.

FINITE MEMORY ESTIMATION AND CONTROL
OF FINITE PROBABILISTIC SYSTEMS

by

Loren Kerry Platzman

e d

S.B., Massachusetts Institute of Technology

(1972)

S.M., Massachusetts Institute of Technology

(1973)

E.E., Massachusetts Institute of Technology

(1974)

SUBMITTED IN PARTTAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
January, 1977

Signature of Author . . .~ _ . PP

Departﬁgﬂi of Electr&@al-Eﬁgineering and
Computer j\cience, January 13, 1977

Certified by C:. . - _ éﬂ e s o s s 4 o & o &

Certified by .

Accepted by (_

n -~
Thesis Co-supervisor

Thesis Co-supervisor

\.&.« .

~ww I T v v . e e & o *« e o e e

Chairman, Departmental Committee on Graduate Students

Archives
MASS‘ ‘NSL TECH

APR 11 1977)

]BRAR!ES

-2-
FINITE MEMORY ESTIMATION AND CONTROL

OF FINITE PROBABILISTIC SYSTEMS

by

Loren Kerry Platzman

Submitted to the Department of Electrical Engineering and Computer Science
on January 13, 1977, in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy.

ABSTRACT

A finite probabilistic system (FPS) is a stationary discrete-time
controlled stochastic dynamical process, having finite input, output,
and (internal) state sets. The partially-observable Markov decision pro-
cess is an example of such a system. FPS formulations provide a convenient
framework for the study of problems of state estimation, statistical
decision, or control, where state information is available only through
a finite memoryless channel, and observation dynamics may depend on the
inputs selected.

Notions of reachability and detectability in FPS's (similar to
controllability and observability in linear systems) are made precise.
It is shown that every FPS can be reduced to components that are either
reachable and detectable, or transient, or null-recurrent.

It is well known that the information vector (whose i-th entry is
the a posteriori probability that the system is in state i) is a suffi-
cient statistic (for the estimation of future dynamics given past inputs
and outputs). A contraction property of the information vector tran-
sition function is exploited to obtain procedures for c-optimal (arbi-
trarily close) approximation of the information vector by a deterministic
time-invariant finite-memory observer. Each observer state corresponds
to a particular configuration of most recent input-output pairs. The
average error achieved by such an approximation is bounded by the ex-
pression (m/mo)—T, where my and T are parameters associated with the
observed system, and m is the number of observer states.

-3-

Control problems, in which the average reward is maximized over
a discounted or undiscounted infinite horizon, may be solved by an
iterative procedure which has been given the name perceptive dynamic
programming. Successively weaker assumptions that the controller
"perceives" unavailable state values transform the problem inte a
sequence of formulations which may be solved by dynamic programming.
Each solution obtained in this manner is used to construct a feasible
controller formulation, taking the form of a deterministic time-
invariant finite-state automaton. Monotone geometrically convergent
bounds, containing both the supremum feasible performance and that of
the current design, are also obtained. Computation may be terminated
when these bounds become sufficiently close, or when the number of
controller states becomes excessively large. Although computing a
solution by perceptive dynamic programming may require considerable
time and storage, both are roughly proportional to the number of
controller states allowed in the final iteration; thus the cost of
controller design reflects the cost of controller implementation.

This procedure was applied to idealized problems of machine main-
tenance and computer communication, both of which had been investigated
by other researchers. The first problem was solved exactly; a design
suitable close to the optimum was obtained for the second problem.

NAME AND TITLE OF THESIS CO-SUPERVISORS:

Alvin Drake
Professor of Systems Science and Engineering

Sanjoy Mitter
Professor of Electrical Engineering

£

~fym

TABLE OF CONTENTS

ABSTRACT + &+ o o o+ o o o o o o o o o o o o +
TABLE OF CONTENTS . + v « « « o « o o« & &
TABLE OF FIGURES. . + « + ¢« ¢ « o« « o« o« o =« &
ACKNOWLEDGEMENTS. . . « + « v ¢ v v v o o &
NOTATIONS. v v & v v ¢ 4 o « o o o o o o o o @
CHAPTER I PRELIMINARIES « . . .
1. Introduction « « ¢« ¢ ¢ o« o« .
2, The Model . . .« « « v ¢ ¢« ¢ « ¢« « .+ .
a. Representation of the Plant . . .
b. Alternate Representations

c. Some Important Classes of FPS's .

d. Specification of the Input Process .

e. The Information Vector
f. Rewards and Performance Indices . .
g. Classification of Problems

3. Illustration of the Solution Procedure

a. Problem Formulation
b. Solution Procedure
c. Discussion . « ¢« + ¢ 4+ ¢ v ¢ o o W

d. Summary . . . ¢ ¢ ¢ e e e e o . .

13

18

18

22

. 23

24

26

27

30

32

32

35

38

40

.-

CHAPTER

10.

11.

12.

13.

Historical Perspective « . ¢« &+ + .« &

Page
42

Outline of Original Contributions 46

a. Ill-posedness of Certain Undiscounted
Infinite~horizon Problems

b. Sufficient Conditions for Well-posedness . .

¢. A Bound on the Value of Information . .
d. Metrics and Contractions . . .« « « « . .

e. Existence of €-Optimal Controllers. .

f. Feedback Realization of €-Optimal Controllers .

Organization of the Report . . . « « « « & &

IT ANALYSIS OF FINITE PROBABILISTIC SYSTEMS
Input-output Words . + . ¢« « ¢+ ¢« ¢« « & o &
Memory Sets and Memory States
Equivalence and Augmentation
Classification of Problems
Connectivity « o« « ¢ ¢ ¢ o o o ¢ o o o o o &
MetricsS « v ¢ o o ¢ o o o o o o o s o o o
a. Definition of the Metries
b. Discussion . . . « ¢« ¢+ ¢ ¢ o s e e .
c. Some Properties of MetricD
d. Continuity of Convex Functions.

Contraction Properties of T

. 46

48

50

50

53

56

59

62

62

. 65

72

78

81

87

. 87

93

94

96

99

14.

15.

16.

CHAPTER

17.

18.

19.

20.

CHAPTER

21.

Detectability « « ¢ ¢ &« v ¢« & ¢ o 4« o 4« o s 0 0 o
a. Preview . ¢ « v i v 4 e 4 e e s e e e e e e

b. Strong Subrectangularity« . .

¢c. Weak Subrectangularity « « .« + ¢« + « .+
d. Strong Detectability « « + + « . .
e. Weak Detectability+ « + ¢« « « v o o &

Decomposition of a Free FPS into Detectable Parts .

Stochastic Realization of a Free FPS

III STRUCTURE OF OPTIMAL CONTROLLERS
Finite-horizon Problems « ¢« « « « . .
State~observable Problems ¢« + + ¢« . .

Existence of a Solution in General Infinite-horizon
Problems . ¢« ¢ ¢« ¢ ¢ & ¢« o o o & o o o o 4 e s e o

An Alternate Formulation for Irregular Problems . .

IV COMPUTATION OF €-OPTIMAL CONTROLLERS
Perceptive Dynamic Programming
a. The Basic Algorithm « « ¢« « ¢ + « « &
b, Discussion . « ¢« « ¢ ¢ ¢ o« o ¢ o o o o« s s o . .
c. Pseudo-perceptive Dynamic Programming
d. Recursive Computation of the Memory Sets

e. Minimization of Memory Size by Selective
Pseudo~perception

f. Initialization Procedures . . . +« « &+ « « o =

106
109
111
114
118

121

124
124

128

134

141

145
145
145
148
149

150

151

151

b

22.

23.

A Computational Algorithm

Computational Results . . « « ¢« ¢« ¢ ¢ « & &« & &

a.

b.

The Machine Maintenance and Repair Problem .

A Computer Communication Problem

CHAPTER V. CONCLUSIONS . « & & ¢ ¢ & ¢ o o « o s o s s &

BIBLIOGRAPHY .

. . e *» o & s o * & e o o e s . . e . .

APPENDIX A Proof of Theorem 19.3 « . « ¢« ¢ ¢ ¢ ¢ & ¢ o &

APPENDIX

Preliminaries . « ¢ ¢ ¢« ¢ & o ¢ o ¢ o o &
A Transformation in W . . « « ¢ ¢ ¢ ¢ « « &

ASequence inV

Construction of a Convergent .Subsequence . .

Summary and Proof of (19.3)

Proof of Theorem 21.6 « . « « ¢ « ¢ ¢ o « o &

Proof of Part (3) « + ¢ ¢ ¢ ¢ ¢ ¢ o o o o
A Bound on Perceptive Values
A Bound on Pseudo-perceptive Deterioration.

Proof of Part (b) . « ¢ ¢ v ¢ & o o « « o

APPENDIX C Listing of the Computer Program

SYMBOL TABLE . . v ¢ ¢ ¢ o ¢ o o o o o o o s o o o s o o

GLOSSARY

*» e e *« o e e ° e . e o e o e« o

158

189

192

196

201

201

202

205

209

. 213

214
214
217
222

225

228

. 259

263

A Markov Chain .

TABLE OF FIGURES

A Markov Decision Process .

A Partially-observable Markov Decision Process .

A Finite Probabilistic System .

Contractions on the Unit Simplex .

Geometric Interpretation of Performance Increase

Due to Perception .

Geometric Interpretation of Performance Decrease
Due to Pseudo~perception .

A Memory Tree .

. 19

20

52

55

55

67

-9-

ACKNOWLEDGEMENTS

This research, initiated in my senior vear, grew out of an attempt
to define the concept of "control in the steady-state' in systems that
are neither state-observable nor linear-quadratic-Gaussian. Starting
with the simplest such system, which has two inputs, two outputs, and
two states, and guided by the adage "that which can be done for two can
be done for N," I found myself confronted with a finite probabilistic
system. The final report clearly shows the influence of four outstanding
educators at MIT who took an early interest in the work and in time
formed my doctoral thesis committee, each concentrating on a distinct
aspect of the research (as indicated below): co-supervisors Alvin Drake
(probabilistic models in applied operations reserach) and Sanjoy Mitter
(mathematical system theory), and readers Michael Athans (reduced-order
compensator design) and Amedeo Odoni (bounds on suboptimal performance).

In early stages of the research, I also benefited from conversations
with Dimitri Bertsekas, Harold Kushner, Georgio Picci, Alan Willsky and
Hans Witsenhausen. The doctoral dissertation of Edward Sondik was of
invaluable assistance to me. Adrian Segal suggested the application of
FPS decision analysis to a slotted ALOHA problem; further advice was
provided by Simon Lam and Eberhardt Wunderlicht. The '"value of infor-

mation'" interpretation of certain bounds was contributed by James Yee.

-10-

I particularly wish to thank Paul Schweitzer, who read a great
deal of a later draft and offered many comments that resulted in
improved clarity of presentation in the final report. Additional
editorial assistance was obtained from Alvin Drake, Michael Loui, and
Kathleen Platzman.

Computations were performed at the MIT Information Processing
Center. The illustrations were drafted by Arthur Giordani. The
report was typed with superb efficiency by Annie Cooper.

This research was supported at its inception by a Research
Traineeship, with funds provided by the Alfred P. Sloan foundation.

I am especially grateful for that opportunity to pursue an unorthodox
line of research with unqualified financial support. Further support
was later provided by the Department of Electrical Engineering and
Computer Science (in the form of a Teaching Assistantship), the

Air Force Office of Sponsored Research (under Grant 72-2273), and

my family.

Finally, I owe a great debt of gratitude to Michael Athans, who
as my undergraduate advisor made it possible for me to enter graduate
school at MIT, and a greater debt to Alvin Drake, who as chairman of
my Graduate Area Examination Committee and advisor in many other
matters made it possible for me eventually to leave. The greatest
debt of gratitude goes to my wife Kathy, who advised me in all matters
not covered by Al Drake, willingly shared the frustrations and exal-
tations of my graduate career, and afforded me the opportunity to do

the same with respect to hers.

-11-
NOTATIONS

If A and B are sets, then A-B is the set of elements in A that are
not contained in B. {#A is the number of elements in A, BA is the set
of mappings from A to B. 2A is the set of subsets of A. @ is the null
set.

<a,b> is the set of integers i satisfying a<i<b. The sequence

{A, A

at i
a0 Bae10 b denotes integer

cees Ab~1’ Ab} is denoted {Ak}k€<a,b>'

quotient rounded down, i.e. the integer q of largest magnitude such that

n!
k! (n-k)!

coefficient for n items taken k at a time.

|bq|<|a| and sgn(bq) = sgn(a). (z is the binomial
/
[a,b] is the set of real numbers x satisfying a<x<b; similarly [a,b)
=[a,b]-{b}. (a)+5=max(a,0) and (a) = min(a,0); clearly a = (a)+ + (a)—.
RN denotes the Euclidean space of column N-vectors. A row vector

T is substochastic if its entries are all nonnegative and sum to a

quantity not exceeding unity; it is stochastic if it is substochastic

and the sum of its entries is exactly one. HN and HN denote the sets

of stochastic and substochastic row N-vectors, respectively. A square

matrix is stochastic (substochastic) if each of its rows is a stochastic
. .th . .

(substochastic) vector. vi denotes the i entry of vector v; similarly,

Pij is the ijth entry of matrix P, and rowi[P] is the row vector whose

th . . i,
ij entry:&;Pij. The superscript "T" denotes transpose. e 1is the
" L) | -th s . . Py .
unit" vector whose i entry is unity and whose remaining entries equal
zero; 0 is a vector of zeroes and 1 is a vector whose every entry equals
. . . i
unity; the dimension and inclination (row or column) of e, 0, and 1,

are determined by context. The usual rules of matrix algebra will be

-12-
observed; thus if ﬂ&HN and qERN, then the quantity mq is a scalar.

Nk,
i=1 i

to imply Xi<yi’ Vie<l,N>, and x<y implies Xifyi’ Vie<l,N>.

If XSRN, then [x| = I

. If x,yERN, then x<y is understood

-13-
CHAPTER 1

PRELIMINARIES

1. Introduction

This dissertation introduces concepts and associated computational
procedures that are applicable to a mathematical problem arising in the
context of Operations Research and Stochastic Control. Briefly stated,
the problem is to design a strategy for real-time decision-making on the
basis of imperfect (state) information and finite memory. The plant

(i.e. the object to be controlled) is modelled as a finite probabilistic

system (FPS) or stationary discrete~time finite-input finite-output
finite-state controlled stochastic process, a generalization of the
partially-observed Markov decision model initiated by Drake (1962), which
itself generalizes the Markov decision model of Bellman (1957a).

An engineering problem which might be tackled by the methods espoused

in this dissertation is the following:

(1.1) Machine Maintenance and Repair Problem (Scenario). A factory con-

tains a large number of identical machines, each of which may require
overhaul from time to time. A repairman maintains a "status report'" for
each machine and effects the overhauls. Unfortunately, a lengthy in-
spection procedure must be performed in order to determine whether or
not a particular machine is actually in need of an overhaul. Thus it
is clearly impractical and undesirable to inspect every machine daily.

For example, if a certain machine is believed likely to require overhaul,

~14-

it might be advisable to overhaul that machine without inspecting it at
all. The problem is to determine a simple rule for the repairman to
follow in making decisions for individual machines, and in recording
each machine's status. A solution to this problem may be visualized as
a manual in which every possible machine status is listed, along with
a course of action and a new status resulting from that action. The
status code must be reasonably concise, for otherwise the manual will
assume mammoth proportions. Given the relative undesirability of broken
machines and repair costs, as well as a set of admissible actions, the
problem may be expressed as that of determining the ogtimal+ (most
desirable) strategy for coding machine status and repairing machines,

as realized by the policy specified in the repairman's manual.

Generalizations: A similar scenario might involve a crowded hospital

in which patients are visited by a doctor who must decide, on the basis
of previous visits, how to allocate his time. The controller might also
be a computer. Possible applications include: routing 'packets" through
a telecommunications network, controlling traffic signals at a busy inter-
section or along a congested freeway, and scheduling shipments from aware-
house serving several retail outlets.

Engineering problems of this type necessarily require that a trade-
off be made between accuracy of the model in depicting the "real' problem

and solvability of the problem described by the model. The FPS model is

+ . . .
The optimum may not exist; e-optimal strategies are then sought.

-15~

more general than a Markov decision model; it is also more difficult

to solve. The Markov decision model assumes that perfect state
information is available to the decision-maker. In the Machine Main-
tenance and Repair Problem, this means that, in order to use a Markov
decision model, it would be necessary to assume that the repairman knows
at all times whether or not a particular machine is operating properly;
his course of action is then obvious. The applications envisioned for

an FPS decision theory are those in which the decision to seek information
is crucial, and for which the Markov decision model is, consequently,
inadequate.

More specifically, two possible aspects of "real" control problems
are captured by the FPS formulation, but totally ignored in Markov
decision theory. One aspect is the '"dual control" phenomenon, where the
decision-maker must decide whether to seek better state information at
the expense of short-term performance, or to seek improved immediate
it performance at the expense of information forgone in the interim. The
other aspect is the "saturation" phenomenon, in which the decision-maker

is confronted with more information than may be considered in the time

! allotted for decision-making. Conventional linear-quadratic-Gaussian
f control methods, likewise, avoid "dual control" and "saturation"
phenomena by requiring that observation dynamics be unaffected by the
input process.

In problems such as the Machine Maintenance and Repair Problem,
where information is aﬁailable only at a cost, perfect state information

cannot be taken for granted, and separation of input and output dynamics

~-16-

does not occur. At the heart of the problem is the determination of what
information is important for purposes of decision-making, and what
information may be disregarded. An important contribution of this

research is a bound on the value of information. When the cost of

obtaining information exceeds its value, then it is advisable to do with-
out that information.

The elimination of "dual control" immediately leads to a 'saturation"
condition, since the decision whether to seek further information must
be based on all information acquired thus far. Fortunately, the value

of information decreases geometrically with delay, in most FPS's. Thus,

for any €>0, there is an integer £ such that the value of all infor-
mation delayed by £ or more time units has value less than €. This
implies that there exists an €-optimal strategy (a strategy whose per-
formance lies within € of the supremum feasible performance) for de-
cision-making based on the most recent £ inputs and outputs alone. A
computational method for strategy optimization, based on this result,

has been given the name perceptive dynamic programming.

As the number of most recent input-output pairs retained by the

decision-maker increases, the loss in performance from discarded infor-

mation decays geometrically and the number of memory states (called

"status codes" in (1.1)) increases geometrically. Thus, the performance
achieved by a decision-maker acting on the basis of m memory states can
be made to lie within (m/mo)--T of the supremum feasible performance,

where my is the number of values in a sufficient incremental statistic,

bl g

i

-17-
and

T = information value decay rate (1.2)
memory increase rate '

The remainder of this report is devoted to making precise the
concepts outlined above. The FPS model is described in detail in the
following section. The Machine Maintenance and Repair Problem is
formulated as an FPS control problem and solved in Section 3. A review
of related work, a compendium of original contributions, and an outline

of the report complete this chapter.

-18-
2. The Model

a. Representation of the Plant.

The plant will be modeled as an FPS, which is defined by (2.1),

" below. Conceptually, an FPS is a generalization of a Markov chain,

shown in Figure 2-1. A Markov chain has the property that, for any

time ke<l,%>, the random variables {s(k')} and

k'e<0,k-1>

{S(k')}k'€<k+l,M> are conditionally independent given s(k). Thus the

transition probability that s(k+l) will assume value j given the values
1 .

of all past states {s(k)}k'€<0,k> can be expressed as a function of

the value of s(k) alone. The broken arrow leading from s(k) to s(k+l),

in Figure 2-1, is intended to convey a sense that s(k+l) evolves pro-

babilitically from s(k) alone.

Y —bs(k-l) NN (k) NN s(kt]) — 0o

Figure 2-1. A Markov Chain

-19-

In a Markov decision process, shown in Figure 2-2, the transition

probabilities depend on inputs that are provided to the system by a
decision-maker. Input u(k) determines the manner in which s(k+1) evolves
probabilistically from s(k). If inputs are selected on the basis of the

most recent state alone, then the system becomes a Markov chain.

see —»35(k-1) - N 5(k) NN S(kH]) — e

u(k-1) u(k)
Figuie‘Z;Z. A Mérkdv.Decision Pfocess

A partially-observable Markov decision process, shown in Figure 2-3,

combines a Markov decision process with a process of noisy outputs. Out-
put y(k) depends probabilistically on s(k) alone. It is easy to see that
a partially-observable Markov decision process is entirely equivalent to
a Markov decision process whose state at time k consists of the pair
[s(k),y(k)l; y(k) thenbecomes a perfect observation of the second state

component, and is referred to as an "incomplete" state observation.

y(k-1) y(k) y(k+1)

o0 —»5(k-1) =N s(k) NN s(kH) - e

ulk-1) u(k)

Figuﬁe 2-3. A Partially-observable Markov Decision Process

-20-

/Y(k-l) /y(k) /y(k+1)

7\ Y\

coe —os(k-1) AN 5(k) AN s(k+1) eee

u(k-1) u(k)

Figure 2-4. A Finite Probabilistic System

A finite probabilistic system is shown in Figure 2-4. Output y(k)

now depends probabilistically on s(k~1), u(k-1), and s(k), and may be
thought of as a noisy measurement of the most recent state transitiom.
Yet, an FPS is always equivalent to a Markov decision process whose state
at time k consists of the pair [s(k),y(k)]}. Thus, every.partially—
observable Markov decision process is an FPS, and any FPS may be trans-

formed into a partially-observable Markov decision process. The dis-

tinction between the two lies in their representations, i.e. in the
notation used to describe them.

Since s(k) depends probabilistically on s(k-1) and u(k-1l), the pair
s(k) and y(k) may be viewed as random vafiabies that depend jointly on

s(k-1) and u(k-1). In this form, the dynamic evolution of an FPS is

-21-

entirely described by an array of probabilities for the state and output,
conditioned on the previous state and input. Except for the requirements
that the input, output, and internal state sets be finite, and that

dynamics be stationary, an FPS is totally unstructured.

The formal definition of an FPS can now be given.

(2.1) Definition. A finite probabilistic (dynamical) system (FPS) is

a 5-tuple (U,Y,S,'H(O);{P(ylu) : yeY, uelU}) where:

(i) U is a finite nonempty set of input values (or decisiomns);

(ii) Y is a finite nonempty set of output values (or observations);

(iii) S = <1,N> is a finite nonempty set of (internal) state values;

(iv) w(0) is a stochastic N-vector of initial state probabilities;

(v) Each P(y|u) 4is an NxN substochastic matrix of state transition

probabilities, and Zer P(ylu) is stochastic, VuelU.

The dynamic evolution of an FPS is described in the following terminology:

1. The initial state s(0) assumes value i with probability ﬂi(O).
2. When a decision-maker specifies input u(k), that input is said
to be accepted by the FPS. Output y(k+l) is subsequently emitted
by the FPS,
3. Given that an FPS in state s(k)=i accepts input u(k)=u, it
will undergo a transition to state s(k+l)=j and emit output
y(k+1l)=y with probability Pij(ylu), conditionally independently of

the "past history" {s(k')} {uk")}

ke<0,k-1>° k'e<0,k-1>

-29-
{y(k")}

k'e<1,k>

4. The Markov decision process consisting of the internal state

and input processes of an FPS is called the underlying pro-

cess (of that FPS). It is described by the stochastic
matrices {zst P(y|u) : uev} .
5. The time set is <0,K> . The terminal time K is called the

horizon.

b. Alternate Representations.

The expression 'finite probabilistic system" is used in accordance
with a classification of systems by Kalman, Falb, and Arbib [1969]. The
notation used to specify dynamics for a particular FPS is that of Paz
[1971]. 1It is also called the Mealy form of a FPS, in consideration of
its similarity to the Mealy form of a deterministic machine. The Moore
form is an alternate representation in which y(k) is expressed as a
deterministic function of s(k) alone.

Yet another representation is that of Drake [1962}. Here the
transition probabilities of the underlying process are provided, along
with a matrix of conditional output probabilities, given internal states.
A transformation to Mealy form is readily effected, although some care
must be taken to insure that inputs, outputs, and time changes are defined
to occur in the correct order, i.e. that y(k) is emitted before u(k) is

accepted.

-23-

c. Some Important Classes of FPS's

(2.2) Definition. An FPS is state-observable if each transition pro-

bability matrix P(y[u) has at most one non-zero column.

Interpretation: In a state-observable FPS, the internal state may be

deduced from the most recent input-output pair alone.

Example: A Markov decision process is a state-observable FPS.

(2.3) Definition. An FPS is state-calculable if each row of a transition

probability matrix has at most one non-zero entry.

Interpretation: In a state calculable FPS, knowledge of the previous

internal state, along with the intervening input-output pair, is suffi-

cient to determine the present state.

Example: Consider a queuing system, in which only the numbers of arriving
and departing "customers" (over each discrete time interval) are observed.

This system may be modeled as a state-calculable FPS,

(2.4) Definition. An FPS is free if its input set contains exactly one

element.

-24—
Remark: A free FPS may be viewed as a '"‘partially-observable Markov chain"

(Drake [1962]) or "stochastic process of finite rank" (Paz [1971]).

d. Specification of the Input Process

A rule for the selection of inputs to an FPS will be called a

(decision) strategy. A strategy Y is specified by a probability dis-

tribution for u(k) conditioned on the past history [s(0),u(0),v(1),s(1),
eeesy 8(k=-1),u(k-1),y(k),s(k)]; however, this representation is cumber-
some. It is far more convenient to consider the input process to be
generated by a dynamical system called a controller, which is a controlled
Markov process having input and state sets to be determined, and output
process {u(k)} .

A particular description of a decision strategy as a dynamical
system is called a realization of that strategy. Naturally some reali-
zations are more concise then others. A decision strategy satisfies a

finite-memory constraint if it has an FPS realization with input process

{y(k-1)}. 1In this report, consideration will be limited almost exclu-
sively to decision strategies that can be realized by deterministic time-
invariant finite-state automata.

The interconnection of an FPS with decision strategy <Y causes the
former's input, state,and output processes to become stochastic processes;
the resulting system may or may not be an FSP, depending on the size of
its state set (which must include all information required to describe

future inputs). This system will be called the free system induced (on

EL

-25-

the FPS) by strategy Y , or, more informally, the system under Y .

If <y satisfies a finite-memory constraint, then the system under Y
may be represented as a free FPS whose state is a doublet consisting of
both the plant and controller states.

The output process of a free FPS is a stochastic process, since
the probability distribution of system variables (states and outputs)
is well-defined. Such is not the case if U contains more than one ele-
ment: y(1) then depends on u(0), which is not a random variable (since
no probabisistic rule describing it has been provided). The
interconnection of an FPS with a decision strategy 7Y causes all
system variables to become random variables. A probability measure,
denoted ProbY , Which describes these variables, is specified by the

induction:
Proby'{s(0)=i} = 73 (0).
PI‘ObY {S(k')=sk| s u(k')=ukv > Y(k'+l)=yk, , Vk'e<0,k-1>

and s(k)=i, u(k)=u, y(k+l)=y, s(k+l)=j}

ProbY {s(k')=sk,, u(k')=uk,, y(k'+l)=yk,, Vk'e<0,k-1>
and s(k)=i}

Prob {strategy Y causes u(k)=u to be selected]

s(k')=sk,, u(k')=uk,, y(k'+l)=yk,, k'e<0,k-1> and s(k)=i}

Py Grlw. (2.5)

-26-

Informally, ProbY is called the probability under (strategy) Y.

(2.6) Definition. Ey{'} denotes expectation with respect to probability
measure Prob,Y {+}, i.e. expectation given that inputs are selected

according to strategy Y.

Notation: Subscript <Yy may be omitted in ProbY {*} and EY {+} when

the probability or expectation is the same for all strategies.

e. The Information Vector

(2.7) Definition. The stochastic N-vector mn(k) having components
n,; (k) = Prob {s&)=1i|u(0)... u(k-1); y(1)... y(k)}

will be called the information vector at time k.

It is well known that n(k) is a sufficient statistic for the
estimation of future dynamics given past inputs and outputs; this is a
trivial result of the Markov property of the internal state. The

following result is similarly self-evident.

(2.8) Proposition. The information vector may be recursively computed
according to Bayes' Rule:

n(k+l) = T(n(k), u(k), y(k+l)),

where T is the information vector transition function

T(n,u,y) = nP(y|u) / (MP(y|u)l)

-27-
Because n(k) is a sufficient statistic, desirable decision
strategies may be realized by a deterministic machine having state
process {n(k)} . Such a decision strategy would be completely
described by a policy on HN , i.e. a mapping from HN to U speci-
fying the input to be applied when the information vector has a given
value. This traditional approach to controller realization leads
to horrendous computational difficulties which have yet to be resolved.+
The main contributions of this research are approximation schemes for
n(k), and associated realizations which avoid the use of HN as an

observer or controller state set.

f. Rewards and Performance Indices

It is convenient to place a mechanism for evaluation of decision
strategies within the conceptual confines of the system itself. To
this end, consider the process of incremental (immediate) rewards
{r(k)}, each of which is determined from system variables s(k), u(k),
y(k+1), s(k+l),on the basis of a given array {r[i,u,y,j] : i,jeS,

uel, yeY} , according to the rule

r(k) = rls(k), u(k), y(kt+l), s(k+l)]

+ . . . R . . R .
See the discussion, in Section 4, of previous work in this field.

-28-

(2.9) Definition. A valued finite probabilistic system (VFPS) is an

FPS along with an incremental reward array, as described above.

(2.10) Definition. The performance index is a function of the

decision strategy, taking one of the following forms:

(a) Finite horizon:

g({b(k)} L) = E AT b0 (0}, Ke<o,o>

ke<0,K

(b) Discounted infinite-horizon:

_ ® ok
g(B,Y) = (1—B)EY{Zk=O B r(k)}, 0<B<l.

(¢) Undiscounted infinite-horizon:

g(y) = lim infBﬂ [g(B,Y)].

Remark: The undiscounted performance index g(*) is generally equivalent

K
to the "time-averaged reward" 1lim ian_)m E {l z 1

& k=0 r(k)}. For a

discussion of the conditions under which these indices may differ, see
Flynn [1974]. The definition given above is more convenient, especially
when relative values are considered, since these converge as (R+1.

The incremental reward process may be replaced by a process of

expected incremental rewards {q(k)} defined by

qk) = 9s (k) (u(k)) (2.11)

-29-
where

q; (u) = Zies Lyey Pij(ylu) rli,u,y,j] (2.12)

denotes the expected reward given that s(k) = i and u(k) = u.

Clearly the substitution of process {q(k)} for {r(k)} in (2.10)
leaves the value of a performance index, for a particular decision
strategy, unchanged.

Also define

Q = max, max
max ies

[q, ()]

uel

Qin = Mnjeg By [9; (W]

Fol
]

Qmax - Qmin ‘ (2.13)

-30-

g. Classification of Problems

The problems of interest fall into three categories. The first
of these is given the name estimation. The finite-memory estimation
problem is to learn as much as possible about the current internal
state, subject to a finite-memory constraint. Note that in the absence
of this constraint, the problem would be trivially solved by computing
the information vector according to (2.8). This can in fact be accom-
plished if the set of values assumed by the information vector is
finite, as occurs when the FPS is state-observable or when a finite
horizon is contemplated. In general, however, the information vector
cannot be exactly computed on the basis of finite memory; the greater
the memory allowance, the better the approximation will be. The
problem is more accurately described as that of constructing a sequence
of finite-memory observers, (i.e. systems accepting plant outputs) that
generate successively better approximations of the information vector.
A suitable tradeoff between memory size and estimator quality can be
made by the designer after this sequence has been computed, up to a
maximum acceptable memory size.

The second problem is given the name statistical decision. It con-

cerns a VFPS in which the transition probability matrices do not depend
on u. The problem is to maximize a performance index of the form
specified in (2.10). This problem may be solved by constructing a
finite-memory observer, and using the information vector approximation

as the basis for decision-making. A typical statistical decision

-31-

problem is to guess the value of the internal state, according to an
array of rewards (penalties) for correct (incorrect) decisions.

The third problem, that of control, is to determine a decision
strategy which optimizes a performance index, necessarily taking into
account the effect of current decisions on future plant behavior as
well as future estimation accuracy. The Machine Maintenance and Repair
Problem (1.1) falls into this category.

Since statistical decision is a special case of control, these
problems are collectively referred to as FPS control problems. In
such problems, as in estimation, a finite-memory optimum may not exist.
The problem is then to construct a sequence of controller designs in
which memory requirements increase and performance improves, approaching
a supremum feasible value. Note that the problem is not to maximize
performance subject to a given bound on memory size: such a formulation
may lead to an artificial situation where the performance of mixed
(randomized) strategies exceeds that of pure (deterministic) ones, thus
defeating the main purpose of a memory constraint, which is to limit

controller complexity.

-32-

3. Illustration of the Solution Procedure

The Machine Maintenance and Repair Problem, first described in
(1.1), will now be precisely formulated as an undiscounted infinite-
horizon FPS control problem, and solved by perceptive dynamic program-
ming. The solution is also documented (in somewhat greater detail)

in Section 23a.

a. Problem Formulation

Consider a single machine which can produce a single item, the
product, during each production cycle. The machine contains two
identical components, subject to failure, each of which must operate
on every product. Depending on the status of the machine, the product

may be defective or nondefective. There are four control alternatives

(inputs) available during each production cycle. One is to manufacture

an item. The second is to manufacture an item, and then to examine it,

so as to determine whether or not it is defective. 1In the third

alternative, the machine is dismantled and inspected (at a cost); any

component found to be defective is replaced. The fourth alternative

is to replace both components, whether or not they have failed.
Although the plant would appear to have four internal states

(each of two components is operational or has failed), the number of

states can be reduced to three if it is recognized that the order in

~-33-
which components fail is unimportant. Thus the state set is taken

N

to be:
1 : All components are operational)
S = 2 : One component has failed s

3 : Both components have failed

The four inputs are:

Examine

e

: Manufacture)‘

~ oW N M

Inspect j
¢ Replace

The three outputs are:

1 : No information
Y = 2 : Non-defective product observed
3 : Defective product observed
Probabilistic rules governing the breakdown of machines have

been modeled as follows: Both components are initially operational.
There is a probability of 0.1 that an operational component will
fail during the manufacture of a product, independently of the
component's age and the condition of the other component. If a com-
ponent fails prior to or during the manufacture of a particular item,
it causes that item to be defective with probability 0.5. Thus the
initial probability vector is m(0) = (1, 0, 0), and the transition

probability matrices are:

0.81 0.18 0.01
0.101} ,
0.00 0.00 1.00J

P(1|1)

L]
o
(=3
o
o
O
o

0.81 0.09 0.0025
P(2]2) 0.00 0.45 0.0250],
[0.00 0.00 0.2500

'0.00 0.09 0.0075
P(2|3) = [0.00 0.45 0.0750],
0.00 0.00 0.7500
1. 0. O.
P(1]3) = p(1|4) = [1. 0. oO.|.
1. 0. O.

The value of an item produced is one unit if it is nondefective,
zero units otherwise. The cost of examination is 0.25 units. New
components cost a unit apiece, with an additional charge of 0.5 units

for inspection. Hence, the expected incremental reward vectors are:

0.9025 0.6525 -0.5 -2
q) = |0.4750 |, q(2) =|0.225¢c], q(3) = |-1.5{, q(&) =]-2].
0.2500 0.000C ~2.5 -2

The performance index is undiscounted profit over an infinite horizon.
The Markov decision model for machine maintenance was introduced

by Drake [1968]. The numbers used here were originally devised by

Smallwood and Sondik [1973], to illustrate a computational algorithm

that solves finite-horizon FPS control problems.

~35-

b. Solution Procedure

A solution to this problem is obtained in several iterations. In
each of these, a Markov decision problem willbe solved, yielding a
controller design, as well as bounds that contain the performance
of the optimal controller and that of the design most recently
obtained. In early iterations the bounds will be loose; but as com-
putations become more intricate, the bounds will become closer;
eventually they will coincide.

In the first iteration, assume that the controller knows the true
value of the internal state at all times. (The artificial assumption
that a controller has the ability to "see" internal states by means
other than computation based on system outputs, will be known as per-—
ception.) A Markov decision problem that is readily solved (e.g. by
Howard's algorithm, described in Howard [1960]) results, yielding the

optimal policy, relative value vector, and optimal gain:

= 10.500|, g = .5147.

1 (l) 1 2.517 1
s V
0.000

This will be called a perceptive solution. Since the (perceptive)

controller which achieved the gain .5147 had access to more information
than will be available in reality, it follows that .5147 is an upper
bound on feasible performance.

The strategy obtained in this iteration is called a perceptive

strategy. It might also have been feasible if the optimal input had

v v~

-36~
been the same for all states; but such is not the case; and so it
cannot be applied in practice. However, a feasible controller
realization might make use of the optimal perceptive strategy in the
following way: a value for the current internal state is guessed and
the corresponding optimal input is applied. Since this is the first

iteration, the guess must be made of the basis of no real-time in-

formation whatsoever. Suppose, for example, that the guess is

"state = 1" at all times. Then input 1 will be selected at all times;
both machine components will eventually fail; and a gain of 0.25
results.
On the basis of these computations, it is concluded that:
1) The optimum feasible performahce lies between
0.25 and .5147;
2) There is a feasible solution, requiring no memory,
which achieves a performance of 0.25.
In the second iteration, a new internal state is devised, taking

the form:

x(k) = [s(k-1), u(k-1),y(k)].

Clearly x(k) is the state of a controlled Markov chain, and a new
FPS representation may be devised in which inputs, outputs, and
rewards remain as before, but the internal state is x(k) at time

k (see Brookes and Leondes [1973]). This called an augmentation of

the original FPS. Since there are only four functionally

-37-
distinguishable input-output pairs, these may be coded and given the

representation z(k), according to the following table:

u(k-1) y(k) z(k)

FPLWNN R
HHWN R
ERrWNRH

Using the 12 states of the form x(k) = [s(k-1), z(k)], a new Markov
decision problem is solved to obtain a new perceptive solution. How—
ever, the perception is "weaker" this time, and the optimal perceptive
gain decreases to .4945. The optimal perceptive strategy is again
unfeasible, and a feasible solution will be constructed by guessing

the internal state delayed by one time unit, the guess being based on

knowledge of z(k). For example the state guess might be §(k-1) = 1
when z(k) = 1,2,4, and 8(k-1) = 3 when z(k) = 3. In this case input
1 will again be selected at all times, and the feasible gain is 0.25.
On the basis of these computations, it is concluded that
1) The optimum feasible performance lies between
0.25 and .4945;
2) There is a feasible solution, requiring 4 memory states

states, which achieves a performance of 0.25.

In subsequent iterations, x(k) will take the form x(k) = [s(k-2),

z(k)] where z(k) is the memory state, a string of £ most recent

z-coded input—output pairs. The rules by which a memory state may be

. ep—————

~38~

constructed are rather complex, so for the moment regard the memory
state during iteration n as the string of (n~l) most recent z-coded

input-output pairs:

z(k) = z(k+l-m) z(k+2-n) ... z(k-1) z(k)

As computation proceeds, the bounds on feasible performance become
closer and closer. Intuitively, this occurs because, as the memory
state becomes longer, the augmented state component that is perceived
or guessed is an internal state with greater delay, whose influence on
the present information vector is weaker. In this particular problem,
the bounds eventually coincide. On the ninth iteration, only eight
memory states are ''recurrent" under the optimal strategy, and for each
of these, the optimal input does not depend on the delayed state com-
ponent of the augmented state. The optimal inputs are in fact given

by the deterministic sequence:

{u@®} = {1,1,1,1,1,1,1,3, 1,1,1,1,1,1,1,3, ... }

Eight memory states are required to realize this sequence, using a

finite-state automaton. The optimal gain is g% = .422.

c. Discussion.

The optimal decision-making strategy is remarkably simple; but

this is merely a consequence of the peculiar rewards specified in this

-39~
particular problem. For example, first-iteration computations show
that the performance achievable with perfect state information is
.5147, and the performance achievable on the basis of no information
whatsoever is .25. Thus the value of perfect state information is
no more than .2647. Examination, which costs .25 and yields little
information about the state, appears unlikely to be useful; on the
ninth iteration, this option will be eliminated entirely. Had the
cost of examination been lowetr, or the information acquired through
examination more useful, the solution might have been considerably
more complex, requiring thousands of controller memory states. An
optimal solution might not have been obtained at all.

In fact, the method described above cannot be used to generate
a solution, since the final iteration would involve a 3'48-state'
Markov decision process! The algorithm that was actually used to
solve the Machine Maintenance and Repair Probleﬁ is described in
Section 22, and the solution obtained is reproduced in Section 23a,
in this report.

The importance of perceptive dynamic programming as an engineering
tool is derived from the outcome of early iterations, rather than the
solution itself (if any is obtained). During iteration n, two quanti-
ties of interest are computed. The first of these,gn, is an upper
bound on performance that can be achieved if the (n-1) most recent
inputs and outputs constituterthe only available information concerning

the (n-1) most recent transitions, although states further delayed

-40-
might be perfectly known. The second, hn, is a lower bound on the
performance that can be achieved if decisions are made on the basis
of the (n-1) most recent inputs and outputs alone, and all other
information is discarded. Consequently gn-hn is an upper bound on

the value of information concerning events delayed by (n-1) time units.

In a practical engineering problem, it is reasonable to assume
that there exists a way to measure the internal state exactly, although
the cost associated with such a measurement might be exhorbitant.
When gn—hn remains large for large n, this indicates that greatly
delayed perfect state information remains significantly useful for
purposes of decision-making, which in turn suggests the option of
periodically measuring the internal state exactly. If the interval
separating perfect state measurements is large, then the average cost
of periodic state measurements will be small, controller memory will
have been reduced and performance enhanced. On the other hand, if
gn—hn converges rapidly to zero, this indicates that information
sufficiently delayed is of little value in decision-making, and that
a near-optimal strategy having reasonable controller memory require-

ments, can be constructed.

d. Summary

Perceptive dynamic programming is a computational procedure that .
may be used to examine problems of decision-making,under uncertainty

contraints,with perfect recall of all information previously obtained.

m s ———————

e r—— e n - —

41~

This is done by considering a sequence of problem approximations in
which information dealing with events sufficiently delayed is either
superceded by the “perception" of delayed state values, or ignored.
The difference between .performances achieved under these information
constraints establishes a value of delayed information which may be
compared with the cost of periodic state measurements, the cost of
retaining greatly delayed outputs in controller memory, and the cost
of continuing the design procedure. In the Machine Maintenance and
Repair Problem, the value of delayed information rapidly approached

zero, and an exact optimum was obtained.

42—

4. Historical Perspective

An FPS decision theory may be associated with several disciplines.
Some of these are listed below, along with representative references;
this list is by no means intended to be exhaustive. Since an FPS is
a probabilistic automaton, and the decision strategy is represented
as a finite-state machine, the study of FPS's is closely related to

probabilistic automata theory; see Paz [1971] for a summary of

recent trends in this field. Since the assessment of unknown state
values is involved in decision-making, a theory of FPS decisions is

related to statistical decision theory in the sense of DeGroeot [1970].

FPS control problems are problems of stochastic control; the intro-

ductory text of Kushner [1971] is a standard reference. Analysis of

the optimization problem in an appropriate (infinite-dimensional)

vector space makes use of techniques described by Luenberger [1969].

Finally, an FPS is a dynamical system; its study therefore belongs to

what Kalman, Falb, and Arbib [1967] describe as the "exciting but
chaotic new field of system theory."

Most of these disciplines are generally considered to be out-
growths of the pioneering work of Von Neuman and Morgenstern [1947].
A theory of statistical decisions was subsequently initiated by Wald
[1950]. The importance of the concept of state in structuring

sequential decision problems was enunciated by Richard Bellman [1957b];

-43-
which may be applied to the optimization of sequential decisionms.
The finite-horizon Markov decision problem (Bellman [1957a]) is par-
ticularly well-suited to solution by dynamic programming; also see
Howard [1960], Derman [1970],Mine and Osaki [1970], Ross [1970],Howard
[1971], Hastings [1973], and Bertsekas [1976].

Because Markov decision problems can be solved, and because
structural properties of the solution are fairly well undersfood, a
great deal of effort has been devoted to improving the algorithms
employed. Schweitzer [1973] has complied a list of hundreds of
publications in this area. Among these, Brown [1965], Lanéry [1967,
1968], Bather [1971] and Schweitzer and Federgruen [1977?] have
studied convergence properties of value iteration, which is regarded
as the most efficient form of dynamic programming; see Odoni [1967]
for a comparison of coﬁvergence rates in various dynamic programming
forms. The basic value iteration procedure has been supplemented
and improved in many ways: D.J. White [1963] introduced a method
for normalizing value functions in drder to avoid divergence; Odoni
[1967, 1968] generalized a result of MacQueen [1966] to obtain a
method for bounding the closeness of suboptimal solutions to the
optimum; Schweitzer [1971] accelerated value iteration by adding a
damping term; Hastings[1976] devised a procedure for more efficient
enumeration and termination when the optimum has been reached; the
applicability of value iteration was extended by Platzman [1977] who

introduced the concept of connected classes in Markov decision

44—
processes. Value iteration iscurrently feasible for problems with
thousands of states (Schweitzer [1971]).

Partially-observable Markov decision problems have been studied
by Drake [1962], Astrom [1965, 1969], Sawaragi and Yoshikawa [1970],
and other as noted below. In each case, the problem was regarded
as one of decision-making with perfect state information, considering
the information vector to be the state of a transformed system. How-
ever, the number of values which may be assumed by the information
vector is infinite. Thus the problem becomes one of dynamic programming
on the unit simplex HN (an infinite state set), and describing an
optimal decision-making policy,which is a finite-valued function on
HN. Kaklik [1965] approximated the unit simplex by a finite grid of
evenly spaced points; needless to say, the method failed to be practi-
cal for all but very small problems. Sondik [1971] (in research also
reported by Smallwood and Sondik [1973]) established piecewise-
linearity of the value function and finite-memory realizability of the
optimal strategy in finite-horizon problems; however this too fails to
be feasible if the number of faces on the value function is large.
Existence of solutions to discounted problems was established by Sondik
[1971] and by Satia and Lave [1973]. C.C. White [1976] has shown that
these results are also applicable to a class of partially-observable
semi-Markov decision models that are externally indistinguishable

from a discrete-time partially-observable Markov decision process.

45~

Existence of finite-memory solutions to certain infinite-horizon
problems had been noted by Drake [1962, 1968]. 1In the.context of
statistical decision on a noisy Markov channel, this work has been pur-
sued by Sulmar [1974] and Devore [1974]. Sondik [1971] provided an
intuitive explanation for this phenomenon; his work inspired the de-
finition of detectability in the present research. Similar results,
regarding the near-sufficiency of a finite string of most recent
observations, have been obtained by éerni [1969] and Kajser [1975].
Systems with perfect but delayed state observations were introduced by
Brookes and Leondes [1973].

Finite-memory hypothesis-testing and N-armed bandit problems have
been studied by Cover and Helman [1970], Hellman and Cover [1970a],
Cover, Freedman, and Hellman [1976], and others noted both in these re-
ferences and in DeGroot [1970]. One may observe, from the titles in
subsequent correspondence between Chandresekarin [1970, 1971] and Hellman
and Cover [1970b], that there is some controversy over the meaning of
this problem. Chandresekarin and Lam [1971] have subsequently proposed
an alternative formulation. The issue involved is the manner in which
memory should be allowed to increase as performance approaches its
supremum value. Similar issues arise in the solution of FPS control pro-

blems; they are discussed in Section 20 of this report.

46—

5. Outline of Original Contributions

The aim of this research is to construct finite-memory observers,
to devise a method for bounding the value of information in decision-
making, and to establish a feasible computational procedure for the
design of e-optimal finite-memory controllers. Such results are
meaningful only when supplemented by mathematical machinery which
justifies their validity. This section provides an heuristic inter-
pretation of concepts and intermediary results that are introduced
for the first time in this report, and which contribute significantly

to an understanding of the main results.

a. Ill-posedness of certain undiscounted infinite-horizon problems

Consider a "dual control" problem described by the VFPS:

Y

{1,2},

v = {0,1,2},

TT(O) = ('53 '5)>

N =2,
-
.6 0 0 .4
P(1]0) = , P(2[0) = ,
0 .4 .6 0
5 0 0 .5
P(1]1) = P(1]|2) = P(2]|1) = P(2]|2) = ,
0 .5 .5 0

~47-
_ 10 11 _i0
q(o) - [0]3 Q(l) - [O:I H q(2) - [l:l . (5-1)
The inputs may be assigned the meanings:
¢ Obtain a measurement

0
U ={1 : The state is probably 1;.
2 : The state is probably 2;

The outputs, likewise, are interpreted as:

The state remained unchanged!
The state changed)
It is clear that use of input 0 causes the information vector to
approach a unit vector, and use of inputs 1 or 2 causes the values of
information vector entries to remain unchanged. Hence, when input O
is used, information is gained, but no reward is received; when inputs
1 or 2 are used, a reward is received, but no information is gained.
If a discounted performance index is considered, then use of
input 0 will eventually be discontinued. This is true because a
decision-maker in information state (l-£,€) stands to gain no more
e/ (1-B) by seeking further information, and receives an expected re-
ward of 1-¢ if he forgoes further information. As B>1, the point at
which use of input 0 is discontinued becomes more and more distant.
In the undiscounted case, the value of perfect state information (i.e.
a unit information vector) is infinite, relative to the value of any
information vector that is not a unit vector. A decision-maker con-

fronted with an infinite horizon will therefore choose input 0 at all

Lo

B

-48-
times. Consequently, he will receive no reward at all. E. Denardo
calls this "the infinitely-delayed splurge."

The infinitely delayed splurge may be avoided in a number of ways.
One way is to consider only discounted performance indices. Another
is to assume that the decision-maker has access to an infinite past;

he will then know the initial state exactly. However, it does not

suffice to require that the underlying process be ergodic. In this
problem, the internal state process consisted of independent Bernoulli

trials; and yet the infinitely delayed splurge occurred.

b. Sufficient conditions for well-posedness

Two conditions which (together) are sufficient to assure well-
posedness of an undiscounted infinite-horizon FPS control problem are

now identified. The first, reachability, is a generalization of

connectivity in Markov decision processes. In a reachable FPS, it
is possible to select a finite sequence of inputs, on the basis of
the information vector alone, so that the probability of entering a

specified state is greater than 1-p, where p is the reachability

index. If p=0, then there are reset actions that cause the state to
assume any desired value with probability one. As p increases to
1, it becomes more difficult to reach a desired state. If p=1, then
the FPS is not reachable. Reachability is also parameterized by lp s

an upper bound on the number of transitions required to 'reach" a state.

e gk e e o al

i,

—49-
It will be demonstrated that the state set of any FPS may be

decomposed into connected classes, along with a (possibly empty) set

of transient states. Within any connected class, the FPS will be

reachable. The underlying process of a reachable FPS "looses memory"
as it proceeds forward in time, in the sense that unconditional state
probabilities in the future depend less and less on the present state.

The second condition has been given the name detectability. In

a detectable FPS, the information vector is increasingly insensitive
to increasingly delayed information, such as inputs, outputs, or
artificially perceived states. A more precise definition of detec~-
tability is deferred to section 5d, where appropriate metrices and
contractions will be introduced. Detectability is characterized by
parameters & and O 5_;'< 1, where information concerning events
delayed by ¥ time units causes the information vector to vary by a
distance not exceeding ;; on the average. If a=0 then information
sufficiently delayed is of no value in decision-making. If a is close
to 1, then information greatly delayed is important in decision making,
and conversely, the present decision will affect many decisions to
come. If EQI, then the FPS is not detectable.

It will be demonstrated that the information state set of an FPS

can be decomposed into detectable classes, along with a (possibly

empty) set of null-recurrent information states. The information

process of a detectable FPS thus looses information as it is viewed

backward in time, in the sense that the present information vector

ELN

i,

i

~50-
depends less and less on state values from the increasingly distant
past.

The conditions of reachability and detectability are comple-
mentary, in a manner similar to controllability and observability in

linear systems.

c. A Bound on the Value of Information

A key result, Theorem (19.3), states that any infinite-horizon
FPS control problem satisfying conditions of reachability and
detectability has a convex relative value function v*(+) satisfying:

(2 +2)Q
{v¥(m)} - min

{vx(m)} < —
melly ~ (1-p) (1-3)

il
o]

max (5.2)

'lTEZHN

where Q is given by (2.13). The expression on the right of (5.2) is

interpreted as the bound on the value of information. v* may become

undefined as p>1 or a~+1.

d. Metrics and Contractions

Consider §&[m,m'] = Zies(ﬂi—wi)+’ the Hajnal measure, which is

extensively used (asdescribed in Paz [1971]) to demonstrate convergence

of unconditional probability vectors, in the theory of ergodic Markov

chains. A more appropriate metric for the study of conditional pro-

bability vectors is

-51-
Alm,m'] = sup{S[mow,m'ow] : weHN , w0} (5.3)

where Tow is a vector in HN having elements (’now)i = ﬂiwilziasﬂiwi'

It will be shown that:

§[m,m'] < Alm,m'] < 1 (5.4)
and
l—Vclc2
Alm,m'] = """ (5.5)
1+»/clc2
where:
= md [X 1
c; mln{ﬂi/ﬂi) : ieS, m> 0},
(5.6)
= mi ' . 3
cy mln{ﬂi/ﬂi) ¢ des, m > 0}.

The topology induced by A on HN has many interesting properties which
are explored in Section 12d. For example, any convex function is con-

tinuous with respect to A; in particular:

vIrl}l (5.7)

{vim]} - min

N melly

v[r] - v[m'] < A[ﬂ,ﬂ']A[maxﬂgH

Now consider an input-output pair (u,y) such that P(ylu) is

subrectangular, i.e. Pij(ylu) > 0 and Pi,j,(ylu) > 0 implies

Pij,(y]u) > 0 and Pi,j(y|u) > 0. Let

al(u,)] = max, (AT u,y), ! um].

Now O < a[(u,y)] < 1, a consequence of the subrectangularity of P(y|u).

-52—

The contraction property is:

A[T(n,u,y), T(n',u,y)] < alu,y) Aln,n'] (5.8)

This is illustrated in Figure 5-1. It is seen that (u,y) causes

the unit simplex to .be mapped into a somewhat smaller set. The
greater the number of recent input-output paifs available, the smaller
this set will be; Hence, the assumption that the information vector

% times delayed had some convenient value, allows an approximation

of the information vector to be computed on the basis of the most
recent % input-output pairs alone. This approximation is guaranteed
to be with a certain distance of the true value; that distance can

be computed by measuring the contraction imposed on the information
vector by the transition probability matrix corresponding to the most

recent { input-output pairs.

Figure 5-1,

Contractions on the Unit Simplex

S —— —

o

-53-

In the establishment of detectability, subrectangularity plays
a role analogous to that of block rectangularity in the establishment
of connectivity in Markov chains. An FPS satisfies a condition of

strong detectability if there is an integer 2 such that, for every

possible sequence of consecutive input-output pairs (ul,yl)(uz,yz)

ces (uz,yg), the cumulative transition probability matrix P(yllul)
°;P(yé|u2)P(ykluz) is subrectangular. It follows, from the
contraction property stated above, that an estimate of the information
vector can be made arbitrarily close (in a A sense) by recalling a
sufficiently long string of recent input—-output pairs. In particular,
an estimate made on the basis of £ input-output pairs always lies
within ak%f of the true information vector, for some 0<I1.

Weak detectability is a condition which implies that the expected

deviation of the information vector estimate from its true value can
be made arbitrarily small in an analogous way. In a weakly detectable
system,.a denotes the average contraction induced by the most recent

% input-output pairs. The average contraction induced by the most
recent % pairs is now given by EQ'TQ'. a is a measure of detéct-

ability - which differs slightly from o .

e. Existence of e—optimal Controllers

Consider the relative value function for a reachable, detectable,

FPS. It will be seen that this function spans a range of values which

54—

(2 +2)Q
cannot exceed § = — . Thus, for any stochastic vectors
(1-p) (1-a)

ﬂ,ﬂ'eHN,

|v¥[m] - v*[1'1] < 4Q.

When state perception is introduced, the information vector
changes, at any given time, in such a way that the expected relative
value of the new information vector will be greater than that of the
old information vector. The difference between these quantities, called

the value of perception, is shown in Figure 5-2. If perception of

states with an 2 time-unit delay is assumed, then the gain will

2%249

~ 4(8 +2)Q
increase byat most o 2

—2:%
=a —
(1-p) (1~a)

The substitution of guessed state values for perceived states is

called pseudo-perception. If a delayed state value is guessed, then

the controller finds itself acting according to one information vector
while actually in another information state. The value of acting
according to a particular information vector is linear in the actual
information state, because E{value of acting according to nl|n(k)}

= ZieS ni(k)E{value of acting according to nl|s(k)=i}. Thus the cost

of pseudo-perception is as shown in Figure 5-3; this cost cannot

a&é@ 4% | _ a&%ﬁ 4“‘“@*“)Q

exceed —
(1-a) (1-p) (1-a)

Improvement
due to
Perception

Figure 5-2.

Deterioration
due to Pseudo~
Perception

Figure 5-3.°

_ .

Information "~ “Information
Vector with Vector with
Delayed Information Delayed
Perception of Vector Perception of
State 1 State 2

Geometric Interpretation of Performance
Increase Due to Perception

'

! / -
Information
Information Vector

Vector Assuming
Delayed Perception
of State 1

Geometric Interpretation of Performance
Decrease Due to Pseudo~perception

~-56~

An intuitive justification of these expression is provided by the
following argument. Consider an FPS where Rp = % = 1. Then it costs
Q/(1-p) units to reach a desired state, if it is assumed that the
state is perfectly observed. This is true because Q is the cost
(per unit time) of being in an undesirable state instead of being
in amost desirable state, and because the expected number of
transitions required to reach the most desirable state is 1/(1-p).
Suppose now that state uncertainty is introduced. Then the
uncertainty, caused when the most recent state perception occured 2
time units ago, is 2;2. Thus the value of a single perception,

delayed 2 time units,is

3140/ (1-p) 1 + T4/ (1-p)] + ... 2O [—HL
(1-0) (1-a)

The cost of pseudo-perception is similarly derived, resulting in

an additional factor of (145) in the denominator.

£. Feedback Realization of e€-optimal Controllers

The definition of an FPS, given in Section 2a, is structural
rather than functional. Much of the detail provided in the specifi-
cation of a particular FPS is irrelevant to an observer who has access
only to inputs and outputs. For example, the internal states of an

FPS may be reordered (by means of suitable row and column manipulations

-57-

on the initial state probability vector and transition probability
matrices) to obtain a new system which cannot be distinguished from
the first on the basis of input-output histories alone. Two or more
FPS's which are indistinguishable in this sense will be called equi-
valent.

A valued finite probabilistic system (VFPS) was defined as an FPS,
along with a reward structure which allows a performance to be assigned
to any control strategy. If two or more VFPS's consist of equivalent
FPS's, along with reward structures that result in identical performance
indices, these VFPS's will be called equivaleént.

The problem under consideration is to compute a control strategy
that optimizes the performance index corresponding to a particular VFPS.
The concept of equivalence is used to transform this problem into one
that is more easily solved: it suffices to compute a strategy which
optimizes the performance index corresponding to any particular
equivalent VFPS.

A convenient equivalent VFPS is constructed by a procedure known

as augmentation. Any augmented VFPS is completely described by the

original VFPS from which it was obtained, and a memory set, M, which

is a finite set of strings of input-output pairs. An observer is
required to select, from the memory set, the element that correctly
lists the largest number of most recent input-output pairs; this is called

the memory state. An augmented state consists of the internal state

delayed by a quantity equal to the length of the memory state, along

-58=-

with the memory state itself. Since the augmented state may be regarded
as the state of a controlled Markov chain, an equivalent VFPS having
augmented internal states in place of internal states may be constructed.

This VFPS is the outcome of augmentation induced by M.

An example of augmentation may be found in Section 3. During the
n—-th iteration, a memory set containing all strings of (n-1) input-
output pairs is employed. Thus the memory state consists of the (n-1)
most recent input-output pairs, and the augmented state consists of
the true internal state delayed by (n-1) time units, along with the
string of all intervening input-output pairs.

The perceptive or feasible strategy computed during an iteration
of perceptive dynamic programming determines inputs on the basis of
the current augmented state alone, and thus, it may be viewed as a

feedback strategy. This implies that the system under such a strategy

is a Markov chain, a fact that is useful in evaluating'feasible per-

formances.

~59~

6. Organization of the Report

Mathematical tools for the analysis of FPS's are introduced in
Chapter II. A brief outline of this chapter is given below. The
notation to be used in representing strings of input-output pairs is
presented in Section 7. The concepts of 'memory state" and "augmenta-
tion" are made precise in Sections 8 and 9. In the computational
technique of perceptive dynamic programming, it is assumed that the
augmented state (induced by some memory set M) can be "perceived" by
the controller; dynamic programming then yields a rule for optimal
(perceptive) decision-making, expressed as a policy on the augmented
state set. However the performance index is a function of strategy,
or rule for decision-making on the basis of all past inputs, states
and outputs. The relationship between a strategy and the policy which

realizes it is made precise in Section 10. Connectivity and reach-

ability are defined in Section 11l. It is demonstrated that both pro-
perties are preserved when the state is augmented. Sections 12 and

13 provide the basis for definition, in Section 14, of detectability.

This involves the development of appropriate metrics and contractions,
as discussed in Section 5d. Solutions to the finite-memory estimation
problem are then introduced. The final sections of Chapter II are
concerned with applicability of perceptive dynamic programming. In
Section 15, it is shown how any free FPS can be decomposed into
detectable parts; thus perceptive dynamic programming can always be

applied to each detectable component of the problem. Section 16

-60-
establishes that very few FPS's are equivalent to a state-calculable
FPS; were this not so, many FPS control problems could be solved by
dynamic programming alomne.

Chapter III is devoted to a study of the structure of optimal
controllers. The finite-horizon and state-observable cases are
reviewed in Sections 17 and 18. It is then demonstrated, in Section
19, that (under suitable assumptions) anoptimal strategy will exist,
although it may require infinite memory. In some cases, however, the
notion of an undiscounted infinite horizon is ill-defined, and the
problem is meaningless. An alternate formulation, in which irregular
features are constrained to finite-horizon consideration, is proposed
in Section 20.

Any optimal controller which requires infinite memory cannot,
in general, be described exactly. Chapter IV introduces a computa-
tional technique which allows the optimal performance to be approached
as a memory constraint is weakened. This technique, called perceptive

dynamic programming, approximates the problem as a Markov decision

problem solvable by dynamic programming. The approximation is obtained
by means of an assumption that delayed state values can be artifically
"perceived." Like dynamic programming, perceptive dynamic programming
is a general approach which can be realized in many ways; these are
discussed in Section 21. Results obtained by implementation of a per-
ceptive dynamic programming algorithm are then presented: a solution

to the Machine Maintenance and Repair Problem, and an analysis of a

-61-
computer communication problem.

Peripheral ideas, and conjectures regarding potential extentions
of the theory, have been collected in Chapter V.

A symbol table and glossary are provided to assist the reader

in assimilating the terminology and notation of Chapter II.

-62-

CHAPTER II

ANALYSTS OF FINITE PROBABILISTIC SYSTEMS

7. Input-output Words

Because strings of input-output words play a most important role
in the analysis of FPS's, it is essential that a compact notation be
developed for their representation. Such a notation is introduced in

this section.

(7.1) Notation. A finite string a = aj3,.00 3y of elements in set

A is called a word over A. Words are always identified by underscores.
The set of all words over A is denoted A*. £(a)is the length of word

a. e is the empty word (over any set). If a = aje.. 3y and

a'=al... a

1
1 k

!

then a a' =a,... a,a;... a, 1s called the concatenation

1 L

ae=ea for any word a. If A and B are

1
l.

of a with a'; clearly a
sets, then the concatenation AB denotes the set of words of the form a b
2 .
where acA and beB. A" is the set of words consisting of exactly % con-

. . L% . ‘et
secutive elements in A; A~ 1is the set of words consisting of up to %

consecutive elements in A.

(7.2) Definition. Z denotes the set of input-output pairs (u,y) such

that P(y|u) # O.

-63~

Remark: More generally, Z may be defined as the set of equivalence
classes of input-output pairs corresponding to identical non-zero
transition probability matrices. The tabulation of Z in Section 3 is

consistent with this alternate definition.

(7.3) Notation. The following objects will be used interchangeably:
1) a word over Z, i.e. a string of pairs (ul,yl)... (uz,yl), and

2) a pair of words over U and Y, respectively, having equal length,
ie. (u,y) = (ul... Ups Fpeoe yz). In a free FPS, the input component

of an input-output pair may be omitted.

(7.4) Definition. For z = (ul,yl)(uz,yz) .o (uz,yl)ez*, define
P(2) = B(y;lu)) * P,lu) oot Py lup).

Also P(e) is the NxN identity matrix.

Interpretation: Pij(g) = Pij((g}z)) is the probability that the FPS
will emit output word y and go to state j, given that it had been in

state 1 and that input word u was subsequently accepted.

(7.5) Definition. (a) I(2) {ies : Pij(g)#o, some jeS}

(b) J(z) = {jes : Pij(g)#o, some ieS}

—64—

Interpretation: I(z) is the set of states that may preceed the evolution

of input-output word z; J(z) is the set of states that may follow it.

(7.6) Definition. (a) Z+ = {zez* : P(z)#0}

2

w zTat,n?, L) = {zez* : 1IR(2)#0, TP(2)#0, ...}

. + . s .
Interpretation: Z is the set of input-output words that might eventually

2
evolve. Zl(ﬂl,ﬂ s +++) 1is the set of input-output words that might

. . 1 .

evolve when the information vector equals 7, and also might evolve when

s . 2
the information vector equals T , etc.

The information vector transition function was defined in (2.8) for
a one-step transition, i.e. the case where the information vector is
updated as soon as a single input-output pair becomes available. It is
possible to generalize this transformation to the case of a multiple-

step transition.

+
(7.7) Definition. For any nEHN » 2EZ (M),

T(n,z) = nP(z)/(nP(2)1).

(7.8) Lemma. If z z' ¢ Z+(n), then

T,z z') = T(T(n,2),z").

. -

i = -

—65-

8. Memory Sets and Memory States

This section makes precise the notion of a memory set, (a voca-
bulary of recent input-output pairs), and a memory state (a summary,
not necessarily complete, of recent input-output pairs, lying in the

memory set). Appropriate notation is first introduced.

(8.1) Definition. gﬁkl;kz) denotes the word of input-output pairs

that evolved between times kl and k2 . Specifically:

2(kp3k,) = (Qlk),y (k) (k) ,y (e +2)) ovn (ally=1),y(k,))))

(8.2) Definition. (a) "<" denotes the partial order on Z* defined by
z' <z if H_z_"E:Z* such that z' 2" = z.
(b) If M is a finite nonempty subset of Z* that .
is totally ordered by "<", then max[M] denotes
the unique element Z of M for which there holds

5_5_2, VzeM; min[M] is analogously defined.

*
{z'ez': z' < z}.

*
(c) If zeZ , then trunc[z]

1

(d) If z' < z, then z - 2' = z" where z'z"

Zz.

Interpretation: Recall that z is a word (i.e. a string) of input-output

pairs. z' < z is used to indicate that z can be split into two parts

so that z' matches the rightmost part. 2z = max[M] is a word in M having

the property that all words in M are rightmost substrings of z. min[M]

—m— - ————— -

—66—

is a word in M which is a rightmost substring of every (other) word in
M. trunc[z] is the set of rightmost substrings of z, i.e. truncated
versions of z. 2z-z' is what remains when the rightmost substring z'

is removed from z.

(8.3) Lemma. trunc[z] is a finite nonempty set which is totally ordered
by "<", and e € trunc[z].

It is now possible to formulate the following definition:

*
(8.4) Definition. A memory set M is a finite nonempty subset of Z

which satisfies

il

(1) M=)y

trunc{z]

and

(1i) M C [MzN{el}].

The memory state induced by M at time k is

E&(k) = max[MNtrunc[z(0;k)]].

Interpretation: The memory set may be arranged in the form of a left-

handed tree, called the memory tree, as shown in Figure 8-1. An arrow
from z' to z indicates that z' < z. The memory state at any time is
the element of M that correctly summarizes the largest number of most

recent input—-output pairs. Following Figure 8-1, a memory state may

-67-

(MM

L] y(-
%)(I)
. y
Gt)e,
(2)(1) y(k-1)=2 (1)
0 @ []

—
o
4
<
x
S
n
N
o

Time: | k-2 >je— k-1 l— K -

U= {l}i

Yy = {1,2,3],

1]

]

{e, (1),(2),(3), (1) (1), (2) (1), (1) (1) (1) }.

Elote: Since the FPS is free, the input component of]

an input-output pair may be ignored.

Figure 8-1. A Memory Tree

-68-

be constructed by following the tree, from right to left, as far as
possible. The first condition which M must satisfy in (8.4) guarantees
that a memory tree may be constructed, and hence that memory states will
be well-defined. The second condition assures that memory states can

be recursively computed, as demonstrated in (8.6) below.

%+ .
Example: Z (Z 1is a memory set. The memory state induced by that
memory set, at times ke<Q,o>, is the string of £ most recent input-

output pairs.

(8.5) Definition. The memory state transition function induced by M

is a mapping TM : Mx Z > M given by

TM[E}Z'] = max[MNtrunc[zz']], zeM, z'eZ.
.. M M. M
(8.6) Proposition. z (k+l) =T [z (k), (u(k),y(k+1))].
Proof: 1If Eﬁ(k+l) = e then the result is trivial. Now assume that

*
5¥(k+1)¢§, Then it follows that there exists a z'€Z such that

Eg(k+l) = z'(u(k), y(k+l)). But, by condition (ii) of (8.4),

Ey(k+1) max[MMNtrunc[z(0;k+1]]

| A

max[(MZU {eH)Ntrunc[z (0;k+1)]]

]

max [MZtrunc[z(0;k+1)]]

-69-

[

max [MZNtrunc[z(0;k) (u(k) ,y(k+1)) 1]

210 (w(),,y (kL)) .

So Ey(k+l)€Mﬂtrunc[§¥(k)(u(k),y(k+l))], and hence
M M
z (k+l) < max[Mtrunc[z (k) (u(k),y(k+1))]1]

But

gM(k) < z(03k)
—> 2K (k) ,y(k+1)) < z(03k+L)
—> trunc[Z (k) (u(k),,y(k+1))] € trunc[z (0;k+1)]
—> max[MNtrunc[z (k) (u(k) ,y(k+1))1] < max[Merunc[z(03k+1)]]
= 2 (kHD).

Thus z' (kt1) < max[MNtrunclz (k) (u(k),y(k+1))1] < 2z (k+l), which

establishes the desired equality. , T
Certain properties of memory sets are now developed for use in

later sectioms.

(8.7) Lemma. (a) An intersection of memory sets is a memory set.

(b) A concatenation of memory sets is a memory set.

~70-
~ *
(8.8) Definition. If M is a finite subset of Z , then mem[M] denotes
the smallest memory set containing ﬁ, i.e. the intersection of all memory

sets containing M.

(8.9) Definition. The essential part of memory set M is the subset:

ess[M] = {max[MNtrunc[z]] : 5§(Z+;M)} cCM

Interpretation: There are elements of a memory set which may become

memory states only during an initial transient of bounded duration.
For example, in the memory set ZQ?WZ+, the memory state at time k con-
sists of the min(k,%) most recent input-—output pairs; if k > %, then
the memory state consists of the £ most recent input-output pairs; in
this case ess[Zz?WZ+] = Z%WZ+. In the memory tree interpretation of
a memory set, a node in M is contained in ess[M] if it has branches

in Z+ that are not contained in M.
(8.10) lLemma. If M is a memory set, then mem[ess[M]] = M.
(8.11) Lemma. If zeess[M], then TM[E,z']Eess[M].

Interpretation: Once the memory state enters ess{M], it cannot leave

it.

-71-

(8.12) Definition. If M is a memory set, then

lmax[M] = max{2(z) : zeM}
Qmin[M] = min{%(g) : gﬁess[M]}

(8.13) Lemma. For any control strategy Y,

M
Proby{g_(k)eess[M]} =1, k€<2maX[M],w>.

Interpretation: The memory state enters ess[M] by the Rmax[M]—th

transition.
The notion of a memory state transition function, introduced in

(8.5), may be extended to multiple-step transitions, as follows.

(8.14) Definition.

TM[E,E'] = max[Mtrunc[z z']], zeM, g‘gf€Z+

(8.15) Lemma.

M M +
T0z,2'2"] = T[T [2,2'],2"], zeM, z', z"€z’.

Interpretation: (8.15) establishes consistency of (8.14) with (8.5)

and (8.6).

y———

-72-

9. Equivalence and Augmentation

This section introduces the "augmented system induced" by a memory
set, an FPS whose state consists of a delayed internal state and a
memory state. The augmented system will be seen to be "equivalent" to

the original system, in the sense that they are indistinguishable on

the basis of inputs and outputs alone.

(9.1) Definition. The input-output relation of an FPS is a mapping

p : 2°->[0,1] given by p(z) = T(0)P(z)1.

Interpretation: p(z) = p((u,y)) is the probability that output word

y will be emitted initially, given that the word of initial inputs was
u. The mapping p is a summary of all externally discernable charac-

teristics of an FPS.

(9.2) Definition. The expected incremental reward function of a VFPS

is a mapping q : Z+(ﬂ(0)) x U-> R given by q(z,u) = T(m(0),z)q(u).

Interpretation: q(z,u) is the expected incremental reward if, immedi-

ately following the generation of input-output history z, input u is
selected. The mappings p and q together summarize all externally dis-

cernable characteristics of a VFPS.

-73-
(9.3) Definition. Two or more FPS's are (mutually) equivalent if

their input-output relations coincide. Two or more VFPS's are (mutually)
equivalent if both their input-output relations and their expected in-
cremental reward functions respectively coincide.

The problem of constructing an FPS specification having a given

input-output relation is called stochastic realization. Stochastic

realization has been extensively studied by Paz (1971). Picci, in
hitherto unpublished research, formulated the conjecture that almost
every FPS is equivalent to a state-calculable FPS. Picci's conjecture
is disproved in Section 18 of this report.

Realization of a particular input-output relation generally entails
the incorporation of artificial structure into the model. The smaller
the number of states used, the greater the quantity of artificial
structure incorporated; consequently state calculability may be inhibited.

This is illustrated below:

(9.4) Example. Consider a free state~calculable FPS with u={1},

Y = {1,2,3,4}, N=8, m(0) = e, and

-7 4=

cooo cooo Coo0Oo N
. . L] »
cocoo0co cococo TN H OOO0O
coocooc cooco cCoOoo0O0 cooOo
cooco oocoo CoO0O0 oo O
cCcooco FTnaH cooco cooo
- . . -
TN H OOCOCO cooo0 ococoo
cocooo ococoo cooco ocoooo
[CO000 0000 cCo0O0 CcoOoO
I il
~ ~~
— -
~ <
N N
~ Y
¥
oo cooco cooco oocoo
o000 ocooco cCoo0cOo oo oo
coco0ooc ococoo OO0 oM
R
coo0oo cooco HNMt O0O0O
cooco cooo cooo cooo
cooco ocoooo Ccoo0oo cocoo
COO0O Ho o cCOooO0 oocoo
HNMT OCOO0O0 cooco cocooo
R
il 0
7~~~ ~~
— -
— ™
S~ o/
(=¥ =¥

This FPS is not only state-calculable; its state is uniquely determined

It is equivalent to the 4-state

by the most recent pair of outputs.

FPS having transition probability matrices:

I L
ol eNeNol OO N
OO N~ oNoNoNe
OO OO OO N
O O Nt oNoNoNe
— ° —

I]
~ ~
L] i
o~ ~F
~ ~A
[~3} =41
r
o0 oo SN oo
TN OO (e ool el
OO O O - N OO
— N OO OO OO
L | -
] L]
~ ~
4 i
— 8]
~ ~
A =%}

=75~
Equivalence is verified by wusing the Markov property of consecutive
output pairs. The second process, though equivalent to the first, is
not state calculable.

The problem of computing, for a given FPS, an equivalent system
having a minimal number of states is (to the author's knowledge) un-
solved, and, inany event, very intricate. It is, of course, possible
to eliminate states that are overtly redundant (see Paz [1971], Section
I.B.2); the elimination of such redundancy may reduce computation time
in the algorithms of Chapter IV in this report. On the other hand, it
is by increasing the number of states that state-calculability is en-
hanced, and the problem is eventually solved. This situation is notably
different from that found in linear systems, where 6bservability occurs

only when the state space has been reduced to a minimal dimension.

(9.5) Definition. The augmented state set induced by memory set M is

the set X[M] = {[i,z] : ieS, zeM, eiP(g)1>0} . The augmented state

induced by M at time k is x (k) = [s(k-2(z (K))), z (K)].

Example: Memory set ZQ*F\Z+ induces augmented states consisting
of the internal state delayed by % time units and the memory state of

% most recent input-output pairs.

(9.6) Proposition. For any FPS along with a memory set M, there is

M
a unique equivalent FPS having internal state process x"(}.

-76-

Proof: It is sufficient to show that the augmented underlying process
is a controlled Markov chain. This occurs provided that the sequence

of controlled random variables {k—%(gﬁ(k))} is non-decreasing, a trivial

consequence of (8.6). +

(9.7) Definition. The FPS which is equivalent to a given FPS, and has
internal states that are the augmented states (of the given system)

induced by memory set M, is called the augmentation (of that FPS)

induced by M, or, more informally, the augmented system induced by M.
A particularly efficient representation of the augmented system
is obtained by recognizing that, although the augmented system has
approximately N+#M states, each of these may effect a transition to
at most N*#Z states. Specifically, Pf(i,j,z') may denote the pro-
bability that a transition to [j,TM(g)zTS] will occur, given that the
system is presently in augmented internal state [i,z] and that the
input component of z' has been selected. It is given by the formula:

M ' .| '
ZkeSPijT (z,z") ij(gz T (z,z'))

, if zez'(eh)
Pf(i,j,z') = LeesPik (@ (9.8)

undefined, otherwise

The transformed incremental rewards are described by arrays:

jT(ei,g)q(u), if _Z_€Z+(ei)
RO ((9.9)

undefined, otherwise

-77-
Thus, the memory requirement to describe a particular augmented FPS is
roughly #M x [(N2 x #Z) + (N x #U)] words. The fact that this quantity
grows linearly in #M is particularly significant as the augmented system
has N x #M states, and the number of transition probability matrix
entries might normally be expected to grow as the square of the number

of augmented states.

r v

-78-

10. Classification of Strategies

A strategy was defined, in Section 2d, as a rule for the deter-
mination of inputs, specified by probability distributions for u(k)
conditioned on each past history [s(0),u(0),y(1),s(1),..., s(k-1),
u(k-1),y(k),s(k)]. In such a form, however, the description of a
strategy occupies an infinite tableau, and decisions must be made on
the basis of infinite memory. Such difficulties are avoided by intro-
ducing a class of strategies that are totally specified by a finite

tableau, called a policy.

(10.1) Definition. Let M by a memory set. Then ¢ is a feasible

strategy adapted to M if there is a policy 5-: M-> U such that

Prob, {u(k) = TN} = 1, ke<0,> .

¢ is then the policy (on M) which realizes ¢. @[M] denotes the set of

feasible strategies adapted to M. A feasible strategy that is adapted

to some memory set is called a feasible adapted strategy.

Interpretation: If ¢€®[M], then the inputs prescribed by ¢ can be

determined by a finite memory controller whose memory set is M. Note
that the input specified by ¢ and that specified by 6- need not

coincide in situations which cannot occur when ¢ is used.

o,

-79-~

Remark: There exist finite-memory controllers that are not adapted (to

any memory set).

(10.2) Definition. Let M be a memory set. Then ¢ is a perceptive

strategy adapted to M if there is a policy ﬁ.: X[M]-> U such that

Prob w{u(k)=$[xM(k) =1, Ke<0 00>

Y is the policy (on X[M]) which realizes ¢, Y[M] denotes the set of

all perceptive policies adapted to M. A perceptive strategy that is

adapted to some memory set is called a perceptive adapted strategy.

Interpretation: If Pe¥[M] then the inputs prescribed by Uy can be

computed on the basis of XM(k) alone. Note again that the input
specified by ¢ and that specified by E' need not coincide in situa-

tions which cannot occur when Y is used.

(10.3) Lemma. (a) ©o[M] c Y[M].

(b) If MM', then Q[MICO®[M]'.

A (feasible or perceptive)adapted strategy induces on any FPS a
free system whose underlying process is a Markov chain. Thus each

augmented state may be characterized as transient or recurrent, under

any particular adapted strategy. The memory state, likewise, may be

given these attributes.

-80-

(10.4) Definition. Consider an adapted strategy ¥, along with a memory

state zeM. If there is an ieS such that the augmented state [i,z] is

recurrent under U, then z is recurrent under y; otherwise z is tran-

sient under ¥ .

»

The concept of transient and recurrent memory states has the
following application: Suppose that some optimal (or €-optimal)
strategy has been specified, by means of policy on a memory set to which
that strategy is adapted. If the performance index is average gain
over an undiscounted infinite horizon, then the policy may be modified
in a number of ways without affecting performance. In particular, the
input specified for any transient memory state may be replaced by any
other value, provided that it does not cause that memory state to be-
come recurrent. In this manner, an optimal or suboptimal strategy

adapted to a smaller memory set might be obtained.

-

H

¥

H

T ——— . R T A Y Y ———— " * T = * CE————T———— "

Ll

[A

-81-

11. Connectivity

Graph properties of Markov chains have been generalized to con-
trolled Markov chains by Platzman [1977]. These concepts are now

extended to FPS's,

(11.1) Definition. State i is connected to state j if there exists

an input-output word gﬁzf such that Pij(E) > 0.

Interpretation: If i is connected to j, then it is possible for the

system to travel from state i to state j, provided that appropriate
inputs are accepted. This does not imply availability of reset inputs

(which transfer the system to a given state with probability one).

(11.2) Definition. A connected class C is a set of mutually con-

nected states, none of which is connected to a state outside C.
Clearly the state set of any FPS contains at least one connected

class.

(11.3) Definition. An FPS is connected if its state set is a con-

nected class.

(11.4) Proposition. If an FPS is connected, then there is an integer

2XE<1,N> and a Xe[0,1) such that, corresponding to any i,jeS, an

J = —

—— -

————— -

r—

= —

o

E)

R

whn

-82-

*
input word ueU exists, satisfying 1 - [Z Q'(ﬁ)Pij(@—’z))] <X
eY

%
Remark: QX and X may be computed by enumeration omn UN . A more

efficient algorithm seeks a least costly path from node i to node j,

J
labeled with input u.

where —1og[%y€YPi,.,(y|uﬂ is the cost of a link from i' to j'

In a connected FPS, it is possible to select inputs which allow

the system to travel from any state to any other, provided that the

initial state is known. This assumption is avoided in (11.5), below.

(11.5) Definition. An FPS is reachable if there is an integer Qp

and a pe[0,1) such that, corresponding to every ﬂeﬂN and jeS, an
L
input word GeU P exists satisfying:

1- [ZXEYQ(_@) Z-_'Les“iPij(@’-31))] b

Interpretation: If an FPS is reachable, then for any value of the

information vector, there exists a sequence of inputs, which will drive

the state to a desired value with probability 1-p or more.

(11.6) Proposition. An FPS is reachable iff it is connected.

Proof: Assume connectivity and set ZQ=RX; p=1r~%(l—X). For any NSHN,

there is an 1€S such that m > 1/N. Selection of u according to (11.4),

£

s

i,

v

-83-
for i as determined above and j as desired, satisfies the criterion in

(11.5). That reachability implies connectivity is trivial. t

Remark: Although reachability is the property required to establish

the existence of optimal strategies in FPS control problems, connecti-
vity is the property that can be decided algorithmically.

Reachability can be established by inspection in some systems (e.g. a
network of finite queues), and the bounds thus obtained will be tighter

than those obtained through connectivity arguments.

(11.7) Definition. An FPS is simply connected if its state set con-
sists of a single connected class, along with a (possibly empty) set

of states which are transient under all feasible strategies.

(11.8) Theorem. Let C be the connected class in the state set of a
simply connected FPS, and let M be a memory set. Then the augmented

system induced by M is simply connected, having connected class

R[] = {[i,z] @ iec, zeessiMinzt(el)} c xM]

Proof: Augmented states of the form [i,z] with i€S-C are clearly
transient. Those of the form [i,z] with zeM-ess[M] cannot occur after
the QmaX[M]—th transition, by (8.12). To show that [i,z] and

A +
[i',z"']eX[M] are connected, select jeC so that Pij(z) > 0 and z"eZ

po-

-84~

so that Pji,Qfﬁ > 0, the existence of the latter being guaranteed by

(11.1). Then the augmented system may travel from state [i,z] to state

[i',z'] when the intervening input-output word is z"z'. +
An algorithm which decides whether a given state-observable FPS

is simply connected was introduced by Platzman [1977]. Simple

connectivity of the underlying process is not necessarily implied by

simple connectivity of the FPS, as is illustrated below:

(11.9) Example. Let U={1,2}, s={1,2,3}, v={1}, w(0) = (1/2,1/2,0) and

1/2 1/2 0 1/3 1/3 1/3
P(1|1) = | 1/3 1/3 1/3], P(112) = |1/2 1/2 ©
0 0 1 0 0 1

The single connected class is {3}; states 1 and 2 are transient under
all feasible strategies. Yet there exists a perceptive strategy under
which states 1 and 2 form a recurrent class: this is the strategy
u(k) = s(k).

The following algorithm will (in principle) determine whether or
not a given FPS is simple connected. It does so by seeking to discover

a strategy under which the state will never enter the connected class.

(11.10) Algorithm. Let C denote the unique connected class in the
state set of a given FPS. Label each nonempty subset H of S~C with

a binary digit denoted c(H); initially c(H)=0, for all HCS-C. Then

-85~

perform the following step, for.every H CS-C,until the c(*) remain

invariant: set c(H)=1 if, for every ueU, either

s entyertiecty 1) > 0

or

Zoey c({j : Pij(y|u) > 0, ieH}) > 0

Then the FPS is simply connected iff c(H)>1l, for all nonempty subsets

H of S-C.

(11.11) Proposition. If an FPS is simply connected, then there is an
#(s-C)

integer £ < 2 such that the augmented system induced by M has a

simply connected underlying process whenever Rmin[M] < 4.

Proof: Define H(k) = {i : ni(k) > 0} and assume that H(0)C S-C. Then

(11.10) implies the following: for any given values of H(k~1l) and
u(k-1), either H(k) may contain elements in C, or there is a y(k) such
that H(k) will be distinct from H(0)... H(k-1). But there are 2#(S_C)—1
nonempty subsets of S-C, so H(Z#(S_C)) may contain elements in C, i.e.
Prob{H (2#(S-C))ﬂc is nonempty} > 0 under any feasible strategy. Thus,
internal states lying outside C are transient under any strategy adapted

#(s-C) +

to M, provided that £ . [M] > 2
min -
When S-C is a large set, the enumeration of subsets of S-C is

computationally infeasible. A sufficient condition for.simple

i,

.

-86-

connectivity is now derived.

(11.12) Lemma. If, in the outcome of Algorithm (11.10), c(A)=1 and

ED A,then c(B)=1.

(11.13) Theorem. An FPS is simply connected if its underlying process

is simply connected.

Proof: Simple connectivity of the underlying process implies c({i})=1,

v ieS-C. Hence, by (11.12), c(H)=1 for all nonempty subsets H of S-C.
In (11.10), this is the sufficient condition for simple connectivity.

t

- v r——

S ——

EZN

ELY

Eaid

i,

S

-87-
12. Metrics

This section introduces metrics that are used to measure the 'close-

ness'" of approximations to the information vector. The continuity of

convex functions with respect to these metrics is then established.

a. Definition of the Metrics

(12.1) Definition. Consider WEHN, WERN with w>0 and Tw>0. Then Tow

is a vector in HN having entries:

'ITiWi
mow), = — .
() 1 ™w

Interpretation: This is merely Bayes' operator. For example, T might

represent a priori probabilities of some random variable, s, on sample

space S. Given an event occurring with conditional probability W, pro-

vided that i is the true value of s, then 7mow is the vector of a

posteriori probabilities of random variable s.

(12.2) Definition. For ﬂ,ﬂ'SHN, define

+
™ 1 = T - -
(@) 8lr,m'1 =3, o (r-m')
() Alm,m'] = sup{8[mow, T'ow] : WERN, w>0};
(¢) D[m,m] =1 - min[{wi/w'i : ﬁ'i>0, ies} F\{ﬂ'i/wi 2 >0, ieS}].

Remark: An interpretation of these functions is given in section 12b,

#ne

.

-88-

following the derivation of certain fundamental properties.

(12.3)

(12.4) Lemma. A(mow, m'ow] < A[m,7'], Vn,w'eHN, WERN, w>0, m™w>0, T'w>0.

Lemma.

(b) 0<D[m,m'] < 1.

(a) 0<8[m,m"] = 1/2|m-n'| < A[m,7m'] < 1;

(12.5) Proposition. J,A, and D are metrics on HN.

Proof:

(a)

(b)

Since

A metric satisfies

(i) f£[m,7'] > 0,

(ii) flm,m'] =0 <> T

(iii) f[m,w'] = £[7n',7],

T,

(iv) f[Tl',TI"] +f[ﬂ' ,'IT"] z f[']T,TY"].

(12.3)(a), &[*,*] is a metric on I .

N

Parts (i) and (ii) are trivial.

(iii)

(iv)

Alm,7']

i

Alm',7].

Alm,n'] + A[n', "]

> sup{6[mow,m'ow] + S[m'ow, T'"ow]

> sup{§[mow,T"ow]

= Almw,n"].

sup{8[mow,m" ow]

sup{8[m'ow, mow]

: weRN, w>0}

is norm on Ry, it defines a metric |m-7'| on HN' By

: W€RN, w>0}
: WER, w>0}

: WERN, w>0}

e,

-89-
(c) Parts (i) and (ii) are trivial.
(iii) D[m,7'] = D[7',m] by symmetry.
(iv) For ﬂ,ﬂ',ﬂ"sHN, assume with no loss of generality
"o "y — - " ' =
that ™ 0 and D[m,m™] =1 (wllﬂl). If m 0,
then D[7',m"] = 1 and D[mw,n'] + D[w',7"] > 1 > D[m,7"].
1S ny _ ' el - '
If ™ 0, then (ﬂl/ﬂl) (ﬂl/wl)(ﬂllﬂl) and (1-D[m,m'])
(1-p[=n',m]) <1 - D[m,m"], implying D[m,m"] < D[7m,n"]

+ p[n',m] - D[m,w'] « D[n',n"] < D[m,w"] + D[7',7"]. +

(12.6) Theorem. (Evaluation of A). TFor w,m'ell , define:

[g]
1

min{m'/m, : 7' > 0} ,
1 1 1

[g]
]

min{mw. /7' : w, > 0} .
1 1 1

Then
1- Vclc2
Alm,w'] = .
1+ Vclc2

Proof: If {i : T >0} # {i: ﬂi > 0} then A[7m,m'] = 1. To see this,

assume without loss of generality that there is an i€S such that ﬂi >0

' my _.1. 1y iy, .
and mo= 0. Then {w } = {(u))l + (1 m)e } is a sequence in RN for

. . m m, _ . m m, _
which llmm~>w §[mow , m'ow] = 1, since (Tow)i > 1 and (m'ow)i = 0.

By (12.3)(a), the sequence {w"} is supremal.
It follows from (12.5) that A[m,m] = 0. The case T >0 <==> Wi>0,
i
m # 7' remains. By (12.5), A[m,m'] > 0. Assume without loss of gener-

ality that m > 0 and 7' > 0. Clearly O < ¢y <1and 0 < <, < 1; hence

-90-

0<c. <clco,

Define:

Aé[ﬂ,ﬂ'] = sup{8[mow,m'ow] : weRy, w>0, m'w/mw = z}

; ('ﬂ'iwi) +
= suplZies "iwi - z : WERN s w>0,

w =1, T'w = ci

-1

which exists for all ¢ 9

Lt<ec Clearly

-1,

< <
<t

Alm,m'] = max{AC[n,ﬂ'] P ey

Now Ag[ﬂ,ﬂ'] may be expressed as the solution of a linear program

I }
max: - aw
Ac[ﬂ,ﬂ'] = subject to: w=11],
T'w=1
w2>0 |
where
~ynF
- - \}

al (Tri '"1) b4

ot S | .
T ﬂi/;

Any optimal basic w that solves this linear program has at most two

non-zero entries; let these be denoted (i,j). Then

Ac[’ﬂ','lT'] =

max: a.w, + a.w,
i'i i
subject to: W, >0, Wj >0
T.w, +T,w, =1
i'i j
T'w, + Tlw, = 1
i J 3] J

-91-

Assume without loss of generality that

(i,5) e A= {(,5) : (mi/m) < (ﬂJ!/ﬁj)}.

Now a, > 0 and a, = 0;
1 J

(1) a; = 0, aj =0

(ii) a, >0, a, >0

i

(iid) a; 0, a, >0

J

Hence ¢ must be such that (ﬁi/ﬂi) <z f_(n'j/ﬂ

for otherwise one of the following must hold:

=> Ag[m,m'] =0
= ' = = - 7!
> Ag[ﬂ,ﬂ] a,w, + a.wj (m i)w1
+ (m, - ﬂ')wj =1-1=0.
=> (i,j)¢A.

). The basic feasible

j

solution with indices (i,j) is now seen to take the form:

T - m,
T, - W,
i’ ji

~1

T, - %

1 1
T.% - m. !

_....-..*.,...,..-...w-.-.m--,.

-92~

and the corresponding expression for Ag[ﬂ,ﬂ'} is

% *
A "1 = =
C,i,j[ﬂ’ﬂ] aw aiw:,L
T, - w!) (T -
O - T G-
T, - m, !
i'j ji

. ' '
T (TriTrj Tl'j 'lTi)

m!l +mn! - omw, - ¢ inte
i3 4 i ij

L 1
’IT]__‘TTj ’ﬂ'j'ﬂ'i

Mow
Afm,m'] = maxjA [m,m'] ¢t ¢, < T c-l}
? l(; ’ ' 1’— - 2
= ' . e o 1 '
max{AC’i’j[ﬂ,ﬂ 1 @ (i,3)eA, (ﬂi/ﬂi).i z f_(ﬂj/ﬂj)}
- '
(1,3l {maxcwz/n.)<c<<n:/w.){Ac,i,j .]}}
i’ i ==
Since A_, .[m,m'] is concave in 7, it achieves a unique maximum at

C,1,]

r = g* = _ming . Thus

Alm,m'] = maX(i,j)eA AQ*,i,j [TT,'IT']}

-03~

T,
1- /~id
s
" P, 9)el —
1+ ___.1_..'!_
W
. i j
1- fc.c
_ 172 +
1+ ci¢y

b. Discussion

The metric § , also known as the Hajnal measure, has many applica-

tions in the theory of ergodic Markov chains; see Paz [1971]. Informally,
§[m,m'] is the (minimal) "quantity" of probability that would have to

be "reassigned" in order to transform probability distribution ™ into
probability distributipn m' . Similarly, A[m,m'] is the minimal
quantity of conditional pfobability by which m™ and 7' might differ

if they were supplemented by identical observations (in the sense of

the interpretation following (12.1)). Consequently two information
vectors that are very close in the sense of § may be far apart in the
sense of A. This occurs because subsequent observations might cause

the two information vectors (representing similar a priori assumptions)

to be transformed into radically different conclusions.

(12.7) Example. Consider an FPS in which 7(0) = (1l-g, €), €<<1,

but it is desired to approximate Tm(0) by e1 = (1,0). Ina & sense,

o

~94~

m(0) is "near" the approximation e1 3 this indicates that the uncondi-

tional expectation of a function of the initial state will not be signi-

ficantly affected by this approximation. Suppose, however, that every

input-output pair which subsequently evolves corresponds to transition
.1 0

probabilities . Given a sufficient number of input-output
0 .9

pairs of this form, the conditional initial state probability vector
tends to (0, 1); yet if the approximation w(0) = e1 is used, then
the conditional initial state probability vector will remain e1 . Thus
an initial error, of J-sense magnitude €<<1, may lead to an eventual
error of O{-sense magnitude arbitrarily close to 1.

The distinction between 6 and A is also illuminated by an
examination of the topologies they induce on HN : the topology induced
by 6 is continuous, but A causes HN to be separated into faces of
the form HN(H) = {ﬂeHN Py > 0 <> icH} . These are exactly the
subsets on which a convex function over HN is guaranteed to be con-
tinuous (with respect to the Euclidean metric; see Rockafellar [1970],

Chapter 10).

c. Some Properties of Metric D

Metric D is introduced mainly for the purpose of making continuity

of convex functions more explicit.

(12.8) Proposition. A[m,m'] < D[mw,m'] < &4A[m,m'].

B

e

ks

N

-95-

Proof: Let c¢,,c, be as in (12.6), so

1°72

1 - c.c
Afm,m'] = L2
1+ clc2
1 - - 0
D[m,m'] 1 mln(cl,cz)
If c, = 0 or c, = 0 , then the result is trivial. However, if cy # 0
and ¢, #0 , then {i : 7, #0}=1{i: 7 #0} and c,,c, <1, since
2 i i 1’72 —

the entries of 7 and 7' (respectively) sum to one. Now:
| < - - > = 1
Alm,m'] <1 /c1c2 <1 mln(cl, c2) D[m,m']

and

2
' _ - _(1- Alm,m]
DIm, ™1 <1 = cey 1 (1 ¥ A[ﬂ,ﬂ']>

= 4A[m,m'] < 4A[m,m']. +

1+ 20[m,m'] + A[m,]

(12.9) Lemma. Suppose ﬂ,ﬂ'EHN . Then d €[0, 1] satisfies D[m,m'] < d

if @ %,%‘enN such that:

7' (1-d)m + d%

(1-d)m' + 47’

it

m

Proof: If d = 0, the proof is trivial. Assume d > 0 and let

f= [- A-d)7]/d, T = [7 - (1-)7']1/d. Clearly |7] = |7'] = 1. But

d > plm,m'] <= 1-d < (1" /7)), Vies <> T >0 and similarly 7' > O.

- e e e ——-

v

LN

N

-06~

Thus ?r,%'enN <> d > d[m,7']. +

(12.10) Corollary. Let m =1 _ A AT, = zi L MT@, AL AL >0,

m(1), 7' (el and z LA s 5 e M= L.

Then:

DIT, '] < sup; 41 DIT(D), ' (D)]

Proof: Let d = sup, 4 D[m(i), m'(i)] and construct %(i,j), %'(i,j)eﬂN
H]

as in (12.9) so that:

() = (A-d)T(L) + dT(i,]),
T = (1-d)T' () + dT'(4,3).
Then T = Z:;l =1 A, A W(l,j) and T = 21=1 j -1 A A L (1,j) satisfy:
= (1-d)T + dﬁ
T = (1-d)7' + dn’
and, by (12.9), Diwm,m'] < d. +

d. Continuity of Convex Functions

(12.11) Definition. (a) V is the vector space of bounded real-

valued continuous functions on HN .

|| is the "sup norm,"

(b)
Ivll = suppey Iveo] -

e e

-97-

(12.12) Definition. For any veV, VeV denotes the White projection of

v, given by

(M) = v(m) - v(eN)

Remark: This projection generalizes a normalizing operation devised by
D.J. White [1963], for value functions having finite domain, to avoid

divergence in value iteration.

(12.13) Definition.

vl = fowpyey vem1 - Linf g V(M)

is a norm on the subset V of V, where

Interpretation: |

D

A

V= {v : vev} = {vev : v(eN) = 0}.

A

(12.16) Lema. [|9l| < Il vl = 19l < 2]l vl

I

(12.15) Theorem. If veV is convex, then

|v(m) - v(n')| < p[m,7"]]lvlhD, Vﬂ,ﬂ'EHN .

Proof: Assume without loss of generality that v(m) > v(7m'). Following
(12.9), construct T so that w = (1L - piw,w"']D7w' + D[ﬂ,ﬁ']ﬁ' . Then
v(m) = v(m') < (1L - D[m, 7')v(n') + DIT, T Iv(T") - v(') = D[m,n']

V@) - v(m")] < pIm,m'] || vlf, . t

-98-

(12.16) Theorem. For every convex function veV, there is a quantity

| VHA < 4|| v”D such that

|[v(m) - v(')| < Alm,m'] || v||A > Vel .

Proof: Trivial, by (12.8) and (12.15).

R

i

-99-

13. Contraction Properities of T

If P dis a stochastic matrix, and
a = <
o[P] maxi,jES G[rowi[P], rowj[P]] 1,
then, for any ﬂ,ﬂ‘eﬂN ,

§[rp, w'P] < a[P] S[w,m'] ,

i.e. the transformation f[nw] = mP is a contraction mapping in HN .

One consequence of this property is that {ﬂPk} approaches a unique limit

as k- ; this is, of course, the vector of steady—-state probabilities

for a Markov chain having transition probability matrix P.
This section generalizes the concept of contractions in state pro-
bability vectors to the information vector transition function T [defined

by (2.8) and (7.7)].

(13.1) Definition. An NxN substochastic matrix P 1is said to be'subreg—

tangular if, for every i,j,i',j'eS,

P,,>0 and P,,,, >0 .
1] 1]

o

st

AR,

-100-

(13.2) Definition. If P is a substochastic matrix and P # 0, then
(a) a[P] = max{A[rowi[P]/(rowi[P]l), rowj[P]/(rowj[P]l)]

rowi[P] + 0, rowj[P} # 0}.
Also G[z] denotes «[P(z)].

(b) a[P] = max{D[rowi[P]/(rowi[P]l), rOWj[P]/IOWj[P]l)]

rowi[P] # 0, rowj[P] # 0}.

Also a[z] denotes al[P(z)].

Remark: The evaluation of af[P] or a[P] by enumeration requires N3

operations. This is comparable to the effort expended in multiplying two

NxN matrices.

(13.3) Proposition. (a) 0 < af[P] <1 and 0 < a[P] <1 for all
substochastic matrices P # 0.
(b) oa[P] <1 <= a[P] <1 <> P 1is subrectan-
gular.

(¢) oaf[P] =0 <> a[P] =0 <> P has rank 1.

The following lemma states awell-known property of the Hajnal measure.

\
(13.4) Lemma. If WERN , and T,T EHN , then

|Ww - ﬂ'wl f_@[ﬂ,ﬂ']{[maxies Wi] - [min,

ses Y110

- ——

A.....-....-_.,.._.

.

- w e —

-101-

Proof: Assume without loss of generality that Tw - ﬂ'w‘z'O. Now

- t = — '
™ - T'w Zigs(wi il i)wi

=3 (m, = n')*ﬁ + I (m, = 7'.) w
ieS* i i i ieSt i i i

<L, (m, -7)+ [max w,] + I (r, = 7m',)

— dieS" 1 i ies i ieSt i i
[min, o ;1

= 1 - \ .
S{mw,m][maxies Wi] Simw,m][mlniES Wi] . 71

Remark: (13.4) may be viewed as a stronger version of (12.15), where
v 1is constrained to be linear.

Using (13.4), it is possible to demonstrate (13.5).

(13.5) Theorem. (Contraction property of T). If n,n'ﬁHN and

+
zeZ (,n') then

A[T(n,z), T(n',2)] < alz] Aln,n'].

i .
Proof: Construct row vectors {7 } having elements

Pij (5)/23.'85?13. ' (2) if ieI(z)

0, otherwise

nonempty. Finally o(z) =

-102-

and define:

W

{WE:RN :w >0, nP(2)w > 0, n'P(z)w > 0}

ﬁ {weRN:w_?_O, nw > 0, n'w > 0}

I(z,w)={i : row, [P(z)]w> 0}

Since 1, the N-vector of one's, is an element of each, W and W are non-
empty. Also, if _z_€Z+(n,n') as required above, and weW, then I(z,w) is

;4 el(z){A[" ™1} by (13.2)(a). Now

A[T(n,2z), T(n',2)]

1eT(z,w "1 B ier(z,w i1y @Yy \

(%
< sup z, -
weW (*3e8 nP(z)w n'p(z)w

Z1e1(z,m)"eF13 DY Pier(z,w"1Fi3 @Yy
ZJEJ

= SUPL ¥ xs nP(z)w - n'P(z)w

5egMF14 (DY,

= SUPL P35 |11 (z,w) (nP(z)w

z:Js:Jan1j(z)w \\< JSS ij (_z_)w >

T nR@v AL P (D,

gn (__)W
5 i€ 1 ij
SUPLew™ % 3cs) “iel (z,w) nP(z)w

z:;|€S i ij (Z)Wj J€JP1j (z)w
n'P(z)w Zyest (_Z_)w

-103-
Application of (13.4) now yields

A[T(n, 2), T(n', 2)] \

+
< sup ax X (ZJES ERER| (—) - ZJES 1])W \
- el ¥ gcs ieI(z,w) nP(z)w n'P(z)w

p- l .'
z. W, z. T, W,
. pJeJ 33 jeJ §]
maXi,i'el(z,w) i i
? =2 \ T™w ™ W
T],ﬁ, n'A +
< sup Z 1 1 - 1 1
— el ieI(z) ~ e
— nw n'w
i
_
1, +
. _J_l_ _J__J_
SUPLew™@ 1 L1 'e1(z,w) stS(>
— 'IT w 'ﬂ' w

< A[n,n'] ¢ olzl,

where the last inequality follows from (12.4).

by,

e

o

s,

(13.6)

Proof:

~-104-
Corollary. al[z z'] < a[zlaf[z'].

By (13.2), al[z z'] = max .){A[T(ei,g_g'), T(e

i, i'eIl(z z

But, following (13.5),

¥

A[T(ei, 55'),T(ei » 2 2")]

AT(Teet, 2), 2, T(r(el , 2), 2')1

alz'18[T(e, 2), (e, 2]

| A

alz'lalzlalel el]

A

= ofz'Ja[z].

The corresponding result for a[z] is considerably weaker.

i '

(13.7) Proposition. For n,n'ell, zeZ' (n,n'), DIT(m,2), T(r',2)] < alz].

Proof:

™, (e'P(2)1)
TP(2)1

i -
T(m,z) = ZiES AiT(e »Z) Wwhere Ai

completes the proof.

Remark:

(13.8)

This is not a contraction.

Corollary. afz z'] < alz'l.

(12.10)

B

-105-
14. Detectability

a. Preview

P, The intuitive notion of detectability was introduced in Section 5d;
essentially, a detectable FPS has the property that the information
vector is arbitrarily closely approximated on the basis of the memory

- state alone, if the memory set is sufficiently large. The extent to
which an information vector depends on input-output pairs not contained
in the memory state is given by a[g&(k)], the contraction induced on

- the information vector by the input-output pairs contained in the
memory state. Recall that by (13.3)(b), a[gy(k)] <1 iff P(éy(k)) is

subrectangular.

PN Four types of detectability will be defined; these are:

(i) strong subrectangularity (SSR), a condition under which every

transition probability matrix is subrectangular.

LN

(ii) weak subrectangularity (WSR), a condition under which every

transition has positive probability of generating an input-
output pair to which a subrectangular transition probability
matrix corresponds.

(iii) strong detectability (SDT), a condition under which there exists

a memory set whose essential elements each correspond to sub-

.

rectangular transition probability matrices.

(iv) weak detectability (WDT), a condition under which the memory

state at any given time has positive probability of corresponding

ELLY

to a subrectangular transition probability matrix.

. e e s s

-106-

These definitions differ in the type of approximation closeness implied,
and in the complexity of procedures which establish this closeness.

The following implications are trivially verified:

SSR

Each type of detectability will be investigated in turn. It will
be shown, for each, that a finite-memory €-optimal observer may be con-

structed, and how the estimation error and memory size interrelate.

b. Strong Subrectangularity

(14.1) Definition. An FPS satisfies the condition of strong sub-

rectangularity (SSR) if P(z) is subrectangular, VzeZ.

(14.2) Definition. For an FPS satisfying SSR, define

Q
]

maszZ{a[z]}

-
1

(-loga) / (logi#Z)

Remark: The logarithms may be taken to any desired base.

Remark: By (14.1), SSR = o<L1.

——

o~

-107-

Remark: The definitions of T

are consistent with (1.2).

(14.3) Proposition. If an FPS

ke<0,m>

alz(k-m;k)] <

Proof: By (13.6), a[z(k-m; k)]

alz(k-1; k)]

given here and later in this section

satisfies SSR then, for any me<Q,%>,

A
Q

< alz(k-m; k+l-m)] a[z(k+l-m; k+2-m)] ...

m

<a +

(14.4) Theorem. Consider an FPS satisfying SSR, -along with the memory

% -+ A
set M= {zZ"NZ"}. Let T :

T(z)P(z) # 0,

T(z) = 1(0), Z€Z

Define T1(z) = T(ﬁ(g),g). Then

AnCR), fE)T < o,

and (13.5),

M > HN be a mapping satisfying:

zeznzt

(mel)ijz+)

ke<0 00>

~, M .
Proof: If k<m , then n(k) = n(z (k)). But if k > m, then

Ey(k) = z(k-m, k)). But if k > m, then Eg(k) = z(k-m, k) and, by (14.3)

U

[,

-108-

aln® i1
< AIT(n(k-m), z(k-m; k), T(T(z (1)), z(k-m; k)]

Aln(k-m), Tz (k) Io™

| A

m

o T

I A

Interpretation: There is a finite-memory observer requiring no more

m , . .

than (#Z) essential memory states which generates estimates of the

. m . .

information vector lying within o of its true value (in a A sense;

(12.3)(a) determines § and

-sense bounds on this error).

Generalization: The approximate relationship between essential memory

m and maximum error € is:

eSm '

m T (14.5)
However, the strict bounds are:

e < m/#2)”"

m < (e/oyH/T (14.6)

/T

-1
Specifically, this means that no more than (e/a) essential memory

states are required to maintain a maximum error less than €, and that

T
m essential memory states can achieve an error bounded above by (m/#Z)

-

-109-

.c. Weak Subrectangularity

(14.7) Definition. An FPS satisfies the condition of weak subrec-

tangularity (WSR) if, for every ieS, ueU, there is a yeY such that
P(y|u) is subrectangular and elP(ylu) # 0.
(14.8) Definition. For a FPS satisfying WSR, define

max; omax o Loy Lieg Pyg (lwlal(u,y)]

el
I

(-loga) / (log#Z)

al!
[

Remark: By (14.7), WSR => a < 1.

(14.9) Proposition. If an FPS satisfies WSR, then for any me<0,~>

ke<0,m>, ﬂeﬂN , and any strategy 7Y

E, {In0k), T(m, 2 (k-m31)) 1} < o,

Proof: (By induction) If m=0 the result is trivial. But

EY{m[g(k-m; k)1}

E'Y{oc[_z_(k—m; k-1)1 * EY{OL[E(k-l; k)1|z(k-m; k-1)1}}

E,Y{u[g(k—m, k-1)] - E#{a[g(k—l; k)]

lgﬁk—m; k-1), s(k-1), u(k-1)}

-110-

Ey{a[g(k—m; k-1)] - Ey{uLg(k—l; k)]

| z(k-m; k-1), s(k-1), u(k-1)}

]

E’Y{a[g(k-m, k-1)]

- {z (y|uk-1))al (u(k-1),y)1}}

yeY ZjeS Ps(k—l)j

| A

EY{G[E(k—m; k-1)1 + a}

o - B {olz(k-(-1); K1) T

(14.10) Theorem. Consider an FPS satisfying WSR, along with the

M% + ~
memory set M= {Z NZ }. Let 7 : M~ HN be a mapping satisfying:

(2)P(z) # 0, gezMﬂz+

f(2) = m(0), 2e2 @ D gt

Define n(z) T(ﬁ(g), z), then for any strategy Y,

E (A@), fiz")1} <a™

Proof: 1If k<m, then g?(k)éMm_l , and nN(k) = n(k). But if k>m, then

l(g?) = m, and, using (13.6) and (14.3), EY{A[n(k), ﬁ(g?(k))]}
= E (AT (nCm) , ZN(k)), T(M(z (K), z (kK))1} < EY{Ot[g_m(k)] <a™.

1.

-111-

. . A et m
Interpretation: There is a finite-memory observer requiring (#Z)

essential memory states which generates estimates of the information

. . .. —m . .
vector lying on the average within o of its true value (ina-A sense).

Generalization: The approximate relationship between essential memory

m and mean error € is:

R

nzE T (14.11)
However, the strict bounds are

€< /42"

< /oy Mt (14.12)

/T

Specifically, this means that no more than (?f&)—l essential memory

states are required to maintain a mean error below €, and that m
essential memory states achieve a mean error bounded above by

(/#2)"".

d. Strong Detectability

(14.13) Definition. An FPS satisfies the condition of strong detec-—

ability (SDT) if there exists an integer % such that P(z) is subrec-

2+
tangular, vz€Z2 NZ .

- = = e —

TG o ———— g

A

-112-

(14.14) Definition. For an FPS satisfying SDT, define

o, = max {a[z]}
gﬁzk Z+

=D
1]

B

[}

=]

—~

o
A

=

et

(-log u)/(ﬁlog #2)

-
[}

Remark: By (14.13), SDT => o<l.

Remark: If an FPS satisfies SDT, then definitions (14.2) and (14.14)

N
are consistent, since {=1.

(14.15) Proposition. If an FPS satisfies SDT, then for any me<0,>,

ke<0,m>,

alz(m; K] < o™ F

Proof: By (13.7), alz(k-m; k)] < a[z(k-m; k-((m:R)-112)]

* a[gﬁk—((m%i)—l)ﬁ; k—((méﬁ)-z)ﬁ] LR u[g(k—@; k)] f_am+2 +

(14.16) Theorem. Consider an FPS satisfying SDT, along with the of

* o+ A . . .
memory set M = {Zm NZ'}. Let m: M~ HN be a mapping satisfying:

-113-

TP #0, zezhz

-1)%
T(0), gﬁz(m L mz+

m(z)

I ad

Define fi(z) = T(T(2), z). Then A[n(k), Az (k)] <o

Proof: If k<m, then E?(k)eMm_l, and n(k) = n(k). But if k > m,
then Q(Eé(k)) = m, and, using (13.6) and (14.15), Aln(k), n(k))]

= AlT((m), 2°(), TAGERE), 2] < a2] < o™ 4

Interpretation: There is a finite-memory observer, requiring no more

m . . .
than (#2) essential memory states which generates estimates of the

N

. R . o1 m+l . .
information vector lying within « of its true value (in a A

sense).

Generalization: The approximate relationship between essential memory

m and maximum error € is

~ =T
€ =m

e

et (14.17)

However, the strict bounds are :
e < @/ dnHT

m < (e/oy T | (14.18)

- ———

~114-
/T

. . -1 .
Specifically, this means that no more than (g/a) essential
memory states are required to maintain a maximum error below €, and

that m essential memory states can achieve a maximum error bounded

2 - T
above by (m/(#2)7) .

e. Weak Detectability

' *
(14.19) Definition. If k is an integer and ¢ : Zk + U, then for

k .
any z = (ul,yl)(uz,yz) ees (uk,yk)ez define:

1, if Uipp = ¢luysyy) - (uj,yj)], je<0,k-1>

olz,9] = ’

0 otherwise

Interpretation: o[z,§] =1 if 2z(0;k) = z can evolve when inputs are

selected according to the rule u(k) = ¢[2(03k)]. Thus, if w(0) is the
initial state probability vector, and inputs are selected according ¢,

then the probability distribution for random variable 2z(0;k) is:

Prob{z(0; k) = z} = o[z, ¢1(m(0)P(2)1)
(14.20) Definition.

o = max, o max olz, 01 (e B(2) 1)06[_2_]]
0

)
K* { K
er?) | ze2

-115-

aj = max, . max (zk*) [Z gzk olz, ¢](eip(5)l)a[z]]
¢eU Z

Interpretation: ai is the largest possible value of

EY{a[g(k—R; k)]} where Yy is a feasible strategy. 3& likewise is the

expectation of a[z(k-%2; k)].

(14.21) Definition. An FPS satisfies the condition of weak detecta-

bility (WDT) if there exists an integer % such that &3@ < 1.

(14.22) Definition. For an FPS satisfying WDT, define

-2

min{% * a <1}

2
o‘&::&‘_
‘Z:;—g
« 1 = (-log o)/ (Llog #2)

Remark: By (14.21), o<l.

Remark: If an FPS satisfies WSR, then definitions (14.8) and (14.22)
are consistent. If an FPS satisfies SDT then'f‘i ¢ and if £ = @

then Eioc.

Proof: If k<m, then EP(k)eZ

-116-

(14.23) Proposition. If an FPS satisfies WDT, then for any ie<0,«>,

ke<0,m>, ﬂeﬂN » and any feasible strategy Y,

E {olz(km; 0]} < Fae

Proof: Consider atransformed system in which the input is a mapping
¢k : Z(z—l) + U, specified at intervals of £ time units, each of
which describes u(k), u(k+l), ..., u(k+2-1) as functions of

e, z(k; ktl), z(k, k+2), ... z(k, k+2-1) respectively. The output at

time k is z(k-2; k). This transformed system satisfies WSR; the

desired result follows from (14.9). +

(14.24) Theorem. Consider an FPS satisfying WDT along with the memory

. m* 4+ A . .
set M=1{Z Z}. Let T : M~ HN be a mapping satisfying:

TP #0, zezhz'

fz) = 1(0), 2e2 @ DRzt

Define ﬁ(g) = T(%(E), z). Then, for any feasible strategy Y,

EAAING), M)} < 7™

@1* and fi(k) = fi2(K). But if

k > m, then E?(k)ezm and using (13.6) and (14.23),

-

-117-
E {A[T(n(k-m), ZN(k)), T(T(Z (k)), z"(k)]}

E {A[nG) , Aiz"(k))1}

E, lal" W01} < P T

| A

Interpretation: There is a finite-memory observer, requiring at most

(#Z)m essential memory states, which generates estimates of the infor-

. . cirg. — miR
mation vector lying on the average within o b of its true value

(in a A sense).

Generalizations: The approximate relationship between essential

memory m and mean error € is:

_ ~ -T

€E=m

m2E LT (14.25)
However, the strict bounds are:

_ 7.7t

e < (m/#z27)

m < (EY&)—llT (14.26)

. —i=-1/T .

Specifically, this means that no more than (g/a) L/ essential memory
states are required to maintain a mean error below'E, and that m
essential memory states can achieve a mean error bounded above by

& =T
/2%

[—

-118-

15. Decomposition of a Free FPS into

Detectable Parts

This section is concerned with FPS's that are not detectable. An
example of such a system was given in Section 5a. An FPS fails to be
detectable when some function of the (internal or augmented) state may
be recursively updated, but is never identified exactly. This function
depends on the input process, and for this reason, the decomposition
of an FPS into detectable parts is meaningful only in the case of a

free FPS.

(15.1) Definition. (a) C,(k) = {j : Pij(g_(O;k)) >0}C's

(b) C(k)

{Ci(k) : ies} - {p}

(c) wuk)

#c(k).

Interpretation. Ci(k) is the set of possible present internal states

given that s(0)=i. C(k) is the set of possible state configurations

which may result from specification of the initial state. Imn a

detectable system, u(k) 1.

(15.2) Proposition. (a) C,,(k+l) = {3 :Pij(y(k+1)|u(k))>0,

isci,(k)}

-119-

(b) cC(k+1) = {{j : Pij(y(k+1)lu(k))>o, ieC’,
c'ec(k)} - {¢}

(c) u(k+l) < u(k).

Consider a free connected FPS, i.e. one whose underlying process
has an entirely recurrent state set. If pairs [C(k), s(k)]
are considered in place of the Internal state, recurrent chains of
such pairs may be determined. By (15.2)(c), u(k) is constant within
each recurrent chain. If every recurrent chain is such that u(k)=1,
then the system satisfies WDT, because if C(k) is at any time reset
to {{i} : n, (k) > 0}, it will tend to a value containing one element,
indicating that the word of intervening input-output pairs had a
subrectangular transition probability matrix. On the other hand, if
U(k) remains greater than one for all time, then subrectangular input-
output words cannot occur.

If the free connected FPS is such that u(k) need not tend to one,
then the process can be described as one of at most N detectable models,
which may be asymptotically identified. This decomposition is effected
by allowing u(k) to reach its minimal value, and by then assuming that
the current state lies in a particular element of C(k). This determines
the element of C(k) containing the current state at all times, and the
likelihood of a particular model can be updated periodically. Since

only one model is correct, its likelihood will approach one - unless

-120-
some models are identical, in which case it doesn't matter which is
identified.

Note that, in order to determine whether a free connected FPS
is detectable, one determines whether the process {{i : ni(k)>0}}

(which equals C(k) if u(k)=1) is simply connected in ZS. This
illustrates a duality between the notions of connectivity and detecta-
bility.

The decomposition procedure is readily extended to general free
FPS's. Transient states may be ignored since information vector entries
corresponding to transient states have expectation that vanishes
geometrically as the number of available (most recent) input-output
pairs increases, and contemplation of an infinite past eliminates
transient states at time zero. If the free FPS has more than one
recurrent class, then the test for detectability is performed on the
system restricted to one recurrent class at a time; certain recurrent
classes may be identified exactly on the basis of a particular output
configuration (that eventually occurs); others may be identified on the
basis of the infinite past; still others may be identical from an input-
output point of view.

Since the decomposition depends crucially on a classification of
states as transient or recurrent, it cannot be extended to FPS's with
inputs; in practical applications, though, it often suffices to consider

the free system under a particular adapted strategy.

T

Proof: Assume first that every matrix of the form P(z), zeZ

~-121-

16. Stochastic Realization of a Free FPS

The stochastic realization problem includes that of deciding
whether or not a given free FPS is equivalent to a state-calculable
one. Such a property would be desirable because it would indicate
that after a sufficiently long initial identification procedure, the

present state could be arbitrarily closely known, and the optimal

"strategy in the steady-state could be computed by assuming that the

internal state was known exactly. This property would be equivalent
to the following condition: '{n(k)} has a finite number of cluster
points in HN with probability one. It will be suggested here that

such is generally not the case.

(16.1) Theorem. For a given free, connected, strongly subrectangular,

FPS in minimal state form (Paz [1971]), the following statements are
equivalent:
(a) The FPS is equivalent to one that is state calculable.

(b) The process {g(k—N(N—l)/Z; k)} is a Markov chain.

N(N-1)/2

has rank zero or rank one. Then (a) and (b) trivially follow.

Now assume that there is a EﬁZN(N-l)/Z such that P(z) has rank

+ .
greater then one. Then there is a 2 €Z and i, jeS such that

- ——. W o =

-122-
z=2'2 2"
P..(2) >0
P..(&) >0

and, naturally, P(Z) has rank greater thanone, and it is subrectangular
(by SSR). By Perron's theorem, P(Z) has a left eigenvector T
corresponding to the eigenvalue of largest magnitude, and satisfying

>0, jEJ@). Consider the set {T(m, (ﬁ)k) : ke<l,o>}. Clearly

=>

i
this set either contains exactly one element or else it consists of an
infinite number of distinct elements. Using the word z selected above,

N(N-1)/2

define fi(z) = T('l?, z"). For any zeZ such that P(z) has

rank one, define fi(z) = T(ei,_z_) for any icI(z).
1 z2€Z(1\I(I~I-1)/2)mz+

Now, if it is true that, for any 2z, z s

1 2 2
T(i(z), z°) = fi(z")
then (a) and (b) follow trivially. On the other hand if

T/ (zD), 22) # Az

for some _zil, ZZSZ(N(N—l)/l)ﬂ Z+

, then an infinite number of distinct
2

possible information vector values exist (by decomposing z in the

manner described above), and (a) and (b) are both false. +

An algorithm based on the proof of (16.1) decides whether or not

a free FPS is equivalent to one that is state-calculable. A similar

-123-

algorithm will perform the same test for an arbitrary FPS. The FPS is
first decomposed into connected detectable components, following the
analysis in Section 15. The possible information vector values are
then enumerated. However, whenever an information vector value results

from a transition having subrectangular probability matrix of rank

~greater than one, this information vector must coincide with the Perron

eigenvector for that transition probability matrix. Since the
enumerations are performed on extremely large sets, this decision
algorithm is computationally infeasible in all but the trivial cases.
At the same time, it should be clear that in very few cases will the
FPS actually be equivalent to a state-calculable system.

A more practical approach to stochastic realization is to appro-

ximate the FPS by a system whose state is the memory state induced by

a large memory set. This FPS is state-calculable because memory states
may be recursively computed, and the closeness of the approximation may

be established by detectability arguments.

— rog—

-124-
CHAPTER III

STRUCTURE OF OPTIMAL CONTROLLERS

17. Finite-horizon Problems

The finite-horizon partially-observable Markov decision problem
was solved by Sondik [1971]. His results are reviewed here, in slightly
modified form.

Sondik showed that every finite-horizon problemhas an optimal
finite-memory solution. This may be demonstrated in a number of ways.
One of these is to argue that the information vector assumes values of
the form {T(m(0), z) ¢ §£Z+(ﬂ(0)yﬁzk*}. Since this is a finite set,
the problem may be restated as a finite-~horizon Markov decision pro-
blem with perfect state observation, where the memory state z(0; k)
is regarded as the state variable. The optimal policy will then deter-
mine the input on the basis of this memory state. A dual argument
states that at any time k, the remaining strategy (given the present
time and information state) can be expressed as a policy
(k-k)*

Pre,nc)] ¢ 2

these, the optimal input may be computed by enumeration. A computa-

-+ U. Since there are only a finite number of

tional procedure which is based on the latter argument is now described.

Consider a modification of the finite-horizon FPS control problem
in which the information vector is regarded as a perfectly-observed
state variable. The expected incremental reward at time k takes the
form:

E{r(k) | n(k), u(®)} = n(k)q(u(k)) (17.1)

D S —

S—— —

-125~

The problem, consequently, is to maximize the performance index

§=0b(k) n(k) q(u(k))}. Application of Bellman's Principle of

Optimality yields

E{Z

vk_l’K[ﬂ] = maxueU{b(k)ﬂq(u) +Zy€Y(ﬁP(y|u)l)Vk’K[T(W,U,Y)]

vk’K(ﬂ) =0

(17.2)

»K

where v is a real-valued function on HN representing the value of

being in a particular information state at time k for a problem with

horizon K. For ease of notation, extend the domain of vk’K to ﬁN

by defining

GLVORR/GL)], iEF 40
KR _ (17.3)

0, if 7

3
]
=)

Then (17.2) becomes

e LI max___{b(k)mq(u) + ZyEYvk’K[ﬂP(Ylu)]}

(17.4)
vK’K[ﬂ] =0

Now define finite subsets of RN:

- . ——

-126~

wk_l’K = {q(u) + Zer P(ylu)wy : uel, wyeWk’K, yeY}}
(17.5)
vk = {0}
Eq. (17.4) may now be expressed as
R = maxtm ¢ wenoX) (17.6)

K

Thus, each function v is convex and piecewise-linear with a finite

,K

number of faces. Each region of HN throughout which v is linear,
is a region where the strategy-to-go is constant; thus the elements of

Wk’K may be viewed as controller states. Specifically, if

vk’K[ﬂ] =Ty and % = q(4) + Zng P(ylﬁ)ﬁy, then an optimal controller
faced with information vector T at time k selects input 4 and is

k+1,K

assured that v [nk+1)] = n(k+1)ﬁy

(k+1)°

The size of each set Wk’K may be reduced by eliminating elements
that correspond to memory states which can never be reached. Specifi-

. k,K . ’ k,K

cally, if weW is such that .mlnﬂenN{v [r] - wr} > 0, then w can
be eliminated from Wk’K without loss of generality. This test is
effected through the solution of a simple linear program.

0f course, this solution procedure is not necessarily applicable
to infinite-horizon problems, because the size of WO’K can increase
without bound as K+« . Drake [1962, 1968] and Sondik t1971] have noted

. . 0,K .
that, in certain problems, W ’> converges (except for a comstant gain)

in a finite number of iterations; a finite-memory realization of the

- —— m———

e ————r - ——— ey ——————— - . —— — =

-127-

infinite-horizon optimal controller is thus obtained. Although it is
true, in the infinite-horizon problem, that existence of a finite-
memory realization of the optimal controller implies that the value
function is piecewise-linear with a finite number of faces, this does
not in turn imply that the number of faces in the approximations VO’K
is bounded. Thus #WO’K may diverge as K+, although, in the limit,
a piecewise-linear relative value function with a finite number of
faces is approached. Furthermore, many of the faces in WO’K may
correspond to transient memory states. In the Machine Maintenance
and Repair Problem, the optimal value function is characterized by

well over thirty faces, only eight of which are required to realize an

optimal controller.

,”,;“w-

w-_—

LY

-128-

18. State-Observable Problems

A state-observable FPS is, of course, equivalent to a Markov
decision process. This section reviews known methods for its solution;
additional references are given in Section 4. Since y(k) uniquely
determines s(k), Pij(u) will denote ZyaY ?ij(ylu).

The finite-horizon problem is solved by computing value functions:

k:

V) = max {b09q () + 5o B @VORG))

S
(18.1)

k) = 0

The optimal decision at time k-1, for a system in state i, is the input
u which maximizes (18.1). Thus the optimal strategy selects inputs on

the basis of current state and time alone.

If b(k) = Bk, then vk’K = Bkvﬁ-k where

Vo) = max, {a, (@) + BE, o By (v (D)

|
(18.2)

vo() = 0
As m~>, v approaches a limit v* satisfying:

0

vk(i) = maxueﬁ{qi(u) + BZjeS Pij(u)v*(j)} (18.3)

o ——— v—

N i pe—— —— g

- 1 —————

-129-
Thus the optimal strategy in the infinite-horizon discounted problem
determines inputs on the basis of the present state alone.
Eq. (18.3) can be solved by computing the sequence 4{vg} accord-

ing to (18.2). This computational procedure is called value iterationm.

If B 1is large (i.e. near unity), then computational instability

may occur. This difficulty is avoided by defining:

g = (1-B)v*(N)

(18.4)
g% (1) = vE(i) - v*(N)
Eq. (18.3) now becomes
9x(1) = maxuSU'{qi(U) + szes Pij(u)G*(j)} -g (18.5)

$5(N) =0

The function ¥* is called a relative value function, and g* is called

the average gain. This follows from the decomposition:

(1) = 9x(D) + Bz = r() + 5 6

Eq. (18.5) might be solved by White's algorithm

~m=- 1 : All— 1
Vo (1) = max .{q, (u) + BEjsS Pij(u)v0 (1
93(1) - ;m—l(i) _ Gm-l(N) (18.6)

Fo() = 0

——

-130-

On the basis of ¥° and Gm, MacQueen bounds on g may be computed:

ming o [Vo(1) - (1] < g <max, [V)(1) - F(1)] (18.7)

Eq (18.5) may also be regarded as a linear program:

min: g

subject to: ¥*(i) > qi(u) + szes

1’ij (w)¥*(j) - g, ieS, ueU

¥*(N) = 0 (18.8)

As it turns out, an optimal basic solution will satisfy (18.8) with

strict equality for exactly oné input corresponding to each state.

Thus, an optimal policy is obtained.

Now consider the infinite~horizon undiscounted problem. When

B=1, {Gg} is not guaranteed to remain bounded; and even if it remains
bounded, it is not guaranteed to converge. Boundedness occurs if the
average gain does not depend on the initial state, and convergence
occurs if the optimal system if aperiodic.

Assume first that.{Gg} is bounded. Then difficulties relating
to convergence are avoided by defining the problem as a limit of dis-

counted problems as Btl. Thus a solution to the linear program

min: g

subject to: 9% (1) > q () +2 j(u)G*(j) - 8

jes T1

ies, uel
9*(N) = 0 (18.9)

e~

-131-

is sought. Computationally, convergence is assured by Schweitzer's

(damped value-iteration) algorithm

F11) = max ola @ + Zies Piy (u)x’;’(’)"l(j)}

ue
A, . ~ ~m-1,. ~m~1 ~“ =1,
YA =B[v @A) -v "M+ AR @D (18.10)
x’}o(i)=0, 0<§<1

Odoni bounds on g may be computed

min, ([F(1) - 9 (D] < g < max, J[T(1) - ()] (18.11)

Simple connectivity is a sufficient condition for '{Gm} to be
bounded. A general Markov decision problem may be solved by decom-

posing it into simply connected subproblems, as described below:

(18.12) Algorithm (Solution of a Markov decision problem)
Step 1. Let S denote the "remaining region of S" and set S=S.
Let B(i) denote the admissible input set when the system is known to
be in state i, and set U(i) = U, ieS. Also set g(i) = Qin’ ies.
Step 2. Determine a connected class C in (§,ﬁ), the Markov
decision process with state set restricted to g and input set
restricted to ﬁ(i) when the system is in state i. Since S is nonempty,
such a connected class exists.
Step 3. Solve the Markov decision problem within (C,ﬁ) to obtain

a gain g. Set g(i) = g, VieC.

m— oy — =

-132-

-~

Step 4. Set S = S-C. For every triplet ieg, uel (i), jeS—g,

that satisfies Pij(u)> 0, set ﬁ(i) = ﬁ(i)—{u}.. If ﬁ(i) = @, then

set § = §-{i}. Repeat this elimination process until §, {ﬁ(i) : i€§}

have been minimized. If S is nonempty, then return to step 2.

Step 5. Solve the system of equations:

g(i) = max(g(i), maxuen[zjes Pij(u)g(j)])-

This may be done by value iteration:
() = max(3(), max__ [Z. P, (g™ 1))
uel - jeS " 1ij
g0(4) = E(0).
or by solving the linear program:

min: e

subject: g(i) E_sts Pij(u)g(j) - e

g(i) > g(1)

{u:g@)=2:

Step 6. Set U({) (w)g(i)}, and

jes Fij

q; () = q, () - g@).

Now solve the Markov decision problem with incremental rewards

ﬁi(u) and admissible input set ﬁ(i) while the system is in state i.

- ey

-133-

Since the average gain has been substracted from the incremental
rewards, the transformed system has gain zero, and within any class
of states for which g(i) is the same, the correct relative values

will be obtained.

Remark: The policy determined in Step 5 is gain-optimal. Step 6

is necessary only if bias optimality is desired as well.

~134-

19. Existence of a Solution in General

Infinite-horizon Problems

This section is concerned withwell-posedness of optimization
problems formulated in Chapter I. Its purpose is to establish con-
ditions under which an optimal strategy exists. In the present
analysis, the optimal strategy need not satisfy a finite-memory con-
straint.

A sufficient conditioﬂ* forexistence of an optimal strategy is

that there exist a solution to the infinite dimensional linear program:

vk(m) = max _ dmq(u) + BZer(ﬂP(y(u)l) v¥(T(m,u,y))} - g*

(19.1)

If the relative value function v* exists, then there is a function ¢*
which describes the input maximizing (19.1) as a function of w. If
6* is used to select inputs on the basis of the information vector,
then the optimal gain g% will be achieved. 5* will be called an

optimal feasible policy.

(19.2) Definition. An infinite-horizon FPS control problem is called
regular if it is either discounted or both simply connected and detec-

detectable.

+".[‘he straightforward proof parallels well-known arguments for the state-
observable case; see Kushner [1971].

-135-

(19.3) Theorem. Suppose either (a) that B<1 or (b) that the FPS

satisfies conditions of connectivity and (weak) detéctability.

If connectivity holds, then let lp and p be as in (11.5); otherwise
define Qp = p =1, If weak detectability holds, then let % and a

be as in (14.22); otherwise define % = a=1. Finally, define

a-8% /-8y, if g<1

=

L(8,2) = I 8

P

L, if B=1

and

1-84PH) 10y 13

Then there exists a solution v* to (19.1) having the following
properties:
(1) v* is continuous throughout HN
(ii) v* is convex
(1id) ||vr]| <@

+2
Remark. If B=1, then Q = —CRHQ

(1-0) (1-a)

Heuristic Justification: Only the undiscounted (B=1), strongly con-

nected (Qp = 1), weakly subrectangular (2=1) is considered here.

(19.4)

b i e a8
L

rad
- {eq(u*) + Zy

-136-

A solution v* = limm_Mo " is conmstructed by damped value

iteration (18.10) where, following (17.3),

ey = 172 V) + 1/2 mueu' tra(w) + I,

g V 2@]e)])

¥(m =0 (19.6)
Then

SR Wk (3 v (19.7)

where vg is the finite-horizon value function when k decisions
remain. Each vg is convek by an arguments given in Section 17.

It is now demonstrated (by induction) that ||Vg|ID < Q. Since
v is convex, it achieves a maximum at some vertex of HN . Let j be
the state that maximizes vm(ej) and let u* be the input that maximizes
€Y vgrl(ejP(y]u*))}, i.e. j is the most desirable initial

state for an m~-transition problem and u* is the first optimal input

for such a problem when the initial state is known to be j. Then,
m m-1
* % .
VoM > ma(u*) + 2 o v, (rB(y|u®)), vmell

Now:
m, j m
vo(e Vo(ﬂ))

< 1edq@n + 5 i TR lun))

- {mq(u*) + Zer vg_l(ﬂP(y|u*))}

...-_.-".,
¥

-137-

-) 3 -1 oo
= Qoy ™ Qun ¥ Ty (PG U0 D v (e uk,y))

- @Gy Vi o,y

1

- g4 5 @relunn [V uy) - I,y

+ ()T TRl V5 e ury)

/ ('TT—'IT,eJ) ! -1
-)P(ylu*)l vy (T(m,u%,5))]
(1-m)

j -1 -1
e+ mIoy ERGluDalnllvy Il + @) llvg Tl
<@+ [-n a1 vp Tl (19.8)

But, for any ﬂEHN,
V) = max o ma) + 2 VRl <o+ Ve
(19.9)

and, letting U be the input for which 3.

1€SZy€YﬂiPij(ylu)‘i 1-0,

P > @ + ey VCTRCy)

Y
m ~
> Qi + V(g TG

>, +vhEed) - q- -a-ea-a1livgT

mi D

(19.10)

.8

-138-

where (19.8) was used to obtain the last inequality. Thus

mt - -
1B, < 20 + -a-p - 1] Vi (19.11)
Since [Ivol| =0 and ||v1|| < Q, it follows that
0D o'p—-7*°
my 2Q
” VO” D _f_ — m€<0,°°> .
(1-p) (1-a)
Hence, by (19.6),
1ol = 9%, < —22%—, me<o,w (19.12)

~(1-p) (1~a)

The damped value-iteration, (19.6), assures that, if {¥"} has any
(pointwise) limit, then it converges uniformly to that limit; the sequence
{¥™} has a limit because it is convex and bounded; thus v* exists and is a
solution to (19.1). v* is convex and bounded, by convexity and boundedness
of {¥"}.

Continuity of v* is most readily established in strongly subrec-

tangular systems. Here,
{mq(u) + Zst(ﬂP(y|u)1)V*(T(Tf,u,y))}

is continuous in T for each ueU, because {T(m,u,y) : ﬂeHN} lies in
the interior of a face of HN (see Figure 5-1) and a convex function
is always continuous over a relatively open subset of its domain. Thus

the right-hand side of (19.1) is continuous, and v* is continuous.

-139-

Proof: The complete proof of (19.3) is given in Appendix A.

1%
(19.13) Corollary. Let e’ be the information vector of maximal

value, in a connected, detectable, FPS control problem. Let Rp,p
L

be such that, for any WEHN , there exists an input word ﬁ;U P satis-
fying:
1-20 A 25 TPy 5o Ee3) < P

Then |v* < Q, where Q is given by (19.5).
D__

Interpretation: l!v*lh) may be bounded on the basis of reachability

of the most valuable state alone. In a network of queues, the most
valuable state is readily identified without solving the problem; (it
is the state in which all queues are empty). In this manner, a tighter

bound on ”‘v*|h) is obtained.

(19.14) Theorem. Consider a regular FPS control problem. If the
system is simply connected, then let Qc,uc be numbers such that the

internal state enters the connected class with probability 1—uc or more
after RC transitions and let Q be as in (19.3) for the system restricted
to C; otherwise define Qc,ac=0, and let Q be as in (19.3) for the sys-
tem as specified. Then there exists a continuous, convex, bounded,
relative value function v* satisfying (19.1), such that

ch
1—aC

Ivsll, <@+

-140-
Proof: It is necessary only to demonstrate boundedness of values

‘{Gg} in the proof of (19.3). Now

maxiES{vm(ei)} <4+ acmaxi85{vm(eij}+ (l—aC)maxisC{vm(ei)}

and so:

2CQ
l-aC

maxieé{vm(ei)} - maxiec{vm(ei)}_i

Consequently, arguments given in the proof of (19.3) show that v*

satisfies the desired conditiomns.

~141-

20. An Alternate Formulation for Irregular Problems

Consider the following problem, to which no optimal solution

exists.

(20.1) Example. U = {1,2}, Y = {1}, N = 3, ©(0) = (0,0,1) and

1 1 0 o0
P1|1) =0 1 of, P(1|2) ={0 1 0.
0 .5 . 5 0 .5

The incremental reward vectors are:

q(1) = , q(2) =

OO =
(oMo Nl

The performance index is infinite-~horizon undiscounted average reward.
A suboptimal solution may be obtained by the following argument: if
any reward at all is to be achieved, then the system must be made to
enter state 1, through initial application of input 2. Once state 1
has been reached, input 1 should be applied at all times. Unfor-
tunately, there is no way for the controller to learn whether state 1
has been entered. If input 2 is applied n times and input 1 is
applied thereafter, the performance 1—(.5)n is achieved; this may be
made arbitrarily close to 1. The supremum feasible performance g

can never be attained: if input 2 is applied at all times, then the
gain will be zero; and if input 1 is applied once, at time k, then the

system enters state 2 with probability (.5)k and the performance

e ——

~142-

cannot exceed 1-(.5)k.
A well-known class of problems, to which no solution exists, is

the finite-memory hypothesis testing problem with choice of experiments,

also known as thé N-armed bandit problem. In the two-armed bandit

problem, a gambler is confronted with two slot machines. For each coin
invested, one machine returns two coins with probability .6, none with
probability .4; and the other machine returns two coins with probability
.4, none with probability .6. It is not known initially which machine
is the more favorable.

Failure of an optimal strategy to exist is a consequence of the
infinitely-delayed splurge phenomenon discussed in section 5a. This,
in turn, results from null-transitivity of certain information states
in a system that is not detectable. Specifically, infinitely~delayed

splurges may occur when:

(i) Under c-optimal strategies, for € sufficiently small,
p(k)>1; i.e. there are recursively-computable functions
of the state that may be interpreted as one-time hypotheses;
(ii) In the limit, where an infinite past is available, the
correct hypothesis may be identified exactly, and a
detectable problem results;

(iii) The cost of identifying an hypothesis is infinite.

.-.._-

Such

~143-

problems may be solved in two steps, described below.

Step 1 (steady-state)

Under the assumption that the state was exactly known
at some point in the infinitely.distant past, the problem
becomes detectable, and an optimal strategy exists. This
strategy might not satisfy a finite-memory constraint, but
its performance may be approximated, arbitrarily closely,
by a finite-memory controller in the following sense: for
any €>0, there is a finite-memory controller whose average

reward, over a given time interval of length K, lies between

\
~g*-e and g* with probability approaching unity as K-,

Step 2 (initial identification)

The correct hypothesis may be arbitrarily closely
identified in a finite number of transitions. Let the
terminal reward be 1 if the hypothesis is correctly identi-
fied, and 0 if it is not. Then solve the finite-horizon
problem by the methods cited in Section 4, or by the

algorithm of Sondik. (The initialization procedure will

be described in greater detail in Section 21f).

P

Y

a5

~144-

This report is concerned with hypothesis~testing only to the
extent that it occurs in problems of statistical decision and control.
As long as a problem is detectable, its "dual control" aspects involve
a reasonable tradeoff between information and control; otherwise the
problem must be solved in two separate steps. If available memory is
limited, then it must be decided how much memory is to be allocated to
identification, and how much is to be allocated to steady-state per-
formance. Note that memory allocation in this sense is indirectly
determined by the discount B (when B<1l), since it specifies the manner
in which steady-state performance and identification costs are to be

compared.

-145-
CHAPTER IV
COMPUTATION OF €~OPTIMAL CONTROLLERS

21. Perceptive Dynamic Programming

a. The Basic Algorithm

It has been demonstrated, in Section 19, that there exist
solutions to regular FPS control problems. Yet, it may be impossible
to compute or to implement solutions that fail to satisfy a finite-
memory constraint. This section introduces a feasible computational
technique for the solution of such problems.

In the computational technique of perceptive dynamic programming,

an increasing sequence of memory sets, {M'}, is used to comstruct
approximations to the original problem. Each approximation is para-
meterized by a memory set; the n-th approximation depends on memory
set Mp, but the iteration number n alone may be used to facilitate
notation. The approximation corresponding to memory set M is the
Markov decision problem that results when the augmented system induced
by M is assumed to be state~observable. The solution to this problem

is called a perceptive solution; it consists of a perceptive value

function VM : ﬁ[M]+R and a perceptive gain g[M], obtained by solving

the system of equations:

vii,z] = {q (1,u) + B, (1,3,(u,y>)v I3, TM(z (u,3))1}

ES €Y

- glMl, - [1,z]eX[M] (21.1)

~146-

In (21.1), perception of delayed states is assumed only when the

memory state is essential. Optimal decisions and relative values for

the remaining memory states can be determined by solving:

vH im0, 2] = max__ {T(1(0), 2q(w)
+ BLy (T(M(0), 2)P(y|w)D)
(2% esTies M@ * Pyg@@-T (2,(, 7))
C R T, @) VLT, ()]
/InO)R(R(y|W1], 1if T'(z, (u,y))eessM]
vM), z(u,y)], otherwise

-g[M], 582+(1T(0))ﬁ ess[M]

The policy maximizing (21.1) and (21.2) is denoted ﬁIM.

A feasible strategy ¢M is devised by constructing a policy

adapted to M which realizes it. Select any mapping § : ess[Mm] + S

satisfying:

§[zlel(z), Vzeess[M]

(21.2)

(21.3)

The substitution of a state guess for a perceived state will be called

pseudo-perception. Define the feasible policy to be

~147-
' M ¥lzl, if zeM-ess[M]
7 ¢ [z] = (21.4)
- : V[8[z],z], if zeess[M]
h[M] will denote the performance achieved by ¢M. Clearly:
= h[M] < g% < 'g[M] (21.5)
' For a given sequence of memory sets {M'}, these bounds may be denoted
{
" h" and g%, respectively.
: A key result is the following theorem, which states that
!
f gn-hn +0 as n=>o,
(21.6) Theorem. Suppose either (a) that B<1l or (b) that the FPS
i
' satisfies conditions of connectivity and (weak) detectability, and
!
!.. let zp,pj,';, L(B,%) and Q be as in (19.3)-(19.5). Also let o
| be as in (14.22) if WDT is satisfied; otherwise define o=l. Then:
; , & [M1FR & . [M]
.P (2) gM] - g <a ™" B 40
‘ L . [M1:% &, [M]
— i
i () glM] - niM) <@ ™P g ™"
, .
& [M1-g . [M]“/ 7
L(B,%
’ lue,e pu- pay +g R matn LB f 21e80l
- max min T —
1-8" a

~148-

Heuristic Justification: The proof follows an argument given in

Section 5e.

Proof: The complete proof is given in Appendix B.

The generalization to systems having transient states is straight-

forward.

(21.7) Corollary. For any regular FPS control problem:

L, [M]:% & . [M]
glM] - h[M] < @ ®in g min

& [M]-2 . [M] -
: max min LB,
. L(B,Qmax[M]-lmin[M]) + B () 2[Q + gal

1—8’a a

p. IMIST & . [M] (ch)
+ o B
C 1—ac

where uc and zc are as in (19.14).

b. Discussion

The upper bounds {gn} are clearly nonincreasing. The lower
bounds'{hn} might decrease if an unfortunate choice of 8(*) is made.

])
1f hn<hﬁ , n>n', then ¢n

may be substituted for ¢n, since it is
‘ n P |
adapted to M". Hence, the bounds {h"} and {g } can be made monotone.
v % +
If the family of memory sets M} = {z"Nz"} is used, then the

bounds will converge geometrically as well. Computational experience

-

- — - .

=149-
indicates that convergence will occur more rapidly than predicted by
(21.6) , but that may not be rapid enough to assure feasibility, due to
the fact that the computational effort (computer time or memory)
required to solve the perceptive problem increases as n—>® ., Since
computational effort is linearly related to the number of memory
states, the effort required to place the bounds within € of each
other is proportional to E-l/T, where T dis given by (14.22).

A more favorable rate of convergence is obtained when the memory
sets are computed recursively. Memory states that are unlikely to
be recurrent under the optimal perceptive policy can be ommited;
those which were recurrent during the previous iteration may be
extended (by the addition in the memory tree of branches from the
nodes to which they correspond).

Problems of decoding a noisy Markov channel (see references
listed in Section 4) are subrectangular, and lend themselves to con-
vergence rate analysis. In most problems, however, there doesn't
seem to be much use in computing the contraction indices o and p .
Execution of two or three iterations of perceptive dynamic programming

yields more reliable indicators of convergence rates.

¢c. Pseudo-perceptive Dynamic Programming

Pseudo~perceptive dynamic programming is a computational procedure

in which the delayed state is guessed and substituted into the model

- e ww e e TR

ES

-150-
before optimization is performed, resulting in a reduction, by a
factor of Nz, in the number of augmented states considered during each
optimization step. The performance obtained will be an approximation
to the optimal performance: if the delayed state is optimized, and not
merely guessed, then the performance obtained will be an upper bound
as well. However, pseudo-perceptive dynamic programming does not then

yield a lower bound to optimal feasible performance.

d. Recursive Computation of the Memory Sets

Experience indicates that the choice of memory sets is crucial to
efficient performance of the perceptive dynamic programming algorithm.
For example, computation time and storage requirements increase
linearly with the number of memory states; yet, certain memory states
can be shown a priori to occur very rarely in the optimally controlled
system.

Some recommended 'tricks" are:

1) Do not add branches to node z of the memory tree if, whenever

the memory state is z, the optimal perceptive decision does

not depend on the delayed-state component of the augmented state.

2) Do not add branches to node z of the memory tree if z is
not recurrent under the optimal perceptive strategy
obtained during the most recent iteration.

3) Do not add branches to node z of the memory tree if all

entries of P(z) are small.

- ———

-151-

e. Minimization of Memory Size by Selective Pseudo-perception

TN I G et ST W VTS T G W e "

The state guess S§(*) may be selected according to an ad hoc
rule which causes the feasible strategy to perform as well as possible
(e.g. 8 = most likely state). It might instead be selected so that
the number of recurrent memory states under the feasible strategy
will be minimized. Such an approach assures that another iteration,
with a larger memory set, might be performed, although the current
feasible performance lower bound h[Mn] will suffer. During the
final iteration, this approach to the selection of §(°*) may reduce

the cost of implementing the solution obtained.

f. Initialization Procedure

Suppose that a perceptive solution has been obtained, and that,

from this, a feasible policy has been designed. The feasible policy

determines near optimal decisions in the steady-state. It is also

necessary to determine an initialization procedure to be followed by

the controller.

A particularly simple way of doing so is the following: Repre-
sent the system under the feasible strategy as a Markov chain, and
determine the relative values of all augmented states. Then solve a
finite horizon problem, in which the input set includes the memory set

as well as an input representing a memory state indicates that

the feasible policy should be used thereafter, starting in the

i e S e g

-152-

specified memory state. The value function will be monotone increasing,
in the number of initialization steps allowed.

If the system under the feasible strategy is multiple chained,
then the finite horizon problem should be to maximize the eventual
gain. In the case of an N-armed bandit problem, the feasible (steady-
state) policy is trivially computed, since the previous decision
determines the optimal present decision. The initialization pro-

cedure then constitutes an identification of the correct hypothesis.

——— =— —

— ———— ———

-~

-153-

22. A Computational Algorithm

In order to assess the practicality of perceptive dynamic pro-
gramming, a computer program was written to solve general FPS control
problems with undiscounted infinite-horizon performance index. The
program is described below. Computational results, obtained using
this program, are described in the following section.

The source code, which is written entirely in PL/I, is listed in
Appendix C. It has a source length of 1250 cards, and the object code
occupies 110K bytes of storage on the IBM 370/168.

The program accepts the following data as input:

A character string of length not exceeding 32, which
identifies the problem to be solved.

" Problem dimensions

N, the number of internal states.

NU, the number of inputs.

NY, the number of outputs.

NZ, the number of input-output pairs.

FMT, the output format (1 = "long", 0 = "short").

Termination specifications: (conditions under which execution

should be terminated)
MIN ERR, the minimum value of gn—hn.

MAX M, the maximum number of memory states.

¢ ¥

b

g © = p— g b e - e = -

~154-

MAX ESS M, the maximum number of essential memory states.
MAX TIME, the maximum number of seconds to be allowed.

Transition probabilities:

Each matrix is preceeded by a list of input-output pairs
and a single zero which marks the end of that list; the
matrix is then listed in row-major order.

Expected incremental reward vectors:

The vector a(l), ... , q(NU) are entered in turn.
Computation then proceeds according to the following outline:
Step 1: Create a memory tree (hereafter denoted by M) con-

taining only the empty word e; and set ERR = Q.

Step 2: Solve the perceptive problem. This is done by damped
value iteration (18.10), along with the test for non-
optimal actions of Hastings [1976]. The optimization is
performed only on ﬁ[M], the connected class of augmented
states consisting of a delayed internal state along with
an essential memory state. Computation is terminated when,
after kl steps of value iterition, the Odoni bounds (18.11)
are within ERR * (.001)(1.2) 1 of each other.

Step 3: Flag memory states that are recurrent under the
optimal perceptive strategy (indicated by a "G" in the
printout). For those memory states only, determine the

feasible strategy which selects the input most likely to

be optimal.

o

R

=155~
Step 4: Determine n" by value iteration without optimi-

zation of inputs. Computation is terminated when, after
k
k2 steps, the Odoni bounds are witbin ERR * [(.001)(1.2) 1
k
[(.01)(2) 2] of each other.

]

Step 5: Flag memory states that are recurrent under both
the optimal perceptive strategy and the feasible strategy
for the present iteration (indicated by an "H" in the
printout).

Step 6: Set ERR = {the upper Odoni bound on g™} - {the lower
Odoni bound on hn}. Print a report of the current itera-
tion. If any termination specifications have been met,
then stop.

Step 7: For every triplet (z,u,y) satisfying
(1) 2z is an essential memory state that was recurrent

under the most recent optimal perceptive strategy,
(ii) u is an optimal input for some augmented state of
the form [i,z],
(1) Tz, (W) < z(u,y),
add to M the memory state which contains the
Q[TM(E, (u,v))] + 1 rightmost input-output pairs in z (u,y).
Also add whatever memory states are required to satisfy

(8.4). Then return to step 2.

~156-
Further details regarding execution procedure and methodology,
may be found in the source code.
The output consists of a page which lists the input data, followed
by an iteration report for each iteration performed. The iteration

report heading contains the following information:

Line 1: The iteration number, the number of memory states,
the number of essential memory states, the time at which
preparation of the memory tree for value iteration was
concluded.

Line 2: The upper and lower Odoni bounds on gn, the number
of value iteration steps performed and the time at which
value iteration was concluded, in Step 2.

Line 3: The upper and lower Odoni bounds on hn, the number
of value iteration steps performed and the time at which
value-iteration was concluded, in Step 4.

In the long format, the iteration report heading is followed by a
table in which N+1 lines are devoted to each essential memory state.

The column headings and data listed are as follows:

RC Recurrent state flags "G" and "H" are listed below. "G"
indicates that the memory state is recurrent under the
optimal perceptive strategy; "H" indicates that the
memory state is also recurrent under the feasible stfategy.

I Delayed-state component of the augmented state.

-157-

U Input selected by the feasible strategy (first line), and

optimal perceptive
(*) indicates that
optimal perceptive
V(G) Relative value for

V(H) Relative value for

inputs (following lines). An asterisk
the feasible strategy always picks the
input.

the perceptive problem.

the feasible problem.

PROBS For memory state z, P(z) is listed.

MEMORY STATES

The memory states are listed below in the form of a left-

handed tree.

In the short format, only the first line of each memory state table

is printed.

v

ooy

-158-

23. Computational Results

a. The Machine Maintenance and Repair Problem

The Machine Maintenance and Repair Problem was formulated in
Section 3, and a procedure, which in principle leads to a solution,
was then described. That procedure is in fact equivalent to perceptive
dynamic programming based on the fixed family of increasing memory
sets '{Z(n-l)?ﬂz+}.

The solution was actually obtained by perceptive dynamic program-
ming on the basis of recursively computed memory sets, as described in
Section 21d. The largest intermediary Markov decision problem solved
had 93 states.

The steps that lead to this solution are briefly described. Dur-
ing the first six iterations, perceived states determine the optimal
input, so feasible performance remains poor. Since pseudo-perception
initially takes the form 8=1, input u=1l ("manufacture") is selected at
all times. On the seventh iteration, the input u=2 ("examine") is
selected whenever u=1 ("manufacture'") occurred four times previously;
but this is done only for the purpose of obtaining a perception free
of delay. In iteration eight, the memory set is augmented by branches
corresponding to input u=2 ("examine'); that input is no longer
selected and feasible performance increases for the first time. A
similar pattern continues until sufficient memory has been allocated to

realize the optimal strategy, and to eliminate suboptimal decisions

"

-159-
motivated by perceptive information structure.

Note that this problem is not detectable. Indeed, there are two
possible decompositions into detectable parts: if the machine is
never repaired, then there is only one recurrent state and the system
is trivially detectable; if the machine is repaired, then all infor-
mation previous to the repair is dispensable; in either case a=0.

The rate of convergence of perceptive dynamic programming is deter-
mined by the rate of absorption of transient states in the former case

which is ac = ,99, QC = 2 (very unfavorable). The convergence rate

for memory sets used in section 3 is bounded by:

[2 . 3.4025]

n.n m-1
g b < (.99 1< .99

The actual convergence obtained was, of course, considerably more
rapid.

The input deck for this problem took the form:

// EXEC PLIXG,PROG='U.M13014.P10015.PLATZSYS.LOAD(LDMOD)'
//G.SYSIN DD #*,DCB=BLKSIZE=2000
'MACHINE MAINTENANCE & REPAIR', 3,4,3,4,1, 20,.01,100,100,
1,1:0:
.81,.18,.01, 0,.9,.1, 0,0,1,
2’230’
.81,.09,.0025, 0,.45,.025, 0,0,.25,
2’350,
0,.09,.0025, 0,.45,.075, 0,0,.75
3,1,4,1,0,
1’,’1’,’1’:,
.9025,.475,.25, .6525,.225,0, -.5,-1.5,-2.5, -2,-2,-2,
/*E0J

The computer~generated report is given on the next 29 pages.

-160-

MACHINE MATINTENANCE & REPAIR

3 STATES
TIME LIMIT:

MAX MEM:

4 INPLUTS

25.00

TRANSITION PROBABILITIES:

V4 {U,
1 1
2 2
3 2
4 3

4

INCREMENTAL REWARDS:

Y)

1

U

BN N e

p

€.81C0
€.0000
0.0000

C.8100
C.C000
C.0000

C.000C
C.C020
€.0000

1.0000
1.C000
1.00C0

€

€C.9025
£.6525%
-C.5000
-2.000¢C

3 QUTPUTS

PRORLEM SPECS

4 [/C PAIRS

MIN ERR:

0.010

MAX ESS MEM: 100

0.1€800
0.SCO00
0.0000

0.0800
0.45G0
0.0000

c.0sC0
0.4509
2.0C00

0.0C00
0.,0009
0.CC00

0.4750
Ne2250
-1.5C00

7.C100
0.1C00
1.C000

0.C025
0.C259
0.2500

D.C075
0.C750
07500

0.0C090
0.CCC0
0.C000

0.25G0
0.CCO0
-2.5000

-161-

MACHINE MAINTCNANCE & REPAIR PAG 2 TABLE 1.01
o e e e e e e e ————————— e e +
] "ITERATION 1 MEM = 1 ESS MEM =] TIME = 0,16 |
i : l
| 0.499 < G < 0.531 17 STEPS TIME = 92.25 |
| 0.250 < H < Cob44 9 STEPS TIME = 0.26 |
f ——————————————————————————————— . e e . e o S o e S S s > o T e o o S s o +
RC I U VI(G) V(H) PRCAS MEMORY STATES
GH 1 <E>

1 1 2.61 2.76 1.C0000 0.0000 0©.0000

2 3 0.59 0.36 0C.C0C0 1.000C 0.00C0

3 4 0,09 -0,76 0.CC00 0.00CC 1.C0CC

aom

MACHINE MAINTENANCE & REPAIR PAGT TARLE 2.01
o e o o e o e s S S . e o S o e S S e e . . e o e i S . o e o e e S o e D +
| ITERATICON 2 MEM = 3 ESS MEM = 3 TIME = 0.36 |
| |
| 0.494 < G < 0.495 8 STEPS TIME = Q.46 |
i 0.250 ¢ H < C.395 14 STEPS TIME = 0.50]
e e o i e i S s S s s b o S S o o S . o e " S e T S T T S . T o 4 o o S . e e +
RC I U VIG) VIH) PRCBS MEMDRY STATES
1 <E>
1 1 2.48 1.C000 0.0000 0.00C0C
2 3 0.48 0.C000 1.0000 .20C0
3 4 -0,02 0.C000 0,0000 1.0000
GH 1 1
1 1 2.07 2.63 90,8100 0,180 C.01CC
2 3 0.3% 0.43 0.0000 0.9000 0.1900
3 4 -0.02 -0.80 0.C000 0.0000 1.0000
G 1% 4
1 1 2.48 1.0000 0.,000C 0.G000
2 1 2.48 1.0000 0.0000 0.0000
3 1 2.48 1.C000 0.000C

-162-

0.8000

-163-

MACHINE MAINTENANCE & REPAIR PAGE TABLE 3.01
F e o s e e e e e e e e e e e i e e e . . . o o o T o e o s o +
] ITERATION 3 MEM = 5 ESS MEM = § TIME = 0.60 |
]]
! 0.677 € G < C.%78 10 STEPS TIME = (.81]
| 0.250 < H < C.385 14 STFPS TIME = (.89 |
e e e e i it o e e e St . . o . e . . o S . o e . S o . . . o e 7 e e +
RC I U VIG) V(H) PRCRS MEMORY STATES
1 <E>
1 1 2.44 1.C000 ©€.0C00 0.G000
2 3 0.46 0.C000 1.00CC c.CCCO
3 & -0,04 0.C000 0,.,0000 1.0CCO
1 1
1 1 2,01 0.8100 0.180C C.0lC0
2 3 0.36 0.C0CO0 0.90C0C 0.10C0
3 4 -0.04 0.C000 0.0000 1.000C0
GH 1 1
1 1 1.67 2,27 0.6561 0.3078 Cl.0361
2 3 0.27 J.39 0.0000 0.8100 0.1900
3 4 -0.04 -0.6% (.C0C0 0.0000C 1.0000
G 1% 4
1 1 2.01 0.8100 0,180C 0.01G0
2 1 2.01 0.8100 0.1800 0.0100
3 1 2.01 0.8100 0.180C 0.0100
G 1% 4
1 1 2.44 1.6000 9.000C ©€.00C0
2 1 2.44 1.0000 00,0000 G.720C0
3 1 2.44 1.C000 0,00CC ©€.0000

MACHINE MAINTENANCE & REPAIR PASE TARLE 4.01
e e e e o i e e e o i e i e e +
| ITERATION 4 MEM = 7 ESS MEM = 7 = 0,99 |
1 |
| 0.462 < G < Cotb4 12 STEPS = 1.30 |
| 0.250 < H < 0.382 13 STEPS = 1.43 l
A e e o o o e e e e e S e e e s S 8 T i e s o +
RC 1 U VIG) V{(H) PROBS MEMGRY STATES
1 <E>
1 1 2.41 1.C000 0.000C 0.C000
2 3 0.45 0.C000 1.000C ¢C.CCQO
3 4 -0.05 0.0900 0.0000 1.CCCO
1 1
1 1 1.97 0.8100 0.180C 0.0100
2 3 0.35 0.C0CO0 0.9000 0.10C0
3 4 -0,05 0.0000 0.0000 1.0000
1
1 1 1.62 0.6561 0.3078 (.0361
2 3 0.25 0.0000 0.,8100 0.1900
3 4 -0,05 0.CC00 0.000C 1.0000
GH 1 1
1 1 1.33 1.92 0.5314 0.3951 0.0734
2 3 0.18 0.34 0.C000 0.7290 0.2710
3 4 -0,05 -0.58 0.,CC00 0,000C 1.0000
G 1* 4
1 1 1.62 0.6561 0.3078 0.03¢1
2 1 1.62 0.6561 0,3078 0.0361
3 1 1.62 0.6561 0.3078 0.0361
G 1%
1 1 1.97 0.8100 0.1800 0.01CC
2 1 1.97 0.8100 0.1800 0.0100
3 1 1.97 0.81CC 0.1800 0.0100
G 1% 4
1 1 2.41 1.0000 90,0000 0.£0CO
2 1 2.41 1.0000 0.00CC 0.0000
3 1 2.41 1.CC00 0.000C 0.0000

-164~-

il

s

s

MACHINE MATINTENANCE & REPAIR

+

| ITERATICN S MEM = g
|

| 0.449 < G < C.452

| 0.250 < H < 0.374

+

1
1 1 2.39
2 3 0.44
3 4 -0.06
1
1 1 1.93
2 3 0.3¢
3 4 -0.06
1
1 1 1.57
2 3 0.25
3 4 “'0006
1
1 1 1.27
2 3 0.17
3 4 -0.06
GH 1
1 1 1.04 1.65
2 3 0.09 0.31
3 4 -0.06 -0.49
G 1%
1 1 1.27
2 1 1.27
3 1 1.27
G 1%
1 1 1.57
2 1 1.57
3 1 1.57
G S

WO

1.C000
0.€C00
0.C000

0.810C
0.CCGCO
0.C000

0.€561
0.C000
¢.C200

0.5314
0.CC00
0.Cc00

0.4305
0.C000
c.CN0O

0.5314
D.5314
0.5314

0.6561
0.6561
C.6561

0.8100
C.8100
C.8100

-165-

PAGE

ESS MEM = 3
14 STEPS

13 STEPS
0.000C 0.€000
1.00CC C€.CCCQO
0.00CC 1.C0C0
0.180C 0.0100
0.,900C 0.102C0
0.0006 1.C000
0.3078 C.03¢€1
0.81C0 0.19C0
€.00CC 1.00CO
0.3951 .C734
0.729C 0.2710
0.C0C0C 1.C000
0.4517 00,1183
D.6561 C.3439
0.C0C0 1.00CC
0.3951 0.C734
0.3951 0.C734
0.3951 0.0734
0.3078 C.C361
0.3078 0.0361
0.3078 0.0361
0.18C0C 0.,0100
0.1300 0.0106¢C
¢t.18CC C.C1lC0

——— o ——— — ————_———— ——— T~ —_—— ———— - — T~ —— L . ——— ———— o~ —— o V— — 2o~ -~

+
TIME = 1.55 |
l
TIME = 2.01 |
TiME = 2.13 |
+

————————— — _———— ——— o~ - ———— T—_— o~ — " — .\ — o o T T S~ ——— T 4~ ———— . ——— . o ———", -

MEMORY STATES

<E>

i

e

£

MACHINE MAINTENANCE &

G

1
2
3

1
1
1
1

*

2.39
2. 39
2.39

REPAIR

1.C000
1.CC00
1.C0CO

-166-

0.00C0
0.C0CC
0.00CC

0.0000
0.C0GCC
C.CCCC

TABLE

-167-

MACHINE MAINTENANCE & REPAIR PAGE TABLE 6.01
o e e e e e —— e e e e . . i e e e . e . o o T i, st S O A +
] ITERATICN 6 MEM = 11 £8S NEM = 11 TIME = 2.30 |
| |
i 0.438 < G < 0.441 16 STEPS TIME = 2,98 |
] 0,250 < H < C.372 12 STEPS TIME = 3,23 |
o e e e e e e e e e e e e i e e o e e +
RC I U VI(G) V{H) PRCABS MEMORY STATES
1 <E>
1 1 2.37 1.(CC0 0.00CC 0.C0CO
2 3 0.43 0.C200 1.0000 0.€000
3 4 -0.07 0.CC0C 0,00C00 1.0000
1 1
1 1 1,90 0.8100 92.,180C 0.01CO
2 3 0.33 0.C000 0.9000 0.1000
3 4 -0.07 C.CCCO 0.00CC 1.CC0O0
1 1
1 1 1.52 0.6561 0.3078 0.0361
2 3 0.24 0.C000 0.,81CC 0.19C0
3 4 -0.07 0.CC00 0.00CC 1.00CC
1 1
1 1 1.22 0.5314 0.3951 0.0734
2 3 0,16 0.CC00 0.729C 0.271C
3 4 -0.,07 0.C000 0,00C0 1.C0CO
1 1
1 1 0.97 0.4305 0.4513 0.1183
2 3 0.08 0.C000 0.6561 0.3439
3 4 -0.07 0.0000 0,0080 1.0000
GH 1 1
i 1 0.78 1.38 0.3487 0.4836 0.1677
2 3 0.02 0.26 0.C0CD 0.5905 0.4095
3 4 -0,07 -0.4C 0.C000 0.000C 1.C000
G 1% 4
1 1 0.97 0.4305 0.4513 0.1183
2 1 0.97 0.4305 0.4513 0.1183
3 1 0.97 0.4305 0.,4513 0.1183
G 1* 4
1 1 1.22 0.5314 0.3951 0.0734
2 1 1.22 0.5314 0.3951 .0734
3 1 1.22 0.5314 92.3951 C.C734

g

EN

MACHINE MAINTENANCE

G

oy

G

W N = W N

W N

%k

P et o

[

1.90
1.90
1.90

2.37
2.37
2437

REPAIR

C.€561
0.£561
0.6561

C.81CC
0.8100
0.2100

1.€0CO
1.C000
1.CC00

-168-

0.3078
N.3078
D.307¢E

0.18CC
0.18CC
0.1800

0,00CC
0.000CC
0.0000C

PAGE 9 TARLE 46,02

C.3361
c.0361
0.0361

C.C01CC
0.01C0
0.N1C0

S

£

£

ke

£

-169-

MACHINE MAINTENANCE & REPAIR PACE 10 TARLE 7.01
o e e ——— ——— —— ——— ———————— +
] ITERATICN 7 MEM = 13 ESS MEM = 13 TIME = 3,37 I
] |
| 0.437 < G < C.439 13 STrEoS TIME = 4,08 |
| 0.195 < H < 0.369 14 STEPS TIME = 4,30]
A o e e e e e o e . o . .o . . . S . o e e . o o e e e e e e e e e e e s +
RC I U VI(G) VIH) PRCAS MEMORY STATES
GH 1 <E>
1 1 2.36 2.94 1.C000 0.0000 0.0000
2 3 0.43 0.43 0.C000 1.000C 0.C000
3 4 -0,07 -0.S1 0.CC00 0.00CC 1.CCCC
GH 1 1
1 1 1.90 2.4C 0.8100 00,1800 0.01C0
2 3 0.33 0.24 0.C000 0.9CCC ©C,12C0
3 4 -0.,07 -0.56 0.C000 0.0000 1.C0CC
GH 1 1
1 1 1.52 1.93 0.6561 0.3078 0.0361
2 3 0.24 0.7 0.0000 0.81CC 0.15CC
3 4 -0.07 -1.01 0.C000 0.0000 1.£000
GH 1 1
1 1 1.21 1.51 .5314 10,3951 0.0734
2 3 0.16 -0.09 0.,C000 9D.726C C.2710
3 4 -0,07 -1.06 0.0000 0.00006 1.0000
GH 2 1
1 2 0.96 1,15 0.4305 0.4513 (C.1183
2 3 0.08 -0.24 0.C000 0.6561 C.3%439
3 4 -0.07 -1.11 0.C00N 0.0000 1.G000
2 1
1 2 0.76 0.3487 D.483¢ C.1617
2 3 0.02 0.CN00 0.5905 (.4065
3 4 -0.,07 0.C020 0.0000 1.C000
2 1
1 2 0.59 0.2824 0.498C C€.2195
2 3 -0.04 0.C0C0 0.5314 0.4686
3 4 -0.07 0.C0C0 0.0000 1.0000
2% 4
1 2 0.76 0.3487 0.4836 (C.1677
2 2 0.76 0.3487 0.4836 0.1677
3 2 0.76 0.2487 0.4836 0.1677

-170~

MACHINE MAINTENANCE £ REPAIR PACE 11 TABLE 7.02
G 2% 4 1 1 1 1
1 2 0.96 0.4305 0.4513 0.1183
2 2 0.96 0.4305 0.4512 0.1183
3 2 0.96 C.4305 0.4513 0.1183
G 1% 4
1 1 1.21 0.5314 0.3951 0.0734
2 1 1.21 0.5314 0.3951 0.1734
3 1 1.21 0.5314 0.3951 0.0734
G 1% 4
1 1 1.52 0.6561 0.3078 0.0361
2 1 1.52 0.6561 0.3073 0.0361
3 1 1.52 0.6561 0.3072 0.C361
G 1% 4
1 1 1.99 0.8100 0.18CC 0.01CC
2 1 1.90 0.8100 0.180C 0.0100
3 1 1.90 0.81C0 0.1800 0.0100
G 1% 4
1 1 2.36 1.C300 0.000C C.000C0
2 1 2.36 1.0000 0.000C 0.000C
3 1 2.36 1.CC00 0.00CC 0.C000

e

-171-

MACHINE MAINTENANCE & REPAIR PAGE 12 TARLE 8.01
A e e o e e . e e . . . o i i St i S o . . o o T o . e) e e . e o 2 2 e +
| ITERATION 8 MEM = 15 ESS MEM = 14 TIME = 4.53 |
| |
| 0.432 < G < C.435 14 STEPS TIME = 5,36]
! 0.308 < H < (.40C 12 STEPS TIME = 72|
F o o o e s e e e s e e o o e . i . o S e . o e, . . e e) i T o o i e e o o i s e +
RC I U VI(G) VI(H) PRCES MEMORY STATES
GH 1 1
1 1 1.76 1.8 0.81CC 0.18CC <C.(C1CO
3 4 -0.21 -0.6S 0.C000 0.00CC 1.00C0
GH 1 1
1 1 1.37 1.47 C.6561 0.3078 0.03¢1
3 4 -0.,21 -0.88 0.C000 0.0000 1.000C
GH 1 1
1 1 1.06 1.1C 0.5314 0.3951 C.0734
2 3 0.02 -0.28 0.C200 0.729C 0.2710
3 4 -0.21 -0.76 0.C000 0.0000 1.0000
GH 2 1
1 2 0.81 0.8C 0.4305 0.4513 O0.1183
2 3 -0.05 -3.23 0.0000 0.6561 0.34365
3 4 -0.,21 -0.62 Q,.C000 0.000C 1.C0600
2 1
1 2 0.61 0.3487 0.4836 C.15677
2 3 -0.12 0.C000 0.5905 (C.4065
3 4 -0.21 0.C000 G§.,0000 1.072CO
2 1
1 2 0.44 0.2824 0.498C C.2195
2 3 -0.18 0.C000 0.5314 C.468¢
3 4 -0.21 0.C000 0,000C 1.C000
2% 4
1 2 0.61 N0.3487 0.4836 0.1677
2 2 0.61 0.2487 0.,483¢ C.1677
3 2 0.61 0.3487 00,4836 0.1677
GH 2% 4
1 2 0.81 0.80 0.4305 0.,4513 0.1183
2 2 0.81 0.80 0.4305 0.4512 C.1183
3 2 0.81 0.80 0.4305 0.4512 0.1183

-172-

MACHINE MAINTENANCE €& REPAIR PAGE 13 TABLE 8.02
GH 1% 4 1 1 1
1 1 1.06 1.10 0.%5314 0.3951 0.0734
2 1 1.06 1.1C 0.5314 0.3951 C.0734
3 1 1.06 1.1C 0.5314 0.3951 0.C734
GH 1% 4
1 1 1.37 1.47 0.6561 10,3078 C.C3¢€1
2 1 1.37 1.47 C.6561 00,3078 0.C361
3 1 1.37 1.47 C.6561 0.3078 0.0361
5H 1% 4
1 1 1.76 1.86 0,8100 0.18CC 0.01C0O
2 1 1.76 1.8 0.8100 0.180¢ 0.0100
3 1 1l.76 1.8% 0.8100 ¢C.18CC 0.0100
GH 1 2
1 1 2.02 2.16 0.,8100 0,09CC C.0025
2 3 0424 -0.06 0.C000 0.45C0 0.0250
3 4 -0.21 -1.06 0.CCCO 0.,00CC C.250C
GH & 3
1 3 0.22 0.01 C.C200 0.09CC G.C075
2 3 0.15 0.01 0.C000 0.450C 0.0750
3 4 -0,21 0.01 GC.CHCO0 0©.00CC C.75CC
GH 1* 4
1 1 2.23 2.41 1.€0000 0.000C 0.00CO0
2 1 2.23 2.41 1.CCcC 0,00CC 0.GO0CO
3 1 2.23 2.41 1.CC00 0.,00CC C.CCCC

.

MACHINE MAINTENANCE & REPAIR PAGE 14 TABLE S.01
G e o o o s s e . o T " . Yo o o] o S e St o S D o ot i o +
| ITERATIDON 9 MEM = 18 ESS MEM = 17 TIME = 5,96 !
| !
| 0.429 < G 0.431 16 STCPS TIME = T7.11 |
| 0.284 < H < 0.40C4 13 STEPS TIME = 7.73 |
A o i e e e o o . o~ o S . (T . o . S G o ol S o i S i S o o o o +
RC I U V{G) VI(E) PRCRS MEMNRY STATES
G 1 1

1 1 1.75 C.81C0 0.18CC C.01CC

2 3 0.19 0.C200 0.900C 0.1CCC

3 4 -0,21 0.0000 0.0000 1.0000
GH 1 1

1 1 1036 —0084 006561 003078 C.O361

2 3 0.10 -2.56 0.C000 0.810C 0.19C0

3 4 -0.2! -3.23 0.C0C0 0.000C 1.C000
GH 1 1

1 1 1.05 -1.19 0C.%5314 ©0.3951 0,.,0734

2 3 0.02 -2.62 C.C000 0.7290 0.2710

3 4 -0.21 -3.22 (€.CC00 0.0000 1.80CO
GH 1 1

1 1 0.79 -1.49 0.4305 0.4512 0.1182

2 3 ~-0.05 =-2.66 0.C300 0.6561 0.34329

3 4 -C.21 -3.06 0.C00C 0.000C 1.0000
GH 2 1

1 2 0.59 -1,74 0.2487 0D.4236 00,1617

2 3 -0.12 -2.69 0.CC00 0.5905 C(.4095

3 4 -0.,21 -2.%7 C.CC00 0,00CC 1.0C00

1

1 1 0.43 0.2824 D.498C 00,2195

2 3 -D.18 0.C0C0 0.%314 0.4686

3 4 -0.21 0.C0C0 0.00CC 1.0000
GH 2%

1 2 0.59 -1.74 0.3487 0.4836 0.,1677

2 2 0.59 ‘1.74 003487 0.4836 001677

3 2 0459 -1.74 0.3487 0.4836 C.1677
GH 1% 4

1 1 0.79 -1.49 0.4305 0.4512 (C.1183

2 1 0.79 -1.4G 0.4305 0.4513 0.1123

-173-

MACHINE MAINTENANCE &

GH

GH

GH

GH

N

o,

GH

W N e [SO IS I W PO - W N = N W N - [SVIN S Y N

W N -

3

H WP DWW e N e Pt et et et £ 0 o e Pt
D (o] o - o — —
L] * L] L] * . []
[— N - — (5% o
n 0 o+ %)) -+ o (%]

o it
(o]
-
—
»H

T b et ps
N
*
N
)

“}.019
"'}.alg
-1.16

-0084
_Oo 8"
-O. 84

-0062
“2052
"3.43

‘Oc‘l’l
"0041
"0041

—0.4C
'2."6
’3.48

-2.3{:

0.1C
0.1C
0.10C

REPAIR

0.5314
C.5314
C.5314

0'6561
C.6561
C.€561

0.6561
0.C0C0
g.Crooe

0.2100
c.8100
0.21C0

0.8100
6.CCCC
0.CCCO0

0.€561
0.C0OGCO
0.C000

0.CCCC
0.CO00
0.C0G0

0.C2C0
0.C200
0.C000

1.2000
1.CC00
1.C2CO

174~

0.3951
0.3951
0.3951

0.3078
0.3078
0.3078

0.,2268
0.405C
0.C0CC

0.180C
0.18C0
0.18CC

0.0930C
0.45C0
0.00CC

0.1535
0.405C
0.00CC

0.09C0
0.45CC
0.00C0

0.1536
0.4050
N.00CC

0.00CC
0.0000
C.00CC

PAGE 15

0.0734
C.C734
0.C734

0.0361
C.0361
C.C3¢1

0.019¢6
0.0700
€.25C0

0.C1C0
0.C100
C.C1lCC

£.0025%
0.0250
£.25CC

0.0090
C.0475
0.25C0

C.C075
€C.0750
0.7500

€.0271
0.1425
0.75CC

c.C0CQ
0.0000
0.C0C0

4

TABLE

1

4

3.02
1 1
2
4

2
1

3
1

4

EEN

MACHINE MAINTENANCE & REPAIR

—— — e,

GH

G

3]

G

ITERATICN

0.430 < 6 <
0.250 € H £

(S w0 w N e W N - [SSREAS I) WA - W N =

W N -

U VI(G)
1

1 -0.35
3 ‘1.60
4 —-1.91
1

1 "Otbé
3 —1-69
lf "1.91
1

1 ‘0-92
3 ~-1.756
lf _1091
1

1 -1.12
3 -1.82
4 -1.91
1

1 "1.27
lf "1.91
1*

1 "1-12
1 -1.12
1 -1.12
1=

1 _0092
1 -0.92
1 "0.92
1%

1 —0066
1 -0.66
1 —0066

10

V{H)

1.25
0.2¢
"0037

PRCES

0.6561
0.CC00
0.C200

0.5314
0.CC0C0
0.C000

0.4305
0.CCCO
0.£000

0.3487
c.CCCO
0.CC00

0.2824
C.CCCO
0.CC020

0.3487
0.3487
0.3487

0.4305
C.4305
0.4305

C.5314
0.5314
0.5314

-175-

12 STEPS

14 STEPS

N.3078 0.0361
0.81CC C©€.19CC
0.000C 1.r0CC
0.3951 0.0734
0.726C GC.271C
0.00C0 1.0CC0
0.4513 0.1183
0e65€61 C.3436
0.00C6C 1.CCCC
C.4836 0.1677
0.59C5 C.4085
N.00CC 1.0CCO
0.498C 0.2165
0.5314 C.468¢6
0.00CC 1.02CC
0.4836 0.1677
0.4836 C.1677
0.4836 GC.16117
0.,4513 0.1183
0.4513 C.11€3
0.4512 C.1183
0.3951 0.0734
0.3651 C.C734
D.32951 C.0734

+

TIME = B.06 |
|

TIME = 6,12 |
= = 9,27 |

+

MEMORY STATES

MACHINE MAINTENANCF & REPAIR

(2]

(]

W N - W N e W N e W N

W N -

W A woN W N

[CY IS

1

1 -0.48
3 -1.65
4 "1091

1%

1 -0.35
1 -0.35
1 "GOBS

"0013
”1056
"10@1

DWW e

-1.61
“1-91

W

‘—1-58
"1-64
"1091

N CIITCRN -

#*

004
0.04
0.04

ot ki et

0.29
"1047
"1-91

N s

0.09
-1.52
"1.91

B R e

-0.190
-1057
“"1.91

D e

"1-4‘9
"‘1.56
"1.91

W ETCRTO

0.5314
0.C0000
0.CO00

0.€561
0.6561
0.6561

C.€561
0.C000
0.0C0C0

0.5314
0.C200
C.C000

0.CCGOo
0.C000
0.C000

0.81C0
0.8100
0.81C0

0.81C0
0.C800
0.CG0C0

0.6561
C.C000
C.CCCC

C.5314
0.0000
0.CC00

0.80G0
0.CC00
C.C0CO

-176-

0.3222
0.3645
0.00CC

0.3078
0.3078
0.3078

0.2268
0.4050
0.00C0

C.25€6
0.3645
0.0000C

0.081C
0.405C
0.0000

0.18CC
0.18CC
0.180CC

0.09CC
0.4500
0.00CC

0.1536
0.4050C
C.0CCC

0.1976
De35645
0.00CC

0.09GC
0.4500
c.C0CC

PAGE 17

0.04€68
C.11C5
0.250C0

C.C3é€1
C.03€1
0.0361

C.0186
c.07C0
0.250C0

C.031¢C
J.0880
0.2500

2.12C0
0.,7500

8.01CC
c.01C0
0.01CO

C.002%
C.0250
0.2500

0.006¢C
0.0475
0.2500

C.0184
0.0677
0.2500

C.2075
0.0750
G.75C0

2

1

TASLE 10.02

1

-177-

MACHINE MAINTENANCE & REPAIR

W N W N -

VI I

“1-56
-106?
-1.91

S oww b

"1063
-1.75
'—1091

Hor—-w s

1%

1 0.52
1 0.52
1 0.52

0.C000
C.C0OCO
C.CCaN

C.CC00
C.CoCO
c.ccoo

1.C000
1.CC0O0
1.CC00

N.1539
0.405¢C
0.CCCC

0.1976
0.3645
0.00CC

0.0000
c.CC0C
0.00CC

0.0271
0.1425
C.75CC

0.0551
0.2032
C.75CC

0.CCCC
0.C0CO
C.CCCC

1

T4aBLE 10.03

3

MACHINE MAINTENANCE & REPAIR PAGE 19 TABLE 11.01
b o o e e . e o v e o i S o S S o i i o o S o S s o i " " T o " T o7 o, i o o +
| ITERATION 11 MEM = 25 ESS MEM = 23 TIME = G9.42 |
| |
! 0.423 < 6 £ Ce427 18 STEPS TIME = 11,11 |
| 0.2592 < H L C.41C 12 STEPS TIME = 11.55 |
e e e e e e e e e o +
RC I U V(G) VI(H) PRC8S MEMORY STATES
1 1 1
2 3 -1.690 0.0G00 0.81CC 0.19C0
3 4 -1.91 0.C000 00,0000 1.C000
GH 1 1
2 3 -1.69 -2.61 0.C000 0,726C 0.2710
3 4 -1.91 -3.,2C 0.C000 0.0000 1.00CC
GH 1 1
1 1 ~-0.94 -1.42 (0.4305 0,4513 (.1183
2 3 —-1.76 -2.65 0.,0000 0.6561 GC.34329
3 4 -1.91 -3.08 0.C000 0.000C 1.0000
GH 2 1
1 2 ~1.15 -1.73 0.3487 0.4836 0.1617
2 3 -1.82 -2.67 0.C000 0.5905 0.4095
3 4 -1.91 -2.96 0.C000 0.000C 1.€000
2 1
1 2 -1.32 0.2824 0.498C 0.2165
2 3 -1.88 0.C000 0.5314 0.4686
3 4 -1.91 0.C000 0.0000 1.C00C
4 1
1 1 -1.46 0.2288 0.4991 0.2722
2 4 -1.91 N0.C000 0.4783 C£.5217
3 4 -1.91 0.C000 00,0000 1.00C0
2% 4
GH 2% 4
2 2 -1.15 -1.73 0.3487 0.4836 0.1617

-178-

MACHINE MAINTENANCE

GH

GH

GH

GH

GH

G

GH

[

(SN A o

e
p-4

1 -Ooglf
1 -0094
1 ”0394

%
-0.68
-0068
“0‘63

e i

‘_0050
"'].065
-1.91

e

b3
~0.36
~-0.35%6
-0.36

el

"0.14
‘1056
—1'91

N

"0-33
‘-1061
“'1091

W

-1-58
-1.64
"'1091

£ ww

*
0.03
0.03
0.03

P e e

0.29
‘1047
_1a91

R

0.09
'1-52

DO e e

—1048
_1048

-1'19
-1.,196

-1.01
-2.58

-0.83
"00 83
"00 83

—0.82
"2-54

_0041
'Ool’}.
"0'41

REPAIR

0.4305
0.4305
0.4305

0.5314
0.5314
0.5314

0.5314
0.C000
0.CCCO

D.6561
0.6561
0.6561

0.€561
C.CC00
0.CC00

0.5314
0.CC00
0.CCQ0

C.Cn00
0.C000
c.COCC

0.8100
0.81C0
C.R1C0

0,8100
0.0000
0.CcC0

0.6561
0.CCCO
C.C2C0

-179-

0.4513
0.4513
D.4513

0.3951
0.3951
0.3951

0.3222
0.3645
0.00CC

0.,3078
0.,3078
0.307%8

0.22€8
0.4050
0.000¢C

0.25¢¢
0.3645
0.000C

0.081C
0.4050
0.C00C

0.18C¢C
0.180C
0.13CC

0.09CC
0.4500
0.00CC

0.1539
0.405¢C
0.00CC

PAGE 2C

C.1187
0.1182
0.1183

C.0734
0.0734
0.0734

0.0488
0.1105
C.25CC

N.03€1
0.2361
C.C361

0.C166
C.0700
C.25CC

0.031C
.08490

0.2500

C.01¢€5
0.12C0
0.7500

c.01CC
0.0100
0.0100

0.3090
C.0475
C.25C0

4

1

1

TABLE 11.02

1

~-180~

MACHINE MAINTENANCE & REPAIR PATE 21 TABLE 11.07%
GH 1 I 1 2
1 "1 -0.1C —-0.62 05314 0.1976 GC.0184
2 3 -1.57 -2.48 C.C0C0 0N.,3645 C.0677
3 4 -1.91 -3.41 0.C200 0.00CC C.25C0
4 3
1 3 -1.49 C.CCO0 0.09CC 0.0075
2 3 -1.56 C.C200 0.45CC C.075¢C
4 1
1 3 -1.56 0.CC0C 0.1538 0.0271
2 3 -1.68 0.CC00 0.405C C.1425
3 4 -1,91 0.C2C00 0.000C 0.7500
GH 4 1
1 3 -1.63 -2.31 0.CC00 10,1976 0.0551
2 1 -1.74 -2.31 O0.CT00 0.3645 (€.2032
3 4 -1.91 -2.21 0.C0000 0.00CC 0.7500
GH 1% 4
1 1 0.51 0.1C 1.C000 ©0.0GGC ©.C0CO
2 1 0.51 0.1C 1.CC00 0.00CC C.00CC
3 1 0.51 0.1C 1.C000 0.0CCC €.0CCO

-181-

MACHINE MAiNTENANCE £ REPAIR PAGE 2?2 TARLFE 12.01
o e e e e e e e e e e e = e e e +
| ITERATICN 12 MEM = 3] ESS MEM = 29 TIME = 11,94 |
| |
| 0.420 € G < C.425 18 STEPS TIME = 14.10C I
| 06317 < H K C.409 12 STEPS TIME = 14.38 |
A e e e e e e e e +
RC I U VIG) V{H) PRCES MEMCORY STATES
1 1 1
1 1 -0.37 0.6561 0.3078 C.03¢1
2 3 -1.60 0.C0CO0 0.81C0 0.1900
3 4 -1.91 0.C7CO 0,00CC 1.0000
1 1
2 3 -1.69 0.CN00 0.729C 0.2710
3 4 -1.91 C.CH00 C.00CC 1.20CO0
1 1
2 3 -1,76 0.C0C0 0.6561 0.3439
3 4 -1.91 0.CCO00 0,00C0 1.00C0
1 1
1 1 -1.16 0.2487 0.4836 0.1677
3 4 -1.91 C.CCGC 0.000C 1.0C00
1 1
1 1 -1.32 0.2824 0.498C G0.2195
2 3 -1.88 0.C000 0.5314 0.,46%6
3 4 -1,91 0.C2C00 0.00CC 1.CCO0O
GH 4 1
1 1 -1.45 =2,29 0.2288 0.4991 0.2722
2 4 -1.91 =-2.29 0.C000 0.4783 0.5217
3 4 -1.91 -2.29 0.C0C0 0.00CC 1.C0CO
GH 1% 4
2 1 -1.32 -2.14 G(.2824 0.4980 0.2195
3 1 =1.32 -2.14 0.2824 0.498C 0.2165
GH 1% 4
1 1 -1.16 -1.96 0.3427 0.4836 C.1617
2 1 -1.16 =1.96 0.3487 0.4836 0.1677
3 1 -1.16 -1.96 0.3487 0.4836 0.1677

MACHINE MAINTENANCE & REPALIR

GH

GH

GH

W N — w N e (SN Iy P W N W N W N W N W N

W N =

%
—0095
_0095
-0.95

[Y

"‘0080
"1~72
—1091

E S

b3
‘0169
-0069

Pt et et s

"0051
—1.65
"’1-91

W

-0'64
-1069
"1.91

DO

%
-0.37
-0.37
"’0037

Pt ot et fued

—O. 15
“1.56
"1:91

R L

-0.32
"1.61
—1091

ENSV R

"0047
-1066
’1091

W

"1064
~-1.91

Wb

_1573
-1-73

~-1.41
"1041
—1-»{’1

—Ougq
-Ou 99
—Ougg

0.4305
C.43C5
0.4305

0.4305
0.C€000
C.C20C0

0.531¢4
0.5314
C.5314

0.5314
0.C0GCO
0.C0CO0

0.4305%
C.C000
0.€C0GO

0.€561
0.6561
0.6561

0.6561
c.COC0
0.CceCn

0.5314
C.C00C
0.Co00

0.4305
C.CO0CO
C.CC0O0

0.C000
C.CCOO0
0.CCCO

-182-~

0.45132
0.4513
0.4%13

0.3857
0.328C
0.0CCC

0.3951
0.3951
0.3951

0.3222
0.3645
0.00CC

0.326¢
0.328C
0.COCC

0.3078
0.3078
0.3078

N.2268
0.4050
0.00CC

0.2566
0.3645
0.00CC

N.2735
0.328C
0.0GCC

0.0810C
0.405C
0.00CC

0.1183
0.1183
0.1183

C.N8B64
0.1469
«.25CC

C.CT34
C.C734
C.C734

0.2488
C.11C5
C.25C0

0.0620
0.1244
0.25CC

0.0361
0.0361
C.C3¢€1

C.C196
C.0700
C.25CC

0.0310
C.0880C
6.25CC

0.0424
C.1042
C.25C0

0.0165
c.120CC
C.75CC

1

1

1

TARLE 12.02

1

MACHINE MAINTENANCE

GH

W\ - W W o W N W N - w R [SV RN S W e (SRS o

W N -

4

3 ~-1.65%
1 -1.71
4 ~-1.91
1%

1 0.03
1 0.03
1 0,03
1

1 0.28
3 -1l.47
4 -1091
1

1 0.07
3 ‘1Q52
4 “1.91
1

1 -0.12
3 "‘1.5?
4 "1.91
1

1 -0.30
3 -1.62
4 -1.91
4

3 -1.49
3 '105()
4 “1091
4

3 _1056
3 ~-1.67
4 "1091
4

3 "1.63
1 -1.76
4 —-1.91
4

3 -1.70
1 "1.80
4 _}.ogl

"0» 4(;
'—0049
-0.49

&

REPAIR

DO
o e ®
OO
[3 B}
O
OO

0.81C0
0.E100
0.81C0

0.81C0
6.Co000
0.C000

C. €561
0.CCO0
0.C000

0.5314
0.C000
6.€000

0.4305
0.C000
0.C000

g.Cccco
0.CG0C0
0.C200

C.C00C
0.C200
0.C000

0.CCGO
C.C200
0.CCO0

-183-

0.1385
0.3545
0.0CCC

0.18CC
%.18CC
0.18CC

0.09CC
0.45C0
0.00CC

0.1535
0.405C
0.0000C

0.197¢€
0.3645
0.00CC

0.225¢€
0.328C
0.0000

0.09CC
0.45GC0
0.00CC

0.1536
D.405C
0.00CC

0.197¢
0.3645
0.C0C¢C

0.225¢
0.328¢C
0.0000

PAGE 24 TAELE 12.03

0.0425
0.133C
0.75CH

C.01C0
C.01CC
0.01CC

C.C025
0.025C
0.2500

C.C0SC
0.0N475
0.2500

C.Clea
0.0617
0.2500

C.C2G¢6
0.08¢60
C.2500

C.C0T75
C.075C
0.7500

C.0271
C.142%
0.7500

£.925%51
0.2032
0.7500

C.UBET
0.2579
0.7500

EEN

MACHIME MATINTENANCE & REPAIR

GH 1

1 1 0.51 90.C8 1.CC00

2 1 0.51 0.C8 1.C000
1

3 0.51 0.C8 1.CCCO

-184-

0.00C0
2.0000
0.00CC

PAGE 25

0.CCCC
0.0n08
0.C00C

TABLE 12.04

4

MACHINE MAINTENANCE ¢

GH

ITERATION 13

REPAIR

MEM = 33

0.421 € G < C.423

0.421 < H < C.423

I U V{G) VI(H) PR(CBS
1

3 4 ~-1,91 0.C000
1

1 1 -0.70 0.5314

2 3 -1.69 0.CNCo

3 4 -1.91 0.C000
1

1 1 -0.96 0.4305

2 3 -1.76 0.C200
1

1 1 -1.17 0.3487

2 3 -1.82 0.C000

3 4 °1o91 O.GOGO
1

1 1 -1.33 C.2824

2 3 -1.88 0.£000

3 4 -1,91 0.0000
4

2 4 -1.91 0.€000
4

1 3 -1.55% 0.1853

2 4 -1.91 0.C000

3 4 -1.91 0.C000
3%

2 3 -1l.46 -1.9C 0.2288

3 3 -1.46 -1.9C 0.2288

-185-

ESS MEM

17 STEP
6 STEDP

0.3078
0.81CC
0.0000

0.3951
0.729¢C
0.0000

0.4513
0.6561
0.000C

0.4836
0.5905
0.000C

0.4980
0.5314
0.0000

0.4991
0.4782
0.000C

0.4903
0.4305
0.00CC

0.4951
0.4991
0.4991

L]
[S8]
-

S
S

C.03¢1
C.19C0
1.0000

0.0734
0.2710
1.00C0

0.1183
0.3439
1.0000

0.1677
0.4095
1.C000

C.2195
C.4686
1.8000

1
C.2722
0.5217
1.00C0O

1
0.3244
0.5695
1.06C0

4
0e2722
0.2722
0.2722

TABLE 13.01

MEMORY STATES

.....

i

MACHINE MAINTENANCE & REPAIR

GH

GH

GH

GH

GH

W

(SIS

w N -

[SU N

W - Ww N - W N =

W RN -

1%

1 -1.33 -1.77
1 "1'33 "1;77
1 -1033 "1.77

1%

1 -1.17 -1.61
1 "1.17 “1.61
1 "1.17 "1061

1%

1 -0.96 -1.4C
1 "0096 "1.190
1 -0.96 -1.4C
1

1 -0081

3 "1072

4 ~-1.91

1%

1 ~0.70 -1.13
1 -0.70 ~-1.13
1 ~0.70 -1.13
1

1 "0051

3 "‘10()5

4 ~-1,91

1

1 "'0.65

3 ‘1.69

4 ‘1.91

1%

1 -0.37 -2.81
1 ‘“0.37 '0091
1 -0.37 -0.81
1

1 “0016

3 "1.56

4 -1.91

1

1 -0.32

3 '1061

4 "1.91

0.2824
C.2924
C.2824

C.3487
0.32487
C.3487

0.4305
0.4305
0.4305

0.4305
0.C000
C.CCCO

0.5314
0.5314
0.5314

0.5314
0.C000
0.C000

0.4395
0.C000
0.CcCeo

0.€561
0.¢561
0.6561

0.€561
0.C000
c.CCCO

0.5314
0.C0GO
C.C000

-186-

0.498C
0.498C
0.498C

0.4836
0.4836
0.4836

0.4513
0.4513
0.4513

0.3857
0.328C
0.0CCC

0.3951
0.3951
0.3951

0.3222
043645
0.00CQC

0.32¢¢6
0.328C
C.00CC

0.307¢8
0.3078
0.3078

0.226¢8
0.405C
0.00CC

D.25¢6
043645
0.00CC

PAGE 27

0.2195
0.2195
0.,2165

0.1677
0.1677
0.1677

C.118€73
C.1183
C.1183

C.08¢t¢4
0.1469
6.25CC

C.C734
0.0734
C.C734

C.0488
0.1105
0.2500

0.062C
0.1244
C.2500

C.03¢1
0.0361
C.0361

C.ULlGe
0.07C0O
C.25C0

C.031C
0.0330
£.2500

1

1

1

TABLE 13.02

1

-187-

MACHINE MAINTENANCE & REPAIR PAGE 27 TAPLE 13.03
1 1 1 2 1
1 1 -0.48 04305 0.2735 0.0434
2 3 -l.66 C.CCCO 0.328C 0.1042
3 4 -1.91 0.€0CO0 0.00CC 1+ 25C0
4 3
1 3 -1.58 0.CN00 0.081C G.0165
2 3 -1.64 0.CO0C0 10,4050 0.1200
3 4 -1.91 0.CCC00 0.00CC C.75CC
4 1
1 3 -1.65 0.C000 0.1385 (0.0425
3 4 -1.91 g.C00C «8GCC C.75CC
GH 1* 4
1 1 0.03 -0.41 0.8100 0.180C 0.,01CC
2 1 0.03 -0.41 C.8100 0.18CC 0.01060C
1 2
1 1 0.28 0.B100 0.09CC 0.0025
2 3 —-1.47 0.C000 0.45CC 0.0250
3 4 ~-1.91 G.C000 0.,00C00 (C.25C0
1 1
1 1 0.07 0.6561 0,153 0.C090
2 3 ~-1.52 0.CC00 0.,408C C.0475
3 4 -1.91 0.C000 0,00CC C.2500
1 1
1 1 -0.13 C.5314 0.1976 C.0184
2 3 -1.57 C.C3C0 0.3645 C,0677
3 4 -1.91 0.CC20 0.C0CC 0.250C
1 1
1 1 -0.30 0.4305 0.2256 0.0296
2 3 -1.62 C.CrCC 0.328C GC.086C
3 4 ~-1.91 0.C0CO 0,00CC 0.25CC
4 3
1 3 -1.49 0.C0C0 0.09CC C.CO075
2 3 -1.56 0.C0C0 0.45CC C.0750
3 4 -1.91 0.C000 0.800CC G.75C0
4 1
1 3 -1.56 0.CC0C 0.1538 0.,0271
2 3 -1.67 0.L000 0.405C C.1425
3 4 -1,91 0.CC00 0.00CC 0.75CC

-188-

MACHINE MAINTENANCE £ REPAIR PAGE 29 TARLE 13.04
4 1 1 3
I 3 -1.63 0.C0CO0 0,197¢ C.0551
2 1 -1.76 0.C000 0.3645 (.2032
3 4 -1.,91 0.C200 0.000C 0.75C0
4 1
1 3 -1.70 0.C000 0N.225¢ C.CR87
2 1 -1.80 0.C000 0.328C 0.2579
3 4 -1.91 0.C000 0D.00CC 0.75C0
GH * 4

1

1 0.51 0.7 1.CC00 o0.C0CC C.CCCO
1 0.51 92.07 1.CC00 0.00CC ¢C.CCCC
1 0.51 0.C7 1.C000 0.00CC 0.00C0

W N e

-

-189-

b. A Computer Communication Problem

The problem to be considered in this subsection concerns several
units sharing a single communication channel. If any two units attempt
to transmit messages simultaneously, both will fail. As the units have
no means {other than the channel itself) of coordinating their efforts,
the decision to transmit is made on the basis of imperfect information.
A system of this type has been used to link remote terminals to a
central computer at the University of Hawaii; because this system is
called the ALOHA system, the problem has become known as the slotted

ALOHA problem. A more familiar example of this problem is that faced

by a newsman attempting to address the President of the United States
at a news conference; if he asks a question while another newsman is
doing the same, neither will be recognized.

The slotted ALOHA problem has been considered by Kleinrock and
Lam [1975], Lam and Kleinrock [1975], and others cited in the first
reference. Although the problem has been extensively studied under
the assumption that the number of units seeking to transmit is known
(to all units), no work known to this author considers the 'dual con-
trol" aspect of the problem (characterized by the fact that clashes
are useful in identifying the number of units seeking to transmit).
The formulation to be considered here limits the number of units, but
recognizes the "dual control" aspect of the problem. Moreover, pre-
vious work resulted in strategies sufficiently complex to preclude

evaluation, even by simulation. In the present analysis, the system

-190-
under an adapted feasible strategy is a Markov chain having state set
SxM; exact evaluation of the controller performance is therefore
possible.
In the model to be considered here, there are four units, each

of which may be in idle or retransmit mode. During each time interval,

a message originates at an idle unit with probability .1. The unit

always attempts to broadcast a newly-originated message. The three

outputs are:

No transmissions attempted
Y = One successful transmission .

Multiple transmissions attempted

A unit that has unsucessfully attempted to transmit subsequently enters
retransmit mode. It then selects an input

Retransmit with probability .2

U= Retransmit with probability .9

Since the system, as viewed by a unit in retransmission mode, is
symmetric, all units select the same input on the basis of the same
input-output history. There results an FPS formulation having 5 states
(corresponding to the number of units in retransmit mode), 2 inputs,
and 3 outputs. The FPS is reachable and detectable. The performance
measure is throughput, i.e. the average number of messages successfully

transmitted per unit time.

-191-

t

The following results were obtained in four iterations:
! h g essential time

1b ub 1b ub memory effectiveness (secs)
.302 .354 .330 .372 1 > 91.2% .39

- .309 .331 .332 .336 > 93.3% 1.54
] .313 .329 .331 .332 26 > 94.6% 5.46
4 .312 .330 .330 .331 98 > 94.37 23.49
.’«“
3 "Effectiveness'" was computed by comparing the lower bound on h with
: the final upper bound on feasible performance, .331.
’ These results indicate that memory is not very useful for pur-
E poses of decision-making in this problem, i.e. that the performance
' that may be achieved on the basis of the most recent input-output

pair alone (iteration 2) is comparable to that which may be achieved
oo

' on the basis of an infinite past history. This might be attributed to

] the small number of units involved; it is possible that a similar com-
)

putation with a larger number of units might yield entirely different
r.y

results.

-192-
CHAPTER V

CONCLUSIONS

The mathematical technique of dynamic programming assigns to each
state a value representing the expected rewards accrued when the system
is initiated in that state. A decision-maker uses these values to com-
pare immediate rewards with potential benefits if the system is made to
enter a desirable state.

Problems of decision-making under state uncertainty may, in
principle, be solved by dynamic programming, if the state of information
is itself considered to be a state. It may, however, be practically
infeasible to assign a value to each state of information, when the
number of possible states of information is sufficiently large.

The mathematical technique of perceptive dynamic programming
assigns avalue to certain information that might be acquired at a
cost. These values may be used to compare performance achievable on
the basis of existing knowledge with potential benefits if further
information is sought.

In this report, perceptive dynamic programming has been developed
in the context of control of finite probabilistic systems over an
infinite horizon. The system is assumed to be reachable, so that
performance will not depend on the initial state, and detectable, so
that performance will not depend on the initial state of information.

Specifically, reachability assures that the most desirable state can

-193-

be reached from any other state; hence the gain achievable when the
system is initiated in the most desirable state can be replicated when
the system starts in any other state. Detectability assures that the
information vector may be arbitrarily closely approximated on the basis
of a sufficiently long string of most recent input-output pairs; hence,
whatever information was available initially is irrelevant in the steady-
state. Reachability and detectability also imply that a performance
arbitrarily close to the supremum feasible performance may be achieved
by a finite-memory controller having a sufficiently large memory set.

Reachability and detectability have many implications in FPS's
that are similar to well-known properties of finite-dimensional linear
systems (FDLS). For example, detectability in a FDLS implies that the
observer state may be arbitrarily closely (in some suitable sense)
approximated on the basis of a sufficiently long string of most recent
input-output pairs. The analogous result for FPS's is given in Section
14. Moreover, any FDLS that is initiated in state zero may be expressed
in a form that is controllable and observable. The assumption that a
FDLS is initiated in state zero is equivalent to the assumption that it
has experienced an infinite past under a stablizing control. Similarly,
any FPS that has experienced an infinite past under an appropriate
decision strategy may be expressed in a form that is reachable and
detectable.

An algorithm for the solution of FPS control problems was implemented

on a digital computer, and two simple problems were "solved" to

-194-

demonstrate the efficacy of the method. It appears that more realistic
(and hence more complex) problems might be solved in the same manner,
but it would then be necessary that the computer implementation be pro-
blem-specific.
Possible extentions of the theory which would be beneficial in
extending its applicability include the following:
1) The recursive computation of memory sets (described in Section
21d) could be explicitely optimized (e.g. b& means of a branch-and-
bound intepretation).
2) The computational efficiency of pseudo-perceptive dynamic pro-
gramming (described in Section 21b) might be compared with that
of perceptive dynamic programming.. It is clear that pseudo-
perceptive dynamic programming converges less rapidly than does
perceptive dynamic programming, but the former requires less
memory and less time to complete an iteration.
3) Perceptive dynamic programming is most effective when the
index of detectability, E; lies near zero. In order for this to
occur, outputs need not yield good reliable state information;
they simply must preclude the possibility of better information
being acquired from less recent input-output pairs. Thus the
notion of detectability is useful in determining whether a given
problem may be solved numerically. If the problem cannot be

solved, then the notion of detectability might be useful in

iy

-195-
suggesting a different observation structure, one that is more
conducive to solution. In particular, the following problem might
be posed: Determine outputs for a given underlying process such
that, when perceptive dynamic programming is performed up to a
maximumallowable memory size, feasible performance is maximized.
An output that happens to equal the optimal input given the state
would, of course, solve this problem.
4) The notions of reachability and detectability might be
extended to systems having a large state set and ' a great deal of
structure (e.g. routing in a network of queues). This could lead
to effective rules for decision-making on the basis of imperfect
state information when consideration of the exact state is
physically feasible, but precluded on grounds of complexity.
5) Notions of cross-reachability and cross-detectability might
be defined in decentralized systems, to indicate the extent to

which various decision-makers need to coordinate their efforts.

~

-196-

BIBLIOGRAPHY

ASTROM, K.J. [1965],
"Optimal Control of Markov Processes with Incomplete State Information,"
J. Math. Anal. Appl. 10, pp. 174-205.

ASTROM, K.J. [1969],
"Optimal Control of Markov Processes with Incomplete State Information
IT: The Convexity of the Loss Function," J. Math. Anal. Appl. 26,
pp. 403-406.

BATHER, J. [1973a],
"Optimal Decision Procedures for Finite Markov Chains. Part I:
Examples," Adv. Appl. Prob. 5, pp. 328-339.

BATHER, J. [1973b],

"Optimal Decision Procedures for Finite Markov Chains. Part II:
Communicating Systems," Adv. Appl. Prob. 5, pp. 521-540.

BATHER, J. [1973c],
"Optimal Decision Procedures for Finite Markov Chains. Part III:
General Convex Systems," Adv. Appl. Prob. 5, pp. 541-553.

BELLMAN, R. [1957a],
"A Markovian Decision Process," J. Math. and Mech. 6, pp. 679-684.

BELLMAN, R. [1957b],
Dynamic Programming, Princeton University Press, Princeton, N.J.

BERTSEKAS, D. [1976],
Dynamic Programming and Stochastic Control, Academic, New York.

BROOKS, D.M. and LEONDES, C.T. [1973],
"Markovian Decision Processes with State-Information Lag," Opns.
Res. 21, pp. 904-907.

BROWN, B. [1965],
"On the Iterative Method of Dynamic Programming on a Finite State
Discrete Time Process," Ann. Math. Stat. 36, pp. 1279-1285.

CERNY, J. [1970],
"Approximation in the Space of Information Channels," Information
and Control 16, pp. 384-395.

CHANDRESEKARIN, B. [1970],
"Finite Memory Hypothesis Testing--A Critique," IEEE Trans. Inform.
Theory, Vol. IT-16, No. 4, pp. 496-497.

-197-

CHANDRESEKARIN, B. [1971],
"Reply to Finite Memory Hypothesis Testing--Comments on a Critique,"
IEEE Trans. Inform. Theory, Vol. IT-17, No. 1, pp. 104-105.

CHANDRESEKARIN, B. and LAM, C.C. [1975],
"A Finite-Memory Deterministic Algorithm for the Symmetric Hypothesis
Testing Problem," IEEE Trans. Inform. Theory, Vol. IT-21, No. 1,
pp. 40-44.

COVER, T.M. and HELLMAN, M.E. [1970a],
"The Two-Armed-Bandit Problem with Time-~Invariant Finite Memory,"
IEEE Trans. Inform. Theory, Vol. IT-16, No. 2, pp. 185-195.

COVER, T.M. and HELLMAN, M.E. [1970b],
"Finite Memory Hypothesis Testing-—Comments on a Critique," IEEE
Trans. Inform. Theory, Vol. IT-16, No. 4, pp. 496-497.

COVER, T.M., FREEDMAN, M.Z. and HELLMAN, M.E. [1976],
"Optimal Finite-Memory Learning Algorithms for the Finite Sample
Problem," Information and Control 30, pp. 49-85.

DeGROOT, M.H. [1970],
Optimal Statistical Decisions, McGraw-Hill, N.Y.

DERMAN, C. [1970],
Finite State Markovian Decision Processes, Academic, N.Y.

DRAKE, A.W. [1962],
"Observation of a Markov Process through a Noisy Channel,"
Sc.D. Thesis, Department of Electrical Engineering, M.I.T.,
Cambridge, MA.

DRAKE, A.W. [1968],
"Partially Observable Markov Models for Quality Control," Twenty-
Second Technical Conference Transactions of the American Society
for Quality Control, Philadelphia, PA, pp. 199-205.

DEVORE, J.L. [1974],
"A Note on the Observation of a Markov Source Through a Noisy
Channel," IEEE Trans. Inform. Theory, Vol. IT-20, pp. 762-764.

FLYNN, J. [1974],)
"Averaging vs. Discounting in Dynamic Programming: A Counterexample,
Ann. Statist. 2, pp. 411-413.

HASTINGS, N.A.J. [1973],
Dynamic Programming with Management Applications, Butterworths,
London and Crane-Russak, N.Y.

- - -

-198-

HASTINGS, N.A.J. [1976],
"A Test for Nonoptimal Actions in Undiscounted Markov Programming,'
Management Science 23, -pp. 87-92.

1

HELLMAN, M.E. and COVER, T.M. [1970],
"Learning with Finite Memory," Ann. Math. Stat. 41, pp. 765-782.

HOWARD, R.A. [1960],
Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA.

HOWARD, R.A. [1971],
Dynamic Probabilistic Systems, Vols. I and II, Wiley, N.Y.

KAKALIK, J.S. [1965],
"Optimum Policies for Partially Observable Markov Systems,'" MIT
M.S. Thesis; also reported in MIT Operations Research Center
Technical Report No. 18.

KALMAN, R.E., FALB, P.L. and ARBIB, M.A. [1969],
Topics in Mathematical System Theory, McGraw-Hill, N.Y.

KAJSER, T. [1975],
"A Limit Theorem for Partially-Observed Markov Chains," Ann. Prob.
3, pp. 677-696.

KLEINROCK, L. and LAM, S.S. [1975],
"Packet Switching in a Multiaccess Broadcast Channel: Performance
Evaluation," IEEE Trans. Commun., Vol. COM-23, pp. 410-423.

KUSHNER, H.J. [1971],
Introduction to Stochastic Control, Holt, Rinehart and Winston, N.Y.

LAM, S.S. and KLEINROCK, L. [1975],
"Packet Switching in a Multiaccess Broadcast Channel: Dynamic Control
Procedures, IEEE Trans. Commun.,Vol. COM-23, pp. 891-904.

LANERY, E. [19671,

"Etude Asymptotique des Systémes Markoviens a Commande," Revue Francais

D'Informatique et de Recherche Operationelle 1, pp. 3-56.

LANERY, E. [1968], _
"Complements 3 1'Etude Asymptotique des Systémes Markoviens a
Commande," Institut de Recherche D'Informatique et D'Automatique,

Rocquencourt, France.

LUENBERGER, D. [1969],
" Optimization by Vector Space Methods, Wiley, New York.

-199-

MacQUEEN, J.B. [1966],

"A Modified Dynamic Programming Method for Markovian Decision Problems,"

J. Math. Anal. Appl. 14, pp. 38-43.

MINE, H. and OSAKI, S. [1970],
Markovian Decision Processes, Academic, N.Y.

ODONI, A.R. [1967],
"Alternative Schemes for Investigating Markov Decision Processes,"
M.S. Thesis, Department of Electrical Engineering; also reported in
M.I.T. Operations Research Center Technical Report #28.

ODONI, A.R. [1969],
"On Finding the Maximal Gain for Markov Decision Processes,"
Opns. Res. 17, pp. 857-860.

PAZ, A. [1971],
Introduction to Probabilistic Automata, Academic, N.Y.

PLATZMAN, L.K. [1977],
"Improved Conditions for Convergence in Undiscounted Markov Renewal
Programming," Opns. Res. 25.

ROCKAFELLAR, R.T. [1970],
Convex Analysis, Princeton University Press, Princeton, N.J.

ROSS, S.M. [1970],
Applied Probability Models with Optimization Applications, Holden-
Day, San Francisco.

SATIA, J.K. and LAVE, R.E. [1973],
"Markovian Decision Processes with Probabilistic Observation of
States," Mgmt. Sci. 20, pp. 1-13.

SAWARAGI, Y. and YOSHIKAWA, T. [1970],
"Discrete~-Time Markovian Decision Processes with Incomplete State
Observations," Ann. Math. Stat. 41, pp. 78-86.

SCHWEITZER, P.J. [1971],
"Iterative Solution of the Functional Equations of Undiscounted
Markov Renewal Programming," J. Math. Anal. Appl. 34, pp. 495-501.

SCHWEITZER, P.J. [1973],
"Annotated Bibliography on Markov Decision Processes," Unpublished.

..-...,.......___.._._---__--_
¥

-

Ll o aatilin e
)

-200-

SCHWEITZER, P.J. and FEDERGRUEN, A. [1977?],
"The Asymptotic Behavior of Undiscounted Value Interation in Markov
Decision Problems," to appear.

SMALLWOOD, R.D. and SONDIK, E.J. [1973],
"The Optimal Control of Partially Observable Markov Processes over
a Finite Horizon," Opns, Res. 21, pp. 1071-1081.

SONDIK, E.J. [1971],
"The Optimal Control of Partially-Observable Markov Processes,"
Stanford Ph.D. Thesis; also reported in Stanford Information
Systems Laboratory Technical Report No. 6252-4.

SULMAR, J.J. [1974],
"Observation of a Markov Source Through a Noisy Channel,"
S.B. Thesis, Department of Electrical Engineering, M.I.T.,
Cambridge, MA.

VON NEUMAN, J. and MORGENSTERN, 0. [1947],
Theory of Games and Economic Behavior, Princeton University Press,
Princeton, N.J.

WALD, A. [1950],
Statistical Decision Functions, Wiley, N.Y.

WHITE, C.C. [1976],
"Procedures for the Solution of a Finite-Horizon, Partially-Observed,
Semi-Markov Optimization Problem," Opns. Res. 24, pp. 348-358.

WHITE, D.J. [1963],
"Dynamic Programming, Markov Chains, and the Method of Successive
Approximations," J. Math. Anal. Appl. 6, pp. 373-376.

- ——

,__,)

-201-
APPENDIX A

Proof of Theorem 19.3

a. Preliminaries

V has been defined, in (12.11), as the vector space of bounded,
continuous, real-valued functions on HN « V, along with the sup norm

given by (19.6) or (19.7), is bounded, that it has a subsequence that

» 1s a Banach space. It will be shown that the sequence '{Gm} ’

converges (pointwise) to a convex function v*, that the subsequence is
€auchy - implying v*eV, and finally that v* satisfies (19.1). A corollary
states that {¢"} itself is Cauchy in V, i.e. that 9" converges uni-

*
formly to v .

Since it cannot be shown immediately that v is continuous, {¢"}
will be treated as a sequence in W, the vector space of Lebesque measur-
able functions on HN . If veW, then || v|| denotes the ess sup norm of w.
Naturally VCW.

By abuse of notation, a constant (such as Q or g*) may denote an
element of V that is a constant function over HN . Following (17.3),

~

veEW may be interpreted as a function on HN:
v is "convex" (over HN)
<> v(T) + v(ﬁ')_z v(T + 7',
VLR + Fell . (A.1)

W is partially ordered by "<" where:

——-—v

-202-

v<v' <= vy(m < v(m vmelly (A.2)

It will also be necessary to consider the restriction of veW to
particular subsets of HN that include the range of T(°*,z) when P(2)

is subrectangular. Define:

b() = mialT, e,2) : 7, @ >0, P(@) is

subrectangular, and gﬁzz} (A.3)
HN(b(Q)) = {ﬂEHN : either ™= 0 or T, > b(L), VieS}.

(A.4)

{v(m} (A.5)

“"“b(z) = S“PnenN(b(z))

b. A Transformation in W

(A.6) Definition. f : W+ W is defined by:

fv(n) = max_ {mq(u) + B ey v(TP(y|u))}

Interpretation: f is the operator of backward inductive dynamic pro-

gramming.

Remark: Eq (19.1) may now be expressed as v = fv -g .

Transformation f has the following properties:

(A.7) Lemma. v <v' = fv < fv'

(A.8) Lemma. f(v + C) = fv + BC, where C is a constant.

(A.9) Proposition. f is continuous in sup norm; in particular,

| £v - &' | < Bllv - v']

Proof: fv < f(v' + ||[v-v'|]) = £v' + B||v - v'|]

. +

and similarly fv > fv' - B||v - v'|
(A.10) Proposition. veV => fveV; i.e. f preserves continuity in v.

(A.11) Proposition. If veW is convex, then fv is convex; i.e. f

preserves convexity in v.

Proof:

fv(®) + fv(T")

= max_ {fq(u) + Bzye w(TP(y|u))}

uc Y

+ max . {fi'q(u) + BZer W(ﬁ'P(y]u))}

> max . {(® + ™)qu) + BZer [w(TP(y|u)) + w(®'P(y|u))]

=

{(

> max

wey L+ T + BTy (@ + TR}

= fw(® + 7'). +

=204~

Adopting the notation (14.19), multiple applications of f take

the form:

fkv(ﬂ) = max

2(z)
D olz,¢18 "/ mP(2)q($(2))
¢€U(Zk*) {< 2ez ¥)

+ Bk(Z Kk 0[1,¢]v(ﬂP(g))): (A.12)

z€Z
Continuity of f, established in (A.11), is made stronger below.
This will be necessary in order to establish convergence of {Gm} in

FPS's that satisfy only a condition of weak detectability.

(A.13) Proposition. ||fkv - fkv'lf_ﬁ

(l - &" k—R,) Bk” v=v' ” b(k) + '& k+2 Bk”V"‘V' “

Proof: For any €>0, there is a WeHN such that

]Ifkv - fkv'll f_fkv(ﬂ) - fkv'(ﬂ) + €

")

Let ¢€U be the policy maximizing (A.12), where m is as

described above. Now:

olz,¢18% (2

llfkv - fkvl]] - € f_fkv(ﬂ) - [(2 (k-1)*

z€Z

(2)q0())) + B(3 o[_z_,¢1v'(m>(z>)ﬂ
2€Z

o —————— — g -

k

z€Z

k

~205-

BT, 0lz,0]1[v(rP(2)) - v'(1P(2))]

=8I 0lz,01(mP(2)1) [v(T(T,2)) -v'(T(T,2))]

2€Z

k

I A

2€Z

k

<B8L olz,01(mR(2)1)

z€Z

k

g2 0lz,¢1(mP(2)1)

lv=v'll yaoy» LE TCm,2)EM (b ()

[| v=v']| otherwise

l]v—v'llb(k), if P(z) is subrectangular

v-v'|| , otherwise

[fv—v'llb(k), if afz] <1

<8% olz,01((DD)

2€Z

k

z€Z

<g‘a-ak

Taking the limit

<BI , olz,01(mR@DIA - alzD || v-v']]

|| v=v']| » otherwise

b (k)

Loy v a K =)

bk) T

€ + 0 completes the proof.

c. A sequence in V

+alzl|| v-v'|]

(A.14) Definition. '{vg} and'{vm} are sequenceé in W defined by

vm+l
0

w1
\4

= fvg ,

m
=1/2 v+ 1/2 £V,

R e e R o o —

————

Y —— —— g —————

~-206~-

Clearly (A.14) is consistent with (19.5). By (A.10), vg and v©
lie in V, and by (A.11l) they are convex. Boundedness of {Gm} is now

established.
m m mtk m m
(A.15) Lemma. Vo + B L(B,k)Qmin f_vo E-VO + B L(B,k)QmaX

Proof: By (A.14), L(B,)Q, < vs < L(B,K)Q . (A.7) and (A.8)

complete the proof.
(A.16) Lemma. x|v§|lD <Q.

Proof: (By induction). The result is trivial for m=0, and follows
trivially from (A.15) for me<0,2p¥@5 .
The induction follows a plan given in the heuristic justification

of (19.3). Let j be a state that maximizes vm(eJ) and let

(-1)*

¢*€U(Z) be a policy that maximizes (A.12) when m=e’ and v=vg

Now, for any ﬂEHN , and any me<f,®> ,

vlg(ej) - ng(ﬂ)

N

< vpteh) - (Z Py c[m*]B“E)frrp(_@q(cb*(g)))
z€Z

- [g otz ()
\ _Z_EZ /

But, for any WEHN , there is an input word §€U

Thus

and

-207-

<LEDQ+ 8 I g olz,o¥ vy H(eTR() - Vi (mp(2))]

z€Z

< LB,DQ 48", I 5 olz,0%1 (TR 1)
] z€Z

el - @1 + 8 asn) L)

r /
< L(B,2)Q + Bz iﬂ.(z T 0[5,¢*](eJP(_Z_)1)a[5]) + (1—Tr.)"
L I\ zez J

— T —- -7
< L(B,0)Q + B7[1 - wj(l-a)]n v‘g I

Lo such that:

L, oL P..(y[8) > 1-p.
ieS™ 4 i - -
}[_€YME) J

w2, ()

By < nee,2@d,, + 8 D)

0

m+4 ()

@@ > L@, + 8P 1) HrRElD)

yey

e W TR TRy YRR TeSees ermacewe e wew e

-208-
> 18,2@)q + 85 P P(y|®)
2 LB A0, Yo pee) FEIE
yeY =
> 1@, + 8@ ey - 1D - 8H-aep D]
n-T
15570)
Using (A.15),
o+l L -2(Q) (4
v "Il < LGB.&-2@)Q + 8 P | @
2 +2

SL@AFD+ 8P [-a-p) -] vy

m+l +2

and [V <= |lv P || <@

(A.17) Proposition. ||0m|[< Q, me<0,»>,

Proof: By (A.14),

v = Zk€<0,m>(§) (1/2)ng

So (A.16) implies ||vm||D = Q. (12.12) completes the proof.

-209-

d. Construction of a Convergent Subsequence

(A.18) Lemma. There is a subsequence {Gm(k)} of {¢™} having the

following properties:

~m(k . . .
(a) ¥ ()} converges pointwise to a convex function W*eW.

(b) limk.+m I,Gm(k) - ﬁ*l!b(g) = 0, VR2e<,=>

Proof: Theorem 10.9 of Rockafellar [1970] states that any bounded sequence

of convex functions on a relatively open set has a subsequence that con-
verges uniformly on closed subsets of its domain. {Gm} is bounded, by
(A.17). Consider the restriction of {Gm} to Hg = {mell : T, > 0 iff ieH},
for some HCS. One of the following must hold: Hﬁ is empty; Hg
contains exactly one point; or Hﬁ is felatively open (in Rm). In each
case, there exists a subsequence of {Gm} that converges pointwise on

HE and uniformly on closed subsets of HE . For any 2é<EQW> s
HN(b(Q))Clﬁg is closed. Taking subsequences of %™} recursively for

each H C S, the desired subseqence is obtained. t

(A.19) Proposition. There is a subsequence of {$™} that converges in

«, || *||), i.e. uniformly on HN.

Proof: Define:

mt+1

W 1/2 W+ 1/2 s

-210-

Let {m(k) }k€<0,°°>

for any €>0, there is aK' such that:

z:m5:< O,m(K')>(m

and a K" such that:

1| 9™ _gx)| e/8, Vke<K",wo>

bmE')) =
By (A.9), if m>m, then

| m \ v

(R N La

Thus, for k,k' > K = max(K',K"),

I ‘,}m(K)-f-m(k) _ ﬁm(K) I

A

A

oo ("00) @™ & 110000

(x) m— mif .m(K) ~0
+ aecomas (20 arm™ & = [20

m(K) A0 /m(K)
< |I® ol bmE) t [Zm8<0,m(K)> (a
< e/8 +¢€/8 = ¢el4

be the sequence of indices derived in (A.18).

Then,

b(m(K))

-

\ (1/2)1[1 a m+

and

But now:

Consequently {sz(k)} is a Cauchy sequence in (V, |

(A.20)

(19.1).

Proof:

-211-

Iiﬁm(k)_ﬁm(k')”

A

A

| A

+ |

| A

Proposition.

Define:

m+1
w =
0 N
w = V*

llﬁm(k)_gm(k)+m(k')”

+ l|$m(k)+m(k')'ﬁm(k')n

eld + /4 =¢€/2.

! sz(k) _{;?_m(k') ”
IIGm(k)+m(k)_ﬁm(k)|l + !Iﬁm(k)‘ﬁm(k')l

l V/im(k')—em(k')+m(k') ”

efd + /2 + /4

). T

N . . . 0] /\m N\ .)
If $*cV is a limit point of {¥ } then ¥* satisfies

1/2 we + 1/2 fu

W e T e

-212-
Then, by (A.9), ¥* is a limit point of {ﬁm}. It will now be demonstrated

A

A
that W = v*.

Define:

a) t"m =" m - W

b) & = maxﬂeHN'{tm(n)}

¢) R = {ﬂEHN : () = £}

. Ag e . e . ~ . *0 ., . .
Since ¥#* 1is a limit point of {wm}, it follows that t is a limit

point of {t™ and t°(m) is a limit point of {t"(m}, VﬂSHN.

Now t° = wm+l—wm = l/2[fwm—fwm_l] + 1/2[Wm—Wm—1] f_l/2[fwm—fwm_l]
em~1 °m 'm-1 . *0 . . .
1/2 t . Thus, by (A.9), t <t . Since ¢t is a limit point

‘m ‘m _ °0O
of {t},t =t .

. m .,
By the Weierstrass maximum theorem, R is nonempty. But

= /206" - BT+ 120" - w01 < 1/2 20 + 172 £, by a.9).

Thus R g;Rp_lo Since t" = t° » there is a ﬂEHN such that

m *0 .
t (m) =t , Vme<0,> ., Suppose now that there exists a ﬂ'EHN such

that to(m') # t° and define

e =1t - to(ﬁ') >0

]

Then wm(ﬂ) mEo + ¥*(m) and wm(ﬂ') f_(éo—e) + (m—l)t.:O + Gx(m').

-213-

Hence
[@0(m) = $%(m)] + [O%(1') - & (1")]

[wi(m) - 9%(m)] + [O*(1") - w(m")]

10 0 °0
>mt -t + - (@1)t =¢

m . . . s .
But, for some me<l,»> , ||& -¢*|| < e/2 , since ¥* is a limit point

Al . . . 0] *0
of {¥ . This is a contraction; hence t (m) =t , VWEHN . Now

wl = wO + Eo . Identify g* = ZEO to see that U* satisfies (19.3).

1..

e. Summary and Proof of (19.3)

By (A.19) {¥™)} has a limit point ¢* in V. By (A.20), o*

satisfies (19.3).

I\+ A A\ A A\
By (A.9), “vm l—v*H f_llvm—V*ll, and hence {¥"} converges
in (V, } *||), i.e. uniformly on HN , to V%, Thus ¥* is continuous.

. m . .
Since each ¢ is convex, it follows that ¥* is convex.

Boundedness of ¢ is a consequence of (A.17).

-214-

APPENDIX B

Proof of Theorem 21.6

a. Proof of Part (a)

First consider the discounted case, B<1.
Define <Y to be a strategy which selects inputs optimally on the

basis of a finite number of delayed state perceptions, taking the form:

[s(k-2(z(k))), y(k)], if z(k)eess[M] and ke<0,m-1>

v (k) =
[y(k)], otherwise

(B.1)

Then the inputs prescribed by Ym at times ke<m-1,%> take the form
6*[nm(k)] where 6* is the optimal feasible policy corresponding to
the solution of (19.1), and

T(m(0),z(k)), if ke<0,m~1> and z(k)¢ess[M]

) =1 FFEED) Sy, if ke<o,m-1> and z(K)eess[M]

T(n" (k-1) ,u(k-1) ,y(k)), otherwise

(B.2)

-215-

Note that {n (k)} is the information vector process which results when
the observation process is {y (k)} .
. ~1 . . :
Also define strategy Y , which selects inputs {u(k)}ke<0,m—1>

according to Ym+1 and inputs {u(k)}ke<m,m> according to YR .

Then

g(B,¥) < g(B,Y") (8.3)

since Ym maximizes g(B,*) over the set of strategies realizable on

the basis of observations (B.2). Thus

g8, Y™) - g(8,YY

L GRS IR
o k o k
= W-B)[E {5 8%:@)} - B (57 g0}
Y Y
m o k-m o k-m
= Q-p)BIE ., {5 _ B 't} -E{%_ 8" "r(}
Y Y
= W-BFME ;™ @)} - E_ (v @)) }]
Y Y
= @B E . ™ @) -vr (@)}
Y
< @-pe" e . (0™ @ n@ 1] vx]| (8.4)
Y

If mw=0 or (with probability one) z(m-1)¢ess[M], then

g8, Y™ = gB,v"™). Otherwise

-216-
m+1

" m) = n(m), if z(m)fess[y]
Tlm+1(m) = 'I‘(es (m=2(z(m))) ,z(m)) and l
Mm = r(p(eEHEE D) gz @) e (g(m)))),_Z_(m)),J

if z(m)eess[M] (B.5)

afz(m)], if z(m)eess[M]
so A @), m)] <
0, otherwise

— Qmin[M]%z

< o , by (14.23).

Substitution into (B.4) yields

% . [M]+%
g8 - g8 < BT M |l w]|, (8.6)
* 0 Qmin[M]
Now g[M] = g(B,y], and g* = g(B,y) = g(B,Y). Moreover
HV*HA_<_ 40 by (12.16) and (19.3). Thus
g[Ml - g* < Z:=2 M g8 - g(8,Y"
min
_ Bg'min[M] —O—L'Qmin[M]%'Q 4Q (B.7)

Take the limit B41 to prove (21.6)(a) in the undiscounted case. T

———— w——~

-217-

b. A Bound on Perceptive Values

The following intermediary result will be required:

|WMi,2] - WM[i',2"]] < Q, V[i,z], [i',z']1eX[m]. Intuitively, this
must be true in the limit as Rmin[M]->w, for then VM[i,gj-+v*[T(i,§)]
and by (19.3)(c), IV*[n] - v*[n']I <Q.
M. . —M
In order to bound v [i,z], attention will be focussed on v [m,z],

which is defined by (21.3). The pair [T,z] may be regarded as a gener-

alized perceptive state, signifying that input-output word z has evolved

since the information vector was known to equal m. Naturally

W[1,2] = v ¥el, 2 (.8)
The following additional properties of ;'M are readily established.
(B.9) Lemma. ;'M[ﬂag] is convex in m, for any zeM.

(B.10) Lemma. ;'M[n,gj fhmaxjesf; M[ej,__e_]}.

(B.11) Lemma. ;'M[ﬂ,gj z_minjes{;'M[ej,g]}.

Proof: The relative value of being in the generalized perceptive state

[T,2] can only decrease if certain information is withdrawn. An observer
in generalized perceptive state [m,z] at time k perceives information

of the form

[s(k-2(z(k'))),y(k")], if k'-2(z(k')) > k-2(2)

and z(k')eess[M]
[y(x")1, otherwise k'e<k,o>

i,

-218~

whereas an observer in generalized perceptive state [T[m,z],e] at time

k, perceives information of the form

[s(k-2(z"(k"))), y(k')], 4if k'-R(z(k")) >k

and z(k')eess[M]

[y(")1, otherwise k'e<k,o>

Since, in the former case, more information (specifically, perception

of states s(k'),K'e<k+1-2(z),k>) is available, it follows that
vMin,zl > v T(m,2) el > VU [T(n,2) el
| &Y eld +

> minﬂ.EHN

(.12) Lemma. IV ezl < 15 eselll s vaem.

Proof: By (12.11)(d),

v ezl = mﬁenN M m,21} - miagen &M m,z21}
But (B.10) and (B.1ll) imply

A [m,el} < min__

minﬂeﬂN T, {GM[W,EJ} f_maxwenN {;M[W,EJ}

A max'nsIIN e [T,el}. +

-219-

(B.13) Proposition. VM[i,g] - VM[i',E'] <Q,
vi[i,z], lﬁi',_Z_]@A([M]

Proof: It suffices to show that ||vM[°,gJ|lD < Q. Define j to be the
state which maximizes vM[j,gj, and let Y* denote an optimal perceptive
strategy adapted to M, constructed according to (21.1) for W(O)=ej;
i.e. YP* selects inputs optimally on the basis of information s(0)=j
and {XM(k)} . Then, by (21.2),

vielel = By, 2 g5q (o

* ““ke<0,2-1>

o ed,Mmy, if 2 (%) dess [M]
+ gt
I 1, if 2 (D)cessM]

|s(0)=3} - L(B,L)g[M]

and, for any ﬂeﬂN,

vim,el > I {z

K
1es M1 Bk o, T-1> B A

@1, if 2 (D)dessIM]

o

O if 2 (D)cess[M]

|s(0)=1i} - L(B,%)g[M]

-220-

Thus

vied,e1 - M m,el

< L(B,£)Q
e I N A LI S
0 . M~)
+BTE { if z (R)dess[M] , |s(0)=3}

0, otherwise)

+ Bz(l—ﬂj) max {VM[i,gJ} - min {VM[i,EJ}

[1,z]eX[M] [1,z]eX[M]

< L(B,%)Q
alz' @1, if Z (D) dess[M]

%
v 0 otherwise

—M

5% 2" @10, [s(0)=3}

. —-M
+ 8 (.1—1Tj)||v ['@]HD

<1eDe+ 88 ral Vel + a1V el

< L, + 8 -r a1 M el -

LY

-221-
Lp

But, for any 'ITETLN » there is an input word _I_'E_EU such that

T, oL N P..((@,y)) > 1-p
ieS y_E:Yj,’ (1) ij

Thus, for any 1T€1'LN s
_M ~
v Imel > L(B,RE)Q

vHm 2N @), if Z(L@)) dessM]

L@) .
+8 Lics m.E {

VM[XM(R,(G))1, otherwise

|s(0)=1, u(0)... u(R(&))=8} L(B,2(®))g[M] - L(B,2(d))gM]

> L(B,2(8))Q

2@,
R

tE ies

B ITD o) PO@) ,el}[s(0)
yeY —

where (B.11l) was used to obtain the second inequality. Thus:

IV el]l < max ., 5 {L(B,K)Q + B[L(8,D)Q
o

+ 8 -a-p a1 Vel

—_ 9 —
< M0, > (L(8,1D)Q + 8 [1-(1-p) (@-) 1| v el ||

=222~

which tmplies || v'T+,elll < @. +

c. A Bound on Pseudo-perceptive Deterioration

Let vM[i,i,gJ denote the value of being in augmented state [i,z]
while believing the augmented state to be [i,gj, where i,iSC. Speci-

fically,

M A M
v [i,i,z] = qz(i,u*)

+B Iy T B (L1, W)Y LT (2, (wh,y)]

- glMl, zeess[MINZ (e ,el) (B.14)

where u* maximizes (21.1) in the evaluation of VM[E,EJ, Eqs (21.1)

and (B.1l4) may also be written:

)

VM[3,5] = T(ei,g) Q(u*) + Iy P(y|u*)1

2y (1,1, w,y)

Lies [813,72, (ut,3)) 1| - 8]

T(e’,2)P(y]ut)1
(B.15)

Moo i
v [1,1,2] = T(e',2)|q(u) + I P(y|u*)l

—— e

-223-

P11, (uky))
Zes = }evM[j,TM@_,) 1| - gl
T(e™,z)P(y|u*)1

(B.16)

S

Since G[T(ei,g),T(ei,E)] < alz], application of (13.4), (2.13)

and (B.11) to (B.15) yields
M2 A
v [i,z] < alz][Q+B8Q]

+ T(ei,g) q(u%) + ZyEYP(y]u*)l

Pf(i’js(u*aY))
Lesl — B 13,1 (2, (¥, 30) 1| = glM]
T(e™,2z)P(y|u*)1

(B.17)

Combining (B.16) and (B.17),
v,z - Vid,1,z]

< alz][e+8Q] + T(ei,g)ZYEYP(y|u*)l

M,, . M,., .

PZ(13J’(u*aY)) Pz(lajﬁ(u*aY))
*jes 4 S

T(e ,z)P(y|u*)1l T(e ,z)P(y|u*)l

BV Lz, Tz, (u*,¥))] (8.18)

A,

-224-
Define:
M. Moa .
F(z) = maxi,igc{v [1,z] - v [1,1i,z]}
Naturally
M A M.
v [3,z] - v[],z]

M. .2 Mo .
<vi,z] - v I[i,i,z]

< F(z)

Substituting (B.19) and (B.20) into (B.18),

F(z) < max max Ua[EJ[Q+BQ]

ieC uc

+ 2 (1,226 WD)
alz(u,y) - Tz, (u,y)) IBF(T (2, (u,7)))

If M=Z and @él, then:

F(z) < alz][Q+BR]
+ a[z]Ro[Q+BR]

+ a[z]BaBa[Q+ER]

(B.19)

(B.20)

(B.21)

(B.22)

b

-225-
In the more general case, multiple step versions of (B.18) and (B.20)

are constructed, following (14.19) and (A.13), to obtain:

P 1 i 1
F(z) < max, . max (-1) % {z 'Ez(k_l)*(O[g_,¢]T(e ,2)P(z')1)

' @00z 2' - (2,2 lalz' 1 0¥BR] + I, (olz'01T(ed,2)P(z")1)
z'eZ

Falz 2' - THz,2") IF (TN (z,2")) } (.23)

Finally, note that:
vM[i,gj - VM[E,i,EJ
f_vM[itE] - vM[i,i,gj
+ VM[i,i,gj - VM[{,EJ

M_» M A
+v [j-’E] -V [i9is_z__]

A

2F(z) (B.24)

d. Proof of Part (b)

The proof of part (b) is constructed in exactly the same manner
as that of part (a), except that the incremental deterioration in per-
formance due to pseudo-perception, given by (B.23), is used in place of

the incremental value of perception.

hinalinhans | b od

~-226~
Consider first the discounted case. Define Ym to be a strategy
which selects inputs at times <0,m-1> according to ¢M and the re-
maining inputs according to wM. Then

min [

g(B,Y) = g(B,U) (B.25)

g(8,y) = g(B,ch) (B.26)

Following (B.4), and using (B.23), (14.23), and the convention

z(bsa)=e if a<b,

g8, YY) - g(8,7"

< @B L, @] - v s zm), x (m)]

Y
< @B, (2FET @)
Y

< (1-B) BmE m_*_lb {201::0 BkOt[_g_M(m)_z_(m;m+k)-Z.M(m+k)]
Y

alz(mtk) 1} 2[Q+BR]
m 00 k
< a-pyffe . (57 gfalz@-g , [M]; mik-g_ [M])]
Y
Ot[g(m+k—2,min[M]; mHk) 1} 2[Q+BR]

< a-pfE 5 alz@meg]

m+1
Y —
L. [M]+2

min

mHe-L[M])] Yoo 2[Q+B0]

L MRt e 2o b 4

-227-

< -B)BL(B,A, TMI-L . [M])

(& __[MI-& . [MD)
max min L(B,E}(l—&)-l}

+ 8
jz'm]'.n[M]ﬂz'

o 2[Q+BR]

Summing as in (B.7) completes the proof, in the discounted case.
Take the limit B41 to prove (21.6) (b) in the undiscounted case.

..}.

~228~-

APPENDIX C

Listing of the Computer Program

/* DECLARATIONS */

/tt*#***#t#**t**t*ttt#‘il#i#tttt**t*t**t/

/* */
/* MODEL PARAMETERS */
/* */

/tt*#**t*#*##*****“l‘tt‘tttt*tttttitt*#/

DCL 1 MODEL EXTERNAL,

E
P
PL/I OPTIMIZING CCMPILER
STMT LEV NT
-~
1 0
Lo
| o
LY
3 10 pCL 1
-~
4 1.0 DCL 1
5 1 0 DcL 1
PN
e

2 N FIXED BIN, /* NUMBER OF STATES
2 NU PIXED BIN, /* NUMBER OF INPUTS
2 NY PIXED BIN, /* NUMBER OF OUTPUTS
2 NZ PIXED BIN, /* NUMBER OF SYMBOLS IN Z
2 (M,ESS_M) FIXED BIN, /* MZMORY STATES COUNTER
2 ERR PLOAT BIN, /* PRROR, USUALLY G.HIGH-H.LOW
2 (MAX_M,MAX_ESS_M) FIXED BIN,
2 MIN_ERR PLOAT BIN, /* USER-SPECIFIED BOUNDS
2 FMT PIXED BIN, /* OUTPUT PORMAT
2 (P_PRCBS, P_RWDS, P_ZCCDE) PCINTER,
/* POINTEPS TC STRUCT_%, BFLOW

2 P_ROCT POINTER, /* ROCT OF MEMORY TREE
2 P_ESS_NMDE_1 POINTER, /* START CF BSS NODE CHATN
26,

3 (HIGH,LOW) FLCAT BIN, /* BOUNDS ON G

3 STEPS FIXED BIN, /* DYNAMIC PRCG STEPS COUNTER
2 H LIKE MODEL.G,
2 P_NNDE POINTER, /* PRESENT NODE
2 P_REL POINTER, /% RELATIVE NODE, ARG TO SCAN
2 P_REC PCINTER, /* RECURRENT NODE

2 (LEV,MAX_LEV,L0,L00) PIXED BIN,
/* LENGTH 2F BRANCH
PIXEL BIN; /* INPUT/OUTPUT/IO

OF P_NODE
2 (U,Y,2) PAIR
STRUCT_ZCODE BASED (P_2CNDE), /* TRANSLATES (U,Y) TC Z
2 (NU1TNY1) PIXED BIW,
2 ZCODF(NU REFER(ND1), NY REFER(NY1)) FIXED BIN;
STRUCT_PROBS BASED(P_PROBS), ,/* ORIGINAL TRANS PROBS

2 (NZ2,N2) PIXED BIN,

2 PROBS (NZ REFER(NZ2),N REPER(N2),N REPRR(N2)) FLOAT BIN;

STRUCT_RWDS BASFD (P_RWDS),
2 (NU3,N3) FIXED BIN,
2 RWDS(NU REPER(NU3),

/* CRIGINAL IMM REWARDS ARRAY

N REFER(N3)) FPLOAT BIN;

*/
*/

*/
*/

*/

*/

*/
*/

*/

*/

*/

DCLO020
DCLO030
DCLOO04O
DCLOOSO
DCLO06O
DCLOO70
DCLO080
DCL0090
DCLO100
DCLO110
DCL0120
DCL0130
DCLO 140
DCLO150
DCL0160
DCLO170
DCL0180
DCLO190
DCL0200
DCL0210
DCL0220
DCLO230
DCLO2u40
DCLO250
DCL0O260
DCLO270
DCL0280
DCL0290
DCL0300
DCLO310
DCLO32N
DCL.0330
DCLO340
DCLO35N
DCLO0360
DCL0370
DCLO380
DCLO390
DCLOUOO
nCLo410
DCLO420
DCLO430
DCLOU40
PCLOUSH
DCLO460
DCLO4T70
DCLO48O
DCLOUAD

PL/I OPTIMIZING COMPILER

STMT LEV NT

DCL 1

DCL 1

-229-

/* DECLARATIONS %/

P T T P T P Ty

/* */

Vad MEMCRY TREE SPECIFPICATION */
* *

JEREEREERRERRKEERERRRERRR R KB E AR kRN R Rk)/

NODE BASED (P_NCDE),
2 P_ESS_NODE POINTER, /* POINTS TC BSS_NODE, BELOW %/

2 (P_TPM,P_BRANCHES) POINTER,/* POINT TO SUBSTRUCTS OF NODE */
2 P_BACK POINTER, /* IDENTIFIES PRWVICUS NODE */
2 Z_BACK PIXED BIN, /* IDS BRANCH ON PREVIOUS NODE */

2 (NO,NZ0) FIXED BIN,
2 ROWSUN(N REPER(NO)) FLOAT BIN,

/% ROWSUNM(I) = SUM/J TPN(I,J) */
2 TPM(N REPER(NO),N REFER(NO)) FLOAT BIN,

/% TRANS PROBABILITY MATRIX »/

2 BRANCHES (NZ REFER (KZ0)}),
3 P_BRANCH POINTER, /% IDENTIFIES NODE ALONG BRANCH
Z FROM CURRENT NODE */
3 E_BRANCH BIT ALIGNED; /% IS BRANCH Z A NODE IN Z+2? */

ESS_NODE BASEL (P_ESS_NODE),
2 P_NEXT_ESS_NCDE POINTER, ,/* NEXT NCDE IN ESS NODE CHAIN */
2 (N0O,NT00,N200) FIXED BIN,

2 (P_VG,P_VH,P_W,P_0G,P_Pz,P_Qz) POINTER,

/* POINT TO SUBSTRUCTS, RELOW */

2 REC, /* PLAGS WHICH ID RFC NEM STS ¢/
3 (T0,FROM,G,H) BIT ALIGNED,

2 UH PIXED BIN, /% INPUT - STEP H *y

2 P_NEXTZ (NZ REPER(NZ00)) POINTER,
.

/% NEXT (ESS_)NODE, IF NEXT

I/0 PAIR TS THE SUBSCRIPT 7 %/
VG (N FEPER (N0O)) FLOAT BIN,/* RELATIVE VALUE - STEP G */
VH(N BEPBR(NOO)) PLOAT BIN,/* RELATIVE VALUE - STEP H v/
W(N REPER (NOO)) FLCAT BIN, /* WORKSPACE POR LHS OF DYN PR %/
UG (N REFER(NOO)) FIXED BIN,/*# OPTIMAL INPUT - STPP G "

PZ(NZ REPER(NZOO) ,N REFER(NOO),N REFER (NO0)) PLOAT BIN;
/% TPN OF AUGMENTED SYSTPM */
QZ (NU REFER (KUOO) ,N REPER(NOO)) PLOAT BIN;
/% INCRENENTAL REWARDS POR
AUGMENTED SYSTEM */

N~ [SILVE VN N}

DCLOS510
DCL0520
DCL0530
DCLO540
DCLOS550
DCLO560
DCLOS70
DCLO58Q
DCLO590
DCLO600
DCLO610
DCLO620
DCL0630
DCLO6UO
DCLO650
DCLO660
DCLO670
DCLO680
DCL0690
DCLO700
DCLO710
DCL0O720
DCLO730
DCLOT40
DCLO750
DCLOT760
DCLO770
DCLOT780
DCL0790
DCLOBOO
DCL0810
DCLOB20
DCL0830
DCLOBUO
DCL0AsS0
DCL0860
DCLOB70
DCcLo8ao
DCL0OB90
DCLO900
DCLO910
DCL0920
DCLO9120
DCLO94O
DCLO9SO
DCLO960
bpCLO970
DCLO980

PL/I OPTIMIZING COM:ILFR

STNT

16
17

18

19
20

21

LEV NT
1 0
1 0
10
1 0
1 0
10
1 0
10
10
10
10
10
10
10

DCL

DCL

DCL

DCL
DCL
DCL
DCL
DCL
DCL
DCL

DCL

DCL
DCL

DCL 1 TIME EXTERNAL,

-230-

/* DECLARATICNS */

(FP_TPM,PP_

JERERERRRRRRERERKEERRRRERERRRERRERRKERERX /

/* */
/* FAST REFERENCE OF NODRL PARAMETERS */
/* */

JHERREREREREERRE AR R R AR R KRR R R KRR KR AR KK/

F_TPM (10000) BASED(FP_TPM) FLOAT BIN;

1
F_VG (10000)
P_VH (10000)
F_W (10000)

F_UG (10000)
F_PZ (10000)
F_QZ (10000)

FLAG (10000)

DP_SKIP (10000) BASED(FP_W) FIXED BIN;

F_BRANCHES (10000) BASED(FP_BRANCHES),
2 F_P_BPANCH PCINTER,
2 P_E_BRANCH BIT ALIGNFED;

BASED(FP_VG) FLOAT BIN;
BASFD(FP_VH) FLOAT BIN;
BASED(FP_W) FLOAT BIN;
BASED(FP_UG) PIXED BIN;
BASED (FP_PZ) FLOAT BIN;

BASED(FP_QZ) FLOAT BIN;

BELCW

BRANCHES,PP_VG,FP_VH,PP_W,PP_UG,PP_PZ,FP_QZ,PP_FLAG)
POINTER; /* POINT TC STRUCTURES,

*/

BASED(FP_FLAG) FIXED BIN; /% GENFRALLY OVER NG (*) */

JEERERRRERAREEAERR AR RSN R AR Rk kB RR Rk /

/* */
/* MISC DECLARATIONS */
/* */

VAL AL LR R d Al i At Rttt LYy

(NULL,LINENO) BUILTIN;
TIMING ENTRY (PIXED BIN(31,0));

/* TIMES IN S®C/100

2 (PREP,G,H,LIMIT) FIXED BIN(31,0);

/% HASTINGS SKIP,

NVER Wi*/

*/

DCL1000
DCL1010
DCL1020
DCL1030
DCL1040
DCL1050
DCL1060
DCL1070
pCL1080
DCL1090
DCL1100
PCL1110
DCL1120
DCL1130
DCL1140
pCL1150
DCL1169
DCL1170
DCL1180
DCL1190
DCL1200
DCL1210
NCL1220
DCL1230
DCL1240
DCL1250
DCL1260
DCL1270
DCL1280
DCL1290
DCL1300

DCL1320
DCL1330
DCL1340
DCL1350
DCL1360
DCL1370
DCL1320
DCL1390
DCL14N0
DCL1410
DCL1620

PL/I GPTIMIZING

STMT LEV NT

15
16
17
18

19

NN = -l - b — -

~N

[SX.NN N

N

NN NN

Qoo C oooCoC [=N~]

(=]

-

N

CO =

-231-

COMPILER FPS_OPT: PRCC CPTIONS (MAIN) RECRDER;

SCURCE LISTING

FPS_OPT: PROC OPTIONS(MAIN) FPEORDER: MAINOO010
MAINOD20

RINCLUDE TD1(DCL) ; MAINOO30
DCL (PREP_G,SCLVE_G,PREP_H,SOLVE_H,REPCRT) EXT ENTRY; NAINNO4O
MAINOOSO

DCL IT FIXED RIN; /* ITERATION NUMBER */MAINOO6O
DCL (TCT_PAGE,IT_PAGE) FIXED BIN; /% PAGE CCUNTERS */MAINODTO
DCL TITLE CHAR(32), (I ,J) FIXED BIN, B BIT, P PGINTER, S FLOAT BIN;MAINODRO
DCL BAR CHAR(62) INIT{(*+"% || (60)*=%)] *+*)); MATN0090
DCL TE CHAR(6) INIT('TIME =7); MAINO100
MAINO110

CN ENDPAGF (SYSPRINT) BEGIN; MAINO120
PUT EDIT{*]*,*)',*}',*|") (COL(1), %,COL(B€),A,PAGE,A,COL(86),A); MRINO13Q
PUT EDIT(TITLE) (SKIP(6),CCL(14),%); MAINO140
TQT_PAGF = TOT_PAGE#1; MAINO150

I¥ TOT_PAGE > 1 MATNO160
THEN PUT EDIT(®PAGE®,TOT_PAGF) (X(6),A,F(3)); MATNO170
IF IT>0 MAINO180
THEN DO; MATHO0190
IT_PAGE = IT_PAGF+1; MAINO200

PUT EDIT('TABLE', IT#100 ¢ IT_PAGE) (X(6),A,F(6,2,~2)); MAINO210

IF IT_PRGE=1 MAIN0220

THEN DO; MAINQ230

PUT EDIT(BAR, '| TITERATICN',IT,'MEM =*,N, MAINO240

YESS MEM =',ESS_M,TE, IMF.PREP,*|*,'|',*(','|", MAINO25N

G.IOW,' < G <',G.HIGH,G.ST®PS, ' STEPS',TE,TIME.G,'|', MAINO260
"{',H,LOW,* < H <',H.HIGH,H.STPPS,* STEPSY,TE,TIMR.H, MATN0O270

v{1,BAR) MAINO280

(SKIP(2) 42 (COL(14) ,A),P(3),X(8) ,A,F(3),X(3),4,F(, MAINN200

X(3) »A,F(6,2,-2) ,X(3) ,A,COL{14) ,A,CCL(T5),R, MAINO30D

2(COL (14) ,A,F(8,3) ,A,F(8,3),F(9), A,X(7),4,F(6,2,-2), MAINO310

X(3),A), COL(14),3); MAINO320

MAINO330

IF FHT=1 MATINO34O

THEN PUT EDIT('RC I U V(G) V(H) PPABS') MAINO350
(SKIP(2) ,COL (14) ,A) 3 MATNO36O

ELSE PUT EDIT(*RC U) (CPL(14) ,A); MAINO370

PUT EDIT('MEMORY STATES') (CCL(63),A); MRINOISO
MAINO390

END; MAINOUOD

L0 = 0; MATINOU10

END; MAINOU20

ELSE PUT EDIT('PROBLFM SPECS') (COL(63),2): MAINOU3D
END; MAINO4UO

PL/I CPTIMIZING COMPILER

STMT LEV NT

28
29
30
31
32

33
34
35
36

37
38

39
40
41
42
43
4y
45
46
47
48
49
50
51
52
53
54
55
56
57
58

JOr QU S Y

- a

D h d D D e b d D ed D ad —h d b ed d b =

[~R-N-N-N=

OO0 O

o

- A NS m 00V OO0 O

-232-

FPS_OPT: PROC CPTIONS({MAIN) RFORDER;

/***ﬁlttt**t#tttttt*tttt**#**#t*ttt#**i#/ MATNOGGN

/% */ MATNO470

/% READ MODEL AND PRINT TITLE PAGE #/ MAINOYSO

/* */ MAINOU9O
/**#****#***t***ﬁ*t*it#t!tt***t&*#t**t**, MAINQ500

MATNO510

TITLE='"; MATND520
MAX_LEV, MAX_M,MAX_ESS_M,IT,FMT,TOT_PAGE = 0; MAINO530
¥, ESS_M = 13 MAINOS40
MIN_FRE=0.; MAINOS50
TIME.LIMIT = 3; MAINOS6OD
MAINOS70

GET LIST(TITLE, N,NU,NY,NZ,FMT, TIME.LIMIT,MIN_EPF,MAX_M,MAX_ESS_M);MAINOSRO
TIME.LIMIT = TIME.LIMIT#100; MATNOS590
SIGNAL ENDPAGE (SYSPRINT); MAINOAOD
PUT PDIT(N,® STATES',NU,' INPUTS',NY,' OUTPUTS',NZ,' I/D PAIRS', MAINOG610
STIME LIMIT:',TIME.LIMIT,'MIN ERR: ',MIN_ERR, MATNOA20

*MAX MEM:®,MAX_M,'MAX ESS MFM:',MAX_ESS_HM) MAINOA30

(SKIP(2) ,COL(19) ,4(F(4),A),SKIP(2), COL(22),A,P (6,2 ,-2),MAINOGAD
COL(53),4,F(5,3), SKIP{2),COL(22),A,P(4),COL(57),A,P{4));MAINO650

MATNO660

ALLOCATE STRUCT_ZCCDE,STRUCT_PROBS,STRUCT_RWDS,NODE,ESS_NODE; MATIN0670
MATNO680

ZCCDE = 0; MATNO690
4RINO700

P_ROOT,P_FSS_NODE_1 = P_NODE; MATNOT710
P_BACK,P_NEXT_ESS_NOLF = NULL; MAINO720
P_NEXTZ = P_RCCT; MAINOT70
P_TPM,PP_TPM = ADDR (TPM (1,1)); NAINOT740
P_BRANCHES, FP_BRANCHES = ADDR(BRANCH®S(1)); MAINOT50
P_VG,FP_VG = ADDR (VG (1)): MAINOT60
P_VH,FP_VH = ADDR(VH (1)) MAINOT70
P_W = ADDR(W(1)); MAINOT780
P_UG, PP_UG = ADDR(UG (1)) MAINO790
P_PZ = ADDR(PZ(1,1,1)); NAINOROO
P_QZ = ADDR(QZ(1,1)): NATNOS10
PEC.G,REC.H = "1VB; MATNOA20
DO I=1 TO N®N; MATHORR0
F_TPM(I)=0; MATNOBUD
END; NATNOBSO
LO I=1 TO N; MATNOSEY
F_VG(I) ,F_VH(I}) = O.3 MAINOBTO
F_UG(I) = 1; MAINOSRD
F_TPH((I-1)*N + I}, POWSUM(I) = 1.; MATNOBI0
END; MATINOJ00

-233-
PL/1 CPTIMIZING COMPILER FPS_OPT: PROC OPTIONS (MPIN) RECRDER;
STMT LEV AT
/#*l************#t*t****tt***#*#ti*t*#‘t[
/* PLACE INPUT PROES TN PZ */
/*#tt**t*t**t**#*tt*****tt*t*‘*#********/
59 1 0 BUT EDIT(*TRANSITIGN PRCBABILITIES:','2!,° (U, Y)','P')
(SKIP(3),CCL{14) ,4,SKIP ,COL(15),A,X(7),4,X(9),A):
60 1 0 DO Z=1 TO NZ;
6% 1 1 IF LINENO (SYSPRINT)+3+(N/10+1) *N > 55
THEN SIGNAL ENDPAGE (SYSPRINT)
62 1 PUT EDIT(Z) (F(16)) SKIP(2);
63 1 GET_UY_PAIR:
GET LIST(U):
68 1 1 IF U=0 THEN GOTC GFT_TPM;
65 1 1 GET LISI(Y);
66 1 1 PUT EDIT(U,Y) (COLUMN(22),2 F(3)):
67 1 1 ZCODE(U,Y) = 23
68 1 1 GC TC GET_UY_PAIR;
69 1 1 GET_TPM:
IP LINEKNC (SYSPRINT) ¢ (N/10¢1)*N > S5
THEN SIGNAL ENDPAGE (SYSPRYNT);
70 1 1 B = '0"B;
711 1 FP_PZ = ADDP(P_PZ->P_PZ ((3=1)*N¥N + 1))
72 1 1 DO I=1 TC N*N;
73 1 2 F_PZ(T) = 0.3
7% 1 2 END;
7t 1 1 GET LIST((F_PZ(I) O I=1 TC N*N)):
76 1 1 DO I=1 TC N;
7701 2 PUT SKIP;
7 1 2 PUT EDIT((F_PZ(J) LC J=(I-1)*N+1 TC I#N)) (COL(36),5 F(8,4));
79 1 2 £ND;
30 1 1 DO T = 1 TC N®N;
81 1 2 8 = B | F_PZ(I)~=0.;
2 1 2 END;
33 1 1 F_E_BPANCH (Z) = B;
3% 1 1 F_P_BRANCH(Z) = NULL;
85 1 1 END; .
/% cOPY PZ INTC PROES
86 1 0 FP_I2 = P_PZ;
87 1 0 P = ADDR(PRCBS(1,1,1));
88 1 0 DC I=1 ™0 N*N*NZ;
89 1 1 p=>F_PZ(I) = F_PZ(I);
30 1 1 END;

MATINO92N
MAINO930
MATNOO4O
MAINOQ59
MAIND960
MAINO9TO
MAINDIRO
MATNOS90
MAIN1000
MAIN1010
MAIN1T020
MAIN1030
MAIN104D
MAINT050
M2LIN1060
MAINT07D
MAINIDNAO
MATINT1090
MATN110D
MAIN1110
MAIN1120
MATN1130
MRAINY140
MAIN1150
MATIN1160
MATN1170
MAINT18N
MATIN1190
MAIN1200
MAIN1210
MATIN1220
MAIN1220
MATN1240
MATN1250
MAIN1260
MAIN1270
*/MAIN1280
MAIN1240
MAIN1300
MRAIN1310
MAIN1320
MAIN1330

PL/I CPTIMIZING CCMPILER

STMT LEV NT

91

92
93
9y
95
96
7

98
99
100
101
102

103
104
105
106
107

- - ek d ek

- e

WiwNWW=2O0O

wnwsEE

[~ SHWEW

~234-

FPS_OPT: PROC OPTICNS(MAIN) RFORDER;

/***t**t***t**t*#t**t*t**ttt*tt***ti*#t‘/

/% VERIFY SUM/Y,3/ P/1,3/(Y10) = 1. %/
/‘tt***t#t#t#*‘*t***“**t***t*##‘***t*#t/

B = 'OIB:
DG I=1 TO N;
DO U=1 TG NU;

Z = ZCCDE(U,Y):
IF Z-~=0
THEN DO J = (Z=1) ¥N*N+ (I-1) *N41 TQ (Z2-7) *N*N+I*N;
S =S ¢ F_P2(J);
END;
END;
IP ABS(S-1.) > 1E-4 THEN DC;
PUT EDIT (*ERROF: TRANS. PROBS. DO NOT SUM T2 ONE FOR I =',I,
‘o U =',U0) (SRIP(2),A,P(3),A,F(3));
B = "1'B;
END;
END;
END;
IF 3 THEN STOP;

MAIN1350
MAIN1360
MAIN137N
MAIN1380
MAIN13Q0
MATN1400
MATN1410
MAIN1429
MAINI43D
MRINT440
MATN1TU450
MAINT460
M2IN1470
MAINT4R0
MAIN149D
MAINI500
MAIN1510
MAIN152D
MATN1530
MATN1540
MATN1550
MAIN1560
MAIN1IS570

-235~

PL/I CPTIMIZING COMPILER FPS_CPT: PROC CPTIONS(MAIN) RECRDER;

STMT LEV NT

/*##t*‘#**********#*****t*t*******t****t/ MAIN159)

/* PLACE INPUT REWARDS IN QZ AND RWDS %/ MAIN16N0
/******##*******************#**t******t*/ MARINT61D

MATIN1620

108 1 0 I¥ LINENC (SYSPRINT) +3+(N/10+1) *NU > 55 MATN1630
THEN STGNAL FNDPAGE (SYSPRINT) ; MAIN1640

09 1 0 PUT EDIT('INCREMENTAL REWARDS:!,'U','Q") MAIN1650
(SKIP (3),%(13) ,A,SKIP,COL(27),A,X(10),4): MATN1660

170 1 0 PUT SKIP(2); MAIN1670
111 1 0 G.HIGH =-1E10; MAIN1680
M2 1 0 G.LOW= 1E10; MAIN1690
1131 0 DC U=1 TC NU; MAIN1700
M 11 PP_yZ = ADDE(P_QZ=>F_QZ ((U-1)*N+1)); MAIN1T710
115 1 1 GET LIST((F_QZ(I) ©OC I=1 70 N)); MAIN1720
16 1 1 PUT EDIT(U) (COL(25),F(3)); MAIN1730
117 1 1 PUT EDIT((F_QZ(I) DO I=1 TO N)) (COLUMN(36), 5 F(3,8)); MAIN1740
118 1 1 DO I=1 T2 N; MAIN1759
19 1 2 G.HIGH = MAX (G.HIGH,FP_QZ(I)); MATN1760
1220 1 2 G.LOW = MIN(G.HIGH,F_QZ(I)); MATN1770
1219 1 2 PND; MAIN1780
122 1 1 END; MAIN1TAN
MAIN1809

1221 0 PP_0Q7 = P_QZ; MAIN1810
126 1 0 P = ADD?(RWDS(1,1)); MAIN1820
125 1 9 DC T=1 TC W*NU; MAIN1R3D
126 1 1 P->F_QZ(I) = F_QZ(I); MAIN1840
1227 1 1 END; MATIN1R50
MAIN1AA0

/% MTSC PRELIMINARIES */MATN1870

128 1 0 EKR = G.HIGH - G.LCW; MAIN1RAQ
129 1 0 TF MAX_M<=0 THEN MAX_H=10000; MATN1899
130 1 0 LF MAKX_ESS_M<=0 THEN MAX_ESS_M=1000; MATN1900
131 1 0 IF PMT~=0 & FMT~=1 MATN1910
THEN DO MAIN1920

132 1 1 PUT EDIT('*** INCCRRECT CUTPUT FORMAT',FMT,' SPFCIFIFD %%t} MAIN1930
(SKIP,X(10) ,A,F(4),A): MAIN1940

133 1 1 ™0p; MAIN1950

134 11 FND; MAIN1961

PL/1 OPTIMIZING COMPILER

STMT LEV NT

138
139

140
141
142

144
145
146

-

0
0

o [N =N=)

coo

LOCP:
IT = IT+1;
IT_PAGE =

-236-

FPS_COPT: PROC OPTIONS({MAIN) REORDER;

/t#*t*l**tt*tt**i#t#*ttt*tt*ttt*t#i#ttti#ttt*t#t*t/

Vi */
/* MAIN SECTICN CF THE PRCGRAM */
% */

/t#***t‘***t*t*ltt*tttt*ttt*t*!ttt###tttt#*t*i*#*t/

03

CALL TIMING(TIME.PREP):

/t#**t1******‘**ttt*#**tﬁt*‘***t*t*‘*i**ttt***ttt*/

/* */
/* SCLVE FOR OPTIMAL GAIN G */
/* AND OPTIMAL VALUE VG */
/* (USE VH AS INITIAL GUESS) */
/* (LEAVE SCLUTION IN BOTH VG AND VH) */
/* */

JEEREEREIEAEERN R RRA KRR RRE AR K EEXE RN R AR RNk)

CALL SCLVE_G;:
CALL TIMING (TIME.G);

CALL
CALL
CALL

CALL
CALL

GCTOD
END;

SRRk xkkk kR kkkkk ko ko kkk ke kR kR kR kR Rk kkkk /

/* */
/* SCLVE FCR FEASIBLE GAIN H */
/* AND CCRRESPCNDING VALUF VH *x/
/¥ (USING VH AS INTTIAL GUESS) */
* */

2 e Ty

PREP_H

SCLVE_H;,

TIMING (TIME.H) 3

REPORT

PREP_G:

Loep;

MAIN1930
MAIN1990
MAIN2000
MAIN2010
MATN2020
MAIN2030
MAIN2040
MAIN2050
MAIN2060
MATN2070
MAIN2080
MAIN2090
MAIN2100
MATN2110
MAIN2120
MAIN2130
MAINZ214D
MAIN21S0
MAIN2160
MAIN2170
MAIN2180
MAIN2190
MAIN2200
MAIN2210
MAIN2220
MATN2239
MAIN22UD
MATN2250
MAIN2260
MATIN2270
MAIN22R0
MAIN2290
MAIN2300
MRIN2310
MAIN21320
MAIN2330
MAIN2340
MATN2350
MAIN2369
MAIN2370

-237-

PL/I OPTIMIZING COMPILER PREP_G: PROC REORDER;

STMT LEV NT
1 0
2 10
L} 70
5 1 0
6 1 0
7 10
8 10
9 10

10 10
1 10
12 11
13 11
14 10
15 11
16 1 2
17 T2
18 11

SCURCE LISTING

PRFP_G: PROC RECRDER;

%INCLUDE DD1(DCL);
JEECERSRERRRRERRRREERERERE KRR AR KRR RN R ARk R kR kK /)

/% i
/* ADD NODES AS REQUIPED (FALLCWING RYC.G) x/
/% COPY V INTC V_FEAS */
/% PRUNE OUT NCDES WHICH AR® NC LONGEF ESS */
/* */

/#tt#ttt**ﬁt*tt*t*ﬁt#ttk#t*t*ti*ttt*tttt*ttttit*t*tt**tttt*/

DCL ADDNOLE EXT ENTRY;
DCL (BU(O:NU),BZ(0:NZ),B,bA) BIT ALIGNED, (P,P0,P1) POTNTER,
(I,22,Z_STRING(0O:MAX_LEV)) FIXKED BIN;

/% ADD NEW NODES
BA = '0'R;
P_NCDE,P1 = P_ESS_NODE_1;

A_LOCP:
TP ~FEC.G THPN GCTC END_A_LOOP;

RU,BZ ‘0'R;

FP_UG = P_UG;

DO I=1 TC Nj
BU(F_TG(I)) = *1'B;
END;

DC U=1 TO NU;
IF BU(T)
THEN DO Y=1 TQO NY;
BZ (2CCDE (U,Y)) = *'1'B;
END;
END;

PRPGNN10
PRPG0020
PRPGNO30
PRPGO040
PRPGOO50
PRPGO060
PRPGONTO
PRPG00SO
PRPGO09O
PRPGO100
PRPGO110
PRPG0120
PRPGO130
PRPGOT40
PRPGO150

*/PRPGO1EN

PRPGO170
PRPG0180
PRPG0O150
PRPG0200
PRPGO210
PRPGN220
PRPGO230
PRPGO240
PRPG0O250
PRPG0O260
PRPGO270
PRPGN280
PFPG0230
PRPG030D0
PRPG0310
PRPGO 320
PRPG0330
PRPGO340

L

-238-
PL/I GPTIMIZING CCMPILEX PREP_G: PROC RECMRDER;
STMT LEV NT
19 1 90 DC 22 = 1 TO NZ;
20 1 1 IF BZ(22)
THEN DO;
21 1 2 P,P0 = P_NODE;
22 1 2 LEV = -1
23 1 2 A_LCOPI:
LEV = LEV+1;
261 2 Z_STRING(IEV) = P-> Z_BACK;
25 1 2 P = P-> P_BACK;
26 1 2 IF P-=NULL
THEN GOTO A_LCOP1;
2101 2 Z_STRING (LEV) = 2Z;
28 1 2 P_NODE = F_RCOT;
29 1 2 A_LCOP2T
FP_FRANCHES = P_ERANCHEC;
30 1 2 Z = Z_STRING (LEV) ;
211 2 TF ~F_F_BRANCH (Z)
THEN GOTO QUT_A;
32 1 2z P = F_P_BPANCH(Z);
33 01 2 IF P=NULL
THFN DO;
3 1 3 IF ~REC.G THEN GOTC CUT_A;
381 3 FP_UG = P_IiG;
36 1 3 U= UH;
37 01 3 DC I=1 7TC N;
38 1 4 IF F_UG(I)~=0 & F_UG(I}~= 1
THEN DO;
39 1 5 CALL ADLNCDE;
40 1 5 BA = '1'B;
41 1 5 GOTO OUT_A;
4z 1 5 END;
43 1 END;
4 13 GOTC CUT_A;
45 1 3 END;
46 1 2 P_NCDE = P;
47 1 2 LEV = LEV-1;
48 1 2 TP LEV>=0
THRN GOTO A_LOCP2;
49 1 2 DUT_A:
P_NODF = PO;
50 1 2 END;
51 1 1 END;
5 1 0 END_A_LOCP:
P_NODE = p_NEXT_ESS_NCDE;
53 1 0 IF P_NNDE~=NULL

THEN GOTO A_LCOD;

PRPGL360
PPPG0O370
PRPGO 3RO
PRPG0399
PRP50400
PRPGO4 1N
PRPGOU20
PRPGQU3N
PRPGOLJUO
PRPGOU4SN
PRPGO46N
PRPGOU4T0
PYPGOURD
PRPGNUIN
PRP5G0D50N
PRPGO510
PRPGQS2N
PEPGNS30
PPPGOSUO
PRDPGOSS0
PRPG0O560
PRPGNGKTN
PRPGO580
PPPGO590
PRPGDAOO
PPPGO610
PRPGO62D
PPPGO630
PFPGOAUD
PFP50650
PRPGNE6O
PPDPGNRTO
PRPGOE3D
PEPROEAN
PPPGO700
PFPGO710
PRPG0720
PRPG(0O730
PRPGO740
PRPGIT5N
DPPORGNTRO
pPPPGOTTH
PRPGO7RO
PREPGNTAN
PRPG0800
PRPGNRIN
PRPG0OR20

PL/I OPTIMIZING COMPILER

STMT LEV NT

54

55
56
57

58
5S

60
61

62
63
64

65

66
67

68

69
70

71
T4
75
76
77
78
79

80
81

83
84
85
86

- d

-k b ek b b

[Y U QR G Y

- ad

-0 o [~X] (=] [-X-X~] oo -

A NNWwWNN

[=X-R-N-R-N-¥-]

-239-

PREP_G: PROC REORDER;

IF ~BA

THEN DO;
SIGNAL ENDPAGE (SYSPRINT);
BIN_ERR = 1.E10;

/% CHECK: WAS ANYTHING

ADDED? */PRPGO84Q
PRPGO850
PRPG0860
PRPGO8T0
PRPG0880

PUT EDIT('*** NO MEMORY STATES ADDED - AT MOST ONE MORE I™RRATION*PRPG0890

[1* WILL BE ALLCOWED #*#%') (SKIP(2),X(10),1);
RETORN;
END;

PRPGO90O
PRPG0910
PRPG0920

/* CLEAN CUT ESS NODE CHAIN */PRPG0930

P_NODE = P_ESS_NODE_1;
PRE_LOOP:
P_REL = P_NODE;
P_NODE = P_NEXT_ESS_NODE;
IF P_NODE~=P1 THEN GOTO PRE_LOCP;
GOTO ENTER_LOOP;

PRUNE_LOCP:
P_PEL = P_NODE;
P_NODE = P_NEXT_ESS_NOD;
IF P_NCDE=NULL THEN RETURN;

ENTER_LOCP:
FP_BRANCHES = P_BRANCHES;
DO Z=1 TC ¥Z;
IP F_E_BRANCH(Z) & F_P_BRANCH(Z)=NULL
THEN DO;:
FP_UG = P_UG; FP_VG = P_VG; PP_VH = P_VH;
DO I=1 TO N
IF P_UG(I)~=0 THEN F_VH(I) = FP_VG(I);
END; -
GOTC PRUNE_LOOP;
END;
END;

ESS_M = ESS_m-1;

P_REL -> P_BSS_NODE -> P_NEXT_ESS_NCDF = P_NEXT_ESS_NODE;

FREE ESS_WNODE;
P_ESS_NODE = NOLL;
P_NODE = P_REL;
GOTGC PRUNE_LOCP;
END;

PRPGO940
PRPG0O950
PRPG0960
PRPG0970
PRPGO98O
PRPG0990
PRPG1000
PRPG1010
PRPG 1020
PRPG1030
PRPG1040
PRPG1050
PRPG 1060
PRPG1070
PRPG1080
PRPG1090
PRPG1100
PRPG1110
PRPG1120
PRPG1130
PRPG1140
PRPG1150
PRPG1160
PRPG1170
PRPG 1180
PRPG1190
PRPG1200
PRPG1210
PRPG1220
PRPG1230
PRPG1240
PRPG1250

~240-

PL/1 OPTIMIZING COMPILER ADDNODE: PROC REORDER;

SOURCE LISTING

STMT LEV NT
1 0 ADDNODE: PROC REORDER; ADDN0O10
ADDNO020
2 1 0 %INCLUDE DD1(DCL); ADDNO030
ADDNOOYO
/*tl#tt***t*ttt#t#tttt't'**t‘tt‘i*l'tl‘##tt‘#**#tt*#t‘tt*##/ ADDNOOSO
/* */ ADDN0060
/% ADD BRANCH Z TO NODE P_NODE */ ADDN0070
/* ALSO ADD OTHER NODES AS REQUIRED T MAINTAIN */ ADDNOORO
/% RECURSIVE PROPERTIES OF THE MEMORY SET */ ADDN0090
/* */ ADDNO1NO
/t#k#l“tttt#t*ttlt*t#t#‘t#t#it#ti**t*t#"'**‘ttt##**i*t*##/ ADDNO 110
ADDN0120
4 1 90 DCL SCAN EXT ENTRY; ADDN0130
ADDNO 140
5 10 DCL Z_ADD PIXED BIN INIT(Z), PO POINTER INTT (P_NODE) ; ADDNO150
/% REGISTERS TO SAVE INITIAL ADDN0160
VALUES OF Z AND P_NCDE */ADDNO170
ADDNO 180
6 1 0 DCL R(N) FLOAT BIN; /* ROW SUM OF NEW TP */ADDNO190
7 190 DCL Z_STRING(O:MAX_LEV) FIXED BIN; ADDN0200
g8 1 0 DCL P_NEW (O:MAX_LEV) PCINTER; ADDN0210
ADDN0220
9 1 0 DCL (S,SV,E) FLOAT BIN,(I,II,J,K,UU0) FIXED BIN, (B,BE) BIT ALIGNED, ADDNO230
(e, P1,P2,FP_PROBS,PP_RWDS,PP_TPN2) POINTER; ADDNO240
0 1 0 FP_RWDS = ADDR(RWDS (1,1)) ; ADDN0250
ADDN0260
/* PILL IN Z_STRING WITH ADDNO270
DESCRIPTION POR P_NODF */ADDNO 280
1M1 1 0 Z_STRING(0) = Z_ADD; ADDN0290
12 1 0 DO I=1 TO MAX_LEV; ADDNO200
13 1 1 P1 = P_BACK; ADDNO310
1w 1 1 IP P1=NULL ADDN0320
THEN GOTO OUT; ADDN0330
15 1 1 Z_STRING (I) = Z_BACK; ADDNO 340
%6 1 1 P_NODE = P1; ADDN0350
17 1 1 END; ADDNN360
1 1 0 oUT: ADDNO370
MAX_LEV = NAX(MAK_LEV,I); ADDNO3R0
19 1 0 LEV,10 = I; ADDN0390

-241-

PL/I OPTIMIZING COMPILER ADDNODE: FEOC REORDER;

STMT LEV NT

/* THIS LOOP ADDS BRANCH Z_ADD ADDNO&10
TO PO & UNTQUE PRECEDENTS */ADDNOL420

200 1 0 LCOP1: ADDNO430
LEV = LEV-1; ADDNOHYO

ADDNO450

/% FIND P_NCDE POR GIVEN Z_STR */ADDNO4KO

21 1 0 P_NODE = P_ROOT; ADDNOUT0
22 1 0 DO I = LEV TO 0 BY ~-1; ADDNOLSO
23 1 1 P = P_NODE; ADDN0490
26 1 1 P_NODE = P_BRANCHES->F_P_BRANCH (Z_STRING (I)) ; ADDN0500
25 11 END; ADDNO510
ADDNO520

26 1 0 IF P_NODR-~=NULL ADDNO530
THEN GOTO NO_MORE_ADEL; ADDNO540

ADDNO550

/% ALLOCATE NEW NGDE */ADDNQ560

27 10 ALLOC NODE, ESS_NCDE; ADDNO570
ADDNN580

/* LINK TC OLD NCDE */ADDNNS90

286 1 0 Z_BACK = Z_ADD; ADDN060D
29 1 0 P_BACK = P; ADDNOG10
30 1 0 P->D_BRANCHES=->F_P_BRANCH (Z_ADD) = P_NNDE; ADDN0620
ADDN0630

/* PLACE NEW NODE AT START OF ADDNO640

®SS NODE CHAIN */ADDNO650

31 1 0 P_NEXT_ESS_NODE = P_ESS_NODE_1; ADDN0660
32 1 0 P_NFW (LEV) , P_ESS_NODE_1 = P_NODE; ADDNO670
ADDNO680

33 1 0 P_TPM = ACDR(IPM(1,1)); ADDN0690
36 1 0 FP_BRANCHES,P_BRANCHES = ADDR(BPANCHES (1)) ADDNOTOO
15 1 0 P_VG = ACDR(VG(1)): ADDNO0710
36 1 0 FP_VH,P_VK = ADDR(VH(1)): ADDNO720
31 1 0 B_¥ = ADDR(N(1)); ADDNOT20
38 1 0 FP_UG,P_UG = ADDR (UG (1)); ADDNOT40
33 1 0 P_PZ = RDDR(PZ(1,1,1)): ADDNOTS0
40 1 0 FP_02,P_Q% = ADDR(QZ(1,1)); ADDNO760
41 1 0 REC.G,REC.H = '0VB; ADDNOT70
/% UPDATE MEMOPY COUNTRRS */ADDNO780

42 1 0 M= Mg ADDNOT790
43 1 0 ESS_M = ESS_N+1; ADDNOBOO
ADDNOSB10

4 1 0 P_NCDE = P; ADDNO0920

an,

~242~
PL/I CPTIMIZING COMPILER ADDNODE: PROC REDRDER;
TMT LEV NT
/% COMPUTFE TPM,VH AND Q2
/* PRESET UG TOC SHOW R(I)

45 1 0 FP_VG = P_VG;
46 1 0 PO T = 1 TC N;
47 11 SV,R(I) = 0.
48 1 1 FP_TPM = ADDR(P_ESS_NODE_1->P_TPM->F_TPM ((I-1)¥N+1))
49 1 1 FP_PZ = ADDR(PROBS (Z_ADD,I,1));
50 1 1 DO J =1 TO N;
51 1 2 S = 0.3
52 1 2 11 = 13
53 1 2 FPP_TPM2 = ADDR(P_TPM->F_TPM(J));
Sy 1 2 DO K = 1 T0 N;
55 1 3 E = F_PZ(K) * FP_TPM2->F_TPM(II);
56 13 ITI = TI+N;
57 1 3 S = S ¢ E;
58 13 SV = SV ¢ E * F_VG(K);
59 1 3 END3
60 12 F_TPMJ) = S;
61 1 2 B(I}) = R(I) + S;
62 1 2 END;
63 1 1 P_ESS_NODE_1->ROWSUM(I) = R(I);
64 1 1 IF R(I)>0

THEN D0;
65 12 F_UG(I) = 13
66 1 2 F_VH(I) = SV/R(I):
67 1 2 ny = 03
68 12 DO U=1 TC NU;
69 1 3 S = 0e;
70 1 3 DN J=1 TC WN;
71 1 4 S = S ¢ F_TPM(J) * FP_EWDS=>F_QZ(UU+J);
72 1 4 ENL;
73 1 3 F_QZ (0U+I) = S/R(I):
74 1 3 g = UU+N;
75 1 3 END;
76 1 2 END;
77 11 ELSE F_JG(I) = 03
78 1 1 END;

*/ADDNORYLO
> 0?2 */ADDNOSSO
ADDNOB6D
ADDNORTO
ADDNOSRO
ADDNOBIO
ADDNO90O
ADDN0910
ADDN0G20
ADDN0930
ADDNOOY O
ADDNO95D
ADDNO9AO
ADDNODY970
ADDN09SD
ADDNNGION
ADDN1000
ADDN1010
ADDN1020
ADDN1030
ADDN10UO
ADDN1050
ADDN1060
ADDN1070
ADDN1080
ADDN1790
ADDN1101
ADDN1110
ADDN1120
ADDN1130
ADDN1140
ADDN1150
ADDN1160
ADDN1170
ADDN1180
ADDN1190
ADDN1200

~243-

PL/I CPTIMIZING CGMPILER ADDNCDE: PRGC REORDER;
STMT LEV NT

/% CNMPYTE ¥_BRANCH,P_BRANCH */ADDN1220

79 1 0 DO 2=1 TO NZ; ADDN1230
80 1 1 FP_PZ = ADDR(PROBS(Z,1,M): ADDN 1240
81 1 1 F_P_BRANCH(Z) = NULL; ADDN1250
82 1 1 P_ESS_NCDE_1->P_ESS_NODE->P_NEXTZ(Z) = NULL;: ADDN1260
83 1 1 DC I=1 TO N; ADDN1270
84 1 2 IF R(I)>0 ADDN1230
THEN DO J=1 TC N; ADDN1290

85 1 3 IF F_DPZ({J=1)*N+I) > 0 ADDN1300
THEY DC; ADDN1310

86 1 4 P_P_BRANCH(Z) = '1°'B; ADDN1320
87 1 4 GOTC NEXT_Z; ADDN1330
38 1 4 END; ADDN1340
89 1 3 END; ADDN1350
90 1 2 FND; ADDN1360
91 1 1 F_F_BRANCH(Z) = '0'B; 4DDN1370
92 1 1 NRXT_Z: ADDN11380
END; ADDN1390

93 10 GOTO LZ7P1; ADDN1400

=244

PL/I OPTIMIZING CCMPILER ADDNODE: PROC REORDER;

STMT LEV NT

94 1 0 NO_MORE_ADD:
P_REL = P_NODE;

IF P_NEXTZ4(Y)=NULL THEN GCTC NEXT_SCAN;

H
F P_LSS_NODE=NULL THEN GOTO NEXT_SCAN;

= P_TPM;

95 1 0 L00 = LEV;

96 1 0 B = *113;

97 1 0 DO LEV = LOO+1 TO LO-1;
98 1 1 72 = 1

99 1 1 P_NOLCE = P_NEW(LEV) ;
00 1 1 FP_UG = P_UG; FP_TPM = P_TPM;
102 1 1 CATL GET_F_PZ;

103 1 1 DO 2=2 TO N2;

08 1 2 CALL GET_PZ;

105 1 2 END;

106 1 1 END;

107 1 0 LEV = 1003

08 1 0 P_NODE = P_REL;

109 1 0 P_REL = P_RODT;

110 1 0 1 = 2Z_STRING (LEV+1);
1117 1 0 B2 = P_ESS_NODE_1;

M2 1 0 B = '078;

M3 1 2 1

114 1 0 LOCP2:

M5 1 0 P=P_NODE;

M6 1 0 DC T=0 TO LEV;

117 1 1 Z_STFING(I) = P->Z_RACK;
M8 1 1 F = P-> P_BACK;

119 1 1 END;

120 1 0 P1 = P_REL;

121 1 0 7= ¥;

122 1 0 FP_UG = P_UG; FP_1PH
124 1 0 CALL GET_ER_PZ;

125 1 0 NEXT_SCAN:
CALL S5CAN;

126 1 0 IF P_NCDE~=NULL
THEN GOTO LOCP2;

127 1 0 FINISHED:
P_NODE = PO;
Z = Z_ADD;
RETURN;

128 1
129 1

(=N

/* BESTORE CALLING Z,P_NOD®

ADDN1420
ADDN1430
ADDN1440
ADDN1450
ADDN146N
ADDN1470
ADDN 1480
ADDN1490
ADDN1500
ADDN1510
ADDN1520
ADDN153N
ADDN1540
ADDN1550
ADDN1560
ADDN1570
ADDN1580
ADNDN1590
ADDN1600
ADNN1610
ADDN1620
ADDN1630
ADDN1A40
ADDN1650
ADDN16RO
ADDN1670
ADDN1680
ADDN1690
ADDN1700
ADDN1710
ADDN1720
ADDN1720
ADDN1740
ADDN1750
ADDN1760
ADDN1770
ADDN1780
ADDN1790
ADDN1800
ADDN1R10
*/ADDN1820
ADDN1830
ADDN1840
- ADDN1850

-~
-245-
-~
‘ PL/I OPTIMIZING CCMPILER ADDNODE: PROC REORDER;
PN
; STMT LEV NT
130 1 0 GET_R_PZ: PROC; /% THIS ENTRY COMPUTZS R(*) FIRST
131 2 0 PG I=1 TC ¥;
132 2 1 R(I) = ROWSUM(I);
133 2 1 END;
134 2 0 GET_PZ: ENTRI; /% CONPUTE P_NEXTZ,PZ
- 135 2 0 ° P = P_ROOT->P_BRANCHRS->F_P_BRANCH(Z);
16 2 0 IF P=NULL
THEN GOTO COMP2;
1737 2 0 IF B
THEN DO:
138 2 1 P2 = NULL:
139 2 1 DO I = LEV TO 0 BY =13
- w0 2 2 TOP:
FP_BRANCHES = ADDR (P->P_BRANCHES->F_E_BRANCH (Z_STRING(I)));
w1 2 2 P17= P_P_BRANCH (1) ;
w2 2 2 IF ~F_E_BRANCH (1)
THEN FETURN;
w3 2 2 IF P1 = NULL
THEN DO;
. 1wy 2 3 P2 = P;
: 145 2 3 P = P_ROOT;
- w6 2 3 GOTO TOP;
w7 2 3 END:
1us 2 2 P = P1;
wy 2 2 END;
150 2 1 IF P2 = NOLL
THEN DOZ
151 2 2 P2 = P1;
152 2 2 P1 = P_RONT;
153 2 2 END;
- _ 1354 2 1 END;
-~
~

*/

ADDN1870
ADDN1880
ADDN1890
ADDN1900
ADDN1910
*/ADDN1920
ADDN1920
ADDN1940
ADDN1950
ADDN1960
BDDN1970
ADDN 1980
ADDN1990
ADDN2000
ADDN2010
ADDN2020
ADDN2030
ADDN2040
ADDN2050
ADDN2060
ADDN2070
ADDN2080O
ADDN2090
ADDN2100
ADDN2110
ADDN2120
ADDN2130
ADDN2140
ADDN2150
ADDN2160
ADDN2170
ADDN2180
ADDN2190
ADDN2200
ADDN2210
ADDN2220

~-246-

PL/I OPTIMIZING CONPILER ADDNODE: PROC REORDER;
STHT LEV NT

/% COMPUTE PZ WHERE P1,P2 ARE ADDN2240
Z (P_NODE) | {Z = Z(P1) [1Z(P2) ADDN2250

P_NEXTZ (2) = P2 */ADDN2260

155 2 0 IP P_NEXTZ (2)=P2 ADDN2270
THEN RETURN; ADDN2280

156 2 0 P_NEXTZ (Z) = P2; ADDN2290
157 2 0 DO J=1 TO N; ADDN2300
158 2 1 S = 0.3 ADDN2310
159 2 1 PP_TPM = ADDR(P1->P_TPH->F_TPH(J)); ADDN2320
160 2 1 PP_PZ = ADDR(P_PZ-D>F_PZ ((Z-1) *N*N+J)): ADDN2330
%1 2 1 S = P2 => ROWSUM(J); ADDN2340
162 2 1 I = 13 ADDN2350
%63 2 1 DO I=1 TO N; ADDN2360
164 2 2 IF P_UG (I)~=0 ADDN2370
THEN F_P2(II) = P_TPA(II) * S / R{I); ADDN2380

165 2 2 II = IT+N; ADDN2390
166 2 2 END; ADDN2400
167 2 1 END; ADDN2410
68 2 0 RETURN; ADDN2420
/% COMPUTE PZ WHERE ADDN2U30

P_NEXTZ(Z) = P_ROOT */ADDN2440

169 2 0 COMP2: ADDN2450
BB = '0'B; ADDN2460

170 2 0 IF P_KEXTZ(Z)=P_ROOT ADDN2470
THEN RETURN; ADDN2480

171 2 0 P_NEXTZ (2) =P_ROOT; : ADDN2490
172 2 0 DO I=1 TO N3 ADDN2500
173 2 1 IF P_UG (I) ~=0 ADDN2510
THEN DO; ADDN2520

178 2 2 PP_TPH = ADDR (P_TPM-DP_TPN ((I-1)*5¢1)); ADDN2530
175 2 2 PP_PZ = ADDR(P_PZ->F_DZ ((Z~1)*N*N+ (I-1)*N¢1)); ADDN2540
176 2 2 DO J=1 TC N; ADDN2550
177 2 3 PP_PROBS = ADDR(PROBS (Z,1,J)) ; ADDN2560
178 2 3 S = 0.3 ADDN2570
179 2 3 1I=1; ADDN2580
180 2 3 DO K=1 TO N; ADDN2590
181 2 4 S =S+ F_TPA(K) * FP_PROBS->P_PZ(II); ADDN2600
182 2 4 II = II+N; ADDN2610
183 2 4 END; ADDN2620
186 2 3 F_PZ2(J) = S/R(I): ADDN2630
185 2 3 BE = BB|S>0: . ADDN2640
186 2 3 END; ADDN2650
187 2 2 END; ADDN2660
188 2 1 END; ADDN2670
189 2 0 IP ~BB THEN P_NEXTZ (Z)=NULL; ADDN2680
190 2 0 RETURN; ADDN2690
191 2 0 END; ADD¥2700
192 1t 0 END; ADDN2710

-247-

PL/1 OPTIMIZING COMPILER PREP_H: PROC REORDER;
SOURCE LISTING

STMT LEV NT

1 0 PREP_H: PROC RFCRDER; PRPHO0010
PRPHO020

2 1 0 %INCLUDE DD1(DCL); PRPH0030
PRPHOOUO

/tttt*t***tt###ttttttt*ttt#t#ttt*tt‘tttttttt*ttt#t/ PRPHOO0O50

/* x/ PRPHOO060

/* CCMPUTE UA AND REC. * */ PRPHO070

/* */ PRPHO0BO
/tttt*ttt#ttttt*#*tt#**tt#t#t*ttttt#tt*ttt*t#ttttt/ PRPHOO90

PRPH0100

4 10 DCL (BU(O:NU) ,BZ(0:NZ),B,BB) BIT ALIGNED, PP POINTER, PRPHO110
(S,T) PLOAT BIN, I FIXFED BIN: PRPHO0120

PRPH0O130

/% STEPO COMPUTE UH = MOST LIKELY CPTIMAL INPUT */ PRPRO140

/* P_REC = LIKELY G-RECURRENT NCDE */ PRPHO150

PPPHO160

5 10 P_NODE, P_REC = P_ESS_NODE_1; PRPHO170
6 1 0 LOOPO: PRPH0180
FP_UG = P_UG; PRPHN190

7 1 0 T ==1.3 PRPH0200
8 1 0 DO U=1 TO NU; PRPHO210
9 11 S$=0.; PRPH0220
10 1 1 DO I=1 TO N; PRPHO230
1M1 2 IFP P_UG(I) = 0 PRPHO2ULO
THEN S = S + ROWSUM(I); PRPHO250

122 1 2 END; PRPHO260
13 101 IF S>T+1E-4 PRPHO270
THEN DO; PRPH0280

14 1 2 UH = 0; PRPH0290
15 1 2 T =S;- PRPH0300
16 1 2 END; PRPH0310
17 11 END; PRPH0320
PRPHO330

18 1 0 IF REC.H THEN P_REC = P_NODE; PRPHO340
19 10 REC.G, RFC.H = '0'B; PRPHO350
PRPHD 360

20 1 0 P_NODE = P_NEXT_ESS_NODE; PRPHO370
21 10 IF P_NODE == NULL PRPHN 380
THEN GOTO LOCPO; PRPHO3Q0

PRPHOLOO

22 1 0 BB = '1'B; /* PIRST PASS FINDS RFC.G */PRPHOU10

-248~

PL/I CPTIMIZING COMPILFR PREP_H: PROC REORDER;

STMT LEV NT

23 10
24 1 0
25 1 0
26 1 0
27 1 0
28 1 0
29 1 0
30 1 0
31 1 0
32 1 0
33 10

/* STEP1 SET P_REL = LIKELY RECURRENT NODE AND SFET RTO=0

STEP1:
P_NODE = P_ESS_NODE_1;

LGOP1:
P_REC = P_NODE;
REC.TO = '0'B;
P_NODE = P_NEXT_ESS_NODE;
IF P_NODE=-=NULL
THEN GCTC LOOP1;

/* STEP2 SET™ REC.FRCM = 0

STEP2:
P_NODE = P_ESS_NODE_1;
LCOP2:
REC,FROM = '0'B;
P_NODE = P_NEXT_ESS_NODE;
IF P_NODE ~= MNULL
THEN GOTO LOOP2;

RPT2:
P_NODZ = P_REC;
REC.TO,REC, FROM = '1'R;

*/

*x/

PRPHOU430
PRPHO4UO
PRPHOUSO
PRPHOUG0
PRPHOU4TO
PRPHOUBO
PRPHO43D
PRPHOS500
PRPH0NS1D
PRPHO520
PRPHO530
PRPHOSUO
PRPPHO550
PRPHOS60
PRPHOS570
PRPHOS580
PRPHO590
PRPHO600
PRPHOG10
PRPHO620
PRPHOE30
PRPHO640
PRPHOE50
PRPHO660
PRPHONETO

-249-

PL/1 OPTIMIZING COMPILER PREP_H: PROC REORDER;

STMT LEV NT

/* STEP3 FILL REC.TO AND REC.FROM */ DPRPHO690

PRPHO700

38 1 0 RPT3: PRPHO710
B = '0'B; PRPHO720

35 1 0 P_NODE = P_ESS_NODE_1; PRPHO730
36 1 0 LACP3: PRPHO740
IF ((~REC.TO|KEC.FROM) & (BB|REC.G)) PRPHOT50

THEN DO; PRPHO760

37 1 1 BZ = *0'B; PRPHO770
8 1 1 IF BB THEN DO; PRPHO780
39 1 2 BU = '0'B; PRPHO790
40 1 2 FP_UG = P_UG; PRPHOB00
41 1 2 DC I=1 TO N; PRPHO810
42 1 3 BU(F_UG(I)) = '1'B; PRPROB20
43 1 3 END; PRPHO0830
04 1 2 £O B=1 TC NU; PRPHOBUO
45 1 3 IF BU(U) PRPHO8S0
THEN TO Y=1 TC KY; PRPHOB60

46 1 4 BZ{ ZCODE(U,Y)) = *1'B; PRPHO870
47 1 4 END; PRPHOBRO
ug 1 3 END; PRPH0B9I0
49 1 2 END; PRPHO900
50 1 1 ELSE DO Y=1 TO NY; PEPH0910
51 1 2 BZ (ZCODE (UH,¥)) = *1YB; PRPH0920
52 1 2 END; PRPH0930
53 1 1 DO Z=1 TG NZ3 PRPHOGUO
54 1 2 IF BZ(Z) PRPHO0950
THEN DO; PRPHO960

55 1 3 PP = P_NEKTZ(Z): PRPHOITO
56 1 3 IF PP~=NULL PRPHO9RO
THEN DO; PRPH0990

57 1 4 PP = PP->P_ESS_NODE: PRPH1000
58 1 4 IF (~REC.TO)&PP~>REC, TO PRPH1010
THEN B,REC.TO = '1¢B; PRPH1020

59 1 4 IF (~PP->REC,FROM)EREC.FRON PRPH1N30
THEN B,PP-D>REC.FRONM = '198; PRPH10UN

60 1 4 END; PRPH1050
61 1 3 END; PRPH1060
62 1 2 END; PRPH1070
63 1 1 END; PRPH1080
64 1 0 P_NODE = P_NEXT_ESS_NODE; PRPH1090
65 1 0 IF P_NODE ~= NULL PRPH1100
THEN GOTO LOOP3; PRPH1110

PRPH1120

66 1 0 IF B THEN GOTC RPT3; PRPH1130

PL/I OPTIMIZING COMPILER

STMT LEV NT

67
68
69

70
71
72
73
74

75

76

17
78
79

80
81

82
83
84

85

86
87
88
89

-

PP S S Y

-t -

[N ~-N-)

< (=N -~

o Coo

[gy

-250-

PREP_H: PFOC REJRDER;

/% STEP4 CHECK POR CHAINS NOT CCNTAINING P_REL

PP = NULL;
P_NODE = P_ESS_NODE_1;

LOOPY:
IF REC.PROM & (~REC.T0) & (BB|REC.G)
THEN DO;

P_REC = P_NCDE;

GOTO STEP2;

END;
IF (~REC.T0) & (~REC.FROM)} & (BB|REC.G) THEN PP=P_NODE;
P_NODE = P_NEXT_ESS_NCDE;

IF P_NODE ~= NULL
THEN GOTO LOOPd;

IF PP~=NULL

THEN DO;
P_REC = PP;
GOTC RPT2;
END;

/* STEPS PILL IN REC.G/REC.H (ACCORDING TC BB)

P_NODE = P_ESS_NODE_1;
LCCES:
IF BB
THEN RPC.G = REC.TN & REC.FROY;
ELSE REC.H = REC.G & REC.TO & REC.FROM;
P_NODE = P_NEXT_ESS_NODE;
IF P_NODE ~= MIIL
THEN GOTO LOOES;

IF BB

THEN DO;
BB = '0'B;
GOTO STEP1;
END;

END;

*/

*/

PRPH1150
PRPH1160
PRPH1170
PRPH1180
PRPH1190
PRPH1200
PRPH1210
PRPH1220
PRPH1230
PRPH1240
PRPH1250
PRPH1260
PRPH1270
PRPH1280
PRPH1290
PRPH1300
PPPH1310
PRPH1320
PRPH 1230
PRPH1340
PRPA1250
PRPH1360
PRPH1370
PRPH1380
PRPH1390
PRPH1400
PRPH141)
PRPH1420
PRPH1430
PRPH14U0
PRPHIUSO
PRPH1460
PRPHI1470
PRPH1480
PPPHI490
PRPH1500
PRPH1510
PRPH1520
PRPH1530

PL/I OPTIMIZING COMPILER

STMT LEV NT

=N

o

10
11
12

13
14
15
16
17
18
19
20

-

-

I G Gy

PO UIF O ST G Sy

[N NoRoNol oo co o

COawa20O00O

-251-

SCLVE_G: PROC REORDER;

SOURCE LISTING

SOLVE_G: PROC REORDER;

XINCLUDE DD1(DCL) 3
bcL (1,J) FIXED BIN, (S,SS,T,TOL) FLOAT BIN, (P,P_LHS) PCINTER,
RT LABEL(RT_G,RT_H), (B,BB) BIT ALIGNED;

DCL (WRK(N) ,WRK2(N)) FLOAT BIN; /* LHS MAX AND 2ND MAX, STEP

DCL STROUCT_FLAG(N) FIXED BIN; /* DO Dp FOR PREFIX I?

P_LHS = ADDR (WRK (1)) ; FP_FLAG = ADDR (STRUCT_FLAG(1));
RT = RT_G;

G.STEPS,H.STEPS=0;

TOL = ERR*1E-3;

ERR = 1E1C;

P_NODE = P_ESS_NODE_1;
G_LOoCP0:

FP_W = P_W; PP_UG = P_UG;

DO I=1 TO N;
DP_SKIP(I) = SIGN(F_UG(I)) - 1;
END;

P_NODE = P_NEXT_ESS_NODE;

IF P_NODE~=NULL

THEN GOTO G_LCOPO;

SOLV0010
SOLV0020
SOLV0030
SOLVONu40
SOLV0050

*/SOLV0060
*/S50LV0070

SOLVO0080
SOLV0090
SOLV0100
SOLV0110
SOLV0120
SOLV0130
SOLVN140
SOLV0150
SOLV0i60
SALV0170
SOLV0180
SOLV0190
SOLV0200
SQLV0210
SCLV0220
SNLV0230

~252-

PL/I OPTIMIZING CCMPILER SOLVE_G: PROC REORDER;

STMT LEV NT

21

22
23
24
25
26

27
28
30
31
32

33
34

35
36
37
38

39
40
41
42
43
44
45

46
u7

48
49

50
51
52
53
54
55
56
57

[N NN

- P S - ad b - [P R Y - s

-

-

NN o - - -_-OD o cocoo o

- NN WWWww

w

—_“-NWwWEEESE

G_LcoP:
G.HIGH = -1E103
G.LOW = 1E10;
G.STERS = G.STEPS+1;
TOL = TOL*1.2;
S=0.3
P_NODE = P_ESS_NODE_1;

G_LOCP1: /* COMPUTE VG = MAX/U/ Q(U) + sSum/Y/ P2
FP_UG = P_UG; FP_VG = P_VG; FP_W = P_NW;
DC I=1 TO N;
P_VG(I) = -1.E5;
END;

DO U=1 TO NU;
FP_Q2 = ADDR (P_QZ->F_0Q% ((U-1)*N+1)) ;

'B:

=1 T0 N3

= DP_SKIP(I)=0 | (F_UG(I)=UEDP_SKIP (I)>0);
B

THEN DO;
STRUCT_FLAG(I) = 1;
WRK(I) = F_QzZ(I):
BB = V1¢B;
END;

ELSE STRUCT_FLAG(I) = 03

END;
IF ~BB THEN GOTO NEXT_U;

GOTO DP_OP;
RT_G:
DO I=1 TO N;
IF DP_SKIP(I)=0
THEN DO
IF WRK(I)>FP_VG(I)
THEN DO;
WRK2(I) = F_VG(I);
P_VG(I) = WRK(I):
F_UG(I) = U;
END;
ELSE WRK2(I) = MAX (WRK(I) ,WRK2(I)):
END;
END;
NEXT_U:
ENDs

SQLV0250
SOLV0260
SPLY0270
SCLY0280
SQLV0290
SQLV0300
SCLV0310
SOLY0320
VH */S50LV0330
SOLVO340
SOLVN350
SOLVO360
SOLV0370
SOLV0380
SCLV0390
SCLVO400
SOLVO410
SOLV0O420
SOLVOu430
SOLVO4u0
SOLVO450
SOLVO460
SOLVO470
SOLVYO480
SOLVO490
SCLV0S500
SOLV0510
SOLV0S520
SOLV0S30
SOLVOS40
SOLV0550
SNLV0560
SOLV0570
SOLV0OS580
SOLV0590
SOLV0600
SOLV0610
SNLV0620
SOLV0630
SOLVO6GUO
SOLV0650
SOLV0660
SOLVO670
SNLV0680
SOLV0690
SALV0700

Bl

-253-

PL/I OPTIMIZING COMPILER SOLVE_G: PROC REORDER;

STMT LEV NT

58
59

60
61
62
63

6u
65
66
67

68
69
70
72
73

T4
75
77
78
79
80
81

82
83
84
85

86

- - - —_

- ad ok d =

[QN YU G

-

CO=aaNNNN o000 OO = - NN

=Nel

DO I=1 TO N;
IF DP_SKIP(I)>0
THEN DO;
DP_SKIP(I) = DP_SKIP(I) - 1;
F_VG(I) = WRK(I);
END;
ELSE IF DP_SKIP(I)=0

THEN DP_SKIP(I) = MIN (100.,(F_VG(I)-WRK2(I))/ERF);

IF F_UG(I)-=0 THEN S
END;
P_NDDE = P_NEXT_ESS_NODE;
IF P_NODE~=NULL
THEN GOTO G_LCOP1;

(S+F_VG (1)) *.5;

P_NODE = P_ESS_NODE_1;
G_LOCP2: /* VH =
FP_UG = P_UG; FP_VG =
DO I=1 TC N;
IF F_UG{I) ~= 0
THEN DO;
SS = F_VG(I) - F_VH(I);
G.HIGH = MAX(SS,G.HIGH); G.LCW = MIN (SS,G.L"¥W);
F_VH(I) = (F_VG(I)+F_VH(T)=-5)*.5;
END;
END;
P_NODE = P_NEXT_ESS_NODE;
IF P_NODE =~=NULL
THEN GOTC G_LCOP2;

G - S AND GET ODONI EOQUNDS
VG; FP_VH = P_VH;

v
P

CALL TIMING (TIME.G) ;
IF TIME.G > TIME,LIMIT THEN RETURN;

ERR = G.HIGH - G.LOW;
IF ERR > TOL
THEN GOTO G_LOCP;

RETURN

50LV0720
SOLVO0730
SCLVOT40
SOLVO750
SOLV0760
SOLVOT70
SOLV0780
SPLV0790
SOLV0B00
SOLV0810
SOLV0820
SOLV080
SOLV0840
SOLV0850
SOLV0N860
*/S0LV0870
SQLV0880
S2LV0890
SOLVO90N
SOLV0910
SOLVN920
SNLV0939
SOLV0940
SOLV0950
SOLVNY960
SQLV0970
SOLV0980
SNLV0990
SOLV1009
SOLVIN10
SOLV1020
SPLV1030
SOLV1I040
SOLV1050
SNLV1060
SOLV1070
SOLV10R0

~254~

PL/I OPTIMIZING COMPILFR SOLVE_G: PROC REORDER;

STMT LEV NT

87 1 0 SOLVE_H: ENTRY; SPLV1100
88 1 0 RT = RT_H; SALV1110
89 1 0 TOL = TOL*1E-2; SOLV1120
SOLV1130

90 1 0 H_LOOP: SOLV1140
91 1 0 H.HIGH =-1E10; H.LOW = 1E10; SOLV1150
92 1 0 H.STEPS = H,STEPS+1; SOLV1160
93 1 0 TOL = TCL*2; SPLV1170
94 1 0 S=0.; SOLV1180
95 1 0 P_NODE = P_ESS_NODE_1: SOLV1190
96 1 0 H_LOOP1: SALV1200
IF ~REC.H THEN GOTC H_OUT1; SNLV1210

97 1 0 FP_FLAG = P_UG; FP_W,P_LHS = P_u; SOLV1220
39 1 0 U = UH; SOLV1230
100 1 0 FP_QZ = ADDR(P_QZ->F_QZ ((U=-1)*N+1)); SALV1240
01 1 0 DO I=1 TC N; SNLV1250
102 1 1 IF FLAG(I) == 0 SOLV1260
THEN F_W(I) = F_QZ(I); SALV1270

103 1 1 END; SOLV1280
04 1 0 GOTN DP_OP; SPLV1290
105 1 0 RI_H: SOLV1300
DO I=1 TO N; SOLV1310

106 1 1 IF PLAG(I) ~= 0 SALV1320
THEN S = (S+F_W(I))*.5; SOLV1330

107 1 1 END; SOLV1340
08 1 0 H_OUTI: SALV1350
P_NODE = P_NEXT_ESS_NODE; 501LV1360

09 1 0 IF P_NCDE~=NULL THEN GOTO H_LONP1; SOLV1370
110 1 0 P_NODE = P_ESS_NOLE_1; SOLV1380
111 1 0 H_LOCP2: SNLV1390
IF ~REC.H THEN GOTO H_OUT2; SOLV1400

112 1 0 FP_UG = P_UG; FP_W = P_W; FP_VH = P_VH; SOLV1410
15 1 0 DO I=1 TO N SOLY1420
116 1 1 IP F_UG(I) -~= 0 SCLV1430
THEN DC; SCLV1440

117 1 2 SS = F_W(I) - F_VH(I); SOLV1450
18 1 2 H.HIGH = MAX(SS,H.HIGH); H.LOK = MIN (SS,H.LOW); SCLV1460
120 1 2 P_VH(I) = (F_W(I)+F_VH(I)-S)*,5; SOLV1470
121 1 2 END; SOLV1480
122 1 1 END; SOLV1490
123 1 0 H_OUT2: SCLV1500
P_NODE = P_NEXT_ESS_NODE; SOLV1510

246 1 0 IF P_NCDE~=NULL THEN GOTC H_LOCP2; ‘ SALV1520
125 1 0 CALL TIMING (TIME.H); SOLV1530
126 1 0 IF TIME.H > TIME.LIMIT THEN RETURN; SOLV1540
127 1 0 IP H.HIGH - H.LOW > TCL SOLV1550
THEN GOTO H_LCOP; SNLV1560

128 1 0 KETURN; SOLV1570

-255-

PL/I OPTIMIZING COMPILER SOLVE_G: PROC REORDER;

STMT LEV NT

129

130
131

132
133

134
135
136
137

138
139
140
141
142
143
144
145
146
147
148
149
150

Y

-

PP N QP A QP W

NN - -

sEwww

OCaNWEONRNOS NUWY

DP_OP:

/t*t*#tt###*t**#t#*##l**#t‘*“'t‘*ttt*****#t#t‘ttt*ttit**t‘/
/* COMPOUTE THE OPERATION CF DYNANIC PROGRANKING: */
/* = Q(U) + SUM/Y PZ(Z=(U,Y))*V_PEAS({ T(*,Z)) v
/% IN NODE P_ uonz WITH U AS SPECIPIED AT CALL TIME

/t#****t****i*tt#*t#"#‘#*t#t‘tt‘ittt**t*“lt*tt#t**t#.t#**/

DO Y=1 TO NY;
2 = ZCODE(U,Y) ;
IF Zﬂ=0
THEN COj
P = P_NEXTZ(2);
IF P-~=NULL
THEN DO;
FP_VH = P->P_ESS_NODE->P_VH;
P = ADDR(P_PZ=-D>F_PZ((Z-1)*N*N+1));
DO I=1 TC N3
IF FLAG(I) ~= 0
THEN DC;
FP_PZ = ADDR({P-DF_PZ ((I-1)*N+1));
S8 = 0.3
DO J=1 TO N;
SS= SS+ P_PZ(J) * F_VH(J):
END;
P_LHS-DP_W(I) = P_LHS->F_W(I) + SS5;
END;
END;
END;
END;
END;
GOIe RT;
END;

SOLV1590
SOLV160¢
SOLV1610
SOLV1620
SOLV1630
SOLV1640
SOLV1650
SOLV1660
S0LV1670
SOLV1680
SOLV1690
SOLV1700
SOLV1710
SPLV1720
SOLV1730
SOLV1T740
SOLV1750
SNPLV1760
SCLV1770
S7LV1740
SOLV1790
SCLV1800
SNLV1810
SOLV1820
SeLV1330
SOLV1840
SCLV1850
SNLV1860
SCLV1370
SOLV18R0
SOLV1890
SCLV1900
SOLV1910

-256-

PL/I CPTIMIZING COMPILER REPCRT: PROC REORDER;

STNT LEV NT

wE [%)

CWwoN o

n
12

13

14
15
16
17

[T Y

Qo

COOCO o

o

[JREE QY

SOURCE LISTING

REPORT: PROC REORDER;

%INCLUDE LD1(DCL) ;

JXREEEEEERRRRERER KRR R RN Rk R KRRk /

/*
/*
/*

PRINT RESULTS

JERERERRRRERERRRERERRRKRRR ARk R kok Rk ik /

DCL (I,J) FIXED BIN, P BOINTER, C CHAR(Y) ALIGNED;

DCL SCAN EXT ENTRY;

SIGNAL ENDPAGE(SYSPRINT) ;

ERR = G.RIGH - H.LOW + 1.E-10;

P_NODZ,P_KEL=P_ROGT;
LEV,L10,100 = 0;

IF P_FSS_NODE~=NULL
THEN GOTO PD;

LOoCP:
CALL SCAN;
IP P_NODE-~=NULL
THEN GOTO PD;

IF ERRC= MIN_ERE | 8 >= MAX_M } ESS_M >= MAX_PSS_1

| TIMF.G >= TIME.LIMIT

THEN DO;
PUT EDIT('}',"'] *STCP*!)
STOP;
END;

RETURN;

(COL (1) ,A,COL(B6) ,A) ;

RPTNO10
RPT0020
RPT0030
RPTO040
RPTO050
RPT0060
RPT0070
RPT0080
RPT0ON90
=PTO100
RPTQ110
RPT0120
RPT0130
RPTO140
RPT0150
RPT0160
RPT0170
®PT0180
RPT0190
RPT0200
RPT0210
RPT0220
RPT0230
RPTO240
FPT0250
RPT0260
RPT0270
RPT0280
RPT0290
RPT0300
RPT0310

i,

-257-

PL/I CPTIMIZING COMPILER REPCRT: PROC REORDER;

STMT LEV NT

18

19

20
21

22
23

24
25
26
27

28
29
30
31
32

33

34
35
36
37
38
39
40
41

42

43
46
47

48
49
50
51
52
53
54

-

—_ o

[S S NN Y

- e

DO = 2w O [

L=

- o0

DOoO=mrmNNND

PD:

IF LINENO (SYSPRINT) > 55-N*#FMT
THEN SIGNAL RNDPAGE(SYSERINT);
POT SKIP(2);

IF REC.G THFN PUT EDIT('G') (COL(14),A);
IF REC.H THEN PUT EDIT('H') (h);

J = UH;
PUT EDIT{(J)} (COL(19),F(3));

FP_UG = P_UG;
C = vkvy
DO T=1 TC N;
IP F_UG(I)~=0 & P_UG(I)-~=J
THEN DO;
c =1 ‘,
GOTC STAR_OUT;
END;
END;

STAR_QUT:

PUT EDIT(C) (A);

IF P_NODE = P_ROOT
THEN PUT LDIT('<E>') (COL(73),4);
ELSE DO;
PUT EDIT(Z_BACK) (COL(MAX(1,76-LEVx3)),
P = P_NODE;
DO I=LEV-2 TC LO BY -1;
E = P->P_BACK;
PUT EDIT(P=>Z_BACK) (F(3));
END;
END;

IF FMT=0
THEN GCTZ LOCP;

FP_TPM = P_TPM; FP_VG = P_VG; FP_VH = DP_VH;
DO I=1 TC N;

IF F_UG(I)~=0

THEN DO;

PUT EDIT(I,P_UG(I),F_VG(I)) (COL(16),2 P(3),F(6,2));

F(3))3

IF REC.H THFN PUT EDIT(F_VH(I)) (%(6,2));

PUT EDIT((F_TPM((I-1)*N+¢J) DO J=1 TO N)) (COL(34),5 F(8,4));

END;
END;
GNTO LOOP;
END;

RPT0320
RPTO340
RPTO0350
RPTO360
RPT0370
PPT0380
RPT0390
RPPTO400
RPTO410
RPTO420
RPTOU30
RPTOU4O
RPTOU450
RPTOU460
RPTOU4T0
RPTO4R0
RPTO490
RPTOS00
RPTOS10
RPTD520
RPT0530
RPTOSUN
KEPT0550
RPT0560
|PTORTD
RPTOSR0
FDPTOG90
TPTOA0OD
RPTO610
RPT0620
YPTN630
RPTOAUO
RPTO650
RPTO660
RPTO670
RPTO680
RPT0690
RPTO700
RPT0710
RPT0720
RPTO730
PPTO740
PPTOT750
PPT0760
RPT077D
RPT0780
RPT0790
RPTORNO

-258~
PL/1 OPTIMIZING CGMEILER SCAN: PROC FFORDER;
SOURCE LISTING
STMT LEV NT
1 0 SCAN: PRNC REORLER;
2 1 0 %INCLUDE LD1(DCL);
/% FIND NEXT RS5 NODE AFTER P_NCD® IN TREE CRDTE */
4 1 0 CCL I FIXED BIN;
5 1 0 10 = LEV;
6 1 0 NFW_NODE:
I=0;
7 1 0 CLINB:
FP_BRANCHES = P_BPANCHES;
8 1 0 DO Z = I+1 TC NZ;
9 1 1 TP F_E_BRANCH(Z) & F_P_BRANCH (2) ~=NULL
THEN GOCTO NEXT_LFV;
10 11 END;
/% ALL BRANCH®S HAVFE BE®RN
EXPLORFD, GC BACK DORN
11 1 0 DCWN:
IF LEV=L00
THEN CO;
12 1 1 P_NODE = NUIL;
13 11 FETUPRN;
14 1 1 END;
15 1 0 LEV,L0 = LEV-1;
16 1 0 I = Z_BACK;
17 1 0 P_NODE = P_BACK;
18 1 0 P_REL = P_REL -> DP_BACK;
19 1 0 GCTH CLINE;
/% CLIME BPANCH 2
20 1 0 NEXT_LEV:
LEV = LFV+1;
21 1 0 P_NODE = F_P_BRANCH(Z) ;
22 1 0 P_REL = P_REL -> P_BRANCHES =-> F_P_BRANCH (2)
23 1 0 PP_BPANCHES = P_BRANCHES;
24 10 DO 2 = 1 TC NZ;
25 11 IF F_E_BRANCH(Z) & F_P_BRANCH(Z)=NULL
THEN RETURN;
26 11 END;
27 0 GNTO NEW_NODE;
28 1 0 END;

SCANOO10
SCANON20
SCAKRO0030
SCANQOUN
SCANON50
SCANONRN
SCANNO70
SCANINRO
SCANON90
SCAND10D
SCAND110
SCANG120
SCANO130
SCANO140
SCAND150
SCAN0160
*/SCANO170
SCRNQ1R0
SCaN0199
SCAND20N
SCANO21Q
SCANQ220
SCRWNN230
SCANO240
SCEND250
SCANO260
SCANO270
SCEN0280
*/SCANO290
SCANO300
SCANO310
SCANDI20
SCAND320
SCANC34N
SCAN0 1350
SCAND 3RO
SCANN3TH
SCANG3R0
SCAvNN3lao
SCANNUON

a[P], alzl,
a

{b(k)}

C

C(k)

D

i

e

e

ess[M]

Ey{'}

g,Y), g(B,Y), g(y)
gMl, g"

h[M], h"

I(z), J(2)

2(z)
p’

L(B,%)

-259-

SYMBOL TABLE

D-sense spread of normalized range, 100
Detectability index, 49,53,115
Finite-~horizon weights, 28

Connected class of states, 81

Detectable classification of states at
time k, 118

Metric on HN,87,94-96

Unit vector, 11

Empty word, 62

Essential part of memory set, 70
Expectation under strategy Yy, 26
Performance indices, 28
Perceptive gain, 145
Pseudo-perceptive gain, 147

Possible states (preceding, following)
evolution of z, 63

Time, 21-22
Horizon, 22
Length of word z, 62

(Reachability, detectability) time
constant, 48-49, (82,115)

Discounted time interval, 135
Memory set, 66
Value-iteration step, 128,136

Number of states, 21

n

M,. .
P_z_(l,J,g)

P(y|w)
ProbY{ }
q(k)
q(u)

qbzd(i,U)

Qmax’ Qmin’ Q

r(k)
rowi[P],
Ry
s(k)

S

T(M,u,y), T(TI,E)

TM(E,E')

xM(k)

X[M]

-260-

Iteration number, 37-38,145

Transition probabilities of augmented
system, 76-77

Transition probability matrix, 21
Probability under strategy 7y, 25-26
Expected incremental reward at time k, 28
Expected incremental reward vector, 29

Expected incremental rewards for augmented
system, 76-77

Bounds on expected incremental rewards, 29
Reward at time k,

Row of a matrix, 11

N-dimensional Euclidean space, 11

State at time k, 21

State set, 21

Information vector transition function,
26,64

Memory state transition function, 68
Input at time k, 21

Input set, 21

Finite-horizon value function, 125

Infinite-horizon relative value function,
134

Banach space of continuous bounded real-
valued functions on HN , 96

Augmented state at time k, 75

Augmented state set, 75

OHF

<a,b>, [a,b], [a,b)

I

n(k)
(k)

m(0)

Ty Ty

-261-

Connected class of augmented states, 83
Qutput at time k, 21

Output set, 21

Memory state at time k, 66

Set of input-output pairs, 62

Set of input-output words, 64

Positive part, 11

(Integers, reals) between a and b, 11
Subtraction of rightmost part of word, 65
Bayes' operator, 51,82

Sum of vector components, 12

Sup norm, 96

Variation of convex function, 97-98
A-sense contraction, 100

Detectability index, 53,106,109,112,114
Discount, 28

Decision strategy, 24,78

Hajnal measure, 87,93

Metric on HN’ 87,89

Information vector at time k, 26

Number of detectable classes, 118
Initial state probability vector, 21

Unit simplex of (stochastic, substochastic)
vectors, 11

olz,0]

d[M]

e =
<l

Y[M]

-262-

Reachability index, 48,82

Policy compatability flag, 114

Elasticity of memory effectiveness, 16-17,
106,109,112,114

Feasible strategy and the policy that

realizes it, 78

Pseudo-perceptive strategy derived from

W, 146-147

Optimal feasible strategy, 134
Set of feasible strategies adapted to M, 78
Connectivity index, 81-82

Perceptive strategy and the policy that
realizes it, 79

Optimal perceptive strategy adapted to M,
146

Set of perceptive strategies adapted to M,
79

Value of information, 50,135

-263~-

GLOSSARY

accept: The action in which a system receives an input, 21.

augmentation: Transformation of an FPS to one having augmented states,
58,76.

augmented state: Transformed state consisting of a delayed intermal
state and a memory state, 57,75.

concatenation: Two or more words (strings) placed end to end so as to
form a single word, 62.

connectivity: A relation between states i and j indicating that the
system in state i may eventually enter state j provided that suitable
inputs are selected in the interim, 81.

controller: A dynamical realization of the decision strategy, 24.

control problem: The problem of designing a controller which realizes
an optimal or e€-optimal strategy, 31.

decision strategy: A (possibly probabilistic) rule for the selection
of plant inputs, 24.

detectability: A condition under which the information vector is
increasingly insensitive to increasingly delayed information, 105-106,53.

emit: The action in which an output is generated by the system, 21.

essential memory state: A memory state that is recurrent under some
policy, 70.

estimation problem: The problem of recursively computing an estimator
or sufficient statistic. In the case of an FPS, the estimator is the
information vector, 30.

feasible: A strategy is feasible if it can be realized on the basis of
available information; otherwise it is perceptive, 78.

finite-memory constraint: The constraint that a decision strategy be
realizable by a finite-state automaton, 24.

finite probabilistic system: A discrete-time, finite-input, finite
output finite-state stationary controlled stochastic process, 13,20-22.

FPS: See '"finite probabilistic system."

-264~

free FPS: An FPS whose input set contains but one element, i.e. an
FPS whose input process may be ignored.

free system induced QZ.E_decisioﬁ strategy: The system which results
when a plant and its controller are considered as a single unit, 23-24.

horizon: Length of the time set, 22.

infinitely delayed splurge: Phenomenon arising in the absense of detec-
tability, 48,142.

information vector: A vector, which may be computed by an observer,
whose i-th entry is the a posteriori probability that the system is in
state i, 26.

information vector tramsition function: The rule by which an observer
updates the information vector, 26.

memory set: A vocabulary of input-output words available to the observer,
57,65-66.

memory state: The word of most recent input-output pairs retained by
the observer, 57,65-66.

memory state transition function: The rule by which an observer updates
the memory state, 68.

memory tree: A graphical representation of the memory set, 66-68.

observer: A system which accepts plant outputs and computes the
information vector (or an approximation thereof), 30.

perception: An output which has been artificially added to the plant to
facilitate computation, 35,54.

plant: The system to be observed or controlled, 13,18.
policy: A finite array which specifies the decision strategy, 14,78-79.

pseudo-perception: An approximation to a perception, obtained by guessing
the value of the perception on the basis of the memory state, 54,146.

reachability: A condition under which the state of an FPS can be made
to assume a desired value with probability bounded from below, for any
initial state probability vector, 48,82.

realization: Specification of system components which will act according
to a given rule, e.g. a controller realizes a decision strategy, 14,24.

-265-

representation: Specification according to a particular system of
notation, 20,22.

reward: The component of a performance index which depends on an parti-
cular input-output pair as well as the states preceeding and following
it, 27; the expected incremental reward depends only an input and the
state preceeding it, 28-29.

state-calculability: A possible FPS property, given by (2.3), 23.

state-observability: A possible FPS property, given by (2.4), 23.

statistical decision problem: A control problem in which plant dynamics
are unaffected by input values, 30.

strategy: See decision strategy.

subrectangularity: A property of substochastic matrices given by (13.1)
99; also, a possible property of FPS's given by (14.1) and (14.7),
105,106,109,

SDT: Strong detectability.
SSR: Strong subrectangularity.
valued finite probabilistic system: An FPS, along with a process of

incremental rewards or expected incremental rewards, making possible
the definition of performance indices as a function of strategy, 28.

VFPS: See '"valued finite probabilistic system."
WDT: Weak detectability.

WSR: Weak subrectangularity.

