calculate the denominator (like pascals triangle)

% 2) we will use a breadth-like algorithm to mazimize the numerator

%  for this part we will need NumTable

% note for MATLAB code only: DenomTable and NumTable indices will be offset

% by 1. So index 1 really refers to paths that have 0 1s on their path.

% initialize DenomTable and NumTable

maxPossibleOnesOnPath=T; 90
DenomTable=zeros(2,S,maxPossibleOnesOnPath+1);

% ABC

% A because we keep tables for last two frames

% B imples that we have 2 x S tables at most

% C because each table has mazPossibleOnesOnPath possible indices

% Now we initialize DenomTable with values for t=1

DenomTable(1,X0 |, Y(1,X0)+1)=1;
DenomTable(1,X0—1, Y(1,X0—-1)+1)=1;

’

1
DenomTable(1,X0+1, Y(1,X0+1)+1)=1; 100

NumTable=zeros(2,S);

% A B

% A because we keep tables for last two frames

% B implies that we have 2 x S values at most

% Now we initialize NumTable with values for t=1

NumTable(1,X0 ) = Y(1,X0)+1;

NumTable(1,X0-1) = Y(1,X0-1)+1;

NumTable(1,X0+1) = Y(1,X0+1)+1; 110
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BestParent=zeros(T,S);
BestParent(1,X0)=X0;
BestParent(1,X0—1)=XO0;
BestParent(1,X0+1)=X0;

for t=2:T
for s=(X0—t):(X0+t)
% first determine NumTable for this timestep t
[maxval, maxindex]=max(NumTable(1,(s—1):(s+1)));
NumTable(2,s)=maxval+Y (t,s); 120
if maxindex==1
maxindex=s—1;
elseif maxindex==
maxindex=s;
elseif maxindex==
maxindex=s+1;
end

BestParent(t,s)=maxindex;

% now determine DenomTable for this timestep t 130

% note: we ignore boundary conditions for now. .in the sense

% of what if (t,s-1) or (t,s+1) runs us over the boundaries s=1 or s=S

maxPossOnesBefore=t—1;

for k=1:maxPossOnesBefore+1

DenomTable(2,s,k+Y(t,s)) =  DenomTable(1,s—1,k) + ...

DenomTable(1,s, k) + ...
DenomTable(1,s+1.k);

end

end

% end of s for-loop 140
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disp(t);
disp('entering update loop');
% update NumTable and DenomTable(ie move info for time 2 to time 1)
for s=(X0-t):(X0+t)
NumTable(1,s)=NumTable(2,s);
maxPossOnesNow=t;
for k=1:maxPossOnesNow-+1
DenomTable(1,s,k)=DenomTable(2,s,k);
DenomTable(2,s,k)=0; 150
end
end

disp('exiting update loop');

end

% end of t loop

% —————- NOW WE HAVE ALL THE TABLES FOR BEST PATH
% find best path
[maxNumVal finalPos|=max(NumTable(1,1:S)); 160
BestPath=zeros(1,T);
BestPath(T)=finalPos;
for j=1:(T-1)
BestPath(T—j)=BestParent(T—j+1, BestPath(T—j+1));

end

% ————————————-——————— RENDER BEST PATH
% color code:
%  red path is true path

% blue path is mazimum likelihood path 170
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% gray s noise

figure(3)
red_blue_map=[000;111;100; 00 1;
black=1;

gray=2;

red=3;

blue=4;

RenderThis=zeros(T,S); 180
for t=1:T
for s=1:5
if Y_noise_free(t,s)==1
RenderThis(t,s)=red;
elseif Y _noise_free(t,s)==0
RenderThis(t,s)=black;
end
if BestPath(t)==s
RenderThis(t,s)=blue;
end 190
end

end

imagesc(RenderThis);
colormap(red_blue_map);

axis on;

title('Object Path (w/ Noise, \alpha=.03)');
xlabel('Spatial Location (in pixels)');

ylabel('Time (in frames)'); 200
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B — e e e - CALCULATE DENOMINATOR

% Calculate Denominator by agregating the denomTables

AggregateDenomTable=zeros(1,maxPossibleOnesOnPath+1);

DeuomTern'xs:zeros(l,maxPossibleOnesOnPat,h+1);

for j=1:maxPossibleOnesOnPath+1
AggregateDenomTable(j)=sum(DenomTable(1,1:S.j));
DenomTerms(j)=AggregateDenomTable(j)=((1—alpha)/alpha)~(2+(j—1));

end 210

DenomVal=sum(DenomTerms);

% ————- — e —— CALCULATE MAXPATH PROBABILITY
% Calculate Mazimized Probability
maxNum Val

maxVal=((1—alpha)/alpha)~(2x(maxNumVal—1))/DenomVal;

% — ——— CALCULATE A DELTA TUBE’s PROBABILITY
% Calculate the delta tube that uses BestPath as the axis 220

% note: we require that delta be greater than or equal to 1

delta=2;
TubeNumTable=zeros(2,S,maxPossibleOnesOnPath+1);
% ABC

% A because we keep tables for last two frames

% B because we have 2 x S tables at most

% C because each table has mazrPossibleOnesOnPath+1 possible indices

% Now we initialize NumTable with values for t=1

% note for MATLAB code only: DenomTable and NumTable indices will be offset
% by 1. So index I really refers to paths that have 0 1s on their path. 230
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TubeNumTable(1,X0 , Y(1LX0)+1 )=1;
TubeNumTable(1,X0-1, Y(1,X0-1)+1 )=1;
TubeNumTable(1,X0+1, Y(1,X0+1)+1 )=1;
fort=2/T
for s=(BestPath(t)—delta):(BestPath(t)+delta)
if abs(s—X0) <=t

% note: we ignore boundary condilions for now..in the sense

% of what if (t,s-1) or (1,s+1) runs us over the boundary
maxPossOnesBefore=t—1; 240

for k=1:maxPossOnesBefore+1
TubeNumTable(2,s,k+Y (t,s)) = TubeNumTable(1,s—1k) + ...
TubeNumTable(1,s, k) + ...
TubeNumTable(1,s+1.k);
end
end
end

% end of s for-loop

disp(t); 250
disp('entering update loop');
% now lets update the TubeNumTable (ie move info for time 2 to time 1)
for s=(BestPath(t)—delta):(BestPath(t)+delta)
if abs(s—X0) <=t
maxPossOnesNow=t;
for k=1:maxPossOnesNow+1
TubeNumTable(1,s,k)=TubeNumTable(2,s,k);
TubeNumTable(2,s,k)=0;
end

end 260
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end

disp('exiting update loop');

end

% end of t loop

% —————— —————————— CALCULATE NUMERATOR

% Calculate Numerator by agregating the TubeNumTables

AggregateTubeNumTable=zeros(1,maxPossibleOnesOnPath+1);

TubeNumTerms=zeros(1,maxPossibleOnesOnPath+1); 270

for j=1:maxPossibleOnesOnPath+1
AggregateTubeNumTable(1,j)=sum(TubeNumTable(1,BestPath(T)—delta:

BestPath(T)+delta.j));

TubeNumTerms(1,j)=AggregateTubeNumTable(j)+((1—alpha)/alpha)~ (2x(j—1));

end

TubeNumVal=sum(TubeNumTerms);

280

% ——————————————— CALCULATE TUBE PROBABILITY
TubeVal=TubeNumVal/DenomVal
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