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Abstract

The communication reliability, or error exponent, of a continuous time, infinite band-
width, Additive White Gaussian Noise channel was studied under a peak power
constraint, in the presence of a feedback channel that was also a continuous time
peak-power constrained infinite bandwidth Additive White Gaussian Noise channel.
Motivated by [9], a two phase scheme was studied, where, in the first phase, the
Encoder transmits the message in small bit-packets and the Decoder then informs
the Encoder of the decoded message. With this knowledge, in the second phase, the
Encoder sends a confirm or deny signal to the Decoder and the Decoder then informs
the Encoder of its final action. In the first phase, the Encoder uses an orthogonal
signalling scheme and the Decoder uses a deterministic Identification code. In the
second phase, the Encoder uses antipodal signalling, while the Decoder utilizes a
sequential semi-orthogonal peak-power constrained anytime code. To improve the
reliability of the anytime code, additional messages are pipelined into the forward
channel by the Encoder once it finishes its phase two transmission, before receiving
the Decoder’s phase two transmission. Using this scheme, the following lower bound
on the reliability of this channel is obtained:

EGaussPeak(R̄) >

(

1

C2
+

1

4C1

)

−1(

1 − R̄

C1

)

where R̄ is the average rate of data transmission and C1 and C2 are the capacities of
the forward and reverse channels respectively. To achieve this reliability, the capacity
of the reverse channel, C2 must be greater than the forward capacity C1.

Thesis Supervisor: Sanjoy Kumar Mitter
Title: Professor
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Chapter 1

Introduction

In the field of information and communication theory, there has been much inter-

est in the study of feedback and the role it can play in improving the reliability of

information transmission. The reliability function determines the speed of decay in

the error probability with block length or expected decoding time. It is nothing but

the exponent of the upper bound on the probability of error of the communication

scheme, divided by the expected decoding time.

We are primarily concerned with the reliability of information transmission over

continuous time Additive White Gaussian Noise (AWGN) channels, in the presence

of noisy (Gaussian) feedback (Figure 1). In the absence of any feedback whatsoever,

the reliability function of this channel has been known for long [12] to be exactly

given as follows

E(R) =







C/2 − R, R ≤ C/4

(
√

C −
√

R)2, C/4 ≤ R ≤ C

where C is the capacity of the channel and R is the rate of data transmission. This

reliability is achieved by using an orthogonal signalling scheme 1.

With a peak power constraint and perfect noiseless feedback for the continuous-

time additive Gaussian setting, Schalkwijk and Barron [10] demonstrate a significant

improvement in the achieveable error exponent over a no-feedback setting, by using a

1However, doing list-decoding for orthogonal signaling on the ∞-bandwidth AWGN channel will
extend the “curvy” part of the curve in the same manner that it extends the curvy part for DMCs
[8].
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two-phase sequential signalling scheme. They show that, for a peak-to-average power

ratio of α, the achiveable error exponent is

Eα(R) =
(√

αC − R +
√

C − R
)2

where C is the capacity of the forward channel and R is the rate of data transmission.

The scheme of Schalkwijk and Barron was slightly modified by Yamamoto and

Itoh in [13]. They avoid the use of Viterbi’s sequential decision feedback scheme [11]

in the second phase, but nevertheless achieve the following similar error exponent

ET (RT ) =
(

√

C − RT +
√

αC − RT

)2

where RT is the effective transmission rate.

In the same paper, Yamamoto and Itoh also apply their modified scheme to the

case of a Discrete Memoryless Channel (DMC) with noiseless feedback and are able

to achieve the Burnashev error exponent

EN(RN ) = C1

(

1 − RN

C

)

where C1 = max
k,k

′

J
∑

j=1

Pjk ln
P

jk
′

Pjk
and [Pjk] is the forward channel transition matrix.

The presence of noise in the feedback calls for some additional ideas, since it is at

first glance not clear whether noisy feedback would even be useful at all. It might just

increase the encoder’s confusion. An approach to the analysis of the noisy feedback

case is taken in [9] that looks at the situation where a stream of messages is to be

conveyed to the receiver. The authors extend the above-mentioned DMC scheme of

Yamamoto and Itoh [13] to the case where the feedback channel is also a DMC. Using

a combination of message pipelining and anytime coding, they are able to make use

of the feeback information and obtain the following lower bound on the reliability

function

7
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Figure 1-1: Additive Gaussian Memoryless version of communication setup in [9].
Here Z1 ∼ N

(

0, N1

2

)

and Z2 ∼ N
(

0, N2

2

)

. Z1 ⊥ Z2.

Enoisy(R̄) ≈
(

1

C1

+
1

Eex(R)

)

−1(

1 − R̄

C

)

(1.1)

where Eex(R) is the expurgated exponent at rate R.

Since a DMC, by definition [[4], §8.5], has finite sets for its input and output

alphabets, a natural next step is to see whether a similar analysis can be applied to

the situation where both the forward and feedback channels are Gaussian channels

with a peak power constraint. Specifically, in this thesis we will obtain the reliability

function of a communication setup where both the forward and feedback channels are

infinite-bandwidth continuous time peak power constrained Additive White Gaussian

Noise (AWGN) channels. Figure 1-1 provides a block diagram of the setup under

consideration.

The following is an outline of this thesis. In Chapter 2, we will present the prelim-

inaries that will permit us to proceed with the detailed computation of the reliability

function. In Chapter 3 we will present this computation. Finally, in Chapter 4 we

will conclude with a summary of results and suggested directions for future research.
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Chapter 2

Preliminaries

In this chapter, we will present the preliminaries that will permit us to proceed with

the detailed analysis in Chapter 3. We will begin with a brief study of a variable-

delay communication scheme in the context of Discrete Memoryless Channels. This

scheme will be the framework in which we will study variable-delay communication

in the Gaussian setting. Following this brief study, we will present the details of the

point-to-point Gaussian channel that forms both the forward as well as the feedback

links of the communication setup under consideration.

2.1 The Sahai-Simsek Transmission Scheme

In this section we will provide a brief overview of the scheme used in [9] for transmit-

ting messages taken from a queue over a DMC, in the presence of a feedback DMC.

The scheme consists of two phases. In Phase 1, a message block is transmitted and

then the decoder feeds back the message block it decoded to the encoder. In Phase

2, the encoder looks at this feedback and sends the decoder a confirm/deny signal,

directing it to either accept or reject that decoded message block. The encoder then

waits for state information from the decoder, which tells the encoder what the de-

coder finally did with that message block (i.e. did it keep it or discard it). During

this waiting period, the encoder continues to transmit, or pipeline, a few (say, W )

additional message blocks in the same two phase format. At the end of the waiting

9



period, the encoder possesses the state information and so can decide which message

block to transmit next - either a retransmission of the message block or a new message

from the message queue (see Figure 1-1).

Figure 2-1 provides an illustration of this scheme in action. The figure also indi-

cates an additional feature of the scheme - before transmission, each message block

is broken into sub-blocks of length K each. As each sub-block is received, it can be

instantly decoded and the decoded sub-block can be immediately sent back along the

feedback link. This allows a significant reduction (from N time units to K time units)

in the amount of time the encoder has to wait in order to receive the entire decoded

block from the decoder.

To obtain the reliability result (1.1), in Phase 1 the encoder uses a random code

for transmission and the decoder uses an expurgated code. In Phase 2, the encoder

uses a repetition code and the decoder uses an anytime code.

Having provided an outline of the Sahai-Simsek scheme, we can now turn to the

Gaussian channel setting of Figure 1-1.

2.2 The Channel Model

The Gaussian channel under consideration is the infinite bandwidth continuous time

Additive White Gaussian Noise channel. This channel can be specified by the follow-

ing equation

Y (t) = X(t) + Z(t)

where X(t) is the input signal, Z(t) is a white noise signal having one-sided power

spectral density N0 and Y (t) is the output signal. The input signal must have average

power P . There is no restriction on the bandwidth used by the input signal.

To use this channel for communication, we must specify the signalling scheme.

The signal set consists of M signals of duration T each: {s1(t), · · · , sM(t)}. The

signals satisfy
T
∫

0

s2
i (t)dt = PT
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Figure 2-1: Encoder’s transmission and reception timeline under the scheme in [9],
with W = 2 and N
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= 3. Note that ETx = DRx and ERx = DTx.
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in order to meet the average power constraint. Thus, by transmitting one of these

M signals, one communicates log2(M) bits of information to the receiver. The rate

R of data transmission is thus log2(M)
T

bits per second. The maximum such rate at

which data can be transmitted with an arbitrarily small probability of error, i.e. the

capacity of this channel is C = P
N0

.

For this channel, [12] shows that the reliability function is given exactly as

E(R) =







C/2 − R, R ≤ C/4

(
√

C −
√

R)2, C/4 ≤ R ≤ C
(2.1)

and this reliability is achieved by an orthogonal signal set, i.e.

T
∫

0

si(t)sj(t)dt = PTδij

for i, j ∈ {1, · · · , M}. These orthogonal signals can be designed such that their peak

power is the same as their average power. This is the tightest possible peak power

constraint (since the ratio of peak to average power is 1).

This completes our description of the channel. In the remainder of the thesis,

the forward channel will have capacity C1 = P1

N1

and the feedback channel will have

capacity C2 = P2

N2
.
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Chapter 3

The Code and Its Analysis

In this chapter we will present the details of the transmission scheme, and undertake

a computation of the variable-delay reliability function.

A message source produces one among M equiprobable outcomes at regular in-

tervals of time. Each M-ary message enters into a message queue as illustrated in

Figure 1-1. It is the job of the Encoder to transmit these messages to the Decoder

over the channel in a reliable fashion.

3.1 Phase 1 Transmission Analysis

The transmission cycle begins with transmissions originating at the Encoder, over the

forward channel. We will first look at the Encoder’s phase 1 transmission.

3.1.1 Encoder Phase 1

The message m, representing log2(M) bits of information arrives at the Encoder

from the queue. This message is broken into K packets, each containing log2(M)
K

bits

of information. The Encoder transmits one packet at a time using the orthogonal

signalling scheme discussed in section 3. Clearly, the number of messages required

in the signal set for transmitting a packet is M
1

K . Each continuous time signal in

the signal set is of duration T1

K
seconds, and has peak power the same as the average

13



power P1. The rate of data transmission is

R =
log2(M)

K

K

T1
(3.1)

=
log2(M)

T1

bits per second.

As each packet arrives at the Decoder, it performs Maximum Likelihood (ML)

decoding on that packet. From [[6], §8.2], this yields the following probability of

error.

P (1)
e , Pr(packet is incorrectly decoded) = f(R,

T1

K
)e−

T1

K
Eorth(R) (3.2)

where Eorth(R) is given by (2.1) by replacing C with C1.

In K such transmissions, requiring total time T1, the entire message m is trans-

mitted by the Encoder. Assuming, for simplicity, that the transmissions started at

time 0, at time T1 the Decoder has thus received and decoded a total of log2(M) bits.

Using the Union bound,

P (2)
e , Pr(overall decoded message m

′ 6= m) (3.3)

=
K
⋃

i=1

Pr(packet i decoded incorrectly)

≤
K
∑

i=1

Pr(packet i decoded incorrectly)

=

K
∑

i=1

P (1)
e

= KP (1)
e

3.1.2 Decoder Phase 1

As each packet arrives at the Decoder, it decodes it immediately (using ML decoding

as discussed above in §4.1.1). Let us suppose that ML decoding yields message m
′

= p

where p ∈ {1, . . . , M 1

K }. Denote the actual message sent by the Encoder as m = l.

14



For the Encoder to be able to proceed with Phase 2, it needs to know whether or not

p = l. We can consider two alternative schemes for communicating this information

from the Decoder to the Encoder.

In the first scheme, the Decoder transmits the decoded packet back to the En-

coder using essentially the same orthogonal signalling scheme that we discussed in the

previous section. The signal set consists of M
1

K orthogonal continuous time signals,

each of duration T3

K
, with peak power the same as their average power P2. The rate

of data transmission is R = log2(M)
T3

bits per second.

As each such packet arrives at the Encoder, it performs ML decoding. This yields

the following probability of error.

P (3)
e , Pr(packet is incorrectly decoded) = f(R,

T3

K
)e−

T3

K
Eorth(R) (3.4)

where Eorth(R) is given by (2.1) by replacing C with C2.

The probability that the Encoder thinks the Decoder received the correct message,

i.e. m
′′

= m when in fact it didn’t, i.e. m
′ 6= m is upper bounded by the probability

that an error is made by the Encoder in decoding the feedback sent by the Decoder.

P (4)
e , Pr(m

′′

= m 6= m
′

) (3.5)

≤ Pr(m
′′ 6= m

′

)

=

K
⋃

i=1

Pr(packet i decoded incorrectly)

≤
K
∑

i=1

Pr(packet i decoded incorrectly)

=
K
∑

i=1

P (3)
e

= KP (3)
e

where the second inequality follows from the Union Bound. The first inequality can

be tightened with further analysis.
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In the second scheme, we exploit the fact that all the Encoder is interested in, is

whether or not m
′

= l. Beyond this, it is not interested in knowing exactly what the

value of m
′

is. Thus we have here a standard Identification (ID) problem, which was

first introduced in [1] for Discrete Memoryless Channels. In [3] Burnashev considers

the case of the infinte bandwidth Additive White Gaussian Noise Channel. Using

essentially the same orthogonal signalling scheme that we discussed in the previous

section, he constructs a deterministic ID (dID) code and computes the probabilities of

missed detection and false alarm. The signal set consists of M orthogonal continuous

time signals Si(t), each of duration T3

K
, with peak power the same as their average

power P2. The rate of the dID code is RdID = K ln lnM
T3

[3].

Having received and decoded all the K packets from the Encoder, the Decoder

transmits signal Sj(t) if the overall decoded message received by it is j where j ∈
{1, . . . , M}. We fix a real number z > 0 and define the decision region Dl(z) as

follows:

Dl(z) , {Y (t) :

T3

K
∫

0

Y (t)Sl(t)dt ≥ z}

If the received signal Y (t) falls in the decision region Dl(z), where l is the message

the Encoder wishes to identify, then the Encoder prepares to send a Confirm in Phase

2. If the received signal does not fall in the decision region Dl(z), then the Encoder

prepares to send a Deny in Phase 2. The probability of a False Alarm, i.e., the

received signal falls in Dl(z) when the Decoder actually sent Sj(t), j 6= l, is calculated

to be

P
(1)
fa , Pr(Y (t) ∈ Dl(z)|Sj(t) sent, j 6= l) = Φ





−z
√

N2P2T3

2K



 (3.6)

The probability of a Missed Detection, i.e., the received signal falls in Dj(z), j 6= l

when the Decoder actually sent Sl(t), is calculated to be

P
(1)
md , Pr(Y (t) ∈ Dj(z), j 6= l|Sl(t) sent) = Φ





z − P2

(

T3

K

)

√

N2P2T3

2K



 (3.7)
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In this second scheme, P
(1)
fa plays the role of Pr(m

′′

= m 6= m
′

). We therefore wish

to make it as small as possible. However, we have a constraint that the probability

of missed detection, P
(1)
md be less than 10−5. Setting P

(1)
md = 10−5, and using (3.7) we

can compute z = P2
T3

K
− 4
√

P2N2T3

2K
and thereby, from (3.6), and using Φ(x) ≤ e−

x2

2 ,

we obtain

P
(1)
fa ≤ e−8e

−(C2

T3

K
+4

q

2P2T3

N2K
)

(3.8)

which, on dropping sublinear terms, yields the exponent

EdID = C2 (3.9)

independent of the size of the message set M , and hence independent of the rate of

the dID code. By comparison, from (3.4) and (3.5), the reliability function of the

first scheme is Eorth(R), given by (2.1) by replacing C with C2. The two reliability

functions are illustrated in Figure 3-1.

It is clear from Figure 3-1 that regardless of the rate, the second scheme is to be

preferred over the first. Note that the second scheme also saves the Decoder much

transmission energy on the feedback - it need transmit only once where it would have

done so K times in the first scheme.

3.2 Phase 2 Transmission Analysis

We can now analyse the second phase of transmission. We will first look at the

Encoder transmission, which begins at time T1 + T3

K
.

3.2.1 Encoder Phase 2

Using its decision regarding whether or not the Decoder obtained the right message in

Phase 1, the Encoder does the following. In case the right message was received, the

Encoder sends a Confirm signal which indicates to the Decoder that it ought to keep

the just-decoded block. Otherwise, the Encoder sends a Deny signal which indicates

17
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to the Decoder that it ought to discard the just-decoded block. The Encoder uses a

pair of antipodal signals {r(t),−r(t)}, the former to indicate a confirm and the latter

a deny. Each signal is of duration T2, with peak power the same as the average power

P1.

Let the received signal be Y (t). We fix a real number z > 0 and decode to a

Confirm if
T2
∫

0

Y (t)r(t)dt ≥ z (3.10)

and to a Deny if
T2
∫

0

Y (t)r(t)dt < z. (3.11)

We then compute the probabilities of Missed Detection and False Alarm as follows.

P
(2)
md = Pr(Decode to Deny | Confirm sent) (3.12)

= Pr(

∫ T2

0

Y (t)r(t)dt < z|r(t) sent)

= Pr(

∫ T2

0

Z(t)dt <
z − P1T2√

P1

)

= Φ





z − P1T2
√

P1N1T2

2





P
(2)
fa = Pr(Decode to Confirm | Deny sent) (3.13)

= Pr(

∫ T2

0

Y (t)r(t)dt ≥ z| − r(t) sent)

= Pr(−
∫ T2

0

Z(t)dt ≤ −(z + P1T2)√
P1

)

= Φ





−(z + P1T2)
√

P1N1T2

2





If we set z = 0, we obtain P
(2)
fa ≤ e−C1T2 . Thus the exponent is C1, independent
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of the rate. On the other hand, we can fix the probability of missed detection to be

some value, say 10−5, and then determine the value of z as follows

P
(2)
md = Φ





z − P1T2
√

P1N1T2

2



 (3.14)

= 10−5

⇒ z − P1T2
√

P1N1T2

2

= −4

⇒ z = P1T2 − 4

√

P1N1T2

2

Thus, from (3.13), we obtain

P
(2)
fa ≤ e−8e−(4C1T2−8

√

2
√

C1T2) (3.15)

which, on dropping sublinear terms, yields the exponent 4C1T2.

3.2.2 Decoder Phase 2

Once the Decoder has decoded the phase 2 encoder signal, it performs the correspond-

ing operation, i.e. it either discards or accepts the just-decoded block. What action

it performs constitutes 1 bit of information about its state. This information must be

conveyed back to the Encoder. Using this information the Encoder will decide which

message to transmit next. Thus it is quite important for the Decoder to communicate

the state information bit sequence in a reliable fashion.

We can do so by using an anytime code for this purpose. In [7], the author presents

a sequential semi-orthogonal anytime code for the infinite bandwidth AWGN channel.

It is a repeated pulse position modulation (PPM) scheme. However, the analysis in

[7] is not unique to PPM. The same analysis goes through even with a signal set

that meets the constraint that the peak power be the same as the average power

P2. Specifically, the signal set consists of square waves gi(t), each of duration T4
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seconds, arranged on a tree-structure (growing from left to right), with i being an

index to the branch of the tree that the signal gi(t) occupies. The index can be,

for example, a simple binary sequence that allows one to navigate to that signal,

with 0 being appended when you move “up”, and 1 when you move “down”. If we

consider all the signals at any particular “level” of the tree, the number of their zero

crossings increases by powers of 2 as one goes down that level. The amplitude of each

square wave is of course
√

P2. This tree structure, illustrated in Figure 3-2, gives the

code the important characteristic that every T4 seconds, not only is an additional bit

communicated, but also all previous bits are repeated.

At time T1 + T3

K
+ T2 + T4 the Encoder receives the first state information signal,

say, g0(t). It doesn’t immediately decode this signal. Instead, in order to increase the

reliability of the decoding, the Encoder operates at a fixed delay W , i.e. it waits for a

sequence of W signals to arrive before it decodes the first bit from the sequence. As

shown in [7], this allows the Encoder to operate with an error probability given by

P (5)
e , Pr(Received Decoder state information, (3.16)

from bit 1 upto the bit received via the signal

that arrived W signals ago, is incorrect)

≤ K
′

e−WEorth(R
′′

)T4

where R
′′

= 1
T4

bits per second is the rate of the anytime code, K
′

> 0 is a constant,

and Eorth(R) is given by (2.1) by replacing C with C2. Equation (3.16) thus gives

the probability that the Encoder selects the wrong message to transmit. Note that

during the delay period D = W (T1 + T3

K
+ T2) the Encoder transmits an additional

W messages from the message queue.
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Figure 3-2: A sequential semi-orthogonal peak-power constrained code, based on the
repeated PPM code in [7].
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3.3 Total Error Probability

Having obtained the error probabilities of the individual phases of the scheme, we

are now in a position to compute the total probability of unrecoverable errors of the

scheme. An overall uncorrectable error occurs if one of the following occur [9].

1. The Encoder sends a Deny but it is decoded as a Confirm. This occurs with an

exponent 4C1T2, from (3.15).

2. The Encoder sends a Confirm when it ought to have sent a Deny. This occurs

with an exponent C2
T3

K
, from (3.8).

3. The Encoder selects the wrong message to transmit. This occurs with an expo-

nent WEorth(R
′′

)T4, from (3.16).

We can choose parameters such that all the above exponents are identical. Equat-

ing the first two exponents, we obtain

K =
C2T3

4C1T2

(3.17)

Since K is the number of bit packets that each message is broken into, we must have

K > 1. This yields the requirement that

C2 >
C14T2

T3
. (3.18)

Equating the first and third exponents, we obtain

W =
4C1T2

Eorth(R
′′)T4

(3.19)

which is always non-negative, since Eorth(
1
T4

) is non-negative.

Thus, the total (uncorrectable) error probability has the exponent

− ln Pe = 4C1T2 + sublinear terms. (3.20)
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3.4 Expected Decoding Time

We wish to obtain the expected time that it takes for a message to be sent from the

Encoder to the Decoder. Let us consider the cases in which a retransmssion of a

message is required [9].

1. Any packet of the Phase 1 Encoder transmission is received incorrectly. This

has probability given by (3.3). This probability can be made arbitrarily small

by increasing T1.

2. A Confirm sent by the Encoder is decoded as a Deny. This is a constant, 10−5,

given by (3.14).

Thus the probability that a message will be retransmitted is ≤ P
(2)
e + 10−5. Thus

a transmitted message is accepted with probability ≥ 1 − P
(2)
e − 10−5. The possible

message acceptance times are {(T1+ T3

K
+T2), (W +1)(T1+ T3

K
+T2), 2(W +1)(T1+ T3

K
+

T2), · · · }. Thus, the expected duration for a message to be successfully transmitted,

τ̄ , is upper bounded by

(T1 +
T3

K
+ T2)

(

1 +
P

(2)
e + 10−5

1 − P
(2)
e − 10−5

(W + 1)

)

(3.21)

≅ (T1 +
T3

K
+ T2)

= T1 + T2

(

1 +
4C1

C2

)

where the second line holds because 10−5 is negligible and P
(2)
e can be made arbitrarily

small. The third line follows from (3.17).

3.5 The Reliability Function

We are now in a position to derive a lower bound on the reliability function EGaussPeak(R̄)

of the transmission scheme. Here R̄ = log2(M)
τ̄

is the average number of bits per second

transmitted by the scheme.
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Using (3.1) and (3.20), (3.21) becomes

τ̄ <
log2(M)

R
− ln Pe

4C1

(

1 + 4
C1

C2

)

(3.22)

where R is the nominal rate of data transmission by the Encoder in Phase 1.

Thus,

1 <
log2(M)

τ̄R
+

− ln Pe

τ̄4C1

(

1 + 4
C1

C2

)

(3.23)

=
R̄

R
+ EGaussPeak(R̄)

(

1

C2
+

1

4C1

)

Thus,

EGaussPeak(R̄) >

(

1

C2
+

1

4C1

)

−1(

1 − R̄

R

)

(3.24)

In order to maximize the lower bound, we must maximize R. Thus the optimal value

of T1 is log2(M)
C1

seconds. Thus, the lower bound now becomes

EGaussPeak(R̄) >

(

1

C2

+
1

4C1

)

−1(

1 − R̄

C1

)

(3.25)

This lower bound is plotted in Figure 3-3.
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Figure 3-3: Variable Delay Reliability Function of the Gaussian Channel with Gaus-
sian Feedback
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Chapter 4

Conclusion

In this thesis, we computed the variable-delay reliability function of an infinite-

bandwidth peak power constrained continuous time Additive White Gaussian Noise

channel in the presence of a similar feedback channel. The main ingredients of the

communication scheme used were, an orthogonal signalling scheme to transmit the

message, a deterministic Identification code to obtain feedback, antipodal signalling

to confirm or deny the last message, and finally, a sequential code to transmit decoder

state information back to the encoder. In combination with message pipelining, this

scheme yielded a lower bound on the reliability function

EGaussPeak(R̄) >

(

1

C2
+

1

4C1

)

−1(

1 − R̄

C1

)

This reliability was achievable under the condition that the capacity of the feeback

channel be greater than that of the forward channel [cf. (3.18)].

Our approach to this problem was motivated by the scheme of Sahai and Simsek

[9] which considered an identical situation, but for Discrete Memoryless Channels.

They computed the reliability for variable-delay decoding on DMCs with noisy feed-

back and were able to show that as the quality of the feedback link improves, i.e. as

the feedback gets less noisy, the reliability function approaches the Burnashev expo-

nent. The Burnashev exponent is the highest possible variable delay error exponent

achievable when a DMC is used with noiseless feedback [2]. In a recent paper [5], as
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yet unpublished, the authors look at a similar forward and feedback DMC scenario,

where the rate of communication on the forward link is greater than the capacity of

the feedback link. They work with a slight modification of the scheme in [9]. In-

stead of the Decoder transmitting the decoded message back to the Encoder using

an expurgated code, or utilizing an Identification code as in this thesis, the Decoder

transmits a random hash of the decision that it makes. A hash is simply a “blurred”

version of the decision - several message values are mapped to a single bin. Thus, for

example, if m
′

= 9, a random partition of the set {1, 2, . . . , M} is made and the index

of the partition in which 9 falls is sent to the Encoder. Using this modified scheme,

the authors are able to obtain an exponent that, at average rates close to capacity, is

equal to half the Burnashev exponent.

A possible direction of future research is therefore to investigate whether utilizing

a similar random hashing strategy in place of the Decoder Phase 1 strategies studied

in Chapter 3 would make a difference in the reliability function that can be achieved

in the Gaussian setting considered in this thesis.
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