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CHAPTER 1

PLART DLSCRIPTION

The development of this thesis will be around'a manufacturing
corporation composed of two main manufacturing plants: plant A and plant
B. Plant A produces a single output product and takes its raw materials
from a large but limited supply. Plant B is composed of several produc-
tion lines, each one producing a different output product, but all having
as their primary inputs the output product from plant A. In a schematic
diagram, the two plants are therefore cascaded together in the following

way:

PLANT A —PROD 1
Finite L PROD 2
Supp[ﬂ :
PLANT B '

Y

LQ"SQ buf

SQcondarj
In]ou ts

—-PROD m

There are various industries that possess this internal structure.
Steel industries, for instance, have a main iron processing furnace that
distributes its single output product (steel) to other dependent
indust;ies that manufacture steel sheet, structural beams, pipes, wires

and so forth. Similarly, textile industries usually have a main nylon,
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dacron, or the like, manufacturing plant that distributes its output
proddcg améng several other industries that produce a variety of output
products. The petroleum industry would also be a perfect example of an
industry having this same type of structure. o,

Now, the output products produced by plant B do not necessarily have
to be distinguishable, that is, two subdivisions of B might very well
produce identical products without disturbing in this way the structure
of the system. An electrical power system, for instance, could fit into
.the same type of structure that we are considering, even when the output
voltage from all the substations is identically the same.

Since inventory buildup is allowed for each one of the output
products of plant B, as well as for th;t of plant A, the actual block

diagram of the type of systems that will be considered is the following:

 arge but

Fintte »PLANT A = Invznforﬂ
Supply |
- Inven[ort] —Fin. Prod._f.
V e InventOr'j ———;-F(_n Pro(i 2

—+(O)—{PLANT B

Szconda_r

In‘outs o~ ]nveniorg —»Fin. Pmd m




CHAPTER 2

STATEMENT OF THE PROBLEM AND FORMULATION
OF THE MATHEMATICAL MODEL

1. Description of the Problem and Assumptions

The problem that will be dealt with specifically in this thesis is
that of determining the optimum production schedules subject to the
physical plant constraints being satisfied so as to maximize profits or
minimize costs. That is, given the maximum production capacities, the
maximum inventory levels, and the demand schedules for each one of the
output finished products, the optimum production schedules for each one
of the subdivisions as well as that for plant A must be determined.

The problem will be formulated as an open-loop optimal control
problem taking the different inventory levels as the state variables of
the system and 'he different input quantities for each one of the sub-
divisions of plant B as well as the input for plant A as the control
variables of the system.

The demand schedules for each one of theoutputs from plant B are
assumed to be known through the entire period of time of interest.
Consequently, the influence that the outside demands exert in the
optimization is equivalent to that of a simple fixed parameter and not
that of a dynamic variable, as would probably be the case in a more
realistic situation. However, if the dynamiés of the demand curve are
incorporated into the model the optimization problem would become

tremendously complicated. Besides, in the formulation of the econometric

= 7
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model, in o;der to simulate the dvnamics of ﬁhc public demand, certain
simpii?yiné assumptions would undoubtedly have to be done, since it is
virtually impossible to incorporate the entire economic system into the
model. Therefore, before any optimization of the system is attempted,

a thorough ‘verification of the model with the ;eal world would have to
be performed. This, because of the magnitude of the system involved, is
an almost impossible thing to do. Consequently, the incorporation of
the dynamics of the demand schedules to the inventory model, besidés
being completely outside the scope of this thesis, would have a dubious
contribution to the usefulness of the results.

Perhaps a better way of making the model somewhat more realistic
would be to assume certain "expected' demand schedules to be known, but
their true value through time to be actually uncertain. That is, instead
of assuming perfectly deterministic demand curves, a certain degreé of
raﬁdonmess in their actual values through ti'e could be assumed. By
specifying the demand curves in terms of their statistical parameters
_(mean and variance if a Gaussian distribution is assumed) it would be
possible to simulate in the model the actual anertaintv that exists in
a true economic market. llowever, the actual studv of the effects of
introducing a certain degree of randommess into the demana curves will
not be done in this thesis and it is only récommended as a possibility
for further research on this problem.

The demands through time for each of the finished products from
plant B are not considered to be cumulative in case of failure to supply.
That is, if a particular subdivision fails to supply the entire given

demand for a particular period of time, the resulted excess demand will
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Yo ascuicd lost as far as that subdivision is concerned, insteéd of
adding-it to future démands. In other words, what we are assuming in
economic terms is that the number of different suppliers for each of the
products sold is such that if a particular subdivision fails to supply
his entire share of the demand,.some other supplier will take the excess
demand leaving, in this way, the overall economic system completely
unaffected. This assumption is not only taken for the sake of simplicity,
put also to be consistent with the assumption that the demand schedules
are completely deterministic and fixed and thereby unaffected by the
production policies of the particular company that is being dealed with.

Also, in order to be consistent with the two previous assumptions,
the market price for the output products from plant A is assumed to be
completely deterministic and known through time. For the sake of
simplicity, the values of these market prices were considered to be .
constant through the entire period of time of interest. Actually, this
detail could be very easily changed in the mopdel; it was simply felt
that this parameter was actually of very little importancg as far as the
dynamics of the model were concerned.

Another underlying assumption in the model is the fact that plant A
is not allowed to sell any of its output produét to outside consumers.
This assumption was not only made for the sake of simplicity, but also
because in actual practice it is found that the type of industry to which
this model fits has zero or very little outside market for the.product

produced by the plant that in this model corresponds to plant A.
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It should also be mentioned that in the actual optimization process
the shppliér of raw materials for plant A was assumed to be virtually
unlimited in the sense that it imposed no limit on the maximum production
allowed for that plant through the entire period of time considered.

That is, the maximum of production for plant A was assumed to be deter-
mined by the internal production capacity of the plant itself and not by
the availability, at the particular instant of time, of the necessary

rav materials. Similarly it was assumed that the "secondary" inputs to
plant B imposed to limitation on the production capabilities of any of

the subdivisions at any instant of time. That is, the secondary inputs
supply was considered ample enough to be able to supply all the sub-
divisions of plant B with the necessary materials even when they are
simultaneously producing at full internal capacity. Finally, the market
prices for both the raw materials for plant A and for the secondary inputs
for plant B wer- assumed to be constant through the entire period of time
considered. Again, the justification for these assumptions is just simply
that in actual practice it is found that for the type of industry to which
this model applies this is actually the case.

The amount of output coming out from a given subdivision was assumed
to be directly proportional to the amount of input fed in. That is, the
output function o(t) was assumed to be related to the input function u(t)

by the following linear relation:
o(t) = keu(t) (1)

where k, the proportionality factor, would correspond to the production

efficiency of the subdivision. Also, it should be remarked that, as
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cquation (1) implics, the.production process was assumed to be absolutely
instentaneous. In other words, the production process was assumed to
have zero processing delay. There is no physical justification for this
assumption except that of simplifying the problem.. Actually, as it will
be explained later, by modifying the structure of the model in the proper
way the significance of this seemingly major assumption may be made to

be no longer relevant.

2 Dynamics of the Problem

The dynamics of plant A are given by the following set of equations:

t
so(t) = f [uo(t) ko - do(t)]dt

o
or in terms of a differential equation:

dso(t)

dt = uo(t) ko - do(t) 2

where: so(t) is the state of plant A and is the inventory level
uo(t) is the input being consumed by the plant at time t
ko is the production efficiency of the plant
and do(t) is the expected demand at time t
For plant B, the dynamics of each one of the subdivisions may be

described by a similar set of equations. For instance, the dynamic

equation for the ith subdivision would be:

t
s;(t) = f [k; uy(t) - d,(t)]de
o
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or in differential equation form:

d
i si(t) = ky ui(t) - di(t) (3)
where si(t) is the value of the inventory level of the ith subdivision
at time t
ui(t) is the input being applied to the ith subdivision at time t
ki is the production efficiency of the 1th subdivision

and di(t) is the expected demand for the ith subdivision at time t

Clearly, fhe dynamics of the entire plant B would be described by
a set of m equations like equation (3), one for each subdivision.
If we let:
a) s(t) be the vector composed of the different state inventory
levels for plants A and B
b) wu(t) be the vector composed of the corresponding input variables
c) d(t) be the vector cdmpdsed of the corresponding demands, and
d) K be the matrix containing the different production
efficiencies in its diagonal and zeroes everywhere else,
then the entire dynamic structure of the model may be written in a

conveniently compact matrix form. That is, if we let

s(t) = [s (£),8;(t),s,(t),...,s (£)]'
u(t) = [u (£),uy (E),u,(t),...yu (£) ]
da(t) = [d_(t),d;(t),d,(t),...,d ()]



_ _
k 0 0
(o]
=2 0 kl 0 L :
nd K = |0 0 Kk, 0 ...
- % 0
0 0 s 0 k
B sl

then the m+l equations that determine the dynamic structure of the system

may be written by the following single matrix equation
d | 4
-d—Eg(t) = Ku(t) - d(t) (4)

where the derivative of s(t) is defined to be the vector composed of the
derivatives of each one of the components of s(t).

At this point, is is important to realize that the way the dynamics
of the model have been formulated, both plant A and all the subdivisions
of B have been taken as single input single output subsystems. In the
case of plant A, that was the way the problem was formulated to start with.
But in the case of the subdivisioné of B, in addition to the input
proportioned by A, the subdivisions were assumed to require the so-called
secondary inputs. Now the underlying assumption here is that these
secondary inputs are merely auxilliary as far as production is concerned;
that is, these secondary inputs cannot be transformed by themselves into
marketable output, but serve merely as simple catalysts to the trans-
formation of the input proportioned by plant A. Now since, as may be
recalled, the supply of these secondary inputs was assumed to be
unlimited as far as the capabilities of consumption of the plant was

concerned, these inputs cannot have any influence on the dynamics of the
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plants and consequently may be ignored. It is for this reason'that each
of‘tﬂe?subéivisioms wére taken to be single input single output systems.
Now, if the particular problem at hand cannot be reduced to a set of single’
input single output subsystems, as was assumed to be the case here, then
an entirely different problem would have to be approached since the

development that follows would simply not apply.

3. Cost Functional

The cost function or performance criterion that was formulated for
the optimization of the system consists of th:ee main items:

a) Inventory cost.

b) Change of production cost.

c) Sales profit.

The inventory cost item deserves little explanation since it is
quite obvious that very seldom can an amount of inventory be stocked
without having to incur in certain costs like: merchandise handling,
warehouse rents, deterioration of the merchaﬁdise and so forth. There-
fore, this item in the cost is designed to keep the inventory levels as
low as possible without hurting the profits.

The Change in Production cost is perhaps the most obscure item in
the cost function and deserves a little explanation. The reason why it
is desirable to cost changes in production is that there is alwavs a
certain cost associated with every change in production. For steps up
in production, for instance, there might be some hiring costs, but most
importantlv, there is always a certain time constant for the total

production to catch up with the desired level; therefore, if an optimal
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trajectory exists it must be. such that sharn changes in production do not
ocduf if ig is to be feasible. Tor steps down in production this term
has little meaning except for the fact that it might be necessary to
incur in some layoff costs. This term, therefore,-is primarily designed
to keep the optimal solution from having abrupg changes in production so
as to ﬁake it feasible.

Finally, the sales profit which contributes negatively to the cost
needs very little explanation since its meaning is intuitively obvious.
It should be enough to mention that some subdivisions may be more
profitable than others, and consequently, in tight situations these sub-
divisions should be given preference over the others so as to obtain the
"most profitable' distribution of resources.

Both the amounts of inventory and the net changes in production were
charged in a quadratic fashion. In this way, large amounts of invéntory
or large changes in production were penalize¢ proportionately much more
severely than small amounts of inventory or small changes in production.

The Sales profit is, of course, directly proportional to the Total
Sales. Clearly, the proportionality constant'in this case is the marginal
sales profit of the particular product, that is, sales price minus
production cost per unit of merchandise. |

Translating these ideas into mathemati;al terms, the cost functional
may be expressed as follows

T

J - [ ? [w sz(t) + te, (du /dt)2 -
feg % % o e t - ™
t
o

1 tsi(t)]dt



where a)
« 5h)

c)

and d)

‘ —16.-

Qi is the inventory cost for the ith subdivision

.tci is the change of production cost for the ith subdivision
mp is the marginal profit of the ith subdivision

tsi(t) is the total sales of the £th subdivision at time t.

The Total Sales function is defined as follows:

ts, (t) = min{(si(t~dt) + kyu, (), di(t)}

i=0,1,...m

That is, all subdivisions are assumed to sell always as much as they can.

Now, defining

a) a matrix W containing the inventory costs in its

diagonal and zeroes everywhere else, b) a matrix T containing the corres-

ponding change in production costs in its diagonal and zeroes every&here

else, and c) a third diagonal matrix M with the corresponding marginal

profits, we can write the cost functional in a more convenient and

familiar format.

W

and

\0J
o]

That 1is, defining:

mp3

O -

mpm

~

a

Then we can express the total cost in the following way:
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T
ST f [s'(t) Ws(t) + u'(t) Ta(t) + Mrs(t)]de (5)

where é(t:) = g—t-_l_l_(t) 3

and ts(t) = [tso(t), tsl(t), tsz(t),..., tsm(t)]'

4. Optimization Constraints

The optimization must be performed subject to the physical
constraints of the plants. Namely, the maximum inventory capacities and
maximum production capacities. That is, the optimization must be per-

formed subject to:

*

0 f_si(t) < sy 1=0,...,m

* .

0< ui(t) < uy t=t°,...,'1‘
Or in vector form:

0 < s(t) <s* t=t_,..,T

(6)
0 < u(t) < u*
* k %k % %!
where s [so,sl,sz,...,sm]
* *

and Ef = [u:,ui,uz,...,um]'

Finally, and most importantly, all feasible solutions must satisfy
the material balance equation. That is, the sum of the inputs to nlant B
must always be smaller than or equal than the availability of the output

from A for all t E[to,T]. In mathematical terms:

m
121 u.i(t) < s (t=dt) + k_ u (t) (7
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As may be recalled, it is assumed in the optimization that the
oufsi&é demands for the outputs from plant B a;e completely deterministic
and known. But so far the demand curve for the output from plant A
(do(t)) has not been specified. The determination’ of this demand curve
is not as éimple as adding up the demands divided by the production
efficiencies for each of the subdivisions of B, as one might be led to
believe. The reason for this is that since limited production capacities
are assumed, saturation effects might occur; some subdivisions, for
instance, anticipating a time of crisis might start producing in advance,
producing in this way a backwards shift in the demand curve. Therefore,
the demand for plant A is not known until the final production scheaules
for the subdivisions of piant B are known. Now the optimum production
schedules for plant B depend on the production schedules for plant:A;
consequently, since the production schedules for plant A depend on the

demand curve do(t), there seems to be a vicivus circle. That is:

==, (=0 ()=

i=1-m

;:::::::::uo(t), so(t)<§§:::::_

However, as will be explained later, this difficulty may be overcome.

For the time being it will suffice to remember that the constraint

m
d () = 121 u, (t) t ele_,T] (8)

forms part of the constraint set of the optimization.



-19-

5.  Summary
¢ iﬁe oéen loop control problem may be statéd as follows:
Determine the optimal trajectories s(t) and optimal controls u(t)
for t e[to,T] that minimize the cost function given by equation (5)
subject to ‘equations (4), (6), (7) and (8). That is:
find the s(t) and u(t), t E[to,Y] that

T

oo A I [s'(t) Ws(t) + u'(t) Tu(t)
% - Mts(t)ldt

subject to: s(t) = Ru(t) - d(t)
0<s(t) <s”
0 < u(t) < u*

m 2
izl ug (€) < s (t=dt) + k_u_(t)

? .
d (t) = u, (t)
o 4o i



- CHAPTER 3

DISCRETIZATION OF THE PROBLEM

.

The use of integrals and derivatives in the statement of the problem
implies that the time increments dt that are considered are of infinitesi-
mal magnitude and, furthermore, that the dynamics of the system are
;ontinuous. Actually, there is nothing intrinsically wrong with this
approach, except that it is not quite realistic. Production changes are
not made continuously, but rather they tend to be made by the week, by
the month or so. By the same token, it makes better sense to talk of a
production or demand of, for instance, so many cars per day, rather than
a fraction of cars per unit of time. Therefore, it is not only convenient
put also desirable to use a large by finite time base At instead of an
infinitesimal one. Clearly, what. this essentially amounts to is a
discretization of time.

Now if time is discretized in this fashion, the integfals become
summations and the derivatives differences, but the structure of the
problem remains essentially the same, namely:

Find the s(n) and u(n) n=0,...,N that
N-1

minimize J, = s'(N)W s(N) - Mts(N) + ) [-M ts(n) + s'(n)W s(n)

T
n=0 9)

+ (u(n) - u(@+l))' T(u(n) - u(n+l))]

-20-
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subject to: . s (n+l) ='§ﬁn) + K u(n) - d(n) (10)
iy 0 <s(n) <s* ' (11)
0 < u() < u* (12)
& -
121 u () < s (n) + kg uo(g) (13)
)
d (n) = u, (n) (14)
o $ui i
n=0,...,N

where the nomehclature of the variables is the same as that used in the

continuous case and the index 'n'" refers to the time n(At) + ty i.e.
s(n) = s(t_+n At)

u(n) = gﬁto +n Ati

T—to
for n=0,...,N, where N = %

There are other more subtie,.but very cignificant, advantageé that
derive from this time discretization besides the conceptual ones
‘previously mentioned. TFirstly, by discret;zing time in this way the
number of control decisions along the optimal trajectory has been reduced
from an infinite number of points to a finite number of points. In other
words, the problem has been changed from an infinite dimensional one as
far as control decisions are concerned to a finite dimensional one,
thereby achieving a significant simplification in the mathematics of the
optimization. Secondly, when time is discretized in this way, the outside

demand curves have to be aggregated into isolated lumps across the time

scale at At time intervals. Clearly, this concentration of the demands
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into a finige number of lumps tends to flatten out short time oscilla-
tions tin ﬁartiCular noise) when they exist. Therefore under the presence
of uncertainty, one of the results of this aggregation is that the
probability distribution of the resulting points is significantly
sharpened up around their expected values; obviously the greater the

time interval At the more pronounced this effect becomes. Consequently,
if a sufficiently large time discretization interval (At) is chosen, the
assumption of a noiseless and deterministic demand curve may becomé much
less crude than it might have previously appeared. And finally, also
thanks to this time discretization, we can make the assumption of zero
processing delay to be almost perfectly legitimate. Tha; is, 1if we‘
choose At to be a multiplé or submultiple of the greatest processing
delay among all the subdivisions, it is always possible to compensate

for most processing delays by shifting the demand curves backwardslin
time by the corresponding processing delays. Now, the reason why this
processing delay compensation is not admissible in the continuous case
_is because, due to the assumed limited production capacities, saturation
effects might take place causing the equivaleﬁt "virtual" demand to be
completely distorted. Consequently, since these saturation effects
cannot be anticipated beforehand, a processing delay compénsation of this
type would be virtually impossible. If timé is discretized, however, due
to the already aggregated character of the demand curve, the distortion
resulting from saturation effects is significantly less than in the
continuous case. Consequently, a processing delay compensation of the
type proposed here may be implemented successfully provided the time

scale is adequately discretized.
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Suronrizing vhit hoes just been said, the discretization of the
problen hias the follewing advantaces:

a) Helps in the interpretation of the problem with respect to the

real world. ,

b) Transforms the problem into a finite dimensional problem as far

as the number of control decision points is concerned.

¢) Flattens out the noise that exists in the actual demand curve

making the noiseless demand assumption somewhat more accurate.

d) It is possible to successfully compensate for non-zero process-

ing delays (if they exist).

Now there are also some disadvantages associated with the time
discretization of the problem. As wili be explained later, this time
discretization causes some severe difficulties in the actual design and
operation of the optimization algorithm due to the inevitable disconti-
nuities in the gradient function. However, all things considered, this
author believes that time discretization doe§ indeed pay off.

After this time discretization has been done, it is somewhat obvious
that in order for the terminal time cost functional to be.really meaning-
ful it is necessary to incorporate an extra term that penalizes the system
for passing out non-zero inventories to time stage N+1. That is, the
system should pay for leaving non-zero inventories at the end of the time
period considered so as to avoid leaving expensive invenfories for 'the
other guys" to pay, as one might say. Therefore, it is necessary to add
an extra term costing the inveﬁtories at time N+1 to the cost functional,

i.e.
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Jp = ' G s(GH1) + 8" DU () = M £s (W)

e e N-1
+ Z {Ef(n)w s(n) - M ts(n) (15)

n=0

+ [u(n) - u(+l)]' Tlu(n) - u(n+l) ]}

Therefore the optimization problem becomes: find the optimal

trajectories and optimal controls
s(n), u(n) for n=0,...,N

that minimize J,, as given by equation (15) subject to the constraints

L
given by equations (10) -+ (14) which will be rewritten below for ease of

reference:
s(n+l) = s(n) + K u(n) - d(n) (10)
0<s) < s™ (11)
0 < u() < u* (12)
m
121 u (n) < s (M) +k_ u(n) (13)
m
d_(n) = 121 uy (n) (14)

n=0,...,N



CHAPTER 4

ot i ' DEVELOPMENT OF THE ALGORITHM

¥. Decomposition of the Problem

The only equations that couple plant A with plant B and the
subdivisions of B among themselves are the material balance equation
(equation (13)) and the plant A demand equation (equation (14)).
Therefore, the problem would be separable into mtl single input-single
output problems if equations (13) and (14) were not constraints. However,
as shall be explained, it is possible to find a dual problem that is
separable by means of Lagrangian functions.

Defining a Lagrangian function L(EJE)E,dO) as:

N m
L=J,+ Y {e)[ ) u () = (s (m) + k_ uo(n))]
n=0 i=1
" (16)
+ p(n)[izl u () - d ()1}
wvhere c = [c(0),C(1),C(2),...,C()]'
and p= [p(0),p(1),p(2),...,p(W)]"'
are Lagrange multiplier vectors.
And, defining h(c,p) as:
h(c,p) = min L(c,p,u,d ) an

(u,d )e °

where @ is the set of u(n), do(n); n=0,...,N such that:

-25-
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i) 1) = _:}_(:".) + K _Li(n) - Q(n)

ii) 0 <s(n) <s

iii) 0 < u(n) < u*

Then it can be shown (see Appendix I) that the problem:

maximize h(c,p) . (18)
CsP
subject to ¢ > 0
is indeed the dual of the original problem (equations (10) + (15)).

Substituting the expression for Jop (equation (15)) into the

Lagrangian function L(Eﬁgﬁgjdo) (equation (16)), it is obtained:

L = s'(N4+1)W s(N+1) + s'MW-s@) - M ts(N)

m

+ c(N) [121 u, () - (s () + ku (N))]
-m N-1

P[] ue@®) -d ]+ ) {s'(m)V s(n)
i=1 n=0

- Mts(n) + [u(n) - u(ntl)]" T{u(n) - u(n+l)]
m

+ c(n)[iZ1 ui(n) - (so(n) + ko uo(n))]
¥ ;

# p(n)liél u; () - d_ ()]}

Now, if all the matrix and vector operations are expanded to the

individual elements and the terms rearranged in the proper way, the

equation above can be rewritten as follows:
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m .
S ) wlsie0 + S2aHD] - mpy ts, (1))
3 120

m
+ c(N){igl ug (N) = [s () + k_ uO(N)]}

m
+pM[ ] uw N -d M) (19)
i=1

N-1 m 2 2
+ ] 1wy si@) +Tc;[u, () - u (a+1)]
n=0 1=0

mp; ts, (n) + u, (n)[c(n) + p(n)]}

N-1
nzo {eMm) s () + (k +1)u_(n)]

+ p(n)[do(n) + uo(n)]}

Therefore, as shown in equation (19), the Lagrangian functioé L is
separable in the sense that it does not have any product terms of vagiables
associated with different plants or different subdivisions within the same
plant. That is, it may be writteq as a summation of a function depending
on variables associated with the first plant, plus a function dependent
on variables associated with the first subdivision of the second plant,
plus a function dependent on variables associated with the second sub-
division of the second plant, and so on. In other words, it may be

written as:

L=f (c,pou,d) + £,(c,p,uy) + ... + £ (c,p,u )
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where _ f°‘= wo[si(N) + si(N+l)] + mp tso(N)_
- C(N)[SO(N) * kK, UO(N)] - p(N) do(N)
N-1
+ ]

1t s2(a) +te futn) - u (@+1)]°

- mp tso(n) - c(n)[so(n) + ko uo(n)] - p(n) do(n)}

and £5 wi[si(n) + si(N+l)] - mpy ts, (N) + ui(N)[c(N) + p(N)]

i=1-m

NZL 2 2
+ n.-Z.o {wi Si(N) +tci[ui(n) = “i(n"‘l)]
- mp, ts,(n) + u; (@) [e(n) + p(n)1}

Therefore, the dual function h(c,p) may be written as:

m
h(c,p) = minimum [ z fi]
(_\i,do)EQ i=0

where © is the set of u(n), do(n); n=0,. 0,
such that i) s(nt+l) = s(n) + K u(n) - d(n)
1) 0<s@m <s

iii) 0 < u(n) _<__\_1_*

However, since the constraint set Q) does not contain any coupling
constraints betwecen plants or between subdivisions of the same plant, the
minimization that defines h(SvB) is separable into mtl independent

minimizations. That is:
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h(c,p) = min £ + min f, + ... + min-f
e Q © Q 1 Q ™

- mén{wo[si(N) G si(N+l)] - mp_ ts (V)

- c(M)[s (V) + ku ()] - p() d_(N)
N...

+ ) {w s, 2 (n) +te [u (@) - u (n+l)] -mp_  ts(n)
n=1

- em)[s () + k, u (@] + p(@) d (1}

+ z mm{wi[si(N) + s (N+l)] - mp_ tsg (N)
i=1 Q

+u, (N) [e(M) + p(M)]
N-1 2

+ z {wi s (n) +te, [u (n) - ui(n+1)]

- mp_ ts;(n) + uy(n)fc(n) + p(n)1}}

Summarizi g, the dual problem can be stated as:

maximize h(c,p)

L:33 2
subject to ¢ > 0 Cyp € R
where h(c,p) = min L(.E’E’B.sdo)
(u,d )ef
"0
= min f (c,R,u d ) + z min f (c,g,u )
(u_,d )eQ i=1 u ef
-0’ 0o
Or:
maximize min f (c,p_,u d ) + Z min f (c,p_,u) (21)
ReRN;_c_?_O (g_o,do)csz i=1 uy (Y]
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As shown in Appendix I, if there exist a pair of vectors c*,p* with

the property that the controls resulting from the inner minimization

u(c*,p*), do(g*,Ef) solve the primal problem, then these same vectors

c*,p* also solve the dual, and vice versa. Therefore, it is possible to

solve the problem by solving the dual, making use in this way of the

decomposition properties inherent in the structure of the problem.

25 The Algorithm

The actual solution of the problem was done by means of a steepest

ascent algorithm. The procedure was the following:

1)
2)

3)

4)

5)

6)

7)
8)

Initialize o0, say Eo=0’ Eo=0
o '

Get [v_,v 1" Vh(c ,p.)

Get o* such that

Ho(a*) = max H(a)
>0

where H(a) = h(_g0 + Q Yoo By + o zo)

Let (g1spy) = (g + Oy 2o + O %)

Get direction of steepest ascent at point (51,21); store it in
(v,;,v,]

Get a* such that

Hl(a*) = max H(a)
a>0

where H(a) = h(Ei + o Vi By + o §1)
Make (51,21) = (Sl + o* !1, P + ax* 21)
If (H,-H)) > H*

i) Make Ho = Hl

ii) Start a new cycle with step 5)
If (Hl—HO) < H* proceed with step 9) '
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9) Cgt the direction of steepest ascent at point (91’11) and
store it in [Xl’ﬁll over again

10) If any of the components of [31,21] is greater than or equal

to v*

i) make Ho = Hl

ii) start a new cycle with step 6)

If none of the components of [Xl’ill is greater than or equal

to v*
STOP

3. Solution of the Local Problem

The solution of the local problem or inner minimization involves, as

was derived before, the solution of mtl nonlinear programming problems

with linear constraints. Namely, it involves the solution of the maxi-

mization given by equation (20). That is, it is necessary to solve

problems of the type:

min {Telc(N), p(®, x(N), x(N+1)]
u

N-1 .
+ ) Fle,p, x(n), u(m), u(n+l)]}
n=0
subject to:
x(n+l) = x(n) + k u(n) - dn)

0 < s(n) < s*

0 < u(n) < u*

(22)

(23)
(24)

(25)

It is clear that equation (23) may be used to illuminate the x(n)

terms from equation (22), reducing the problem to



-

min{fe[c@), pM), u(N), u(N-1)]

N-1
+ ) PFle,p,u(m)]

n=0

subject to:

0 < s(n)

A

g*
0 < u(n) < u*

The problem would be, therefore, reduced to a large quadratic
programming problem with limiting constraints. The control constraints
may very easily be taken care of by means of penalty functions of some
kind, but the state constraints are not so easily complemented into the
optimization algorithm. One way of taking care of those constraints
without ovefcomplicating the problem is by means of an additional pricing
mechanism that modifies the control bounds for each time stage in such a
way that the state trajectory is forced to lay within the specified
bounds.

That is, the problem is initially solved ignoring the state
constraints; if the optimum state trajectory, so obtained, does not lay
entirely within the specified region, then the control bounds at the
critical points are modified appropriately. The problem is then solved
a new time, again ignoring the state constraints, but now using the
modified control bounds. The new optimal state trajectory is then checked
to see if it lays entirely within the required bounds; if not, the control
bounds are modified accordingly and the problem is solved over again.

This procedure is repeated as many times as necessary until the resulting
optimal controls obtained from the minimization yields a state trajectory

that does not violate the’ constraints at any point.
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The pr;blem with this approach is that even though the algorithm is
cettﬁiﬁ,to—converge, it would most probably take so much time that its
implementation becomes impractical. Also, since the linear dynamic
constraint that determines the structure of the system is built into the
performance criterion, nice properties about tbe structure of the system
are lost or ignored.

Another possible method of approach to this optimization is the use
of the Discrete Minimum Principle. The advantages of this approacﬁ are
that it is possible to derive certain generalizations about the nature of
the optimal solutions. Even when the necessary conditions dictated by
the Minimum Principles do not determine a closed criterion from which the
optimal solutions may be derived, these necessary conditions are usually
quite useful to test for optimality a solution obtained with some other
method. In other words, even though the Minimum Principle does n;t always
give directly a set of possible optimal traj-ctories, it usually provides
useful clues as to the nature of the optimal solutions (if they exist).

Now, the problems at hand are essentially linear-regulator problems
with quadratic performance criteria. In the familiar uncons trained
discrete linear regulator it is possible to derive the optimal controls
directly from the minimization of the Hamiltonian by simﬁly equating:

oH

Sa| =0

*

where the * means that the expression is evaluated along the optimal

trajectory.
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The control so obtained is in terms of the associated costate
variéblgs p(n). However, this dependence on the costate variables is

easily removed from the control law by using the fact that:
p*(n) = k*(n) x*(n) ‘

where k*(n) satisfies a difference equation of the Riccati type.
In the constrained case, however, it is no longer legitimate to

assume that the minimizing controls are those that make:

oH

Er P

since the values of u that satisfy the equation above may not lay entirely
within the specified bounds. In other words, when the control variables
are constrained to lay within certain values, it is possible to encounter
some saturation effects when minimizing the Hamiltonian.

Now, unfortunately, due to tbe logic inolved in the determination

of the total sales factor,
Tsi(n) = min{[si(n) + &y ui(n)], di(n)}

which forms part of the performance criteria éf the problems, the
structure of the costate equations becomes tremendously complicated.
Consequently, any attempt at getting something out of the.necessary con-
ditions dictated by the Minimum Principle wguld most certainly lead to a
fabulous mathematical entanglement. Therefore, due to the anticipated
mathematical complication, the application of the Minimum Principle con-
ditions to this problem will be just postulated as a possibility for

further research.
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Now, since both the state and the control variables of the problem

aré.cohstrained to lay within a closed region in N+1 dimensional space:

0 < s(n) < s*
n=0'+N’
0

IA

u(n) < u*

The optimal control problems are naturally suited to be solved by means

of dynamic programming. If this were not the case, the number of discrete
controls that would have to be considered at each stage in the optimiza-
tion would be infinitely large. However, having the control variables
limited in this way, the dynamic programming problem becomes finite
dimensional and therefore solvable.

The fact that the state variables are also bounded from both sides
further reduces the dimensionality of the control problem in the sense
that the set of allowable controls may be also influenced by the set’ of
allowable states. That is, during the actual implementation of the
dynamic programming algorithm it is only necessary to consider those
controls that a) are inside the sfecified limits (0 < u(n) < u¥*), and
b) yield states that lay inside the specified region (0 < s(n) < s*);
for "n" running from zero to N.

Another characteristic of the subproblems that makes the implementa-
tion of a Dynamic Programming algorithm specially suitable is that all
the state vectors are single dimensional. And, with the exception of the
problem corresponding to plant A which has a two dimensional control
vector, all the rest of the problems have a one-dimensional control vector.
. If this were not the case, the use of dynamic programming techniques for

the solution of these problems would most probably be impractical. In
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order to appreciate the significance of this argument, it is helpful to
consider the fact that if the state.variables are discretized to M levels
and the state vector is n-dimensional, then the number of memory loca-

tions necessary for the construction of the initial grid would be
o per time stage

Therefore, it is not difficult to see how the memory requirements can
very easily get out of hand when n>1. For instance, if time is
discretized to 10 levels and the state vector is of ;hird order with
each component discretized to 50 different levels, then it would be

necessary to have:
10(50)> = 1,250,000 memory locations

At this point is is helpful to remember that, had the local problem
not been decomposed the way it was, the implementation of the relatively-
simple dynamic programming élgorithm for the solution of this problem
would not have been possible. In other words, it is only thanks to
decomposition allowed in the dual function that it is possible to solve
the inner problem with such, up to a certain extenf, brute force methods

as the dynamic programming algorithm.

4, Maximization of the Dual Function

As shown in Appendix II, due to the discrete nature of the solutions
given by the Dynamic Programming routine, the gradient of the dual function
h(c,p) is not everywhere continuous. In fact, as also explained in

Appendix II, h(c,p) is a concave shell formed by intersecting hyperplanes
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in (I+1)-dimensional space. Thercfore, it is not difficult to sce why
the irplerontation of a stecpest ascent algorithm, or any other kind
of algorithm for that matter, is not by any means trivial.

The starting point for the first cycle was arbitrarily chosen to be
zero. And, since the chances of hitting a point where the gradient is
discontinuous are really nill, the direction of steepest ascent for this
cycle was simply assumed to be the direction of the gradient at the

starting point, that is, the gradient at point "zero." Now, since the
suboptimal point resulting from a linear search in any direction will in
the general case lay on an extreme point of the function where the
gradient is discontinuous, the selection of the direction of steepest
ascent for cycles other than the first gets quite complicated.

As explained in detail in Appendix III, there are various ways of
characterizing the direction of steepest ascent at the extreme points of
the dual function, but for the development of the numerical results
obtained,a suboptimal criterion for the selection of these directions
was adopted. It was simply taken to be the geometrical mean between the
gradients of the two hyperplanes whose intersection contained the extreme
point in question. This method does not, by any means, pretend to be
close to the optimum or anything of that sort, but since it is very easily
implemented and it guarantees to yield an increase in the function (see
Appendix III), it was adopted for the sake of simplicity.

As can be seen from the numerical results obtained with this method
of approach, there is plenty of room for improvement in the determination

of the search direction at the beginning of each cycle. For instance,
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if the algorithm harpens to get caught in a situation where one of the
hyﬁefnlanes that define the extreme point is moderately steened, but
flanked by two highlv steeped hyperplanes with nearly perpendicular
gradients, then the resulting path will be a zig-zap unvards along the
moderately steeped hyperplane. This seemingly pathological case does
not seem to be at all uncommon since examining the numerical results
obtained it can be observed that this type of situation occurred in more
than one case, making the iterative procedure somewhat inefficient.
However, the implementation of more sophisticated techniques for the
determination of the steepest ascent direction at the extreme points of
the function, as those discussed in Appendix III, will be just recom-
mended as a possibility for further research.

Finallv, to conclude the discussion of the algorithm, it is only
left to explain the details of the type of linear search used.

After a d°rection of search was chosen, a linear search was
conducted in order to find the maximum of the function in that direction.

First, a preliminarv search to locate the maximum between two known
points was performed. Then, using a linear interpolation techniaue, the
interval of uncertainty was narrowed down to a pre-established limit or
to the point where the maximum occurred.

Setting the direction of search to be the vector v and incorporating,
for the sake of notational convenience, the vectors c,p as a single vector

r, i.e.
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Then it is possible to write the dual function h(c,p) as:
h(c,p) = h(x)

Now, defining the size of the step along the given direction of search
to be "a", it is possible to define a function of the variable "a" for a

given search direction v such that
H(a) = h(r_+ av)

where I is a given point in the space. Clearly H(a) is a scalar function
whose values correspond to the intersection of the dual function h(r) with
a plane passing through X, and containing the vector v.

Now the linear search that was mentioned before solves the problem
of finding the smallest non-negative "a", called a*, for which the
function H(a) attains a local maximum. In fact, since, as shown in
Appendix II, the function H(a) is concave, this local maximum is indeed
the global maxiamum of H(a).

The procedure consists of four main stages and it uses the derivative

|

r
%g = (%%) %i where r =1 +ayv
L L 165)
or
da Y
=@y

The first stage normalizes the v vector so that a step size a=1 is
"acceptable." The second stage establishes bounds on a*, and the third

stage interpolates linearly from the gathered data.
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lSt Stage: The vector v.1is normalized to unity length, i.e.

[yl =1

2 Stage: H(a) and dH/da are evaluated at points a=1,2,4,...,al,a2
where a2 is the first of these points'at which either H does
not increase or dli/da becomes non-positive. It then follows
that a* has to be bounded in the interval al < a* < a2. If
H(a2) is much smaller than H(al), the function was evaluated
at (2/3) a2 modifying the interval of uncertainty according
to the values obtained.

rd

3" Stage: Using the values of the function and the slopes at al and a2

the function was interpolated linearly

H(a
JL)

H(al) + H'(al)(ai-ai) = H(a2) + H'(a2)(ai-a2)

- H(al) - H(a2) + a2 H'(a2) - al H'(al)
. H(a2) - H(al)

and Hi = H(al) + H'(al)(ai-al)
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4 Stase: I and dii/da is evaluoted at a=ai. If
Hi - H(ai) > H* ; 1% arbitrary

Then the interpolation is repeated between points al and
ai or between ai and a2, depending on whether H'(ai) is

negative or positive, respectively. If:
Hi - H(al) > H*

then the point resulting from the interpolation is accepted

as the optimum.

The reason why a linear interpolation was chosen instead of a higher
order one was because, as shown in Appendix II, the function h(r) is a
piecewise linear concave function in (N+1)-dimensional space. That is,
it is formed by the intersection of a finite number of (N+1)-dimensional
ﬁyperplanes. Consequently, the scalar functions H(a) are also piecewise
linear in their own Z-dimensioﬁal space. Obviously, the best interpolation
technique is that that takes advantage of the linearity property of the
" function, that is, the linear interpolation technique.

In order to further illustrate the procedure of the linear search
employed, following is a diagram that shows the sequence of points that
would be evaluated in a hypothetical case where li(a) is given by the

solid lines.






CHAPTER 5

o FORTRAN PROGRAM

.

A Fortran program that implements the algorithm described in the
previous sections of this chapter was developed.

The program consists of a so-called main program and a number of
auxilliary subroutines.

The main program may be considered the central manager. It controls
the price of the intermediate product prices in such a way as to coordi-
nate the optimization of the second plant subsystems. Using mathematical
programming terminology, this part of the program is essentially a
steepest ascent algorithm. )

The linear search performed by the main program requires the solution
of the subprob!:ius (inner problem) and the resulting gradients at differ-
ent points (different price vector;). This information is obtained by
means of an auxilliary subroutine called the Subsystems Manager. This
subroutine asks for the different schedules to the different subsystems
(sequentially) given the specified price of the scarce materials. The
actual subsystem optimization is done by a dynamic programming routine
called the Subsystems Optimization routine. This last routine in turn
makes use of three additional subroutines that calculate the intermediate
and final stage costs and the inventory changes for each of the subdivi-

sions.

-4~
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Following is a listing of the sequentialrinstructors of the actual
program. The explanation of the variables used in the different routines

is given in the comment lines included at the beginning of each routine.
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CHAPTER 6

NUMERICAL RESULTS

1. Numerical Data

The algorithm was tested by means of a hypothetical problem which
had only two subdivisions in the second plant. This seemingly simple
case, however, implied no loss in generality since the nature of the
‘algorithm is such that if it works for a problem like this, it should
work for a problem with any number of subdivisions in the second plant.
The only reason for choosing a problem with only two subdivisions was
just to simplify the computational proéedures.

The values of the parameters chosen for the problem were intended
to resemble typical values encountered in the real world, but as a whole,
they do not characterize or correspond to any real cooperation. The

values of these parameters were taken as described by Figures 1 through 7.
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2. Results

s -

The numerical results were split into cycles, each cycle correspond-
ing to a different search direction. Initializing the price vectors to
zero, that is, zero intermediate product prices anh zero intermediate
product deﬁand prices, the algorithm was started.

The numerical results corresponding to the first ten cycles were

the followiﬁg:
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‘ D;e to computer time limitations, the algorithm was not allowed to
run for a sufficiently long period of time for it to converge to within
the specified tolerances. However, by observing the development of the
values of the variables through the cycels obtained, it is clear that the
algorithm was indeed moving in the right direction and at a reasonable
pace. |

The cost functional seems to approach the optimum value in an
asymptotic fashion (see Figure 8). Theoretically, however, due to the
piecewise linear characteristic of the dual function (see Appendix 11),
the overall optimum should be obtained in a final number of steps.

The value of the sum of the squared excess demands is not very well
behaved since it tends to oscillate wildly between cycles. The reason
for these osci,lations is that, as explained in Appendix II, the gradient
of the dual fuuction is discontinuous at some points and consequently the
sum.of the squared demands is discontinuous also. However, the general
trend or the average of this sum should and does go down from cycle to
cycle (sce Figure 9). With a better criterion for the selection of the
direction of search at the beginning of each cycle, most of these
oscillations could be avoided. In fact, if the direction of steepest
ascent is used as the search direction in each cycle, the sum of the
squared demands should be monotonically decreasing from cycle to cycle.
However, with a non-optimum method of selection of the search directions
some oscillations, like the ones shown in Figure 9, are bound to occur

due to zig-zagging problems.
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4, An Alternative Method

. hn aléernative way of solving this problem is by means of the
Generalized Danzig Wolfe decomposition principle (see reference # 5).

This method is specially suited to solve problems pf the form:

P : .
minimize f(x) = z fi(xi) (27)
i=1

where each fi is a convex function, subject to a set of linear coupling
constraints:
)
Ax, = Db -~ (28)
i=1 i7i
and to a set of possiblyv nonlinear constraints involving'each Xy

independently:
i im] .o ciap (29)

where the sets S, are convex.

i

Clearly, the inventory problem that was studied in this thesis fits,
-with minor modifications, into this general type of problems where (see
Chapter 3) equation (9) corresponds to equation (27), equations (10), (13)
and (14) correspond to equation (28), and equations (11) gnd (12) corres-
pond to equation (29).

The main idea of this method consists of converting the nonlineari-
ties of the problem into linear functions by means of grid linearization
techniques (see reference # 2). For each variable x, a grid of points is

i
defined in such a way that

xt €S for t=1,;..,r

el
[N
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Each function is then replaced by its linearization on the grid {x;}

>

r
t t
£,(x) = ] A £ (x) (30)
t=1
r ’
where ] Af=13 A;2>0 (31)
t=1
The associated value of Xy being:
r
a | P =
X2 = ) A x (32)
" b

A linear approximation to the original problem is then obtained by
substituting each fi by its linear approximation and by substituting (32)
into (28) obtaining:

minimize F(x) = z AI fi(xz) (33)
it d

. ' 1.ty t
subject to Y (A XA =) (34)

Taf=1; AY>0  i=1,...,p (35)

t
i
Since the grid points xz were defined to be elements of the sets Si and
since xi, being a convex combination of the xg, is also inside the convex
sets Si’ equation (29) is no longer necessary in this new formulation.
The advantages of this method are mainly based on the inherent
simplicity of its linear structure. [Even though due to the great number
of columns that are introduced by the linearization the problem cannot be
solved using a straight simplex method, a procedure like the one intro-

duced by Danzig and Wolf in their linear decomposition principle is

perfectly suited for this problem. Problems with thousands of colurns
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have been sdlved using this method. Therefore, the use of this grid
linearization approach to solve the original inventory problem is indeed
promising.

Another advantage of this method is that the convergence process is
from within the allowable region, that is to say that every single pqint
along the convergence process is perfectly feaéible (does not violate any
constraint). This is a particularly desired property since it means that
the algorithm can be stopped before convergence and still obtain a point
that, besides it being close to the optimal, it 1is also feasible.

In contrast with this, the method that was actually used here to
solve the problem provides absolutely no guarantee that any point along
the convergence path will.be feasible, unless it is the 6ptimal. Due to
the structure of the algorithm, the convergence path mav come in and out
of the feasible region from iteration to iteration without disturbing the
coﬁvcrgence apparatus of the algorithm in tie least. It may indeed stay
inside the feasible region for the most part of the convergence path, the
_ same way it may stay out of it; whether the algorithm convérges from
inside the feasible region or from outside of it depends for the most
part on the starting point. However, as the algorithm approaches the
optimal point, the convergence péth starts jumping in and out of the
feasible region due to the zig-zagging proBlems discussed in the previous
section. This is clearly a major drawback of this method in comparison
with the previously discussed Generalized Danzig Wolf method.

The study of the general feasibility and advantages of the

Generalized Danzig-Wolf decomposition principle for the solution of the
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inventory problem shall not be discussed anv further in this work. It
is ne%grthéless recommended as a possibility for further research on this

problem.



APPENDIX I

~ JUSTIFICATION OF THﬁ ALGORITHM BASED ON SADDLE POINT
+* < AND DUALITY THEORY FROM MATHEMATICAL PROGRAMMING

Consider the following problem:

minimize f£(x) | Fe

subject to: 81(5).§ 0 i-l,...,ﬁ (2)
g, () =0  i=m,...,m @)

X €S R" (S compact) (4)

where f and the g; are real valued functions defined over S.

The Lagrangian problem associated with this problem 'is:

m
L(x,u) = £(x) + | u; gy (x) (5)
i=1 * :

Now, defining a saddle point of L to bc a point (gé,uo) such.that:
L(x°,u®) < L(x,u®) for all x € S
L(EF,E?) Z.L(Eé,g) for all u e Q
where Q = {u | u; >0 for i=l,...,ﬁ}

the following theorem may be stated:

Theorem 1:
Letting x € S and u > 0, i=1,...,m, then (EF’E?> is a saddle point

for the Lagrangian function L if and only if

-89
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a) 5? minimizes L(ﬁ,g?) over S
© % b) gi(§°) <0 for i=1,...,m
g,(x°) = 0 for i=m,...,m

c) uzgi(g?) =0 for i=1,...,m ;

The proof for this theorem follows directly from the Kuhn Tucker
conditions given by the Kuhn Tucker theorem (see reference # 3).

Now the usefulhess of the derivation of a svstematic procedure for
finding a saddle point of the Lagrangian function can be very clearly seen
from the statement of the following theorem:

Theorem 2

If (5?,2?) is a saddle point of the Lagrangian function given by
equation (5), then y? solves the problem (1) to (4).

Proof: Since (xo,uo) is a saddle point of L, condition (a) to (c) of
Theorem (1) mu~t hold
Letting g(x) = [gl(ﬁ),82(5),-’°3gﬁ(ﬁ)""*gm(ﬁ)]'

condition (a) becomes
f(zo) + <g°,g(_>g°)> < f(x) + <g°,g(_X_)> (6)
for all x € S satisfying (2) and (3).
From condition (b) and (¢) it is known that:
gi(gé) =0 for i=m,...,m
and uigi(gé) =0 for i=1,...,m
Therefore the scalar product of the price vector with the constraint

vector must vanish at the point where the saddle point occurs, i.e.

<w®,g(x")> = 0
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Consequently, equation (6) becomes:
£(x°) < £(x) + <u®,g(x)>

Now, the term <g?,g(§)> is smaller than or equal to zero. Therefore,

’

the following equation must hold

£(x°) < £ |
for all x satisfying equation (2) = (4).

0.E.D.

From Theorem 2 it is obvious that it is possible to solve the
problem given by equations (1) to (4), in an indirect way; by finding
the saddle point(s) of its Lagrangian function. However, up until now,
nothing has been said as to how one would go about finding such a point;
the discussion that follows addresses specifically to that question.

Consider a function h of the Lagrange multipliers u defined as:

h(u) = min L(x,u)
XES

and let

x minimizes L(x,u) over

X(E) = the compact set S

The function h(u) is called the dual function of f and its domain of

definition is the set of vectors u, uy

function L has a bounded infimum over the set S, i.e.

>0 1=1,...,a, for which the

U, 50 for 4ml,..u0

i
2] and min L(x,u) exists
XeS

D = (7)

Summarizing, from the primal problem
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minimize f(x)

- 3 A
« " Subject to gi(i) i O i=1,~no ,m
gi(;_:_) = 0 i=m,...,m

x € S

The following dual problem has been defined:
maximize h(u) (8)

subject to u €D where D is given €))
equation (7)

The reason why this new problem is called the "dual" of the original
problem is just to be consistent with the widely accepteé linear prbgram—
ming nomenclature. That is, assuming the problem to be linear:

minimize <c,x>
subject to Ax > b; x>0
Then the Lagrangian function becomes:

L(x,u) = <c,x> + <u,b-Ax>, u2>0

and h(u) = min [<c,x> + <u,b-Ax>]
X

= min [<c-A'u,x> + <b,u>]
x>0

This minimum exists if and only if c-A'u > 0 since otherwise h(u)

would blow to minus infinity. Therefore:
D=f{u|Au>c, u>0}

and h(u) = min <b,u> = <b,u>
x>0 -
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At this point it should be clear that the problem of maximizing
h(gs éQér set D is the standard linear programming formulation of the
dual problem, i.e.

maximize <b,u>

subject to A'u>c; u>0

The following theorem is an immediate consequence of the definition
of the dual as stated by equations (8) and (9):
Theorem 3
h(u) < £(x) for all x that satisfy the cénstraints

given by equations (2) to (5) for all u € D

Proof:

]

h(u) = min L(x,u) u€bD

xS

= min [f(x) + <u,g(x)>]
XES

Therefore: h(u) < £(x) + <u,g(x)> for ,all

But, if x satisfies equations (2) to (4), then:

I ~—3)

m
w,g(x)> = ] upg (x) =

u.,g, (x) <0
i=1 B 8

i=1
Consequently, if:
h(u) < f(x) + <u,g(x)>

it follows that h(u) < f(x) - for all u € D and x satisfying equations
(2) to (4).
Q.E.D.
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Other_rcsults thgt follow immediately from Theorem 3 are stated
below gs corollaries:
Corollary 1

If inf{f(x)|x satisfies (2) to (4)} = = ’
then the dual problem is unfeasible
Corollary 2

1f sup{h(u) | u € D} = 4 then the primal is unfeasible
Corollary 3

If there exists an 5? satisfying equations (2) to (4), and a

g? € D such that:

£(x°) = h(u?

then 5? solves the primal and 3? solves the dual.

Proof: From Theorem 3 it is known that

h(u) < f(x) for all x satisfying (2) > (4) and for all u € D.
Then since by assumption 3? €D

h(u®) < £(x)

But since, also by assumption, h(g?) = f(ﬁ?) it follows that

f(z?) < £(x) for all x satisfying.(2) to (4)
Similarly, since by assumption 5? €D

h(u) < £(x°)

h(ui

A

h(g?) for all u € D

0.E.D.
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Finally, these duality theory results have to be related with the
pre\li—o(xsly derived saddle point theory results. This is best done by
means of the following theorem.

Theorem 4 .
£(x°) = h(u®)

with 3{_0 satisfying (2) to (4) and y_o € D, if and only if (go,uo) is a

saddle point of L(x,u).

I) Sufficiency:

Since 3(_0 satisfies (2) =+ (4):

g, (x°) <0 i=1,...,m (10)
g, (x°) =0 i=m,...,m (11)
Ty io ¢ X(E_o) - _’EI‘)E minimizes L(x,u)

over get_S
then there is an 3{_1 € X(go) such that
h(®) = £(x1) + <«®,g(xD)> < £(x°) + <®,gG)>
But from assumption, h(_L_z_o) = f(gc_o); therefore:
£(x°) < £x°) + <u®,5(x°)>
x;hich implies that: <5°,_g(§_°)> >0 . (12)
Now, equation (12) together with equations (10) and (11) imply that

o
uiio i=l,...,m

which violates the assumption that go € D. Therefore, it may be concluded

that:
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x% e X(u°) (13)
Therefore: f(g?) = h(g?) - f(E?) * <E?’§‘§?)>
which implies that <®,g(x%)> = 0 (14)

By Theorem 1 equations (10), (11), (13) and (14) imply that (x°,u®)
is a saddle point of L(x,u) Y
I1) Necessity:

Since, by assumption, (§?,g?) is a saddle point of L(x,u) from
Theorem 1, it follows that:

1) h@”) = £G7) + «w’,gx")>

11)  x° satisfies (2) + (4)

111) u® e D
From 1i) and iii): <39L3(§?)> =0
‘Finally, from 1): h(u°®) = £(x%)

Q.E.D.

These results imply that one way of solving the problem given by
equations (1) to (4) is by means of the following algorithmic procedure:
1) Solve the dual problem given by equations (8) and (9). Let the
optimal multiplier values be given by the vector E?-
2) Get an 5? such that 3? € X(g?)
3) If h(u®) # £(x°) return to step 2), but if h(g?) = £(x°)
then E? is the solution of the primal.
Clearly, if X(u) consists of a single point x(u), the précedure
described above should converge after the first iteration or not converge

at all.
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Even though it might be obvious to the reader, the author wishes

nevertfieless to emphasize the fact that the problem that this thesis

addresses directly to belongs to the generalized type of problems given

by equations (1) =+ (4). Consequently, the resuits'that have been derived

in this discussion should be directly applicable to the problem in the

N

main body of this thesis.

That is, considering the primal problem:

minimize Jp = 8'(WLW S(HL) + S' DV S(V)
N-1
-MIS(N) + ) {s'(n)W S(n)
n=0
- M TS (n)

+ [U() - U(+1)]" T[UG) - U(n+1)]

subject to S(n+l) = S(n) + K U(n) - D(n)

121 u(n) < s () +k_ u (n)

m
do(n) = 121 ui(n)

the associated Lagrangian function would be:

(15)

(16)

an

(18)

. (19)

(20)
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m

‘ L = J,r + .E c(n){'z ui<n) - [so(n) + ko uo(n)]}
o i=0 i=1
n
+ p(n)(igl u, (n) - d_(n)]
where c e [6(1),06(2)y0ee c(N)]’

R = [P(l) ,P(z),-“’D(N)]'

and r= -—-
Then, defining a dual function h(c,p) = h(x) as:

h(r) = minimum L(EtE’do)

(u,d )ef
Equations (16), (17) and (18)
vhere = -E’do are satisfied for n=0,...,N
it -
and U(r) = _g; u and do minimize L(r,g,do)
o | over the set Q

a dual problem of the primal given by equations (15) to (20) may be defined

as:

maximize h(x)
€20

Then, from Theorem 4, it may be concluded that if there exists a

vector of multipliers r* with the property that some vector

solves the dual, and h(r*) = JT(gﬁ,d:), then it follows that the vector



solves the primal.




APPELDRIX TI

CONTINUITY AND COUCAVITY OF THE DUAL FUNCTION

In order to address the question of continuity it is necessary to
first 1ook.at the behavior of the gradient. Recalling that the dual
function was defined to be the result of an optimal control problem of

the form:

h(c,p) = min L(u,c,p)

E
or more conveniently:
h(r) = min L(u,r) ¢S
u :
c
where r= ==-
- 2

subject to certain constraints, it is obvious that the behavior of‘h(r)
will be strongly influenced by the nature or the Lagrangian function
L(u,r). Now, clearly, since L is quadratic and the constraints are linear,
.h(x) exists for any value of r. However, since both the dynamics and the
control variables (E’do) have been discretizea in the actual solution of
the optimal control problem, it is obvious that the set of possible
solutions to this minimization is finite. That is, theré is only a finite
number of possible optimal trajectories/optimal controls that can result
from this inner minimization due to the internal discretization of
variables done by the optimization algorithm used (Dynamic Programming).

Consequently the solution to the inner minimization (equation (1)) cannot

-110-
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vary continuously with r. That is, for ﬁny cost vector r* there is a
nod¥z;fo neighborhood C containing r* for whicg the solution to the
inner minimization remains constant.

Examining the structure of the dual function h(r) it is found that
if the optimal trajectory and optimal controls for the inner problem

remain constant, the dual function varies linearly with the cost vector

h(_E) = h(_C_,P_) - f[_}i*,_l_l_*,dol

N m
+ ) c@ ) u¥) - [s*@) - u¥() k]
n=0 =1 " ° ° ©

S T ox *
+ ] p@ ] ui) - d ()
n=0 i=1

where s* and u* are the optimal trajectory and optimal control vectors,

respectively. And:

m 9 2 :
fs*,u*] = w,[s;(N) + s;(N+1)] - mp, ts, (N)
AL 120 1'%1 1 1%

N-1 ” 5
* nZO {wi sifn) + tci[ui(n) - ui(n+l)]
- mpy tSi(n)}

Now, clearly, the gradient of h(g) is given by:
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oui) - [sEQ) -k ukD)]

i=1

? u¥ ) - [;*(u) -k ut()]

gy 1 o o Yo
Vh(x) = '

121 u (1) - a3 (1)

m
121 uf @) - )

where, again, s* and u* are the optimal trajectories and optimal controls,
respectively, associated with the result of the inner minimization for a
cost vector equal to i.

Therefore, if s* and u* are the optimal trajectories and optimal
controls associated with equation (1) for r € C then the dual function

h(r) may be written as:
h(x) = f[s*,u*] + <r, Vh(s*,u*)> for reC

Clearly since, as discussed before, there are only a finite number
of solutions to the minimization of equation (1) and since, as just shown,
the dual function behaves linearly with r for any of those solutions, the
dual function h(E) should be piecewise linear. That is, in the scalar

case it should be formed by straight line segments like:
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In the general case a 2(¥+1)-dimensional vector would have to be
considéred and consequently h would be mapped to a 2(N+l)-dimensional

space, i.e.

R2 (N+1) + R ‘

However, the form of h(x) remains essentially the same. That is, instead
of h(r) being formed by segments of straight lines as in the one dimen-
sional case, in this case it would be defined by a number of intersecting

hyperplanes in n dimensional space where:
no=2(81) + 1

Clearly, the straight lines that correspond to the one-dimensional Eost
vector case could also be considered as two-dimensional hyperplanes.

Going back to the one-dimensional cost vector it should be clgar
that evaluating the gradients and the value of the Lagrangian functions
associated with each possible solutions to vi.e inner problem for a given
value of r (say r=¢) it is possible to calculate the value of the dual
- function h for any allowable value of r. Recalling that h(r) was defined
to be the minimum value among all possible Lagrangians for any value of r,
it is clear that h(r) is just, simply, the upper lower bounds of the set
of straight lines given by:

hl = hl(ro) +r Vh1

.
.
.

hn = hn(ro) + T th

for any allowable value of r, where hj(co) is the value of L associated
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with the ith optirmal trajectory (i=1,...,n) evaluated at r=r . And the
Vhi‘s are the corresponding gradients associated with each one of these

possible optimal trajectories.
For instance, if there are only four possible,solutions to the inner
problem with hi(O)'s and Vhi's as plotted below, h(r) would be the thick

line:

h,(© hy

h;(0)

h,(0)

Ih¢(0) | e

From these afguments, it should be clear that if h(r) were to be
discontinuous, at least one of the possible optimal trajectories would
have to have an infinite gradient associated with it. Now, in order to

have a component of the gradient to be infinity, it would be necessary to

have
m
*
ZU’."‘(X + k u*)aoo
4o1 & o o o
’f "
or: u, - d_ = ®
e i o
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which is obviously impossible since both the optimal trajectories and
optiméLiconfrols are constrained to lay within certain finite limits.
Therefore, by contradiction, h(r) has to be continuous.

In fact, not only must h(r) be continuous, but also concave. In

order to see this more clearly assume that h has a non-concave region

like:

Y

m_n

Clearly, point "a", which corresponds f. the Lagrangian associated

with solution 1 evaluated at r,, and "b", which corresponds to the value
- of the Lagrangian of solution 2 evaluated at rys yield smaller values
.of h than the supposedly minimum values "b'" and "a", respectively.
Consequently, it may be concluded that h(r) cannot have a region with a
configuration like the one assumed above. Obviously, this argument can
Ee generalized to the point that if h(r) is'to satisfy the minimality
condition, its slope must be monotonically decreasing with '"r" proving
in this way that h(r) has to be concave.

Before trying to extend these arguments to the n-dimensional cost

vector, it might be helpful to remember that due to the "forced"

RN
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discretization of the optimal controls and optimal trajectories resulting
from the iAner minimization (equation (1)), it is obtained that the
number of possible solutions to this inner problem is finite. That is,
the solution to the inner problem does not change eontinuously with
changing r. In fact, as was explained before, for any r, there is always
a non-empty neighborhood C for which the optimal trajectories/optimal
controls remain constant. Furthermore, it was argued that since the
gradient of h(xr) associated with a given solution is independent of r,

if the values of the gradient and the Lagrangian, evaluated at a given
point, are known for a particular solution to the inner problem, then it
is possible to evaluate L associated with that solution for any value of
r; that value being the value taken by the hyperplane that passescthrough
the known point and is perpendicular to the gradient.

Clearly, knowing the values of L associated with all possible
solutions to t' . inner problem with their respective gradients, h(x) may
be constructed by just searching fbt the minimum value among all possible
Lagrangians for each value of r. Obviously, doing this in practice is a
pretty hopeless case since there might be billions of different solutions
to the inner minimization. But what is important to realize is that the
dual function h is a multi-phase polyhedron bounded from above by a set
of intersecting hyperplanes in n-dimensional space. For obvious reasons,
this argument shall not be supplemented with a diagram, but the author
is nevertheless confident that the point has been gotten across properly.

Obviously, the question now is: 1is h(r) continuous, and if so, is

it convex?
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L

s in the ore dimeasional case discussed before, in order to have a
dizerntinuity in h(r) it is necessary to have at least one optimal
trajectory that yields a value of L equal to infinity for any value of I.
Clearly, since both the states and the controls ate constrained to lay
within a closed bounded convex set, the Lagrangian function cannot be
unbounded at any point but at r=e, Therefore, h(r) must be continuous
for all points within the allowable region of r.

Now is h(r) concave? This question shall be approached by exploring
the function along an arbitrary direction v.

By evaluating h(r) along a direction r it is possible to construct a
twvo dimensional plot with respect to the step~size a along the given

direction. That is, a scalar function H(a) can be defined such that:
H(a) = h(_t:o + av)

wvhere T is an afbitrary point in the domain of h.

Now, clearly, the function H(a) is the function formed by the inter-
section of the dual function h(EQ.with a hyperplane that passes through
Es and contains the vector v.

Recalling that h(r) is formed by a set of intersecting hyperplanes,
it is clear that H(o) should have the form of a broken straight line as
in the one dimensional case discussed before. That is, H(a) should look

something like:
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Ry

Using similar arguments as were used in the two dimensional case, it
can be proved that H(a) has to be concave. That is, let us assume H(0)

is not concave by allowing it to have a section like:

HE)h

7 \\\\
b7 N
04 N
# q : ~
Ly X2 oc

Now point "b'" belongs to the same inner minimization solution as

tr_

that of '"b" and "a'" belongs to the same of "a'. Since if a given value

of r corresponding to a given value of o is admissible for a given solution

it is also admissible for any other solution, points "a'" and "b'" are as

feasible as points "a'" and '"b" violating in this way the very definition

of the dual function h. Namely, that h(r) is equal to the minimum value
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among the possible solutions for any admissible value of r. That is

* (5

h(r) = min L(u,d ,r)
= —? o’
u,do

subject to certain constraints. Therefore, by contradiction, H(a) may

not have non-concave regions as the one assumed in the above diagram.

Now this argument can clearly be extended to the point that if the defini-

tion of h(r) is not to be violated, H(a) must have a monotonically

decreasing slope with increasing a. Therefore, H(a) must be concave.
Recalling that no constraints were imposed on the direction v, it is

obvious that these conclusions hold for any feasible direction v.

Consequently h(r) must be everywhere concave.
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DIRECTION OF STEEPEST ASCENT

As explained in Appendix II, the geometrical shape of the dual
function is that of a piecewise linear concave hull in the m+l dimensional
space. That is, it is formed by the intersection of a finite number of
m+l dimensional hyperplanes. From these considerations, it is not diffi-
cult to see that the extreme point of this function along any direétion
s will, in thé general case, be a point ¢ where the gradient does not
exist. That is, the directional extreme point c will generally lay on
the intersection of two or more of these mtl dimensionallhyperplaneg.
Consequently, the optimum.direction of search (direction of steepest
ascent) after the first cycle has been concluded is by no means obvious.

In the special case where the directioral extreme point lays on the
hyperline formed by the interséction of two .yperplanes, the direction
of steepest ascent is either the gradient of one of the hyperplanes or

- the projection of this hyperline on the R space.

In order to see this more clearly consider the problem in a three
dimensional framework: calling the two planes Plane 1 and Plane 2 with
Gl and G2 being their respective gradients, it is clear that due to the
concavity property of the function, the only possible cases that may be
had are those given by Figures 1, 2 and 3.

Clearly, in case 1 the direction of steepest ascent is Gl, in case
2 d is the optimum direction and, finally, in case 3 the best direction

is that given by G2.
-120-
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Even though it is difficult to interpret geometrically, the concept
of ‘the-angle between two vectors in m-dimensional space has a very

definite meaning. That is, defining a to be:

¥a. Mo

-1
@y ) = eo8 T TV TT T, 1]

it may be shown that o has the same properties as that of a similar
function that defines the angle between two vectors in three dimensional
'space. That is:

a) The angle between two parallel vectors equals zero.

b) The angle between perpendicular vectors equals 90 degrees.

¢) olyy,v,) + aly,,vy) > alv,,v,).

Using this angle concept in m dimensional space it is possible to
characterize uniquely  each one of tﬁe three cases given by Figures 1, 2
and 3 as a function of the -angles between Gl and G2, Gl and d, and G2 and
d; that is, as a function of a(Gl, G2), a(Gl, d) and (G2, d):

Case 1) «(Gl, d) < a(G2, d)

and a(G2, G1) < a(G2, d)

Case 2) a(Gl, d) < a(Gl, G2)

| and a(G2, d) < a(Gl, G2)

Case 3) a(G2, d) < a(Gl, d)

and a(GL, 62) < a(Gl, )

Therefore, a possible way of finding the direction of steepest ascent

at a point that lays on an extfeme hyperplane of h(c)* is to first identify

the case with one of the three possibilities listed above. Then, as
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explained before, if the particular situation.at hand satisfies the
conﬂiktpnshlisted as éase 1, the direction of steepest ascent is that
given by Gl, if the case corresponds to Case 2 then the optimal direction
is d and finally if the case corresponds to Case 3.the best direction is
that given by G2.

Following similar guidelines, it is possible to find the directions
of steepest ascent at extreme points formed by the intersection of more
than two hyperplanes. However, this point shall not be studied further

in this work.



APPENDIX IV

e

CONTROLLABILITY AND OBSERVABILITY ANALYSIS

Controllability

First of all, it is necesséry to define what is to be understood by
controllability in this type of problems.

Speaking in broad terms, one can define two basic types of
.controllability problems. One is the type usually associated with
rocket guidance in which one is interested in making certain variables
take particular values at a given point in time; this is usually referred
to as the ballistic problem. The second type is the one in which one is
concerned with making certain variables in a dynamical system follow a
given trajectory and is usually referred to as the servomechanism
controllability problem.

Intuitively, this inventory problem calls for a seryomechanism
controllability analysis. However, using the discrete model one might
also view the problem as a ballistic one from point: to point in the
discrete sequence. Obviously, either approach is too constrictive éince
it ig not absolutely essential to be able to cope with the demand at all
points; actually the primary objective is the.minimization of the cost
function and not the fulfillment of the public demand. Nevertheless,
either approach should give enough information to determine the limiting
factors in the cases where there is a failure to meet the given demand,

that is a lack of controllability. This constitutes valuable information

=124~



-125-

for the mana.ger to help him justify rcallocation of resources or future
pldng expaﬁsions.

Since the problem has been modeled in a discrete fashion, it is
almost natural to study its controllability from a ballistic point of
view, rather than as a servomechanism problem, as was initially suggested.
Besides, the ballistic approach is considerably simpler to implement and
perhaps even more enlightening than the servomechanism one.

The results from controllability theory that will be necessary for
this analysis are stated below without proof. (For proofs see reference

it b))

Controllabilitv Theorv

Theorem 1
An n-dimensional system defined by the set of equations:
x(t) = Ax(t) + Bu(t)
v(t) = Cx(t)
"is said to be controllable if the matrix
2

(B,AB,A%B,...,A" 1]

is of rank n.

Discretizing the system above we get
x(n+l) - x(n) = Ax(n) + Bu(n)
or x(n+l) = (A+I)x(n) + Bu(n) (1)

and y(n) = Cx(n) (2)

g
~
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Surprisiﬁgly, the controllability cohdition for the discrete system
turhs‘SUt to be essentially the same as for thé continuous system, i.e.
Theorem 2

Letting Ao = A+I, the system described by equations (1) and (2) is
said to be observable if and only if:

2 o
[ByA, B ATE, v s lgy

is of rank n.

As it was previously justified from pragmatical arguments, it is
desired to perform a point to point controllability analysis. That is,
it is desired to study the transfer capabilities between two points: one
time unit apart in the discrete sequence.

Unfortunately, the discrete version of the controllability condition,
described above, can only be applied when terminal time is large with
respect to initial time and op;imally when 1»*», Therefore, this criterion
is not applicable for the tvpe of analysis that is desired to perform
(transferability between points one time unit apart).

The structure of the problem is such that it is possible to identify
m+1 quasi-independent subunits, the first being the first plant (inter-
mediate product) and the rest beiﬁg the individual subdivisions of the
gecond plant (finished products).

Intuitively, one might be inclined to assume that the controllability
of the subunits implies the controllability of the entire system.
Actually, this is generally not true since there are constraints that
tie these units together like the limited availability of resources for

example, However, the converse is always true, that is, lack of

RRIA
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controllability of the subunits implies lack of controllability of the
system., Therefore, it is always helpful to look at the subunits first
before‘studying the controllability of the system as a whole.

As it turns out, examining the transfer capab}lities of the sub-
divisions individually is a somewhat trivial operation. All the
constraints involved in this phése of the analysis are lineér and of
the limiting type. That is, constraints of the form:

%
i

*

u, (n) < uf and s;(n) <s

Actually, the problem is more difficult than juét a simple check on
the boundary values, as one might be 1ed.to bélieve from the discussion
above. The reason for this is that a gertain transfer between consecutive
points is not possible does not necessarily imply that the given point
is not reachable. For example, a given transfer might not be possible
because of the limited production capacity, but perhaps if we allow for '
a higher inventory level on'the previous point the production capacity
limit might not be reached, getting in this way the previously unreachable
point. Clearly, this procedure can be repeated as many times backwards
in time until the given demand is reached. If in the process of going
back 4n time time-zero is reached and the production is still short of
the given demand, then the point might very safely be considered
unreachable.

The important fact to consider here is not whether there are
unreachable points or not since, as it was mentioned before, the main
objective is to minimize the cost function and not to satisfy the public

demand. What is actually intended to be obtained from this analysis is
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information on which constraints and in whaf circumstances are the most
fréq;éﬁt limiting factors that impede the fulfillment of the required
demand. This information is clearly necessary for the justification and
planning of relocations of resources and future plant expansions.

The iterative procedure proposed above to perform this type of
analysis appears to be soméwhat clumsy and inefficient since it requires
a great number of oberations. However, by virtue of its simplicity it is
very easily implemented in a computer, making its gpplication quite
rewarding and worthwhile.

In conventional control theory terminology, observability usually
refers to the question of whether the particular realization of the system
being considered has all its state variables directly measurable in
physical terms or not. However, the notion of observability that will
be considered here is that used in modern control theory studies. That
is, by an obse.vability analysis, one is here interested not in whether
the state variables of the system-make any physical sense or not, but
rather, on whethef from the knowledge of the available inputs one is able
to determine the values of the states or not.

The concepts of observability theory that will be necessary for this
discussion are stated below without proof. (For proof see reference # 4)
Theoren 3

An n-dimensional system defined by the set of equations:
x(t) = A x(t) + B u(t)

y(t) = C x(¢t)
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vhere A is an n*n @atrix
B.is an n¥m natrix
and C is an rXn matrix

v

is said to be observable if and only if the matrix
[C,CA,CAZ,... caM 1]

is of rank '"n".

Discretizing the system above one gets:
x(n+l) = (A+I)x(n) + Bu(n) (3)
y(n) = Cx(n) )

Again, the observability condition for the discrete.system (above)
results to be essentially the same as for the continuous system, i.e.
?heorem 4

Letting Ao = A+I the system. describec bty equations (3) and (4) is
said to be observable if the matrix:

2 n"l ]
[C.CA_,CAZ,...,CAY ]

is of rank n.

Finally, from the controllability and observability analysis one is
able to determine whether the particular realization of the system that
is being considered is minimal or not. That is, one is able to determine
whether the realization being considered is minimum dimensional or
whether it is possible to find another realization with a smaller
dimension than the one being considered. These results are stated in

the following theorem also without proof (for proof, see reference # 4).
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Theorem 5

"A?givéﬁ realization is minimal if and onlf if it is both Controllable
and Observable.
Clearly, for this analysis only the dynamic censtraint equations
should be considered. In the particular problem being studied in this
thesis.this constraint is given by the difference equation that determines

the changes in inventory through time, i.e.
S(nt+l) = S(n) + K U(n) - D(n)
Or, since matrix K is invertible
S(n+l) = S(n) + K U(n) " (5)

where U(n) = K—yg(n).
Using the terminology of equations (3) and (4) matrices A, B and C
in equation (5) correspond to:

(m+1l) X (m+l)'idéntity maty’ &

o mtl

B =K where K is an (m+l) X (m+l) matrix with the production
efficiencies of the different subdivisions in its diagonal.

C=1 since it may be assumed that all inventory levels are

readily measurable.

Therefore, for this particular system it is obvious that both

2

m
oByeeesA B]'

[B,AOB,A
and [C,CA ,CA> CA™]"
i s ik
are of rank m+l; hence, from Theorems 2 and 4, the realization is both

Controllable and Observable. Thus, from Theorem 5, it may be concluded

that the realization at hand is minimum dimensional.
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