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ABSTRACT

Solution of the multi=-input, multi-output least-squares
optimal resgulator vroblem requires the specification of two
guadratic cost weighting matrices. The usual method of
selecting these matrices involves repeated solution of the
Ricatti equation and calculation of the eigenvalues of the
resultine closed loop system matrix, A more direct method

of obtaininc the optimal system eigenvalues, which provides
greater insight into the selection vrocess, is presented here,
This method bvpasses the Ricatti equation and gives a scalar
"characteristic-squared" equation for the eigenvalues of the
optimal system as a function of the two cost weighting
matrices., The results are then specialized for "block
companion" syvstems and an example worked illustrating
aoplication of root locus techniques. Computational aspects
are discussed and the zeros of the optimal system are briefly
examined,
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Charter 1
INTRODUCTION

One of the "standard" oroblems of optimal control
theory is the infinite-time, linear time invariant plant,
quadratic cost optimal ou‘t:pu*t:'r regulator problem., The exact

statement of the problem is as follows:

Optimal Regulator Problem

Given the fixed, completely controllable, completely

observable linear time invariant plant

dx/dt = A x(t) + B u(t) tn X 1

usr x1
y(t) =C x(t) m X 1
and the quadratic cost criterion

7 =S (u'(6)R ult) + y'(+)Q y(t)) 4t

(1)

1O jw)>
355
R
5o

where R = R' is positive definite
and Q = 3' is positive definité:,

find the optimal control u*(t) that minimizes J.

The controllability and observability conditions in
the above problem are needed to insure the existance of a
unique solution. The system given by (1) is completely
controllable if and only if the n x nr matrix

[ R gj

It

¥+ The optimal state regulator problem is included as a special

cCzSe.
F The condition on Q can be weakened slightly, see Chapter IV,
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has rank n a2nd is completely ooservable if and only if the
n X nm matrix
o' a'g'! ... (APt et

has rank n.

e}

The solution of the optimal regulator problem,
under the stated conditions, is well known (see, for example,

1 R
Athans and Falb , Ch, 9) and is given by:

Solution to Optimal Regulator Problem

The optimal control for the output regulator problem
is

ur(t) = R

B' K x(%)
where K is the unique positive definite symmetric solution of
the algebraic Ricatti equation

A"K+KA-KBR

B'K+C'QC=0 .
The ovtimal trajectory is the solution of the homogeneous
time invariant differential equation
dx/at = (A - BR™' B' K) x(t)
with initial condition x(0) = X, . Furthermore, the optimal

system is strictly stable, i.e. all eigenvalues of the matrix

(A - B 3’1 5' K) nhave negative real parts.

Por a given fixed plant (A , B, C), the solution to
the optimal regulator problem is completely and uniguely
determined once a cost criterion (R , Q) is specified. The

problem of designing a regulator for the plant therefore
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reduces to the problem of choosing R and @ « If R and Q
are specified a vriori or can be deduced on physical grounds,
the problem is effectively solved. Iore often, however, there
is no firm a priori basis for choosing X and Q and they are
considered adjustable design paramefers that are varied until
"satisfactory performance" is achieved. The use of optimal
control theory in this case can be questioned on the grounds
that since any valid choice of 2 and Q yields a solution
"optimal” in some sense, the real criterion is "satisfactory
performance” and not mathematical optimality. This is a valid
point, but the use of optimal control theory can be defended
in at least three wayvs. First, it automatically yields a
stable closed loop system, even if the plant is unstable by
itself. Second, Kalman2 has shown that all systems designed
this way share certain desirable properties such as reduced
sensitivity to plant variations. Finally, optimal control
theory provides a method of computing the required feedback
matrix,

Exactly what constitutes "satisfactory performance”
depends on the particular application of the regulator, but
most relevant dvnamic response characteristics can be related
to the eicenvalues of the closed loop system, These closed
loop eigenvalues are given by the roots of the characteristic
equation

det(s I - A +

[t
BE
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where s is a comnlex variable and I is the identity matrix.

Unfortunately, the Ricatti equation cannot be
directly solved in closed form for X if n>2, Of course, for
any given R and Q the Ricatti equation can be solved
numerically and the result used to calculate the closed loop
system eigenvalues, A “satisfactory” design may be reached
after several'tries, but for large values of plant order n
the computation time required to solve the Ricatti equation
may severly limit the practical number of tries. A method
of determining the closed loop eigenvalues without having to
solve the Ricatti equation is therefore sought.

Results of the desired type have previously
appeared for certain simple cases. For single-input, single-
output systems we can take, without loss of generality, R =1
and Q = q, a positive scalar, Willis and Brockett3 have shown
that in this case the optimal system eigenvalues are the left
half plane roots of the characteristic-squared equation

1 +q g(-s) g(s) =0
where e(s) =¢c (s 1 - ATy .

This equation can be solved by Chang's root-square locus
techniqueu to vield a plot of the optimal system eigenvalues
as a function of a .

5

A similar resvlt has been obtained by Chammas~” for
the multi-input, multi-output case under the condition that

R=7Iand Q =gl . Bv manipulating the Ricatti equation,
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Chammas shows that the optimal system eisenvalues are the left
half plane roots of the characteristic-squared equation

det(I + a G'(-s) 5(s)) =0
where G(s) =C (s 1 - A)-l B,

The root-square locus technique cannot be applied in
this case for m>2 because the expansion of the determinant
contains, in éeneral. all powers of g up to the m-1 , Numerical
calculation the roots and plotting as a function of q is still
possible and generally easier than repeatedly solving the
corresponding Ricatti equation.

In the next chapter, Chammas' result is extended to
the most general case of positive definite R and Q matirices.
The method of avproach differs substantially from that used by
Chammas but the final result is basically similar, i.e. a
scalar characteristic-squared equation whose left half plane
roots are the optimal system eigenvalues,

In Chavpter III the general result of Chavter II is
specialized to the case of "block companion" systems and the
characteristic-sguared equation is put in a form more suitable
for numerical calculation. The treatment of block companion
systems is carried further in Chapter IV by means of a
numerical examole, The use of the root-sguare locus is
illustrated and the zeros of the optimal system briefly

exXamined.,

Chapter V contains conclusions-and Chapter VI
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recommendations for future work, Finally, two aprendices are
included., Apvendix A collects some determinant identities
that are used throushout the wark and Avpvendiv B contains the

definition of block companion systems,
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Chapter 11

DERIVATICN CF THE GENE2AL CHARACTERISTIC-SQUARED EQUATION

A, SOLUTION OF THE OFTIMAL RECULATOX PROBLEN

In this section, the solution of the optimal
regulator problem using Pontryagin's Minimum Principle is
outlined. Oniy the steps that will be needed later are
presented, details can be found in Chapter 9 of Athans and
Falbl. For convenience of reference, the statement of the

optimal output regulator problem is repeated below,

Optimal Regculator Problem

Given the fixed, completely controllable, completely

observable linear time invariant plant

(241) dx/dt = A X +Bu At nxn X: n x 1
Bi i X p v: r x1

(2:2) v=_CXx C:mXxn v:mx1

and the quadratic cost criterion

o0

(2:3) J=J(u Ru+y Qy) dt

where R = R' is positive definite

and Q = Q' is positive definite

find the opntimal control u¥* that minimizes J.

To avply the Minimum Principle, first the scalar

Hamiltonian funection H is formed

= oS
"
=
Pl
o

u+x'"C'9Cx+<AX, p>+<Bu, p>

where < , » stands for inner product and.the costate vector p



satisfies

(2.4) dp/dt = -2H/ox = -C' 3 C x - A' D

Q

with the beoundarv condition n(w)=0,

A necessaryv condition for opntimality is that along
the optimal trajectory

H/ou = 0 =2 u +3B' p.
Since R is nositive definite by assumption, 3-: exists and
the above equation has the unique solution
(2.5)  u*=-R"'RB'p.
Substituting this expression for u in equation (2,1) gives
(2.6) dx/dt = A x - BR™- B' D .

Now that u has been eliminated, equatioas (2,6) ard (2.&) can

be combined to obtain the reduced canonical eguation

(2.7) & [z A i-BRTT2T(x x
dT f--]= [------L STl —-l=F -]
[2] [—9' Qc: -A ”J “[2]

The ovtimal trajectory is defined by the solntion of

ne>

equation (2.,7) with the 2n boundary conditions x(0) = Xp
(arbitrary) and p(e@) = 0 . It can he shown that the state x

and the costate » are related by a coenstanrt matrix, that is

D =K X, where K is the unique »nositive defirite aymmetric
solution of the aleebraic Ricatti equation

(2.8) A'K +KA-K

RR"B'K+C'QC =0,

Using the relation p = K x in eaquation (2.%4) vields tha

ootimal closed loor» svstem eguation

(2,9)  ax/at = (- 237 B' K) x



'_l
‘N

which, along with the initial condition x(0) = x, , provides
an alternate description of the optimal trajectory.

®inally, equation (2.9) implies that the eigen-
values of the optimal closed loop system are the roots of
(2.10) det(s I - A+BR B K) =0

and it can be shown that these roots have strictly negative

real parts.

B, COMPUTATICONATL DIFFICULTIES

At first glance it may seem that the optimal closed
loop system eigenvalues can be obtained, as a function of R
and Q, directly from equations (2.8) and (2.,10). ¥owever,
equation (2,8) is nonlinear in the unknown matrix X and in
general has many solutions, only one of which is vpositive
definite and symmetric, Even for fixed 2 and 3, isolating the
proper solution can be a major task and is usuallv not done
directly in practice. Instead, a matrix differential equation
related to equation (2.8) is numerically intesrated until a
"steady state”" is reached., The matrix differential equation
contains n(n+1)/2 distinct scalar differential equations, so

the computational effort required increases ra=»nidiv with n,

If R and Q are treated as variables, isolation of
the proper solution of equation (2.8) is a gererally unsolvable
algebraic problem, The numerical integration znproach is

little better, as the equations must generallv be integrated

again for each choice of R and Q. The conclusion is therefore
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that equations (2,%8) and (2.°0) are not suitable for finding
a general relation between the optimal system eigenvalues and
the cost weightinz matrices R and Q.

A way to avoid the difficulty of having to solve
the Ricatti equation is to ignore, for the moment, its
existence and instead go back to equation (2.7). In the
next two sections equation-(2.,7) will be used to derive a
characteristic-squared equation, that is, an equation whose
roots are the squares of the optimal system eigenvalues.

This characteristic-squared equation is an explicit function
of R and Q and is valid under the assumptions of the optimal
regulator problem, but does not provide the feedback gains
needed to implement the optimal solution. To get these gains
the Ricatti equation must still be solved, once, after the

final choice of R and Q is made.

C. PRELIMINARY RESULTS

Equations (2.7) and (2,9) are alternate descriptions
of the optimal trajectory, so the n eigenvalues of the optimal
system (i.e. the roots of equation (2,10)) must be included
among the 2n eigenvalues of the matrix ®, TFurthermore, it is
known that the eigenvalues of the ovntimal svstem all have
negative real varts. However, F could conceivablyv have more
than n left half »nlane eigenvalues, which would make it
impossible to separate the n optimal system eicenvalues from

the n "extraneous" eigenvalues of F, The following theorem
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provides enouch information to show that this cannot happven.

Theorem 1
If 7 is an eicenvalue of ¥, then so is -7,
Proof:

See Kleinmané. P.13 .

Since we already know that F has n left half plane
eigenvalues, Theorem 1 implies that the n "extraneous"”
eigenvalves of F are the right half plane "mirror images" of
the optimal system eigenvalues, This fact leads to two

corollaries of Theorem 1.

Corollary 1

m(s) = det(sl - F) can be factored uniquely into two
"mirror image" polynomials p(s) and p(-s) having their roots
confined, resvectively, to the left and right half planes, i.e.
m(s) = (-1)" p(s) p(-s)

where the roots of p(s)=0 have Re(s)<0 .

Proofs
By definition,
m(s) = det(sl - F) ='§£T (s = 3})
where Zi i=1,2540e92n are the e;éénvalues of ¥, By Theorem 1,

the U; exist in vairs (21.-21) 1I=14,290009st » It is also known
that at least n of the 31 have negative real varts, Both
conditions can bte met only if exactly n of the Zi have negative

real parts, and these can be chosen to be the )i « Therefore
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B

=
]
—

m(s) = | (s - Zi)

L}
s
L}
(R

(s=23) (s=(-21))

(s-21) (s+23)
1

i

0P TT (s-2,) (=s-2;)
1=1

1]

' n
= (-0)"TT (s-23) ?T (=8-73)
1=1 J=1

(=)™ p(s) p(-s)

n
where p(s) = T[] (s-2;) and Re(21)<0 "
i=1

Corollary 2

i

m(s) det(sl - F) is an nth degree polynomial in

From the proof of Corollary 1

n
m(s) = IZE (s-7) (s+23)

n

=TT (% -2,
fie1
1

=TT z-2.%
i=1 1

m(z) where z = s2

w

1f, as is wvwsually the case, ¥ is a real matrix then
m(s) is a nolynomial with real coefficients and has roots that

are either real or in complex conjugate pairs., Complex eigen-



values of F will thereiore exist in auadruples (2,24%,=7,=4%)
and the eigenvalues of F will have “"mirror image"” symmetry
about both the real and imacinary axes, It also follows from
this that the polynomials p(s) and p(-s) in Corollary 1 will

have real coefficients in this case.

D. THE CHARACTERISTIC-SQUARED EQUATION

The results up to this point can be summarized and

put in a more useful form by the following theorem.

Theorem 2
The eigenvalues of the optimal output regulator are
the roots of v(s)=0 , or equivalently, the left half plane
roots of the characteristic-squared equation
m(s) = det(sL - F) = (-1)" p(s) p(-s) =0
in which m(s) is an nth degree polynomial in z=s% and p(s) is
the (unknown) characteristic polynomial of the optimal system.
Furthermore, for r<m<n , m(s) is conveniently expressed
as
(2:11) m(s) = (-1)" d(s) d(-s) det(Ip+R "> 2'(-s) Q G(s))
and for m€r€n as

(2.12)  m(s) = (-1)" d(s) d(-s) det(I,+a(s) R™- G'(-s) Q)

where

d(s)

det(sl - A)

is the oven loop characteristic peclynomial and
1

G(s) =c(sL - A) B

is the ovan loop transfer matrix,



Proof:
The first vart of the theorem is merely a restate-
ment of Corollaries 1 and 2, The second vart of the theorem

is derived using the determinant identitv (see Anvendix A)

A | B| = det(a) det(D - C A" B)

¢
to write -

(8L~ 4} { ER B
m(s) = det(sl - F) = |--——~-- o s o o o
- o' ac | IsL + a)'

(2.13) m(s) = det(sI-A) det((sI+A)'-C'Q Q(Sl‘é)-LB R °B').

Letting

d(s) = det(sI-A)

c(s) = c(s1-a)7'B

equation (2.13) becomes
m(s) = d(s) det((sI+A)'-C'Q 2(s)R™IB') .

Now factor (sI+A)' out of the determinant to get

m(s) = d(s) det(-(-sI-A)') det(I-C'Q G(sS)R™-

BR'(sI+A")"1)
(-1)" d(s) d(-s) det(I-C'q a(s)z™"B'(sI+a"')"1).

(2.14) m(s)

Equation (2.14) requires exvansion of the determinant
of an n x n matrix. The order of the matrix can be reduced to .
r or m, whichever is less, by use of the determinant identity
(see Avppendix A)

(2.15) det(l, - A B) = det(I, -

ot

A)

if Aispxqand Bis g x p .



“herefore, for r<msn we can 1let

nAn - gl Q G_(s)

uBu - 3 - p_l (S l + A')-l

"p" = n
" = r
in equation (2.15) to change equation (2.14) into
m(s) =(-1)" d(s) d(-s) det(I.-R™1B'(sI+a')7'C'a G(s))

=(-1)" d(s) d(-s) det(I +37'B'(-s
=(-1)"

This proves (2.11). Likewise, for m<r£n we can let

1-4')"1c'q a(s))
d(s) d(-s) det(I, + R™! g'(-s) Q G(s)) .

"A" =C' Q

"B" = g(s) R"LB' (s I +A")™?
" i

g

in equation (2.15) to change equation (2.,14) into
m(s) =(-1)" d(s) d(-s) det(I,-G(s)R™"B'(sI+A')7IC'Q)
=(-1)" d(s) d(-s) det(I_ +G(s)R™ B'(-sL-A")7'C'Q)

7! g'(-s) Q) .

=(-1)" d(s) d(-s) det(I, + G(s)

This proves (2.12).

E, DISCUSSION

Theorem 2 provides exoressions for the characteristic-
squared equation of the optimal system involving only the cost
weighting matrices, R ard 3, and the open loop frequency domain
desecription of the plant, d(s) and G(s). This represents the

desired extension of Chammas' result tc the most eeneral R and



Q matrices satisfyins the assumntions of the ocotiral regulator
problem,

In applying Theorem 2, it is generally neither
feasible nor desirable to actually carrv out the spectral
factorization required to find the optimal svstem character-
istic volynomial o(s). First, the coefficients in m(s) are
in general complicated functions of the elements of R and 3,
making an analytic solution impossible, Second, interest
centers on the roots of p(s)=0 and not on p(s) itself, Finally,

. . 2 ‘i
th order polynomial in z=s”, so no more effort is

m(s) is an n
required to solve m(z)=0 than to solve p(s)=0 . Once the roots
of m(z)=0 are found, it is only necessary to calculate their
left half plane square roots to obtain the optimal system
eigenvalues,

The conventional method of determinin~ the ovtimal
system eicenvalues 21so requires findins the roots of an n't

1 E' ¥)=0 , Usinz Theorem

degree polvnomial, det(sIl - A + B R
2 can result in a savings of effort because finding n square
roots is a much easier calculation thar solvine the Ricatti
equation., Also, in some cases, the spectral factorization in
Theorem 2 can be performed gravhically using root locus
techniques. This will be illustrated in Chanter IV,

The main obstacle in avpplvineg Theorem 2 is the need

to expand the determinant in equation (2.11) or (2.,12) in terms
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of the fixed elements of G(s) and the variable elements of X
and Q. The expansion can be done, tediouslyv, by hand, but is
not well suited to direct machine calculation. Some progress
has been made overcoming this difficulty and a special case is
completely solved in Chapter III. Also. for many practical
cases the minimum of r and m is much less than n, so the order
of the determinant will be much smaller than the dimension of
the K matrix in the Ricatti equation. This may help offset the

difficulty in expanding the determinant,.
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Chanter III

APPLICATION TC BLOCK COMPANION SYSTEMS

A. BLOCK COVPANION SYSTENS

In order to get a formula for the characteristic-
squared equation that is better suited for numerical
calculation tﬁan those given in Theorem 2, attention is
now limited to a special case. This special case comprises
"block companion” plants with an equal number of inputs and
outputs and diagonal R and Q matrices.

Block companion systems are defined in Appendix B
where it is shown that for an m-input, m-output block companion
system (A,B,C) the open loop characteristic polynomial is

m
{3.1) d(s) =T 1 dy(s)
k=1
and the open loop transfer matrix is
(3.2)  g(s) = [m11(s)/dy(s) ny2a(s)/da(s) ue nyp(s)/dp(s) ]
npy (8)/d,(s)  npp(s)/dx(s) wew npp(s)/dp(s)

hpy (8)/81(8)  npp(8)/d5(8)  veu mpn(s)/dp(s) |
where
(3.3) dy (s) = 2, * A,k S Foeee + B, -1,k k™l L oMk

m

(30“’) n = 2 nk
k=1



(3.5) ngs(s) =cj 1. +€5,1.41 S *eee*t €5 9. 4n.oq 59

J J

(3.6) l. =1 + n

These quantities can be obtained "by inspection” from the A
and C matrices using the definitions
n = dimension of A
Ny ; dimension of k™! diagonal block of A
. th th

=35 4,k = 1 element of last row of k™ block of A
’

cij = jt.n element of ith

row of C,
The B matrix does not appear explicitly in the above as it has
a fixed form containing only ones and zeros,

Using equations (3.3) aﬁd (3.5) in equation (3.2),
it is seen that the elements of G(s) are proper rational
functions of s, The feature that distinguishes the G(s) of
equation (3.2) from a general proper transfer matrix is the
common denominator of each column, This fact simplifies the

development of the next section and is one of the reasons for

considerine block companion syvstems,

R, EXPAMSTON 0= THE DETERMINANT

The assumption that r=m implies that either form of
Theorem 2 will reguire expansion of the determinant of an
r x r=m x m matrix., The first form, equation (2.11), turns

out to be more convenient, so let
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mis) = (=) d(s) d(-s) det(I - R™-2'i-8)Q Gis))

(3.7) n(s) = (-1)" d(s) d(-s) det(L(s))

where

L(s) =1 + P g'(-s) Q &(s)

-

2 - 3"‘ & "».5"!_",(12‘1__.?2..--,?%\ = ﬂ"v.’efv’(‘]/r‘.;,1,/’."2,..op1-.,/‘3m)

>
1

= diag(ql.qz.....qm) .
Actually, equation (2.11) can be re-arranced to avoid inverting
R, i.e.

det(3) m(s)=(-1)" a(s) d(-s) det(R + 2'(-s)Q 2(s))

but this has no advantage in the present case.

Performing the indicated matrix onerations yields

-T-"-(s).:‘”dl(s)dl(-s)"'pl%l‘l(s) eve plglm(_s) ]
dq (s)dq (-s) dp(s)dq (-s)
Pogp1 (S) ees  Dpgon(s)
d, (s)dp(-s) dp(sl)dp(-s)
PpZm (8) eae dp(s)dp(-s)+0ngrm(s)
Lﬂl(s)dm(-s) dp(s)dm(-s)
where
m
(3.8) gy5(s) = Egl ay nyf-s) nyjis) .

Now note that L(s) can be factored into the nrnduct of three
matrices, i.e.

L(s)

D(-s) ¥ls) D(s)
where

D(s)

diag(1/d,(s), 1/d(8)s +usy 1/dp(s))



(3.9)
H(s) = [4,(s)d,(-s)+p,2,,(8) «ov Dy8.p(8) “?
{pggzl(S) cor D25, (S) :
; ' |
pmgm;(s) .o dm(s5dm('s)+Pmémm(S{J
Therefore _
det(L(s)) = det(D(-s) H(s) D(s))

det(D(-s)) det(H(s)) det(D(s))

(1/d(-s)d(s)) det(H(s))

so using equation (3.7)

(-1)" d(s) d(-s) det(L(s))

(-1)" a(s) d(-s) (1/d(-s)d(s)) det(H(s))

m(s)

(3.10)  m(s) = (-1)" det(H(s)) .
The next step is to use equation (3.8) to write

H(s) as the sum of m+l matrices
m
(3.11) H(s) = = H, (s)
- k=0 K

where for k=0
(3.12) Hy(s) = diag(dy(s)dq{-s),dp(s)dp(=8)sseerdy(s)dy(-s))

and for k=1, 2, seey M

—_—

(3.13)  Hy(s)=ay[Dyny (=8)nyy (8)  wuw Dynpy (=8)nyp(s)

|
| ’ )

_?mnkm(:s)nkl(s) e pmnkm(:s)nkm(s)_J .
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Jith ¥/s) written this way, the determinant of a sum
of matrices formula of Appendix A can be avnvlied to give

m m m
L det(H(s)) = =2 = ... = h (x,)h. =5 o
(3.14) et(H(s)) R (xm:OA o(*g)h. (o) L

°‘O+°‘1+"'+°‘m=m
where Aho(do)hl(x,_)...hm(«m) -represents the sum of all possible
determinants formed by choosing &, rows from Ho(s), u& rows from
gl(s). and so on, preserving the ordering of the rows,

In general, usinc equation (3,1L4) to calculate
det(H(s)) requires the evaluation of mm+l m X m determinants,
in comparison to the single m x m determinant required to
calculate det(H(s)) directly from equation (3.9). Even so,
equation (3.14) has several advantages., First, each determinant
in equation (3.14) is much simpler than the sincle determinant
that results from using equation (3.9) directly, Second, it
will be shown that most of the terms in equation (3.-.4) vanish
in the present case. TFinallv, and pverha»s most important,
equation (3.14) vields a result that is easily nrogrammed on a

computer. Equation (3.13) shows that the ith

row of H, (s) has
the common factor piqk so the p's and a's vill factor out of
each determinant in equation (3.:14), as literals, leaving
determinants depending only on the fixed elements of the plant,
These fixed nolvnomial determinants can be evnanded numerically,
multiplied by the apvropriate literals, and ther summed to give

the complete expression. The fact that the determinants

consist of polynomials is not a serious handicap as they can be
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handled numericallv usines, for example, the polynomial

addition and multiplication subroutines included in the IRM

Svstem/360 Scientific Subroutine Package7.

Mow consider the terms in equation (3.14) with at
least one & >1 k=1,2,4s.,Mm , i.e. a determinant containing

more than one row from the same gk(s) 1£k=m, Suppose, for

th

example, that the 1 and jth rows of the determinant are

from Hy (s), then
det [ . .

QyDs Ny (=8)ngq (8)  wen QPyNy; (=8)myp (S)

qkpjnkj(-S)nkl(S) ooe qkp.nkj(-S)nkm(s)

= ' |
=qyDPingj (-s)qxpjnkj(-s) det . )

=0
«th .th ;
because the 1 and jJ rows of the second determinant are
identical,
Therefore all terms in equation (3.1%4) with ¢ >1

1<x<m vanish, so equation (3.14) reduces to
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n. % 2
det (H(s))=> S e émo(do)hl(al)...hm(um)
0(0=O "J_!_ =0 O(m 0

m-1 1
=> > ee> Ahp(eg)hy (g )eeahyoy) +
op=0 ©=0 & =0

)

VI

"

[

dE't(ﬁo(S))
m-1 1 B SN
(3‘15) de’t(E(S))=2 E '"2_AhO(dO)hl(dl)"'hm(um) ¥
cxo=0 0(1=0 Ofm—O
d(s)d(=-s)
where the summations are restricted by the condition

X+ 4440 4OC =M
o e m *

i ]

For a fixed value of Xp Aho(oro)hl(ul)...hm(um)
now consists of the sum of all possible determinants formed
by choosing_uo rows from ﬁo(s) and replacing the remaining
k=m-o% rows with the corresvonding rows from k different

th

o 3 ; ¥y :
ﬁi(s) S + That is, lettins Hij denote the j row of Ei(s),

a typical term of Ahy(Xg)hy (¢ )esshpy () is

(3.16) det(l(Hiljl.qizjz. coe ,Hikjk)) = determinant

formed by revlacing row j1 of ﬁo(s) with row jl

of ﬁil(s§ s, TOW j2 of go(s) with row j, of ﬂiz(s),
and so on, with 1Sj1<j2<...<jkgm y (L1,i25000ik)
distinct with 1<i<m and 1<k=m ,

Using definition (3.16), equation (3.15) can be written as

m
(3:47) det(H(s))= = =S det V(¥ 5. ¥y g 0eee ol )) +

k=1 i, ] kJx

d(s)d(-s)

where the inner summation extends over all combinations of



i's and j's satisfying
1€§1< o< o o <iEM
(11912, eee siy) distinect
1<isn ,
) contains two

The matrix V(H; s H:

i1j1 Migdar or Hiyix
types of rows: k rows of the form (from equation (3.13))

Eqipjnij(-s)nil(s) qipjnij(-s)niz(s) e qipjnij(-s)nim(s)]
(3018) =Qipj E'lij(-s)nil(s) nij(-s)niz(S) e e nij("S)nim(S)]
where

(3.19)  (Lo3)eSgy={(1103,) 0 (1008200 wun 2 (igrdp))

and m-k rows of the form (from equation (3.12))

[b suim O dj(s)dj(-s) 0 see O]

(3.20) = d;(s)d;(-s) [0 coe 0 & 0w 8]
where
(3.21) 355 = {3y dpn oo vy} 1<3%m

and the nonzero element is on the main diagonal of V.

The first type of row, equation (3.18), has the
common factor qipj and the second tvve of row, eaquation (3.20),
has the common factor dj(s)dj(-s) . These can be factored out

of det(V) to yield

(3.22)  aet(= 1 a0, TT a4 (s)a;(-5) aes(®)
(I:J)ESiJ %figm

where the sets S.. and Sj are as defined bv equations (3.19)

v

and (3.21) and i'is wvhat remains of V after the common factors

-
are removed., V contains m-k rows consisting of zeros except
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for a sincle "1" on the main diagonal whrich result from the
rows of V given by equation (3.20). The rows and columns
correspondine tc these 1's can be deleted without affecting
the value of the determinant, so

(323 det(V)= /| q. TV d,(s)d,(-s) det(1(S;5))

(i,)esy; © £ gy
where
(3.24) N(813) =
—hiljl( s)ns Ijl( -s) Plljz(s)niljl(-u) vee Ny K(R)nilal(-s)ﬁ
nizjl(s)nizjz(-s) nizjz(s)nizjz( 8) e APeH (s)nlzaz( -s)
e Ly VB LR TR )nlkjk\-s)J

(3.25) Sij ={(illj1)v(izsjz)c e ’(ik’jk)}
(3.26) Sj = jgjésij?-_'{jl’jz’ "o ,Jk} .
Now that det(V) has been expanded to factor out the

p's and q's , it can be substituted into equation {3.17) to

give
(3.27) det(H(s)) = d(s) d(-s) +§ E 7"\’g a;D;
.,& v
14
7_T d dl( -s) det(i ))
1€S ;
1519m

where the inner summation is over all sets 5,. =@atisfyine

1€5,<5,C0 0o <J =M

(i1,i2, b ,ik) distinet with 1€is»
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The above conditions on the sumrmation set Sii can
be simplified and made more symmetrical by notinz that the

factor

3] |

depends only on the i's and j's in S-lj and not the way they
are paired., For a given set of k i's and k i's, only one
ordering of the j's is valid but the i's can be vermuted k!
ways, vielding a total of k! pairings. Combining this fact
with equations (3.10) and (3.27) cives the final resul+

m
(3.28) (-1)"m(s) =d(s) d(-8) += = = T Va [1n.
S
:

k=1 ¢ ies, * jes, Y

x 1-3e

J
iet (1 (0= (S; )iS,
Oolk;\a}(bl).s ))

: )] -
} \ dl(s, dl( s) 4 3

1S -
1$l§m

8

where the Si and Sj summations are over =z11 sets

Sy = {ilviz' voe 'ik} with 1€i,<i,<,, <ip=n

Sj = {jl,jZ' e yjk} with :SjL<12<coo<ngm
and
th 2 ! L
0}<Si) =r permutation of the elements of S5

Q(G}(Si);sj) = equation (3.24%) with the "i"

subscripts nernuted .,

C. DISCUSSION

Tquation (3.28) is in a form thzt can Te easily

programmed on a computer. The summatior sets S, and 5. can be
J

3
a

generated using a sequence of logic type prozramming statements,
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ZTach terr in the surm=tion can he fTactored into two terms,one

involving only the variable weizhtines matrix elements, i.e.

(3.29) T\ o, [1 b,
iESi 1 4es, J
LB |
and the other devending only on the fixed plant, i.e.
1
= % t(N R s )i .
(3.30) L1 aj(e) aj(-) = aevuior(s;)s5;)

1654,

The terms given by (3.30) can be calculated using
volynomial arithmetic routines and the definitions (3431 s
(3.5) and (3.24). The terms given by (3.29) can be either
explicitly written out in the program or program generated by
writing, for example

TTqi = (g, 0! (4,0 2 veu ()"

and settinz ;=1 if q, belongs in the product and °%=0

otherwise,
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Chanter IV

AN ITIUSTRATIVE EXAMPLE

A, INTRODUCTION

In this chapter the results of the previous chapters
are illustrated, and additional results derived, within the
framework of a numerical example. The example was chosen to
be simple enough to allow hand calculation, but a higher order

system would present nothing essentially different anyway.

B, PROBLENM STATEMENT

Suppose we have the 2-input, 2-output, completely
controllable, completely observable "block companion” plant

dx/dt = A X+ 3Bu

y=0%
with
C 0 1:‘0 0] 'ogo‘
Aa=|-2 210 o], B=|1]0
o e i = s
o 00 1 0! 0
L0 o0 1-6 -5 [0 1
c=1 o0!0 1]
L 131 ol

and want to minimize 2 cost functional of the form

oc
J =J;(E' Ru+y'Qy)dt



with R = ’rl 0Y=[1/p., © nositive definite
Lo %y L9 1/py

and Q= Fql 0} 9vositive semi-definite ,
L sy

How do the eigenvalues of the ontimal closed loop
system, for the given plant and cost functional, devend on the

elements of the cost weighting matrices R and Q ?

C. DISCUSSION OF PRORBRLEM

The problem can be given a nhvsiecal intervretation

by defining

o 2

W, =/ u, dt i=1,2
as the "control energy" expended by the ith innput and
2
P @ 3 =
Ei —Jf vy dt i=1,2

as the "intersral-squared error" of the ith ontmit, Then the

cost becomes

&0
J=f(u'Ru+y'Qqy)dt
© 2
= r1L u% dt + r2f:u§ dt + qllf"_ dat + q,,,/o“iri dt

=rqy Wy +rp Wy +aq Ef +0ap Eo
so the cost weighting matrix elements r. ard a; are 3 measvre
of the relative penaltv being assitned *to "cortrnl a2cersyv" and
"inteeral-souared error", In addition, the choice of R and g
affects the dvnamic response of the regculator v chansips the
eigenvalues of the optimal closed loon svster, Th~ desisn of
the resulator therefore involves three interrelated and

possibly conflicting goals: low "contrcl enersy" expenditure,
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low "intecoral-squared error”, and "satisfactory" dvnamic
resoonse characteristics, The method developed here provides
a svstematic vrocedure for explorine the trade-offs involved
in tryine to simultaneously satisfv these zoals.

The problem stated in section B differs from the
original statement of the optimal reculator problem in that
the matrix Q is now only assumed to be positive semi-definite.
The following theorem provides a sufficient condition under
which the solution of the optimal regulator vroblem is still
valid for Q positive semi-definite. It can be readily

verified that the given problem satisfies this condition.

Theorem 3

The solution of the optimal regulator problem is

still valid with Q only positive semi-definite as long as the

(=

pair (A , Q

i}

C) is completely observable, i.e, if the matrix
a4

(B0 iat@e) . a0 @e)]
has rank n .
Proof:

See Kleinmané. pp. 4,5 .

D, CAICTILATION OF THE CHARACTERISTIC-SQUARED EQUATION

The example is in the form considered in Chapter III

=2, so by inspection from eguation (3.32)
2

with m=n, =n,
dl(s) =2 + 28 + 8 (open loco poles at s=-13%j)

2

dz(s) 6 + 58 + s (open loop voles at s=-2, s==3)
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and from equation (3.5)

nll(s) = 1 (open loop zero at s=w)

nlz(s) = (open loop zero at s=0)

n21(s) &1 48 (open loov zero at s=-1)
(s) = 1 (open loop zero at s=®) ,

Eouatlon (3.28) then gives

(-1)% m(s) = d(s) d(-s) + § > S TV q T o,

=1 53 sj ies; jes;

, J

W

12. d,(s) dp(-s) § det(1(05.(51)1S5))
1<1£2

where the summation sets S; and S: must satisfy

Sy

Sj'—'

Therefore, for

S;

1

S.
J
and for k=2

Sy

S,
J

so m(s) can be

m(s)

j
INERE

[i1s voe 2d)) 1=3i<eee<ip=2
k=1

51; or {2}

{1} or {2]

{152}
£1.2}
expanded to give
= d(s)d(-s) + a.0.d5(s)d,(-s) det(N(1;1)) +
o_l 2d1(s) (-s) det(n(132)) + PN dz(s)dz( -s)
tIR(241)) + azozdl(s)d,(-s) det(1(2:2))

a,0,0,0, ( det(n(1,2;1,2)) + det(l(2,131,2)) ).

1192P1 %2
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Also, fror eguation (3,24)

det(1(131)) = n, (s)ny (=8) =1
det(1(132)) = nyp(s)nyp(-s) = s
det(x(231)) = n21(S)n21(-s) = -s8° + 1
det(N(232)) = nyn(s)nys(-s) =1

det(1(1,251,2))

L}

det nll(s)nll(-s) nlz(s)nllk-s) }
[nzl(s)nzz(-s) nzz(s)nzz(-s)

5 eg? =g w1

det [nzl(s)n21(—s) nzz(s)n21(-s)]

nyq(s)nyz(-s) nya(singo(-s)

det(ﬁ(zvlﬂ 92))

= sLL - 2 s2 + 8 .
These results can now be combined to yield
m(s) = (s4+4)(su-13 sz+36) +q1p:(su-13 s2+36)
-q; P s2(s"+4) +qul(-s2+1)(sk-13 s%436)

2+1)

+q2p2(su+u) +Q1Q2P1P2(Su-3 s
or lettinz z=s2

m(z) = (zz+b)(zz-13 z +36) +q, D (z2—13 z +36)

1
-q4 P, z(z2+4) +q2p1(—z+1)(22-13 z +36)

2
+3,0,(2 +8) +a,a,0,D,(2%-3 2 +1).

E. APPIICATION OF ROOT=SQUARE LOCUS

For any given set of weightins mstrix elements,
m(z)=0 is a2 fourth degree polynomial egnation ard can be
solved for z numerically. «ote, however, that cach weizhting

matrix element enters into m(z) only to the first nower,
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Therefore, if one of the p's or n's is varied, with the other
three held constant, a "root-square locus" of the optimal
svstem eigenvalues can be drawn in the z=s2 plane.
Letting k stand for the variable weighting matrix
element, write m(z) as follows

m(z) = (terms independent of k) + (terms involving k)

(terms independent of k) + k (polynomial)

d'(z) + k n'(z)

and then

m(z) 0 =d'(z) + k n'(z)
implies

1 +k (n'(z)/d'(z)) =0,

This is a conventional root locus equation, except
for being in the z=s2 plane, and conventional root locus

. 8
technigues »9

can be used. In particular, the root-square
locus starts at the roots of d'(z)=0 for k=0 and terminates
at infinity or at the roots of n'(z)=0 for k=oo,

Once the root-square locus is nlotted, the optimal
system root locus is found by determining the left half plane
square roots of a sufficient number of vnoints on the root-
square locus, Ficure 1 illustrates the nature of the required
marping. The mappine is unigue excevt for points on the

negative real 2z axis, Yowever, the strict stability of the

optimal system assures that this ambiguous case will not
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arise, The mannins can be easily done srarhiecally using,
for examnle, a Svpirule for polar coordinate measurements,

mo cover 211 possible cases, an infinite set of
loci would be reguired. Instead, consider four "typical"

cases,

Case 1: vary @y O<qf«9 with r,=rp=1 , q2=0 .

The root-square locus equation is

0 =1+ (-ql)(23-22+1? z-36)/(zz+h)(z2-13 2+36)
so the roots of d'(z)=0 are at

= i'2;j , 2= 4, 2=9

and the roots of n'(z)=0 are at

2= 1.92 , 2= =46 T 4335 .

Figure 2 shows the root-square locus and Figure 3
the corresvonding optimal system eigenvalue plot for this
case, 'ote that for q1=0 the optimal system eigenvalues are

the open loop poles,

Case 2: vary a, 0<q,<® with r,=rp=1 , q1=0 .
The root-square locus equation is
0 = 1 + (-a,)(z7-15 22449 2-40)/(2%44) (22-13 2436)
so the roots of 4'(z)=0 are at
=225 , z=4 , 2=9
and the roots of n'(z)=0 are at

g= 1425 3 28 2,95 5 2= 10:8
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Rirure 4 showe the root=-squsre lncus and Fisure 5
shows the corresvonding optimal system eisenvalue plot. This
plot again starts at the open loop poles hut the eirfenvalue
motion is in a generally different direction comnared to case
1 « PRy avpropriate choice of non=-zero a4 and Py it would

therefore seem possible to achieve eigenvalue locations

between the vlots of case 1 and case 2,

Case 3: vary p1=1/r1 0<r <@ with q,=ap=rp=1 .

The root-square locus equation is _

0 =1 4+ (-pl)(23-16 zz+65 2 -73)/(22+u)(z2-1b z2+37)
so the roots of d'(z)=0 are at

z = 323 , 2= 3,536 , z= 10,464
and the roots of n'{(z)=0 are at

2= 1_093 s Z7% 3-40 y T looub’? .

[N

Tha ront=s3nuare locus is plotted in Ticure 6 and
T 2 T iy cure ng

the locus of optimal svstem eigenvalues shown in Fisure 7.

The plots are shown as a function of r.= 1/p1 , SO the

interpretation of start and end voints are interchanred ard
the complex conjugate oven loop nole nair eviats for r1=00.
The senaration between the real axis sevrments is ~reatly

exaggerated for clarity, It is interestins that 1v0 of the

optimal system eicenvalues for r1=0 are almo~st the game as

two for r, =00,
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Case H: vary n,=1 /r2 0¢ryco with o,=g,=r =1 ,

This time the root-sguare locus eqnation is

0 =1 + (=py) (272 2247 2-5)/(2%-246)(2%-13 2+36)
so the roots of d'(z)=0 are at

z= 4 , z= 9 , z= .5 ¥2,398]
and the roots of n'(z2)=0 are at

z= .83 , z= ,58 %¥2,38j .

Ficvre 8 shows the root-square locus for this case
and Figure 9 is the corresvondineg ovntimal system eigenvalue
plot, Now the real axis open loop poles are present for

r,=w and the complex conjugate eigenvalues are almost

unaffected by the value of rj.

In the single-invut, single-outout case the optimal
eigenvalues approach the open loon zeros or infinity as k
apnroaches infinity, However, in the present case, three of
the optimal eigenvalues remain in the finite part of the s
plane although there are only two finite ov»en loop zeros.
This difference can be partly exnlained by the fact that the
oven loop zeros are altered by the optimal feedback, as is

shown in the next section.
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F. ZEROS OF THR CPTIMAL BJYSTEL

The transfer matrix of the optimal system is
G#(s) = C(sI - A + 2 RT'B'K)7IE = (1/p(s))N*(s)

p(s) is the

where K is the solution of the Ricatti equation,
optimal system characteristic polynomizl, znd K*(s) is a
matrix of vpolynomials related to the zeros of the optimal
svstem, Theofem 2 provides a method for determining p(s)
without having to solve the Ricatti equation, but no
corresvondine general result for lN#*(s) has been found.

For single-input, single=-output systems, Brockettlo
has shown that linear state variable feedback can cancel, but
not move, the opven loop zeros, For multi-input, multi-output
systems the invariance of the opeh loop zeros no longer holds
in general., In particular, for the type of block companion
systems and cost functionals considered in section B, the
zeros of the ontimal system can be made equal to the open loop
zeros only for certain C matrices, and then only by restricting
the Q matrix.

Instead of using the numerical values of section E,
consider the more eeneral A and C matrices

A=[o 1 0 o

|
R e

0 0 : 0 1

|0 0 i-bg -y |



The other matrices remain as before, Iet the unknown vositive

definite svmmetric solution of the Ricatti eovation be

—

K =[k1 X2 ki3 Kqu]
ki2 kpz2 kz3 ko
Y13 %oy B3z B
ks kou kgu o kyy

then
(s1 - & +2R7T B KB = (1/0(s)) [ha(s) ' -m (s) |
s ha(s) | -s m, (s)
my(s) Ghy(s) |
=8 mz(s)is hl(s)J
where

p(s) = hy(s) ha(s) - m;(s) mp(s)

hl(s) = 52 + (_’01 k22 + al) S + (nl klz + ao)
ho(s) = s2 + (p2 kuy + by) s + (v K3y + bo)
ml(s) = pl (kzll» S + k23)

my(s) = vy (koy s + kiu) .

If the Ricatti equation could he s=tisfied with
k1u=k23=k24=0, then mq(s)=mp(s)=0 and the above result would

simplify to

(sL-a+2R" 2 K)7lm=[1/n 05 0 |
_i@?E%XuQ____J
0 -/h2(s)
0 &/hz(O)J
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and the ovntimal svstem would have the same zeros as the open
loop svstem, but different poles. This is not generally
nossible however,
TLet

-

(4,1) =C'QC+KA+A"K-KBR "B K

so that E = 0 if and only if K is a solution of the Ricatti

|31

10

equation. Assuming kq4=k23=k24=0, the matrix equation E = 0
consists of ten distinct scalar equations in the seven
remaining unknown k's, Since the number of equations exceeds
the number of unknowns, in general no solution will exist.
However, the assumption that R is diagonal allows the ten
equations to be divided into two groups: one consisting of
four equations involving only k13 , the other consisting of
six equations involving only the other six unknown k's. Only

the equations in the first group are needed and they are

(i) €13™ 9¢ ©1i °13 * 92 °z1 23

(4.3) €y 4= Q4 Cqyq Cqu + dp Cpy Cou + Kig
(b €23= 4 ¢12 ¢13 +dp Cp2 C23 + k4
(4. 5) €24= Q1 C12 €14 + Q2 C22 C24

A necessary condition for K with kju=kp3=kpy=0 to
satisfy the Ricatti equation is therefore to have e-3=eqL4=e23
=e,,=0 in equations (4.2) to (4.5). 1If it is required that the
zeros remain invariant for all positive definite diasonal Q
matrices, then equations (4.2) to (4.,5) implyv that

c11 =Cip = 0 or 013 =Cqy = 0
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and

Cpy = Cpp = 0 or Cz3 = Cpp = 0 .
That is, C must be in one of the four forms

c, = |0 0 1e93 Cqy

®)
D
]
oj
oy
._A
o
r.._l
™
o
o

153
]
o
-
H
(¢}
=
N
(&)
o
= |

C, and C) result in unobservable systems, so they
do not even satisfyv the assumptiohs of the problem, C, and
g3 are valid, but result in the system decomposing into two
uncoupled single-input, single-output subsystems, Therefore
the zeros of the transfer matrix can be kept invariant for
arbitrary diagonal positive definite R and Q matrices only
in the trivial case of two completely uncoupled subsystems,

If we no longer insist on retaining complete
freedom in choosing Q, a solution may or may not exist,
devending on C, Tor example, using the { matrix in the
example of section E, i.e.

(L.6) c=f1 0,0 1
[1_ ERE —o—]

in equations (4.2) to (4.5) gives
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e,y =0qq + k13
€rq = Oy + k13

Sal, =0
so E = 0 implies q =q5 =k,;5.=0 . Thus no valid diagonal Q

matrix exists that keeps the transfer matrix zeros invariant.

On the other hand, if C is changed to

(b.7) c=[1 o0 i-1 1
1 1 11 0

then

€13 ¥ "9; + Q2
ey = q; + k3
€23 = Q3 + k13
ezu_:O
so now E = 0 implies Q, =ap =-k13 « Therefore the zeros are

invariant in this case only if qQ1=0p o

Tetting the off-diagonal elemant of 3 be nonzero,

= fay, 94,7 with a4, 0p3 - 2,2>0

b

o 9,
in equation (4,1) changes equations (4,2) to (4,5) to

AV

(Ll'OB) 13—01 1041 1'3+q1 2(014C23+C« 3\-21)‘*'09202 02—5
(% 9) 154011011 O 4¥2y2(0q 1 P2+ 400y IHpn70. Coy K, 5
(Be10)  ep3=q;-c:p013+a12(C12623+C 3C22)+a207 200 25 +K 3

(%a11)  epu=ay104 0544y 3(c pcau%ey4002) Hnz0 000y
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This does not necessarily nrovide gcreater freedom in keeping
the zeros invariant. Using the C matrix given by equation

(4,4) in equations (4.8) to (4.11) gives

€13 T %2 * Q22
®iu T Qyy * Qg+ Kyg
e23 = Q22 + Kq3
a2l = 932
so E = 0 implies q1,=q12=q22=k}3=0 , as before, Likewise,

the C matrix given by equation (4.7) yields

€149 = =43 + 43>

ejy = Q17 t Q2 + Kig
Bgn = ~Qiy ¥ dgp * Ky
eah = Q12

but e24=0 implies q12=0, so nothing is gained in this case by
allowing Q to be non-diagonal.

Allowing R to be non-diagonal vastly increases the
complexity of the problem, so this case will not be considered

here.,



- 0 -

Chapnter V
COWCLUSICNMNS

mheorem 2 nrovides explicit relationshninrs between
the optimal system eigenvalues, the open loop nlant, and the
cost weighting matrices R and Q. Vhereas the ontimal
regulator problem was stated in the time dom=2in, Theorem 2
involves only frequency domain guantities and the cost
weighting matrices. This allows general reculfs, independent
of the coordinate system of the plant, to be derived, For
example, from equation (2.11) it is clear that as 3-1 approzches
0 the optimal system eigenvalues approach the cnen loov peoles,
if they are in the left half plane, or the "mirror images" of

the open loop poles that are in the right half plane,

=

Tor practical application as a desi~» tool, hnwever,

Theorem 2 presents some computational difficulties, EXpansion
of a determinant involving literals is not well suitad for
either hand or machine calculation but is reguired if the
weightine matrix elements are to be varied. The enercial case
considered in Chapter III is one of the simplest nor=-trivial
multi-input, multi-output cases nossihle, Pt *he vesulting
expansion formula, equation (3.28), is ronetheiess fairly
complicated. This is vnartially offset ty the “zeot that in
general the order of the determinant can be m=de eqnal to

either the number of plant.inputs (r) cr ouvtrv+ts (m), which-



ever is smaller, and this is often much less than the number

of vlant states (n). Also, once the characteristic-squared
eguation is determined the computational effort required to
find the optimal eigfenvalues for any given R and @ is
negligible compared to resolvine the Ricatti equation., This
suggests that if the optimal eigenvalues are required for a
large number of choices of R and Q, expanding the determinant
in Theorem 2, despite its difficulty, may still be computation-
ally efficient.

Probably the most notable result of the numerical
examnle of Chavter TV is *the severe restriction optimality,
in terms of the given cost functional form, places on the
location of the optimal system eiéenvalues. The restriction
is due to optimality, and not an inherent proverty of the
plant, as it can be shown using modal control theoryll thet
linear state variable feedback is capable of moving the
eigenvalues of the given nlant anywhere in the complex plane
(as long as comvplex eigenvalues are in complex conjugate
pairs). Furthermore, Simon and %itterlz have shown that for
block comnanion plants with distinct open loop noles the
freedom to move the eicenvalues is retained even if the zeros
of the transfer matrix are required to remain fixed., As it
was also demonstrated ir Chanter IV that the zeros of the
optimal system must move, except in some snrecial cases, the

following result is obtained: [‘odal control of a block
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companion rlant that leaves the transfer ratriv ceros
invariant is not, in general, optimal with resnmect to any
quadratic cost functioral with diagonal weirhtirs matrices.,
Resides, except in the trivial case of uncoupled subsystems,
invariance of the zeros, if possible at all, reguires that
the elements of the Q matrix be provortional. Allowing g'
to be non-diagonal does not necessarily alter the situation.
The case with a non-diagonal R matrix is more involved and
no result has been obtained.

Many of the results presented here can be arnlied,
with little modification, to the duval vroblem of desicning a
minimum variance linear estimator (Kalman-Rucv £i]1+er)13, 14
for a plant subject to input and measurerent disturbances.
In this case R and Q are interpreted as noise covariance
matrices, which mayv not be known exactly a nriori, Sc‘nweppe15

discusses some situations in which the present results may bte

useful in such an estimation context.



RECCLTTRNDATIONS FOR FUTURE WORK

The vractical avpplication of the results of this
investigation would require a generél, comnutationally
effective method of expanding the determinant in Theorem 2,
One possible apnroach would be to derive a general expansion
formula along the lines of Chanter III, but the result is
likely to be too complicated to be very useful, Therefore,
desrite the awkwardness of manipulating literals on a
computer, a direct determinant expansion algorithm may be
easier to implement.

If neither of the above apvroaches proves feasable,
a possible alternative to Theorem 2 is the parameter-imbedded

16
Ricatti equation , 1In this method the Ricatti eaquvation is

first solved for a varticular choice of the R and Q matrices
and then an imbedding equation is solved numerically for each
element of R and Q that is to be varied., FEach imbedding
equation vields a function X(k) where K is the solution of the
Ricatti equation and k is the variable weighting element.

K(k) can then be used in equation (2.,10) to yield the optimal
system eigenvalues, Various combinations of R and Q can be

considered bv usins the solution of one imbeddins equation

as the initial condition for another imbeddins equation., AS
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the amount of comnutational eifort required to solve an
imbedding equation is of the same order as for a Ricatti
equation, the computational advantage of this method over
the use of Theorem 2 is not clear at vpresent.

In anyv case, the ideal method of presenting the
eigenvalue plots would be on a computer operated CRT display.
This would aliow the designer to immediately see the effect
of the choice of cost functional on the optimal system
eigenvalues,

The location of the zeros of the optimal system
was considered only brieflv for a special case as a general
result has yet to be derived, Further investigation of this

point may prove interesting.
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Apnendix 4

PRCr=RTIES OF DETERNINANTS

A, INTRODUCTION

This appendix collects some useful properties of
determinants that are used throughout this work. The
elementary properties listed are generally well known and
require little comment. Proofs of the other properties can

be found in the indicated references.,

B. ELEVMENTARY PROPERTIES

Property 1: If A is an n X n matrix, then det(A') = det(A).
Property 2: If A is an n X n matrix, then

det(-a) = (-1)" det(A).
Property 3: If A and B are n X n matrices, then

det(A B) = det(A) det(R).

th row (or column) of

Proverty 4: If all the elements of the k
an n x n matrix (1£k=n) A are zero, then det(A) = O,

Property 5: If two rows (or columns) of an n x n matrix A are
identical, then det(A) = 0.

Property 6: If an n X n matrix B is obtained from ar n x n
matrix A by multiplyving all elements of the kth row
(or column) of A by a scalar c, then
det(R) = ¢ det(A).

h
Property 7: If each element of the kt“ row of an n X n matrix
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A 1s the sum of two terms, i.e, Bae =8B T 0 Ny
L ; el 1 o

then det(A) = det(A*) + det(A%*) where A% and A¥#

N . *
are obtained from A by renlacinz CIWP by Ay 5 and

(%

*3%
I respectively, The analagous result holds for
the kth column,

Property 8: The determinant of a block triangular matrix is
the »roduct of the determinants of the blocks on

the main diagonal,

Cos A PARTITIONED DETERNINAKT THEOREN17

f F is a partitioned matrix

R

1Q e

|
[
- + -
!
|

g !wo

with A and D square, then provided det(A) # 0

-1

det(F) = det(A) det(D - C A

[@]

jod
S

and provided det(D) # O
det(F) = det(D) det(a - B DT ¢) .

|[35]
@)
jQ

D. A DETERMIMANT ORDER THEO?EN18

If A is a p Xx q matrix and B is 2 q ¥ » matrix and

s is a non=zero romnlex number, then

Lo, %8 2)
_q — il

where I, and lo are, respectively, the » x »n 2rd o x g

s1™P get(s I, - A B) = det(s

P

identity matrices,
In particular, for s=1

det(I, ~ A B) = det(I, - B A) .

i
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E. THE DETERNINANT OF A SUM OF NMATRICES

Reveated apnlication of Pronerty 7 of section B
. 19
yields the following result:
If A is the sum of p n X n matrices, i.e.

A=A+ Ay * ees Ay

then
n n n
det(A) = = = o0 = Aa.(ip)axlis)eeag(iy)
i,=0 i,=0 i =0 - £ : DI
1 2
il+12+...+iD=n

where ¢Aa1(il)a2(i2)...an(in) denotes the sum of all possible
determinants formed by choosing il rows from A,, i, rows from
Asy and so on, preserving the ordering of the rows, Since
there are v choices for each of the n rows, *The overall sum

p determinants.,

contains n
As an example, let n=p=2, i.e, C=A+F with 4, E, and

C 2 x 2 matrices., Direct application of Property 7 ther gives

det(C) = det(A + B)= det [a;,+byy 3, +b;
[;21+b21 a22+b2;]
= det [a,,4 a 1 + det ﬁblt 0,5 r
lapq+bpy 2p2+022 | 821+, Asp+bos |
= det [a,, a, 5] + det @, 2,57 + dot :’ B |
221 azz_J oy bzzJ 15 222

+ det l:bll blZ] .
Pay Das
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This agrees with the expansion formula as

ba(2)b(0)= det

Na(1)v(1)= det

A2(0)b(2)= det

are the only terms that satisfy the constraint ia+ib=2 .

a12]

a7 |

2
b22 |
by2]
b22 |

+ det [b11 b, 5

azi az2z

]
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Arnendix ®

BLOCK COMPANION SYSTENS

A, DEFINITION

A "block companion" svstem is defined as a dynamical
system
dx/dt

Yy=¢x

n
>
|

+
o
i<

in which A is a block diagonal matrix with each block on the
main diagonal a companion matrix, R has a special form to be
specified, and C is constrained onlv by the requirement that
(A,C) be completely observable. That is, A is ann x n

matrix of the form

a I i ]

A= A‘-1|Q |"'l9-
};1"7“ﬂ5—‘
e
. '. l :.
- s ]
0 10 teeolA
e - -m -~

A =FO 1 0 se e 0 ]
0 0 1 ce
6 6 6 LR N 1
L-ao'k ‘al’k ‘az'k c e -ank-lka

m
and >n, =n .
k=1



column,

Ris an n x m matrix with a single "1" in each

in the vosition corresvonding to the last row of

of each A block, i.e,

k

I'o

12

(@]

is

[0'0! 107] =
.lﬁl'.
el f ¥y
O!O| :O

|

1:O| :O
e
O|O| 'O
ol o K
':ol | o

P

0|1| [O
b A %
b B el
0101 ;0
| .
.
o:o: | 0

|
olo! 11

an m x n matrix with no particuvlar structure

0

.
.
cm1 sz v e

11 %12 *** %n |

cmn

The complete controllability of (A,R) is assured

by the definition because each subsystem block (4 ,bx) is in

controllable canonical form.

B,

TRANSFER MATRIX

The transfer matrix is, by definition, 5(s) where

a(s) = ¢c(s I - A)”'B.

Since, for a block companion system, the A matrix is block



diagonzl,

-1 (oo -1 | —
(S_I_"'_A_) = (Sl‘él) |_O_ |"'E.Q.

i s e

12  (51-Bp) "4.e.t2

and each block is of the forﬁ

(S_I_‘ék)-1= s -1 0 0 -1

0 S -1 LR ] O
0 0 S s o 0
O 6 O " "l

For any non-singular matrix F
-1 .,
F = = adi{F) / det(F)

where adj(F) is the transpose of the matrix of cofactors, i.e.

adj(E) = [Cij ]'

where
i+]
Cij =% (‘1) Mij
and Mij ijs the determinant of the submatrix obtzired Dby
. .th .th P
deleting the 1 row and colvmn of F,

AS a consannerae of the strustore 0 Sba 7 patweiy,
only the last column of adj(sI-Ay) is of =ic i"lcance, and

this can be found by determinire C.. for i=n,, 1,2,
N+ -
£ . = (=1 M

"y, = (1)

Deleting the ﬂih row and jth column of (sI-A,) vields an
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upner triancular A=l X Ap=1 matrix with s in the first j-1
diagonal rositions and -1 in the remaininc nk-j diaconal
vositions., Since the determinant of a triansular matrix is

the oproduct of the elements on the main diagonal,

i .= gimt (-1)nk-d
Ny s J
and
Ny +Jj
Y Nl 2 e 1 .
nkuJ (1 Mnk!J
= (-1)"KT g3 (g
= Sj-l °
Therefore

adj(Sl-_A_k) = X X o0 1

X x LN S
L] . .

Ny, =-
X X...Skl

— -

where the "x" terms are irrelevant for present purposes., Also,
using the previously determined cofactors, det(sI-Ay )=det(F)
can be written as

det(sI-A,) = §§ f

l"xk s
f . sJ 1
i=

-
3
~

(S

= ao’k (1) + al’k S + az,k 52 + eco0oe
+(ap,-1,x + s) s"k7!
2
=a0,k+a1'ks+a2’ks + e

nyg-1 n
* an,-1,k S k™ + sk,



Yence, letting d,(s)=det(sI-

(SI-A,

and
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3,

)7L = (1/4,(s))

=2

B

0,k T8,k

% sud 3 ]
x x L ] S
X X ees sTKT

d(s) = det(sI-A) = ?_Y dk(s) .

S+eee+87KTL,

k=1
Tultivlying (sl-g)'l by B "picks off" the last
column of each (Slfék)-l block to give
(s1-a)"'e = [1/d,(s) ! |
s/d. (s) I po!
. I 9 i 1 0
n '1 N | |
______ b e e ———— — -
| b3
1
|s/dp(s) 1
0 5 o
— l . i l il
| i
ny=1 |
lg 2 $)
______ Sl
} i
____________ Eorarsian s
( i
l { ll/dm(s)
t i | )
t |s/¢_(s)
0 | o by .
| | | .
| ! n,=1
L ! 1 s /dm(s)_

It is now convenient to define a2 block index 1.

1 =

v

3=1

1+ = ny
k=1

1<j<m
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and partition the rouws of C tc correspond to the partition

-1
of (sI-A) B

= | | -
_(:/_ - 01,11 'K cl'l‘!_""n‘!‘—ll .'.lclylm ' C1’1m+nm_1
| |
: i
02’11 se 02'11+n1_1: ..':02’17‘[} ev e Czilm"'rlm-l
= 1
. 1 : .
L] | 1 ]
| i
co e 'ooo:C eee C
m,1, m,11+n1-1; | m,lm m,lm+nm-1

With C written this way, it is easy to verify that
c(sI-A)"1R

=[n,;(8)/d,(s) n ,(s)/dy(8) wuu 0y (8)/d,(8)]
npy (8)/d; (s) npp(s)/da(s) wew npp(s)/dy(s)

G(s)

| npg (8)/4,(8)  npp(8)/dp(s) wew myp(s)/dy(s)]

where
n. s(s) = ¢ + c s + + c snj-l
ij l,lj i'1j+1 a8 l,lj""nj"l
j=1
1, =1+ 5 n
J k=1 k
- nj—l nj

dj = ao'j + ay, j 8 =+ 500 anj—l.j S + S .
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