
FINITE MEMORY ESTIMATION AND CONTROL

OF FINITE PROBABILISTIC SYSTEMS

by

Loren Kerry Platzman

S.B., Massachusetts Institute of Technology

(1972)

S.M., Massachusetts Institute of Technology

(1973)

E.E., Massachusetts Institute of Technology

(1974)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January, 1977

Signature of Author .. . -.

Certified by . .

Departgenit of Electrical Engineering and
Computer cience January 13, 1977

Thesis Co-supervisor

Certified by .Thei Co......
Thesis Co-supervisor

Accepted by - - - q
Chairman,. Departmental Committee on Graduate Students

Archives

PR 1 1977
10RA R~E

.

. . A I

-

-2-

FINITE MEMORY ESTIMATION AND CONTROL

OF FINITE PROBABILISTIC SYSTEMS

by

Loren Kerry Platzman

Submitted to the Department of Electrical Engineering and Computer Science
on January 13, 1977, in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy.

ABSTRACT

A finite probabilistic system (FPS) is a stationary discrete-time
controlled stochastic dynamical process, having finite input, output,
and (internal) state sets. The partially-observable Markov decision pro-
cess is an example of such a system. FPS formulations provide a convenient
framework for the study of problems of state estimation, statistical
decision, or control, where state information is available only through
a finite memoryless channel, and observation dynamics may depend on the
inputs selected.

Notions of reachability and detectability in FPS's (similar to
controllability and observability in linear systems) are made precise.
It is shown that every FPS can be reduced to components that are either
reachable and detectable, or transient, or null-recurrent.

It is well known that the information vector (whose i-th entry is
the a posteriori probability that the system is in state i) is a suffi-
cient statistic (for the estimation of future dynamics given past inputs
and outputs). A contraction property of the information vector tran-
sition function is exploited to obtain procedures for -optimal (arbi-
trarily close) approximation of the information vector by a deterministic
time-invariant finite-memory observer. Each observer state corresponds
to a particular configuration of most recent input-output pairs. The
average error achieved by such an approximation is bounded by the ex-

pression (m/mo) , where m and T are parameters associated with the

observed system, and m is the number of observer states.

-3-

Control problems, in which the average reward is maximized over
a discounted or undiscounted infinite horizon, may be solved by an
iterative procedure which has been given the name perceptive dynamic
programming. Successively weaker assumptions that the controller
"perceives" unavailable state values transform the problem into a
sequence of formulations which may be solved by dynamic programming.
Each solution obtained in this manner is used to construct a feasible
controller formulation, taking the form of a deterministic time-
invariant finite-state automaton. Monotone geometrically convergent
bounds, containing both the supremum feasible performance and that of
the current design, are also obtained. Computation may be terminated
when these bounds become sufficiently close, or when the number of
controller states becomes excessively large. Although computing a
solution by perceptive dynamic programming may require considerable
time and storage, both are roughly proportional to the number of
controller states allowed in the final iteration; thus the cost of
controller design reflects the cost of controller implementation.

This procedure was applied to idealized problems of machine main-
tenance and computer communication, both of which had been investigated
by other researchers. The first problem was solved exactly; a design
suitable close to the optimum was obtained for the second problem.

NAME AND TITLE OF THESIS CO-SUPERVISORS:

Alvin Drake
Professor of Systems Science and Engineering

Sanjoy Mitter
Professor of Electrical Engineering

-4-

TABLE OF CONTENTS

Page

ABSTRACT?

TABLE OF CONTENTS 4

TABLE OF FIGURES. 8

ACKNOWLEDGEMENTS. 9

NOTATIONS 11

CHAPTER I PRELIMINARIES 13

1. Introduction 13

2. The Model . 18

a. Representation of the Plant 18

b. Alternate Representations 22

c. Some Important Classes of FPS's 23

d. Specification of the Input Process 24

e. The Information Vector 26

f. Rewards and Performance Indices 27

g. Classification of Problems. 30

3. Illustration of the Solution Procedure 32

a. Problem Formulation 32

b. Solution Procedure 35

c. Discussion 38

d. Summary 40

-5-

Page

4. Historical Perspective 42

5. Outline of Original Contributions 46

a. Ill-posedness of Certain Undiscounted
Infinite-horizon Problems 46

b. Sufficient Conditions for Well-posedness 48

c. A Bound on the Value of Information 50

d. Metrics and Contractions 50

e. Existence of c-Optimal Controllers. 53

f. Feedback Realization of -Optimal Controllers . .. 56

6. Organization of the Report 59

CHAPTER II ANALYSIS OF FINITE PROBABILISTIC SYSTEMS 62

7. Input-output Words 62

8. Memory Sets and Memory States 65

9. Equivalence and Augmentation 72

10. Classification of Problems 78

11. Connectivity 81

12. Metrics 87

a. Definition of the Metrics 87

b. Discussion 93

c. Some Properties of Metric D 94

d. Continuity of Convex Functions. 96

13. Contraction Properties of T 99

-6-

Page

14. Detectability . 105

a. Preview 105

b. Strong Subrectangularity 106

c. Weak Subrectangularity 109

d. Strong Detectability 111

e. Weak Detectability 114

15. Decomposition of a Free FPS into Detectable Parts 118

16. Stochastic Realization of a Free FPS 121

CHAPTER III STRUCTURE OF OPTIMAL CONTROLLERS 124

17. Finite-horizon Problems 124

18. State-observable Problems 128

19. Existence of a Solution in General Infinite-horizon
Problems 134

20. An Alternate Formulation for Irregular Problems 141

CHAPTER IV COMPUTATION OF -OPTIMAL CONTROLLERS 145

21. Perceptive Dynamic Programming 145

a. The Basic Algorithm 145

b. Discussion 148

c. Pseudo--perceptive Dynamic Programming 149

d. Recursive Computation of the Memory Sets 150

e. Minimization of Memory Size by Selective
Pseudo-perception 151

f. Initialization Procedures 151

-7-

Page

22. A Computational Algorithm 153

23. Computational Results 158

a. The Machine Maintenance and Repair Problem 158

b. A Computer Communication Problem 189

CHAPTER V CONCLUSIONS 192

BIBLIOGRAPHY 196

APPENDIX A Proof of Theorem 19.3

a. Preliminaries

b. A Transformation in W

c. A Sequence in V

d. Construction of a Convergent Subsequence

e. Summary and Proof of (19.3)

APPENDIX B Proof of Theorem 21.6

a. Proof of Part (a)

b. A Bound on Perceptive Values

c. A Bound on Pseudo-perceptive Deterioration.

d. Proof of Part (b)

201

201

202

205

209

213

214

214

217

222

225

APPENDIX C Listing of the Computer Program 228

SYMBOL TABLE 259

GLOSSARY 263

-8-

TABLE OF FIGURES

Page

2-1 A Markov Chain 18

2-2 A Markov Decision Process 19

2-3 A Partially-observable Markov Decision Process 19

2-4 A Finite Probabilistic System 20

5-1 Contractions on the Unit Simplex 52

5-2 Geometric Interpretation of Performance Increase
Due to Perception 55

5-3 Geometric Interpretation of Performance Decrease
Due to Pseudo-perception 55

8-1 A Memory Tree 67

-9-

ACKNOWLEDGEMENTS

This research, initiated in my senior year, grew out of an attempt

to define the concept of "control in the steady-state" in systems that

are neither state-observable nor linear-quadratic-Gaussian. Starting

with the simplest such system, which has two inputs, two outputs, and

two states, and guided by the adage "that which can be done for two can

be done for N," I found myself confronted with a finite probabilistic

system. The final report clearly shows the influence of four outstanding

educators at MIT who took an early interest in the work and in time

formed my doctoral thesis committee, each concentrating on a distinct

aspect of the research (as indicated below): co-supervisors Alvin Drake

(probabilistic models in applied operations reserach) and Sanjoy Mitter

(mathematical system theory), and readers Michael Athans (reduced-order

compensator design) and Amedeo Odoni (bounds on suboptimal performance).

In early stages of the research, I also benefited from conversations

with Dimitri Bertsekas, Harold Kushner, Georgio Picci, Alan Willsky and

Hans Witsenhausen. The doctoral dissertation of Edward Sondik was of

invaluable assistance to me. Adrian Segal suggested the application of

FPS decision analysis to a slotted ALOHA problem; further advice was

provided by Simon Lam and Eberhardt Wunderlicht. The "value of infor-

mation" interpretation of certain bounds was contributed by James Yee.

-10-

I particularly wish to thank Paul Schweitzer, who read a great

deal of a later draft and offered many comments that resulted in

improved clarity of presentation in the final report. Additional

editorial assistance was obtained from Alvin Drake, Michael Loui, and

Kathleen Platzman..

Computations were performed at the MIT Information Processing

Center. The illustrations were drafted by Arthur Giordani. The

report was typed with superb efficiency by Annie Cooper.

This research was supported at its inception by a Research

Traineeship, with funds provided by the Alfred P. Sloan foundation.

I am especially grateful for that opportunity to pursue an unorthodox

line of research with unqualified financial support. Further support

was later provided by the Department of Electrical Engineering and

Computer Science (in the form of a Teaching Assistantship), the

Air Force Office of Sponsored Research (under Grant 72-2273), and

my family.

Finally, I owe a great debt of gratitude to Michael Athans, who

as my undergraduate advisor made it possible for me to enter graduate

school at MIT, and a greater debt to Alvin Drake, who as chairman of

my Graduate Area Examination Committee and advisor in many other

matters made it possible for me eventually to leave. The greatest

debt of gratitude goes to my wife Kathy, who advised me in all matters

not covered by Al Drake, willingly shared the frustrations and exal-

tations of my graduate career, and afforded me the opportunity to do

the same with respect to hers.

-11-

NOTATIONS

If A and B are sets, then A-B is the set of elements in A that are

not contained in B. #A is the number of elements in A. BA is the set

of mappings from A to B. 2A is the set of subsets of A. 0 is the null

set.

<a,b> is the set of integers i satisfying a<i<b. The sequence

{A , A, ... , A' Ab is denoted {Ak}k.<a,b>. a+b denotes integer

quotient rounded down, i.e. the integer q of largest magnitude such that

Ibqlla andsgn(bq) = sgn(a). (k, k! (n-k)!

coefficient for n items taken k at a time.

[a,b] is the set of real numbers x satisfying a<x<b; similarly [a,b)

=[a,b]-{b}. (a)+=max(a,O) and (a)- = min(a,O); clearly a = (a)+ + (a)-.

RN denotes the Euclidean space of column N-vectors. A row vector

' is substochastic if its entries are all nonnegative and sum to a

quantity not exceeding unity; it is stochastic if it is substochastic

and the sum of its entries is exactly one. N and denote the sets

of stochastic and substochastic row N-vectors, respectively. A square

matrix is stochastic (substochastic) if each of its rows is a stochastic

th
(substochastic) vector. v. denotes the i entry of vector v; similarly,

1

P.. is the ijth entry of matrix P, and row. [P] is the row vector whose

ijth iij entry is P... The superscript "T" denotes transpose. e is the

"unit" vector whose ith entry is unity and whose remaining entries equal

zero; 0 is a vector of zeroes and 1 is a vector whose every entry equals

unity; the dimension and inclination (row or column) of e, 0, and 1,

are determined by context. The usual rules of matrix algebra will be

-12-

observed; thus if TrZHN and qRN, then the quantity q is a scalar.

If xRN, then x = i 1 lxi. If x,y6RN, then x<y is understood

to imply xi<Yi, Vie<1,N>, and x<y implies x<yi, Vic<1,N>.
i ~ ~ -1-1

4h

-13-

CHAPTER I

PRELIMINARIES

1. Introduction

This dissertation introduces concepts and associated computational

procedures that are applicable to a mathematical problem arising in the

context of Operations Research and Stochastic Control. Briefly stated,

the problem is to design a strategy for real-time decision-making on the

basis of imperfect (state) information and finite memory. The plant

(i.e. the object to be controlled) is modelled as a finite probabilistic

system (FPS) or stationary discrete-time finite-input finite-output

finite-state controlled stochastic process, a generalization of the

partially-observed Markov decision model initiated by Drake (1962), which

itself generalizes the Markov decision model of Bellman (1957a).

An engineering problem which might be tackled by the methods espoused

in this dissertation is the following:

(1.1) Machine Maintenance and Repair Problem (Scenario). A factory con-

tains a large number of identical machines, each of which may require

overhaul from time to time. A repairman maintains a "status report" for

each machine and effects the overhauls. Unfortunately, a lengthy in-

spection procedure must be performed in order to determine whether or

not a particular machine is actually in need of an overhaul. Thus it

is clearly impractical and undesirable to inspect every machine daily.

For example, if a certain machine is believed likely to require overhaul,

-14-

it might be advisable to overhaul that machine without inspecting it at

all. The problem is to determine a simple rule for the repairman to

follow in making decisions for individual machines, and in recording

each machine's status. A solution to this problem may be visualized as

a manual in which every possible machine status is listed, along with

a course of action and a new status resulting from that action. The

status code must be reasonably concise, for otherwise the manual will

assume mammoth proportions. Given the relative undesirability of broken

machines and repair costs, as well as a set of admissible actions, the

problem may be expressed as that of determining the optimal+ (most

desirable) strategy for coding machine status and repairing machines,

as realized by the policy specified in the repairman's manual.

Generalizations: A similar scenario might involve a crowded hospital

in which patients are visited by a doctor who must decide, on the basis

of previous visits, how to allocate his time. The controller might also

be a computer. Possible applications include: routing "packets" through

a telecommunications network, controlling traffic signals at a busy inter-

section or along a congested freeway, and scheduling shipments from aware-

house serving several retail outlets.

Engineering problems of this type necessarily require that a trade-

off be made between accuracy of the model in depicting the "real" problem

and solvability of the problem described by the model. The FPS model is

+The optimum may not exist; £-optimal strategies are then sought.

-15-

more general than a Markov decision model; it is also more difficult

to solve. The Markov decision model assumes that perfect state

information is available to the decision-maker. In the Machine Main-

tenance and Repair Problem, this means that, in order to use a Markov

decision model, it would be necessary to assume that the repairman knows

at all times whether or not a particular machine is operating properly;

his course of action is then obvious. The applications envisioned for

an FPS decision theory are those in which the decision to seek information

is crucial, and for which the Markov decision model is, consequently,

inadequate.

More specifically, two possible aspects of "real" control problems

are captured by the FPS formulation, but totally ignored in Markov

decision theory. One aspect is the "dual control" phenomenon, where the

decision-maker must decide whether to seek better state information at

the expense of short-term performance, or to seek improved immediate

performance at the expense of information forgone in the interim. The

other aspect is the "saturation" phenomenon, in which the decision-maker

is confronted with more information than may be considered in the time

allotted for decision-making. Conventional linear-quadratic-Gaussian

control methods, likewise, avoid "dual control" and "saturation"

phenomena by requiring that observation dynamics be unaffected by the

input process.

In problems such as the Machine Maintenance and Repair Problem,

where information is available only at a cost, perfect state information

cannot be taken for granted, and separation of input and output dynamics

-16-

does not occur. At the heart of the problem is the determination of what

information is important for purposes of decision-making, and what

information may be disregarded. An important contribution of this

research is a bound on the value of information. When the cost of

obtaining information exceeds its value, then it is advisable to do with-

out that information.

The elimination of "dual control" immediately leads to a "saturation"

condition, since the decision whether to seek further information must

be based on all information acquired thus far. Fortunately, the value

of information decreases geometrically with delay, in most FPS's. Thus,

for any E>O, there is an integer k such that the value of all infor-

mation delayed by or more time units has value less than . This

implies that there exists an £-optimal strategy (a strategy whose per-

formance lies within C of the supremum feasible performance) for de-

cision-making based on the most recent inputs and outputs alone. A

computational method for strategy optimization, based on this result,

has been given the name perceptive dynamic programming.

As the number of most recent input-output pairs retained by the

decision-maker increases, the loss in performance from discarded infor-

mation decays geometrically and the number of memory states (called

"status codes" in (1.1)) increases geometrically. Thus, the performance

achieved by a decision-maker acting on the basis of m memory states can

be made to lie within (m/m0)-T of the supremum feasible performance,

where mo is the number of values in a sufficient incremental statistic,

-17-

and

information value decay rate
a = (1.2)memory increase rate

The remainder of this report is devoted to making precise the

concepts outlined above. The FPS model is described in detail in the

following section. The Machine Maintenance and Repair Problem is

formulated as an FPS control problem and solved in Section 3. A review

of related work, a compendium of original contributions, and an outline

of the report complete this chapter.

-18-

2. The Model

a. Representation of the Plant.

The plant will be modeled as an FPS, which is defined by (2.1),

below. Conceptually, an FPS is a generalization of a Markov chain,

shown in Figure 2-1. A Markov chain has the property that, for any

time kc<l,o>, the random variables {s(k')}k,<okl> and

{s(k')}k,c<k+l, > are conditionally independent given s(k). Thus the

transition probability that s(k+l) will assume value j given the values

of all past states {s(k')}k,<ok> can be expressed as a function of

the value of s(k) alone. The broken arrow leading from s(k) to s(k+l),

in Figure 2-1, is intended to convey a sense that s(k+l) evolves pro-

babilitically from s(k) alone.

-s(k-l) s(k) - s(k+ 1) .

Figure 2-1. A Markov Chain

-19-

In a Markov decision process, shown in Figure 2-2, the transition

probabilities depend on inputs that are provided to the system by a

decision-maker. Input u(k) determines the manner in which s(k+l) evolves

probabilistically from s(k). If inputs are selected on the basis of the

most recent state alone, then the system becomes a Markov chain.

- -,s(k-l) ~ s(k) v s(k+l) - - . .
/ /

u(k-1) u(k)

Figure 2-2. A Markov Decision Process

A partially-observable Markov decision process, shown in Figure 2-3,

combines a Markov decision process with a process of noisy outputs. Out-

put y(k) depends probabilistically on s(k) alone. It is easy to see that

a partially-observable Markov decision process is entirely equivalent to

a Markov decision process whose state at time k consists of the pair

[s(k),y(k)l; y(k) thenbecomes a perfect observation of the second state

component, and is referred to as an "incomplete" state observation.

y(k-1) y(k) y(k+l)

t t l
o.. --s(k-1) ~ s(k) s(k+ l)- ·.

/ /
u(k-1) u(k)

Figure 2-3. A Partially-observable Markov Decision Process

-20-

/ y(k- i) , y(k) / Y(k+ l)

0· -- s(k-t) s(k) ~ s(k+1) *--

u(k-1) u(k)

Figure 2-4. A Finite Probabilistic System

A finite probabilistic system is shown in Figure 2-4. Output y(k)

now depends probabilistically on s(k-l), u(k-l), and s(k), and may be

thought of as a noisy measurement of the most recent state transition.

Yet, an FPS is always equivalent to a Markov decision process whose state

at time k consists of the pair [s(k),y(k)]. Thus, every partially-

observable Markov decision process is an FPS, and any FPS may be trans-

formed into a partially-observable Markov decision process. The dis-

tinction between the two lies in their representations, i.e. in the

notation used to describe them.

Since s(k). depends probabilistically on s(k-l) and u(k-l), the pair

s(k) and y(k) may be viewed as random variables that depend jointly on

s(k-l) and u(k-l). In this form, the dynamic evolution of an FPS is

-21-

entirely described by an array of probabilities for the state and output,

conditioned on the previous state and input. Except for the requirements

that the input, output, and internal state sets be finite, and that

dynamics be stationary, an FPS is totally unstructured.

The formal definition of an FPS can now be given.

(2.1) Definition. A finite probabilistic (dynamical) system (FPS) is

a 5-tuple (U,Y,S, r(O), {P(ylu) : yY, uU}) where:

(i) U is a finite nonempty set of input values (or decisions);

(ii) Y is a finite nonempty set of output values (or observations);

(iii) S = <1,N> is a finite nonempty set of (internal) state values;

(iv) 7r(O) is a stochastic N-vector of initial state probabilities;

(v) Each P(ylu) is an NxN substochastic matrix of state transition

probabilities, and ZeY P(ylu) is stochastic, VusU.

The dynamic evolution of an FPS is described in the following terminology:

1. The initial state s(O) assumes value i with probability i(O).

2. When a decision-maker specifies input u(k), that input is said

to be accepted by the FPS. Output y(k+l) is subsequently emitted

by the FPS.

3. Given that an FPS in state s(k)=i accepts input u(k)=u, it

will undergo a transition to state s(k+l)=j and emit output

y(k+l)=y with probability P i(ylu), conditionally independently of

the "past history" {s(k')} ,{u(k')} ,kl>

-22-

{y(k')}
)}k,<l,k>

4. The Markov decision process consisting of the internal state

and input processes of an FPS is called the underlying pro-

cess (of that FPS). It is described by the stochastic

matrices {EysY P(ylu) : uU} .

5. The time set is <O,K> . The terminal time K is called the

horizon.

b. Alternate Representations.

The expression "finite probabilistic system" is used in accordance

with a classification of systems by Kalman, Falb,and Arbib [1969]. The

notation used to specify dynamics for a particular FPS is that of Paz

[1971]. It is also called the Mealy form of a FPS, in consideration of

its similarity to the Mealy form of a deterministic machine. The Moore

form is an alternate representation in which y(k) is expressed as a

deterministic function of s(k) alone.

Yet another representation is that of Drake [1962]. Here the

transition probabilities of the underlying process are provided, along

with a matrix of conditional output probabilities, given internal states.

A transformation to Mealy form is readily effected, although some care

must be taken to insure that inputs, outputs, and time changes are defined

to occur in the correct order, i.e. that y(k) is emitted before u(k) is

accepted.

-23-

c. Some Important Classes of FPS's

(2.2) Definition. An FPS is state-observable if each transition pro-

bability matrix P(ylu) has at most one non-zero column.

Interpretation: In a state-observable FPS, the internal state may be

deduced from the most recent input-output pair alone.

Example: A Markov decision process is a state-observable FPS.

(2.3) Definition. An FPS is state-calculable if each row of a transition

probability matrix has at most one non-zero entry.

Interpretation: In a state calculable FPS, knowledge of the previous

internal state, along with the intervening input-output pair, is suffi-

cient to determine the present state.

Example: Consider a queuing system, in which only the numbers of arriving

and departing "customers" (over each discrete time interval) are observed.

This system may be modeled as a state-calculable FPS.

(2.4) Definition. An FPS is free if its input set contains exactly one

element.

-24-

Remark: A free FPS may be viewed as a "partially-observable Markov chain"

(Drake [1962]) or"stochastic process of finite rank" (Paz [1971]).

d. Specification of the Input Process

A rule for the selection of inputs to an FPS will be called a

(decision) strategy. A strategy Y is specified by a probability dis-

tribution for u(k) conditioned on the past history [s(O),u(O),y(l),s(l),

..., s(k-l),u(k-l),y(k),s(k)]; however, this representation is cumber-

some. It is far more convenient to consider the input process to be

generated by a dynamical system called a controller, which is a controlled

Markov process having input and state sets to be determined, and output

process {u(k)} .

A particular description of a decision strategy as a dynamical

system is called a realization of that strategy. Naturally some reali-

zations are more concise then others. A decision strategy satisfies a

finite-memory constraint if it has an FPS realization with input process

{y(k-l)}. In this report, consideration will be limited almost exclu-

sively to decision strategies that can be realized by deterministic time-

invariant finite-state automata.

The interconnection of an FPS with decision strategy causes the

former's input, state,and output processes to become stochastic processes;

the resulting system may or may not be an FSP, depending on the size of

its state set (which must include all information required to describe

future inputs). This system will be called the free system induced (on

-25-

the FPS) by strategy y , or, more informally, the system under y .

If y satisfies a finite-memory constraint, then the system under y

may be represented as a free FPS whose state is a doublet consisting of

both the plant and controller states.

The output process of a free FPS is a stochastic process, since

the probability distribution of system variables (states and outputs)

is well-defined. Such is not the case if U contains more than one ele-

ment: y(l) then depends on u(O), which is not a random variable (since

no probabisistic rule describing it has been provided). The

interconnection of an FPS with a decision strategy y causes all

system variables to become random variables. A probability measure,

denoted Proby , which describes these variables, is specified by the

induction:

Prob {s(O)= i } = Ti(O).
Y

Proby {s(k')=sk,, u(k')=uk,, y(k'+l)=yk,, Vk'E<O,k-l>

and s(k)=i, u(k)=u, y(k+l)=y, s(k+l)=j}

= Proby {s(k')=sk,, u(k')=uk,, y(k'+l) y k,, Vk'E<O,k-l>

and s(k)=i}

* Prob {strategy Y causes u(k)=u to be selected|

s(k')=sk,, u(k')=uk,, y(k'+l)=yk,, k'£<O,k-l> and s(k)=i}

Pij(yu). (2.5)
Lj

-26-

Informally, ProbY is called the probability under (strategy) y.

(2.6) Definition. E{} denotes expectation with respect to probability

measure Prob {} , i.e. expectation given that inputs are selected

according to strategy y.

Notation: Subscript y may be omitted in Prob {-} and E {-} when

the probability or expectation is the same for all strategies.

e. The Information Vector

(2.7) Definition. The stochastic N-vector n(k) having components

rni(k) = Prob {s(k)=ilu(O)... u(k-l); y(l)... y(k)}

will be called the information vector at time k.

It is well known that n(k) is a sufficient statistic for the

estimation of future dynamics given past inputs and outputs; this is a

trivial result of the Markov property of the internal state. The

following result is similarly self-evident.

(2.8) Proposition. The information vector may be recursively computed

according to Bayes' Rule:

rn(k+l) = T(n(k), u(k), y(k+l)),

where T is the information vector transition function

T(n,u,y) = nP(ylu) / (nP(ylu)l)

-27-

Because (k) is a sufficient statistic, desirable decision

strategies may be realized by a deterministic machine having state

process {(k)} . Such a decision strategy would be completely

described by a policy on iT , i.e. a mapping from IN to U speci-

fying the input to be applied when the information vector has a given

value. This traditional approach to controller realization leads

to horrendous computational difficulties which have yet to be resolved.+

The main contributions of this research are approximation schemes for

r(k), and associated realizations which avoid the use of HN as an

observer or controller state set.

f. Rewards and Performance Indices

It is convenient to place a mechanism for evaluation of decision

strategies within the conceptual confines of the system itself. To

this end, consider the process of incremental (immediate) rewards

{r(k)} , each of which is determined from system variables s(k), u(k),

y(k+l), s(k+l),on the basis of a given array {r[i,u,y,j] : i,jES,

uEU, ycY} , according to the rule

r(k) = r[s(k), u(k), y(k+l), s(k+l)]

+See the discussion, in Section 4, of previous work in this field.

-28-

(2.9) Definition. A valued finite probabilistic system (VFPS) is an

FPS along with an incremental reward array, as described above.

(2.10) Definition. The performance index is a function of the

decision strategy, taking one of the following forms:

(a) Finite horizon:

g({b(k)k<0K>,y) = E {K b(k) r(k)}, K<0O,co>

(b) Discounted infinite-horizon:

g($,y) = (1-)E{Ek= Skr(k)}, 0<B<1.

(c) Undiscounted infinite-horizon:

g(y) = lim inf±li [g(B,y)].

Remark: The undiscounted performance index g(-) is generally equivalent

to the "time-averaged reward" lim inf K + X E{ Ek=0 r(k)}. For a

discussion of the conditions under which these indices may differ, see

Flynn [1974]. The definition given above is more convenient, especially

when relative values are considered, since these converge as +t1.

The incremental reward process may be replaced by a process of

expected incremental rewards {q(k)} defined by

q(k) = qs() (u(k)) (2.11)

-29-
where

qi(u) = S ZyY Pij(ylu) r[i,u,y,j] (2.12)

denotes the expected reward given that s(k) = i and u(k) = u.

Clearly the substitution of process {q(k)} for {r(k)} in (2.10)

leaves the value of a performance index, for a particular decision

strategy, unchanged.

Also define

Qmax = maxiCS maxucu [qi(u)]

Qmin = miniS min [qi(u)]

Q = max- Qmin (2.13)

-30-

g. Classification of Problems

The problems of interest fall into three categories. The first

of these is given the name estimation. The finite-memory estimation

problem is to learn as much as possible about the current internal

state, subject to a finite-memory constraint. Note that in the absence

of this constraint, the problem would be trivially solved by computing

the information vector according to (2.8). This can in fact be accom-

plished if the set of values assumed by the information vector is

finite, as occurs when the FPS is state-observable or when a finite

horizon is contemplated. In general, however, the information vector

cannot be exactly computed on the basis of finite memory; the greater

the memory allowance, the better the approximation will be. The

problem is more accurately described as that of constructing a sequence

of finite-memory observers, (i.e. systems accepting plant outputs) that

generate successively better approximations of the information vector.

A suitable tradeoff between memory size and estimator quality can be

made by the designer after this sequence has been computed, up to a

maximum acceptable memory size.

The second problem is given the name statistical decision. It con-

cerns a VFPS in which the transition probability matrices do not depend

on u. The problem is to maximize a performance index of the form

specified in (2.10). This problem may be solved by constructing a

finite-memory observer, and using the information vector approximation

as the basis for decision-making. A typical statistical decision

-31-

problem is to guess the value of the internal state, according to an

array of rewards (penalties) for correct (incorrect) decisions.

The third problem, that of control, is to determine a decision

strategy which optimizes a performance index, necessarily taking into

account the effect of current decisions on future plant behavior as

well as future estimation accuracy. The Machine Maintenance and Repair

Problem (1.1) falls into this category.

Since statistical decision is a special case of control, these

problems are collectively referred to as FPS control problems. In

such problems, as in estimation, a finite-memory optimum may not exist.

The problem is then to construct a sequence of controller designs in

which memory requirements increase and performance improves, approaching

a supremum feasible value. Note that the problem is not to maximize

performance subject to a given bound on memory size: such a formulation

may lead to an artificial situation where the performance of mixed

(randomized) strategies exceeds that of pure (deterministic) ones, thus

defeating the main purpose of a memory constraint, which is to limit

controller complexity.

-32-

3. Illustration of the Solution Procedure

The Machine Maintenance and Repair Problem, first described in

(1.1), will now be precisely formulated as an undiscounted infinite-

horizon FPS control problem, and solved by perceptive dynamic program-

ming. The solution is also documented (in somewhat greater detail)

in Section 23a.

a. Problem Formulation

Consider a single machine which can produce a single item, the

product, during each production cycle. The machine contains two

identical components, subject to failure, each of which must operate

on every product. Depending on the status of the machine, the product

may be defective or nondefective. There are four control alternatives

(inputs) available during each production cycle. One is to manufacture

an item. The second is to manufacture an item, and then to examine it,

so as to determine whether or not it is defective. In the third

alternative, the machine is dismantled and inspected (at a cost); any

component found to be defective is replaced. The fourth alternative

is to replace both components, whether or not they have failed.

Although the plant would appear to have four internal states

(each of two components is operational or has failed), the number of

states can be reduced to three if it is recognized that the order in

-33-

which components fail is unimportant. Thus the state set is taken

to be:

1 : All components are operationall

S = 2 : One component has failed

3 : Both components have failed

The four inputs are:

1 : Manufacture

2 : Examine

3 : Inspect

4 : Replace

The three outputs are:

1 : No information

Y = 2 : Non-defective product observed

3 : Defective product observed

Probabilistic rules governing the breakdown of machines have

been modeled as follows: Both components are initially operational.

There is a probability of 0.1 that an operational component will

fail during the manufacture of a product, independently of the

component's ageand the condition of the other component. If a com-

ponent fails prior to or during the manufacture of a particular item,

it causes that item to be defective with probability 0.5. Thus the

initial probability vector is r(O) = (1, 0, 0), and the transition

probability matrices are:

-34-

0.81 0.01
P(111) = 0.00 0.90 0.10

0.00 0.00 l.OOj

0.81 0.09 0.0025
P(212) = 0 . 0 0 0.45 0.0250 ,

L.00 0.00 0.2500

0.00 0.09 0.o0075
P(213) = 0.00 0.45 0.40750

L0.00 0.00 0.7500

P(113) = P(114) = . 0. 0.O
1. 0. 0.

The value of an item produced is one unit if it is nondefective,

zero units otherwise. The cost of examination is 0.25 units. New

components cost a unit apiece, with an additional charge of 0.5 units

for inspection. Hence, the expected incremental reward vectors are:

0.9025 0.6525 -0.5 -2
q() = 0.4750 , q(2) = 0.225, q(3) = -1.5 q(4) = -2.

0.2500 0.000 -2.5 -2

The performance index is undiscounted profit over an infinite horizon.

The Markov decision model for machine maintenance was introduced

by Drake [1968]. The numbers used here were originally devised by

Smallwood and Sondik 19731, to illustrate a computational algorithm

that solves finite-horizon FPS control problems.

-35-

b. Solution Procedure

A solution to this problem is obtained in several iterations. In

each of these, a Markov decision problemwilbe solved, yielding a

controller design, as well as bounds that contain the performance

of the optimal controller and that of the design most recently

obtained. In early iterations the bounds will be loose; but as com-

putations become more intricate, the bounds will become closer;

eventually they will coincide.

In the first iteration, assume that the controller knows the true

value of the internal state at all times. (The artificial assumption

that a controller has the ability to "see" internal states by means

other than computation based on system outputs, will be known as per-

ception.) A Markov decision problem that is readily solved (e.g. by

Howard's algorithm, described in Howard [1960]) results, yielding the

optimal policy, relative value vector, and optimal gain:

1 1 A 2.517 1
= , v = 0.500 , g = .5147.

4 L0.000

This will be called a perceptive solution. Since the (perceptive)

controller which achieved the gain .5147 had access to more information

than will be available in reality, it follows that .5147 is an upper

bound on feasible performance.

The strategy obtained in this iteration is called a perceptive

strategy. It might also have been feasible if the optimal input had

-36-

been the same for all states; but such is not the case; and so it

cannot be applied in practice. However, a feasible controller

realization might make use of the optimal perceptive strategy in the

following way: a value for the current internal state is guessed and

the corresponding optimal input is applied. Since this is the first

iteration, the guess must be made of the basis of' no real-time in-

formation whatsoever. Suppose, for example, that the guess is

"state = 1" at all times. Then input 1 will be selected at all times;

both machine components will eventually fail; and a gain of 0.25

results.

On the basis of these computations, it is concluded that:

1) The optimum feasible performance lies between

0.25 and .5147;

2) There is a feasible solution, requiring no memory,

which achieves a performance of 0.25.

In the second iteration, a new internal state is devised, taking

the form:

x(k) = [s(k-l), u(k-l),y(k)].

Clearly x(k) is the state of a controlled Markov chain, and a new

FPS representation may be devised in which inputs, outputs, and

rewards remain as before, but the internal state is x(k) at time

k (see Brookes and Leondes [1973]). This called an'augmentation of

the'original FPS. Since there are only four functionally

-37-

distinguishable input-output pairs, these may be coded and given the

representation z(k), according to the following table:

u (k-l) y (k) z (k)
1 1 1
2 2 2
2 3 3
3 1 4
4 1 4..4

Using the 12 states of the form x(k) = [s(k-l), z(k)], a new Markov

decision problem is solved to obtain a new perceptive solution. How-

ever, the perception is "weaker" this time, and the optimal perceptive

gain decreases to .4945. The optimal perceptive strategy is again

unfeasible, and a feasible solution will be constructed by guessing

the internal state delayed by one time unit, the guess being based on

knowledge of z(k). For example the state guess might be (k-l) = 1

when z(k) = 1,2,4, and s^(k-l) = 3 when z(k) = 3. In this case input

1 will again be selected at all times, and the feasible gain is 0.25.

On the basis of these computations, it is concluded that

1) The optimum feasible performance lies between

0.25 and .4945;

2) There is a feasible solution, requiring 4 memory states

states, which achieves a performance of 0.25.

In subsequent iterations, x(k) will take the form x(k) = [s(k-k),

z(k)] where z(k) is the memory state, a string of most recent

z-coded input-output pairs. The rules by which a memory state may be

-38-

constructed are rather complex, so for the moment regard the memory

state during iteration n as the string of (n-l) most recent z-coded

input-output pairs:

z(k) = z(k+l-m) z(k+2-n) ... z(k-l) z(k)

As computation proceeds, the bounds on feasible performance become

closer and closer. Intuitively, this occurs because, as the memory

state becomes longer, the augmented state component that is perceived

or guessed is an internal state with greater delay, whose influence on

the present information vector is weaker. In this particular problem,

the bounds eventually coincide. On the ninth iteration, only eight

memory states are "recurrent" under the optimal strategy, and for each

of these, the optimal input does not depend on the delayed state com-

ponent of the augmented state. The optimal inputs are in fact given

by the deterministic sequence:

{u(k)} ={1,1,1,1,1,1,1,3,11,1,3 ... }

Eight memory states are required to realize this sequence, using a

finite-state automaton. The optimal gain is g* = .422.

c. Discussion.

The optimal decision-making strategy is remarkably simple; but

this is merely a consequence of the peculiar rewards specified in this

-39-

particular problem. For example, first-iteration computations show

that the performance achievable with perfect state information is

.5147, and the performance achievable on the basis of no information

whatsoever is .25. Thus the value of perfect state information is

no more than .2647. Examination, which costs .25 and yields little

information about the state, appears unlikely to be useful; on the

ninth iteration, this option will be eliminated entirely. Had the

cost of examination been lower, or the information acquired through

examination more useful, the solution might have been considerably

more complex, requiring thousands of controller memory states. An

optimal solution might not have been obtained at all.

In fact, the method described above cannot be used to generate

a solution, since the final iteration would involve a 3-4 -state

Markov decision process! The algorithm that was actually used to

solve the Machine Maintenance and Repair Problem is described in

Section 22, and the solution obtained is reproduced in Section 23a,

in this report.

The importance of perceptive dynamic programming as an engineering

tool is derived from the outcome of early iterations, rather than the

solution itself (if any is obtained). During iteration n, two quanti-

ties of interest are computed. The first of these,g n, is an upper

bound on performance that can be achieved if the (n-l) most recent

inputs and outputs constitute the only available information concerning

the (n-l) most recent transitions, although states further delayed

-40-

might be perfectly known. The second, hn, is a lower bound on the

performance that can be achieved if decisions are made on the basis

of the (n-l) most recent inputs and outputs alone, and all other

information is discarded. Consequently gn-hn is an upper bound on

the value of information concerning events delayed by (n-l) time units.

In a practical engineering problem, it is reasonable to assume

that there exists a way to measure the internal state exactly, although

the cost associated with such a measurement might be exhorbitant.

When g -h remains large for large n, this indicates that greatly

delayed perfect state information remains significantly useful for

purposes of decision-making, which in turn suggests the option of

periodically measuring the internal state exactly. If the interval

separating perfect state measurements is large, then the average cost

of periodic state measurements will be small, controller memory will

have been reduced and performance enhanced. On the other hand, if

gn -h converges rapidly to zero, this indicates that information

sufficiently delayed is of little value in decision-making, and that

a near-optimal strategy having reasonable controller memory require-

ments, can be constructed.

d. Summary

Perceptive dynamic programming is a computational procedure that

may be used to examine problems of decision-making,under uncertainty

contraints,with perfect recall of all information previously obtained.

-41-

This is done by considering a sequence of problem approximations in

which information dealing with.events sufficiently delayed is either

superceded by the "perception" of delayed state values, or ignored.

The difference between.performances achieved under these information

constraints establishes a value of delayed information which may be

compared with the cost of periodic state measurements, the cost of

retaining greatly delayed outputs in controller memory, and the cost

of continuing the design procedure. In the Machine Maintenance and

Repair Problem, the value of delayed information rapidly approached

zero, and an exact optimum was obtained.

-42-

4. Historical Perspective

An FPS decision theory may be associated with several disciplines.

Some of these are listed below, along with representative references;

this list is by no means intended to be exhaustive. Since an FPS is

a probabilistic automaton, and the decision strategy is represented

as a finite-state machine, the study of FPS's is closely related to

probabilistic automata'theory; see Paz [1971] for a summary of

recent trends in this field. Since the assessment of unknown state

values is involved in decision-making, a theory of FPS decisions is

related to statistical decision theory in the sense of DeGroot [1970].

FPS control problems are problems of stochastic control; the intro-

ductory text of Kushner [1971] is a standard reference. Analysis of

the optimization problem in an appropriate (infinite-dimensional)

vector space makes use of techniques described by Luenberger [1969].

Finally, an FPS is a dynamicalsystem; its study therefore belongs to

what Kalman, Falb, and Arbib [1967] describe as the "exciting but

chaotic new field of system theory."

Most of these disciplines are generally considered to be out-

growths of the pioneering work of Von Neuman and Morgenstern [1947].

A theory of statistical decisions was subsequently initiated by Wald

[1950]. The importance of the concept of state in structuring

sequential decision problems was enunciated by Richard Bellman [1957b];

he devised a general mathematical approach called dynamic'programming,

-43-

which may be applied to the optimization of sequential decisions.

The finite-horizon Markov decision problem (Bellman [1957a]) is par-

ticularly well-suited to solution by dynamic programming; also see

Howard [1960], Derman [1970],Mine and Osaki [1970], Ross [1970],Howard

[1971], Hastings [1973], and Bertsekas [1976].

Because Markov decision problems can be solved, and because

structural properties of the solution are fairly well understood, a

great deal of effort has been devoted to improving the algorithms

employed. Schweitzer [1973] has complied a list of hundreds of

publications in this area. Among these, Brown [1965], Lanery [1967,

1968], Bather [1971] and Schweitzer and Federgruen [1977?] have

studied convergence properties of value iteration, which is regarded

as the most efficient form of dynamic programming; see Odoni [1967]

for a comparison of convergence rates in various dynamic programming

forms. The basic value iteration procedure has been supplemented

and improved in many ways: D.J. White [1963] introduced a method

for normalizing value functions in order to avoid divergence; Odoni

[1967, 1968] generalized a result of MacQueen [1966] to obtain a

method for bounding the closeness of suboptimal solutions to the

optimum; Schweitzer [1971] accelerated value iteration by adding a

damping term; Hastings[1976] devised a procedure for more efficient

enumeration and termination when the optimum has been reached; the

applicability of value iteration was extended by Platzman [1977] who

introduced the concept of connected classes in Markov decision

-44-

processes. Value iteration iscurrently feasible for problems with

thousands of states (Schweitzer [1971]).

Partially-observable Markov decision problems have been studied

by Drake [1962], Astrom [1965, 1969], Sawaragi and Yoshikawa [1970],

and other as noted below. In each case, the problem was regarded

as one of decision-making with perfect state information, considering

the information vector to be the state of a transformed system. How-

ever, the number of values which may be assumed by the information

vector is infinite. Thus the problem becomes one of dynamic programming

on the unit simplex I (an infinite state set), and describing an

optimal decision-making policy,which is a finite-valued function on

. Kaklik [1965] approximated the unit simplex by a finite grid of

evenly spaced points; needless to say, the method failed to be practi-

cal for all but very small problems. Sondik [1971] (in research also

reported by Smallwood and Sondik [1973]) established piecewise-

linearity of the value function and finite-memory realizability of the

optimal strategy in finite-horizon problems; however this too fails to

be feasible if the number of faces on the value function is large.

Existence of solutions to discounted problems was established by Sondik

[1971] and by Satia and Lave [1973]. C.C. White [1976] has shown that

these results are also applicable to a class of partially-observable

semi-Markov decision models that are externally indistinguishable

from a discrete-time partially-observable Markov decision process.

-45-

Existence of finite-memory solutions to certain infinite-horizon

problems had been noted by Drake [1962, 1968]. In the.context of

statistical decision on a noisy Markov channel, this work has been pur-

sued by Sulmar [1974] and Devore [1974]. Sondik [1971] provided an

intuitive explanation for this phenomenon; his work inspired the de-

finition of detectability in the present research. Similar results,

regarding the near-sufficiency of a finite string of most recent

observations, have been obtained by Cerny [1969] and Kajser [1975].

Systems with perfect but delayed state observations were introduced by

Brookes and Leondes [1973].

Finite-memory hypothesis-testing and N-armed bandit problems have

been studied by Cover and Helman [1970], Hellman and Cover [1970a],

Cover, Freedman, and Hellman [1976], and others noted both in these re-

ferences and in DeGroot [1970]. One may observe, from the titles in

subsequent correspondence between Chandresekarin [1970, 1971] and Hellman

and Cover [1970b], that there is some controversy over the meaning of

this problem. Chandresekarin and Lam [1971] have subsequently proposed

an alternative formulation. The issue involved is the manner in which

memory should be allowed to increase as performance approaches its

supremum-value. Similar issues arise in the solution of FPS control pro-

blems; they are discussed in Section 20 of this report.

-46-

5. Outline of Original Contributions

The aim of this research is to construct finite-memory observers,

to devise a method for bounding the value of information in decision-

making, and to establish a feasible computational procedure for the

design of -optimal finite-memory controllers. Such results are

meaningful only when supplemented by mathematical machinery which

justifies their validity. This section provides an heuristic inter-

pretation of concepts and intermediary results that are introduced

for the first time in this report, and which contribute significantly

to an understanding of the main results.

a. Ill-posedness of certain undiscounted infinite-horizon problems

Consider a "dual control" problem described by the VFPS:

Y = {1,2},

U = {0,1,2},

(0O) = (.5, .5),

N = 2,

.6 0 0 .4
P(110)= :], P(210) = :

0 .4 .6 0

O .5
P(111) = P(112) = 1 P(211) = P(212) =

0 .5 .5 0

-47-

q(0) = , q(l) ' q(2)= (5.1)

The inputs may be assigned the meanings:

: Obtain a measurement 1
U =i1 : The state is probably

2 : The state is probably 2

The outputs, likewise, are interpreted as:

Y = |1 : The state remained unchanged.
2 : The state changed

It is clear that use of input 0 causes the information vector to

approach a unit vector, and use of inputs 1 or 2 causes the values of

information vector entries to remain unchanged. Hence, when input 0

is used, information is gained, but no reward is received; when inputs

1 or 2 are used, a reward is received, but no information is gained.

If a discounted performance index is considered, then use of

input 0 will eventually be discontinued. This is true because a

decision-maker in information state (1-c,6) stands to gain no more

£/(1-B) by seeking further information, and receives an expected re-

ward of 1-E if he forgoes further information. As -+1l, the point at

which use of input 0 is discontinued becomes more and more distant.

In the undiscounted case, the value of perfect state information (i.e.

a unit information vector) is infinite, relative to the value of any

information vector that is not a unit vector. A decision-maker con-

fronted with an infinite horizon will therefore choose input 0 at all

-48-

times. Consequently, he will receive no reward at all. E. Denardo

calls this "the infinitely-delayed splurge."

The infinitely delayed splurge may be avoided in a number of ways.

One way is to consider only discounted performance indices. Another

is to assume that the decision-maker has access to an infinite past;

he'will then know the initial state exactly. However, it does not

suffice to require that the underlying process be ergodic. In this

problem, the internal state process consisted of independent Bernoulli

trials; and yet the infinitely delayed splurge occurred.

b. Sufficient conditions for well-posedness

Two conditions which (together) are sufficient to assure well-

posedness of an undiscounted infinite-horizon FPS control problem are

now identified. The first, reachability, is a generalization of

connectivity in Markov decision processes. In a reachable FPS, it

is possible to select a finite sequence of inputs, on the basis of

the information vector alone, so that the probability of entering a

specified state is greater than l-p, where p is the reachability

index. If p=O, then there are reset actions that cause the state to

assume any desired value with probability one. As p increases to

1, it becomes more difficult to reach a desired state. If p=l, then

the FPS is not reachable. Reachability is also parameterized by £p ,

an upper bound on the number of transitions required to "reach" a state.

-49-

It will be demonstrated that the state set of any FPS may be

decomposed into connected classes, along with a (possibly empty) set

of transient states. Within any connected class, the FPS will be

reachable. The underlying process of a reachable FPS "looses memory"

as it proceeds forward in time, in the sense that unconditional state

probabilities in the future depend less and less on the present state.

The second condition has been given the name detectability. In

a detectable FPS, the information vector is increasingly insensitive

to increasingly delayed information, such as inputs, outputs, or

artificially perceived states. A more precise definition of detec-

tability is deferred to section 5d, where appropriate metrices and

contractions will be introduced. Detectability is characterized by

parameters £ and 0 < a < 1, where information concerning events

delayed by time units causes the information vector to vary by a

distance not exceeding a, on the average. If a=O then information

sufficiently delayed is of no value in decision-making. If a is close

to 1, then information greatly delayed is important in decision making,

and conversely, the present decision will affect many decisions to

come. If a=l, then the FPS is not detectable.

It will be demonstrated that the information state set of an FPS

can be decomposed into detectable classes, along with a (possibly

empty) set of null-recurrent information states. The information

process of a detectable FPS thus looses information as it is viewed

backward in time, in the sense that the present information vector

-50-

depends less and less on state values from the increasingly distant

past.

The conditions of reachability and detectability are comple-

mentary, in a manner similar to controllability and observability in

linear systems.

c. A Bound on the Value of Information

A key result, Theorem (19.3), states that any infinite-horizon

FPS control problem satisfying conditions of reachability and

detectability has a convex relative value function v*() satisfying:

(Z +)Q
max Z {v*(r)} - min z {v*(r)} < -- = Q (5.2)

(l-p) (1-a)

where Q is given by (2.13). The expression on the right of (5.2) is

interpreted as the bound on the value of information. v* may become

undefined as p +l or a--l.

d. Metrics and Contractions

Consider E6[cr'] = i S(7ri-ri) , the Hajnal measure, which is

extensively used (asdescribed in Paz 1971]) to demonstrate convergence

of unconditional probability vectors, in the theory of ergodic Markov

chains. A more appropriate metric for the study of conditional pro-

bability vectors is

-51-

A[r,Tr'] = sup{6[ow,rr'ow] : wN , w>O} (5.3)

where ow is a vector in IN having elements (ow)i = .iwi/ZisiWi .

It will be shown that:

(5.4)

and

1-

1+2
(5.5)

where:

c = min{i/7 i) : isS, ! > 01,

(5.6)

C2 = min{T'i/i) : iS, T. > 0.

The topology

are explored

tinuous with

induced by A on HN has many interesting properties which

in Section 12d. For example, any convex function is con-

respect to A; in particular:

v[lT] - v[r'] < A[,r'1]4[max {v[rv[7]} - min If {v[1]}] (5.7)

Now consider an input-output pair (u,y) such that P(ylu) is

subrectangular, i.e. Pij(ylu) > 0 and Pi,j,(y lu) > 0 implies

Pij,(ylu) > 0 and Pi,j(ylu) > 0. Let

t[(u,y)] = maxi i,zsAT(e ,u,y), T(e' ,u,y)].

Now 0 < aC(u,y)] < 1, a consequence of the subrectangularity of P(ylu).

6[Trff, < A[Tr,7T, < 1

-52-

The contraction property is:

A[T(n,u,y), T(r',u,y)] < a(u,y) A[n,n'] (5.8)

This is illustrated in Figure 5-1. It is seen that (u,y) causes

the unit simplex to be mapped into a somewhat smaller set. The

greater the number of recent input-output pairs available, the smaller

this set will be. Hence, the assumption that the information vector

Z times delayed had some convenient value, allows an approximation

of the information vector to be computed on the basis of the most

recent input-output pairs alone. This approximation is guaranteed

to be with a certain distance of the true value; that distance can

be computed by measuring the contraction imposed on the information

vector by the transition probability matrix corresponding to the most

recent input-output pairs.

3 A
A 3

(U,y) (u,y)A~~~~~uy
4 _ _ -| 1 ID

-I *- -a - 2

Figure 5-1. Contractions on the Unit Simplex

1

-~ u--

-53-

In the establishment of detectability, subrectangularity plays

a role analogous to that of block rectangularity in the establishment

of connectivity in Markov chains. An FPS satisfies a condition of

strong detectability if there is an integer such that, for every

possible sequence of consecutive input-output pairs (ulyl)(u2,y 2)

... (Vy.), the cumulative transition probability matrix P(yllul)

* P(Y21U2) * ...P(yRju.) is subrectangular. It follows, from the

contraction property stated above, that an estimate of the information

vector can be made arbitrarily close (in a A sense) by recalling a

sufficiently long string of recent input-output pairs. In particular,

an estimate made on the basis of input-output pairs always lies

within a of the true information vector, for some a<l.

Weak detectability is a condition which implies that the expected

deviation of the information vector estimate from its true value can

be made arbitrarily small in an analogous way. In a weakly detectable

system, a denotes the average contraction induced by the most recent

k input-output pairs. The average contraction induced by the most

recent pairs is now given by a . a is a measure of detect-

ability which differs slightly from a .

e. Existence of -optimal Controllers

Consider the relative value function for a reachable, detectable,

FPS. It will be seen that this function spans a range of values which

-54-

(Q +t)Q
cannot exceed Q = . Thus, for any stochastic vectors

(l-p) (-a)

lv*Trl - v*[T']l. < 4.

When state perception is introduced, the information vector

changes, at any given time, in such a way that the expected relative

value of the new information vector will be greater than that of the

old information vector. The difference between these quantities, called

the value of perception, is shown in Figure 5-2. If perception of

states with an time-unit delay is assumed, then the gain will

increase by-at most 42 = a

The substitution of guessed state values for perceived states is

called pseudo-perception. If a delayed state value is guessed, then

the controller finds itself acting according to one information vector

while actually in another information state. The value of acting

according to a particular information vector is linear in the actual

information state, because E{value of acting according to n In(k)}

= ziS ri (k)E{value of acting according to n lls(k)=i}. Thus the cost

of pseudo-perception is as shown in Figure 5-3; this cost cannot

exceed [4= - 4(gp+Z)Q
exceed a = a-2

(l-a) (l-p)(l-a)

-55-

Improvement
due to
Perception

Delayed Information
Perception of Vector
State 1

v gI I 1 yll

Delayed
Perception of
State 2

Figure 5-2. Geometric Interpretation of Performance
Increase Due to Perception

Deterioration
due to Pseudo- i
Perception f

In
.I ii. I v i I I I

Vector Assuming
Delayed Perception
of State 1

Figure 5-3.

2

Geometric Interpretation of Performance
Decrease Due to Pseudo-perception

I
I

ql,

YV UI

-56-

An intuitive justification of these expression is provided by the

following argument. Consider an FPS where = = 1. Then it costs

Q/(l-p) units to reach a desired state, if it is assumed that the

state is perfectly observed. This is true because Q is the cost

(per unit time) of being in an undesirable state instead of being

in amost desirable state, and because the expected number of

transitions required to reach the most desirable state is l/(l-p).

Suppose now that state uncertainty is introduced. Then the

uncertainty,caused when the most recent state perception occured

time units ago, is a . Thus the value of a single perception,

delayed time units,is

a [4Q/(l-p)] + +1 [4Q/(l-p) + ... a

The cost of pseudo-perception is similarly derived, resulting in

an additional factor of (1-a) in the denominator.

f. Feedback Realization of -optimal Controllers

The definition of an FPS, given in Section 2a, is structural

rather than functional. Much of the detail provided in the specifi-

cation of a particular FPS is irrelevant to an observer who has access

only to inputs and outputs. For example, the internal states of an

FPS may be reordered (by means of suitable row and column manipulations

-57-

on the initial state probability vector and transition probability

matrices) to obtain a new system which cannot be distinguished from

the first on the basis of input-output histories alone. Two or more

FPS's which are indistinguishable in this sense will be called equi-

valent.

A valued finite probabilistic system (VFPS) was defined as an FPS,

along with a reward structure which allows a performance to be assigned

to any control strategy. If two or more VFPS's consist of equivalent

FPS's,along with reward structures that result in identical performance

indices, these VFPS's will be called equivalent.

The problem under consideration is to compute a control strategy

that optimizes the performance index corresponding to a particular VFPS.

The concept of equivalence is used to transform this problem into one

that is more easily solved: it suffices to compute a strategy which

optimizes the performance index corresponding to any particular

equivalent VFPS.

A convenient equivalent VFPS is constructed by a procedure known

as augmentation. Any augmented VFPS is completely described by the

original VFPS from which it was obtained, and a memory set, M, which

is a finite set of strings of input-output pairs. An observer is

required to select, from the memory set, the element.that correctly

lists the largest number of most recent input-output pairs; this is called

the memory state. An augmented state consists of the internal state

delayed by a quantity equal to the length of the memory state, along

-58-

with the memory state itself. Since the augmented state may be regarded

as the state of a controlled Markov chain, an equivalent VFPS having

augmented internal states in place of internal states may be constructed.

This VFPS is the outcome of augmentation induced by M.

An example of augmentation may be found in Section 3. During the

n-th iteration, a memory set containing all strings of (n-l) input-

output pairs is employed. Thus the memory state consists of the (n-l)

most recent input-output pairs, and the augmented state consists of

the true internal state delayed by (n-l) time units, along with the

string of all intervening input-output pairs.

The perceptive or feasible strategy computed during an iteration

of perceptive dynamic programming determines inputs on the basis of

the current augmented state alone, and thus, it may be viewed as a

feedback strategy. This implies that the system under such a strategy

is a Markov chain, a fact that is useful in evaluating feasible per-

formances.

-59-

6. Organization of the Report

Mathematical tools for the analysis of FPS's are introduced' in

Chapter II. A brief outline of this chapter is given below. The

notation to be used in representing strings of input-output pairs is

presented in Section 7. The concepts of "memory state" and "augmenta-

tion" are made precise in Sections 8 and 9. In the computational

technique of perceptive dynamic programming, it is assumed that the

augmented state (induced'by some memory set M) can be "perceived" by

the controller; dynamic programming then yields a rule for optimal

(perceptive) decision-making, expressed as a policy on the augmented

state set. However the performance index is a function of strategy,

or rule for decision-making on the basis of all past inputs, states

and outputs. The relationship between a strategy and the policy which

realizes it is made precise in Section 10. Connectivity and reach-

ability are defined in Section 11. It is demonstrated that both pro-

perties are preserved when the state is augmented. Sections 12 and

13 provide the basis for definition, in Section 14, of detectability.

This involves the development of appropriate metrics and contractions,

as discussed in Section 5d. Solutions to the finite-memory estimation

problem are then introduced. The final sections of Chapter II are

concerned with applicability of perceptive dynamic programming. In

Section 15, it is shown how any free FPS can be decomposed into

detectable parts; thus perceptive dynamic programming can always be

applied to each detectable component of the problem. Section 16

-60-

establishes that very few FPS's are equivalent to a state-calculable

FPS; were this not so, many FPS control problems could be solved by

dynamic programming alone.

Chapter III is devoted to a study of the structure of optimal

controllers. The finite-horizon and state-observable cases are

reviewed in Sections 17 and 18. It is then demonstrated, in Section

19, that (under suitable assumptions) anoptimal strategy will exist,

although it may require infinite memory. In some cases, however, the

notion of an undiscounted infinite horizon is ill-defined, and the

problem is meaningless. An alternate formulation, in which irregular

features are constrained to finite-horizon consideration, is proposed

in Section 20.

Any optimal controller which requires infinite memory cannot,

in general, be described exactly. Chapter IV introduces a computa-

tional technique which allows the optimal performance to be approached

as a memory constraint is weakened. This technique, called perceptive

dynamic programming, approximates the problem as a Markov decision

problem solvable by dynamic programming. The approximation is obtained

by means of an assumption that delayed state values can be artifically

"perceived." Like dynamic programming, perceptive dynamic programming

is a general approach which can be realized in many ways; these are

discussed in Section 21. Results obtained by implementation of a per-

ceptive dynamic programming algorithm are then presented: a solution

to the Machine Maintenance and Repair Problem, and an analysis of a

-61-

computer communication problem.

Peripheral ideas, and conjectures regarding potential extentions

of the theory, have been collected in Chapter V.

A symbol table and glossary are provided to assist the reader

in assimilating the terminology and notation of Chapter II.

-62-

CHAPTER II

ANALYSIS OF FINITE PROBABILISTIC SYSTEMS

7. Input-output Words

Because strings of input-output words play a most important role

in the analysis of FPS's, it is essential that a compact notation be

developed for their representation. Such a notation is introduced in

this section.

(7.1) Notation. A finite string a = ala2... ag of elements in set

A is called a word over A. Words are always identified by underscores.

The set of all words over A is denoted A*. Z(a)is the length of word

a. e is the empty word (over any set). If a = al... ag and

a' = a al then a a' = al. aga... a is called the concatenation
-1" k - 1.. . a k

of a with a'; clearly a = a e = e a for any word a. If A and B are

sets, then the concatenation AB denotes the set of words of the form a b

where aA and bB. A is the set of words consisting of exactly con-

secutive elements in A; A is the set of words consisting of up to

consecutive elements in A.

(7.2) Definition. Z denotes the set of input-output pairs (u,y) such

that P(ylu) 0.

-63-

Remark: More generally, Z may be defined as the set of equivalence

classes of input-output pairs corresponding to identical non-zero

transition probability matrices. The tabulation of Z in Section 3 is

consistent with this alternate definition.

(7.3) Notation. The following objects will be used interchangeably:

1) a word over Z, i.e. a string of pairs (ul,Yl)... (up,yg), and

2) a pair of words over U and Y, respectively, having equal length,

i.e. (u,y) = (ul... U, Y1 ' Y%)' In a free FPS, the input component

of an input-output pair may be omitted.

(7.4) Definition. For z = (ul,yl)(u2,y2) ... (uk,yk)CZ*, define

P() = P(YlU l) ' P(Y2 1U2) '...' P(YIui).

Also P(e) is the NxN identity matrix.

Interpretation: P..i(z) = Pi ((u,)) is the probability that the FPS
IJJ- ii

will emit output word y and go to state j, given that it had been in

state i and that input word u was subsequently accepted.

(7.5) Definition. (a) I(z) = {iES : Pij (z)#O, some jcS}

(b) J(z) = {jS : Pij(z)O, some ieS}

-64-

Interpretation: I(z) is the set of states that may preceed the evolution

of input-output word z; J(z) is the set of states that may follow it.

(7.6) Definition. (a) Z = {zCZ* : P(z)O}

12 2
(b) Z+(r, , ...) = {zZ* : lp(z)o0, 2p(z)o, ... }

Interpretation: Z is the set of input-output words that might eventually

evolve. Z (,7r , ...) is the set of input-output words that might

1
evolve when the information vector equals w , and also might evolve when

2
the information vector equals , etc.

The information vector transition function was defined in (2.8) for

a one-step transition, i.e. the case where the information vector is

updated as soon as a single input-output pair becomes available. It is

possible to generalize this transformation to the case of a multiple-

step transition.

(7.7) Definition. For any nCI , zZ + (n) ,

T(rn,z) = nP(z)/(nP(z)l).

(7.8) Lemma. If z z' Z +((n), then

T(rn,z z') = T(T(rn,z),z').

-65-

8. Memory Sets and Memory States

This section makes precise the notion of a memory set, (a voca-

bulary of recent input-output pairs), and a memory state (a summary,

not necessarily complete, of recent input-output pairs, lying in the

memory set). Appropriate notation is first introduced.

(8.1) Definition. z(kl;k 2) denotes the word of input-output pairs

that evolved between times k and k2. Specifically:

z(kl;k 2) = (((kl),y(kl+l)) ((kl+l),y(kl+2))... (u(k2-l) ,y(k2))

(8.2) Definition. (a) "< denotes the partial order on Z defined by

z' < z if z"Z such that z' z" = z.

(b) If M is a finite nonempty subset of Z that

is totally ordered by "<", then max[M] denotes

the unique element z^ of M for which there holds

z < z, VziM; min[M] is analogously defined.

(c) If zZ , then trunc[z] = {z'cZ : z' < z}.

(d) If z' < z, then z - z' = z" where z'z" = z.

Interpretation: Recall that z is a word (i.e. a string) of input-output

pairs. z' < z is used to indicate that z can be split into two parts

so that z' matches the rightmost part. z = max[M] is a word in M having

the property that all words in M are rightmost substrings of z. min[M]

-66-

is a word in M which is a rightmost substring of every (other) word in

M. trunc[z] is the set of rightmost substrings of z, i.e. truncated

versions of z. z-z' is what remains when the rightmost substring z'

is removed from z.

(8.3) Lemma. trunc[z] is a finite nonempty set which is totally ordered

by "<" and e trunc[z].

It is now possible to formulate the following definition:

(8.4) Definition. A memory set M is a finite nonempty subset of Z

which satisfies

(i) M = O)zM trunc[z]

and

(ii) M C [MZ {e}]

The memory state induced by M at time k is

zM(k) = max[Mntrunc[z(O;k)]]].

Interpretation: The memory set may be arranged in the form of a left-

handed tree, called the memory tree, as shown in Figure 8-1. An arrow

from z' to z indicates that z' < z. The memory state at any time is

the element of M that correctly summarizes the largest number of most

recent input-output pairs. Following Figure 8-1, a memory state may

-67-

iL .

(1)(1)

(1)

(

k-1 k - I

U= {l,

Y = { 1,2,3}

M = {e, (1) , (2) , (3) , (1) (1) , (2) (1) , () (1) (1) }.

Note: Since the FPS is free, the input component ofl

an input-output pair may be ignored.

Figure 8-1. A. Memory Tree

(1)(1)(1)
a

Time: II
- , l~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

(2)(1) y(k-l)=
*4-----

-68-

be constructed by following the tree, from right to left, as far as

possible. The first condition which M must satisfy in (8.4) guarantees

that a memory tree may be constructed, and hence that memory states will

be well-defined. The second condition assures that memory states can

be recursively computed, as demonstrated in (8.6) below.

9* +
Example: Z Z is a memory set. The memory state induced by that

memory set, at times kc<,o>, is the string of 9 most recent input-

output pairs.

(8.5) Definition. The memory state transition function induced by M

is a mapping TM : M x Z - M given by

TM[z,z'] = max[MNtrunc[zz']], zM, z'sZ.

(8.6) Proposition. z (k+l) = T [z (k), (u(k),y(k+l))]

Proof: If zM(k+l) = e then the result is trivial. Now assume that

z (k+l)Oe. Then it follows that there exists a z'EZ such that

z (k+l) = z'(u(k), y(k+l)). But, by condition (ii) of (8.4),

z (k+l) = max[Mntrunc[z(O;k+l]]

< max[(MZU {e})trunc[z(O;k+l)]

= max[Mrftrunc[z(0;k+l)]]

-69-

= max[MZNtrunc[z(O;k) (u(k) ,y(k+l))]]

= zM (k) (u(k) ,y(k+l))

So z (k+l)cMntrunc[z (k)(u(k),y(k+l))], and hence

zM(k+l) < max[trunc[zM (k)(u(k),y(k+l))]]

But

z (k) < z(O;k)

-> zM(k)(u(k),y(k+l)) < z(O;k+l)

-> trunc[zM(k)(u(k),y(k+l))] C trunc[z (O;k+l)]

-> max[Mtrunc[zM(k)(u(k),y(k+l))]] < max[Mtrunc[z(0;k+l)]]

z (k+l).

Thus z M(k+l) < max[MNtrunc[zM (k)(u(k),y(k+l))]] < z M(k+l), which

establishes the desired equality.

Certain properties of memory sets are now developed for use in

later sections.

(8.7) Lemma. (a) An intersection of memory sets is a memory set.

(b) A concatenation of memory sets is a memory set.

(8.8) Definition. If N is a finite subset of Z , then mem[M] denotes

the smallest memory set containing M, i.e. the intersection of all memory

sets containing M.

(8.9) Definition. The essential part of memory set M is the subset:

ess[M] = {max[Mntrunc[z]] : zs(Z-M)} c M

Interpretation: There are elements of a memory set which may become

memory states only during an initial transient of bounded duration.

k* +
For example, in the memory set Z Z+ , the memory state at time k con-

sists of the min(k,k) most recent input-output pairs; if k > , then

the memory state consists of the most recent input-output pairs; in

this case ess[Zk Z+] = ZqZ+ . In the memory tree interpretation of

a memory set, a node in M is contained in ess[M] if it has branches

in Z+ that are not contained in M.

(8.10) Lemma. If M is a memory set, then mem[ess[M]] = M.

(8.11) Lemma. If zeess[M], then T [z,z']Eess[M].

Interpretation: Once the memory state enters ess[M], it cannot leave

it.

-70-

(8.12) Definition.

-71-

If M is a memory set, then

max[M] = max{Z(z) : zM}

.m [M] = min{k(z) : zcess[M]}

(8.13) Lemma. For any control strategy y,

Prob {zM (k)ess[M]} = 1,
Y - max[]'

Interpretation: The memory state enters ess[M] by the m [M]-th
max

transition.

The notion of a memory state transition function, introduced in

(8.5), may be extended to multiple-step transitions, as follows.

(8.14) Definition.

TM [z,z'] = max[Mtrunc[z z']], zM, z z'Z +

(8.15) Lemma.

TM z,z'z"] = TM[TM [z'],z"], zzM, z' z"CZ+

Interpretation: (8.15) establishes consistency of (8.14) with (8.5)

and (8.6).

-72-

9. Equivalence and Augmentation

This section introduces the "augmented system induced" by a memory

set, an FPS whose state consists of a delayed internal state and a

memory state. The augmented system will be seen to be "equivalent" to

the original system, in the sense that they are indistinguishable on

the basis of inputs and outputs alone.

(9.1) Definition. The input-output relation of an FPS is a mapping

p : Z ->[0,1] given by p(z) = r(O)P(z)l.

Interpretation: p(z) = p((u,y)) is the probability that output word

y will be emitted initially, given that the word of initial inputs was

u. The mapping p is a summary of all externally discernable charac-

teristics of an FPS.

(9.2) Definition. The expected incremental reward function of a VFPS

is a mapping q : Z+(r(0)) x U-> R given by q(z,u) = T(r(O),z)q(u).

Interpretation: q(z,u) is the expected incremental reward if, immedi-

ately following the generation of input-output history z, input u is

selected. The mappings p and q together summarize all externally dis-

cernable characteristics of a VFPS.

-73-

(9.3) Definition. Two or more FPS's are (mutually) equivalent if

their input-output relations coincide. Two or more VFPS's are (mutually)

equivalent if both their input-output relations and their expected in-

cremental reward functions respectively coincide.

The problem of constructing an FPS specification having a given

input-output relation is called stochastic realization. Stochastic

realization has been extensively studied by Paz (1971). Picci, in

hitherto unpublished research, formulated the conjecture that almost

every FPS is equivalent to a state-calculable FPS. Picci's conjecture

is disproved in Section 18 of this report.

Realization of a particular input-output relation generally entails

the incorporation of artificial structure into the model. The smaller

the number of states used, the greater the quantity of artificial

structure incorporated; consequently state calculability may be inhibited.

This is illustrated below:

(9.4) Example. Consider afree state-calculable FPS with U={1},

Y = {1,2,3,4}, N=8, r(0) = e , and

-74-

0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0

0000
0000
000 0
000 0

0000
0000
000 0

000 0
0 0 0 0

0 0 0 0 .1 0 0 0
0 0 0 0 .2 0 0 0
0 0 0 0 .3 0 0 0
0 0 0 0 .4 0 0 0

0 0 0 0 0 .1 0 0
0 O O O O .2 0 0
0 O O O O .3 0 0
O O O O 0 .4 0 0

P(21l)=

0
0
0
0

0
0
0
0

0 .4 0
0 .3 0
0 .2 0
0 .1 0

0 0 .4
0 0 .3
0 0 .2
0 0 .1

000 0
000 0
000 0
000 0

000 0
000 0
000 0
000 0

0 O O O O O .4 0
0 O O O O O .3 0
0 O O O O O .2 0
0 O O O O O .1 0

0 0 0 0 0 0 0 .4
O 0 0 0 0 0 0 .3
00 0 0 0 0 0 .2
0 0 0 0 0 0 0 .1

This FPS is not only state-calculable; its state is uniquely determined

by the most recent pair of outputs. It is equivalent to the 4-state

FPS having transition probability matrices:

.1 0 .4 0 0

P(2) = .2 0P(211) =
0 0 0 0 3 3
0 0 0 0 . 4[~~ J 1To
0 .1 0 .4

P(311) = O OP(311) = 0 .2 0 .30 0 0 0
L0 0 0 0J[] P(411) = [

0

0 0 0
0 0 0
0 .2 0
O .1 O

0 0 0
0 0 0
.3 0 ,2
.4 0 .1

.1 0

.2 0

.3 0

.4 0

0 .1
0 .2
0 .3
0 .4

P(lll)=

P (3 1)= P(4 1)=

-75-

Equivalence is verified by using the Markov property of consecutive

output pairs. The second process, though equivalent to the first, is

not state calculable.

The problem of computing, for a given FPS, an equivalent system

having a minimal number of states is (to the author's knowledge) un-

solved, and, inany event, very intricate. It is, of course, possible

to eliminate states that are overtly redundant (see Paz [1971], Section

I.B.2); the elimination of such redundancy may reduce computation time

in the algorithms of Chapter IV in this report. On the other hand, it

is by increasing the number of states that state-calculability is en-

hanced, and the problem is eventually solved. This situation is notably

different from that found in linear systems, where observability occurs

only when the state space has been reduced to a minimal dimension.

(9.5) Definition. The augmented state set induced by memory set M is

the set X[M] = {[i,z] : iS, zM, e P(z)l>0} . The augmented state

induced by M at time k is x (k) = [s(k-(z (k))), z (k)].

Example: Memory set Z n Z+ induces augmented states consisting

of the internal state delayed by time units and the memory state of

2 most recent input-output pairs.

(9.6) Proposition. For any FPS along with a memory set M, there is

a unique equivalent FPS having internal state process {x (k)}

-76-

Proof: It is sufficient to show that the augmented underlying process

is a controlled Markov chain. This occurs provided that the sequence

of controlled random variables {k-Z(zM (k))} is non-decreasing, a trivial

consequence of (8.6). t

(9.7) Definition. The FPS which is equivalent to a given FPS, and has

internal states that are the augmented states (of the given system)

induced by memory set M, is called the augmentation (of that FPS)

induced Iby M, or, more informally, the augmented system induced by M.

A particularly efficient representation of the augmented system

is obtained by recognizing that, although the augmented system has

approximately N#M states, each of these may effect a transition to

at most N#Z states. Specifically, P (i,j,z') may denote the pro-

bability that a transition to [j,T M(z,z')] will occur, given that the

system is presently in augmented internal state [i,z] and that the

input component of z' has been selected. It is given by the formula:

P (i,j,z') =

if zZ+(e

(9.8)

otherwise

The transformed incremental rewards are described by arrays:

_ i f
M(iu) _ T(e ,z)q(u, if

q (i) = }

undefined, oth

(9.9)

-77-

Thus, the memory requirement to describe a particular augmented FPS is

roughly #M x [(N2 x #Z) + (N x #U)] words. The fact that this quantity

grows linearly in #M is particularly significant as the augmented system

has N x #M states, and the number of transition probability matrix

entries might normally be expected to grow as the square of the number

of augmented states.

-78-

10. Classification of Strategies

A strategy was defined, in Section 2d, as a rule for the deter-

mination of inputs, specified by probability distributions for u(k)

conditioned on each past history [s(O),u(0),y(l),s(l),..., s(k-l),

u(k-l),y(k),s(k)]. In such a form, however, the description of a

strategy occupies an infinite tableau, and decisions must be made on

the basis of infinite memory. Such difficulties are avoided by intro-

ducing a class of strategies that are totally specified by a finite

tableau, called a policy.

(10.1) Definition. Let M by a memory set. Then is a feasible

strategy adapted to M if there is a policy : M-> U such that

Prob {u(k) = (z (k))} = 1, kc<0,> .

9 is then the policy (on M) which realizes 4. ~[M] denotes the set of

feasible strategies adapted to M. A feasible strategy that is adapted

to some memory set is called a feasible adapted strategy.

Interpretation: If #cO[M], then the inputs prescribed by can be

determined by a finite memory controller whose memory set is M. Note

that the input specified by ~ and that specified by c need not

coincide in situations which cannot occur when is used.

-79-

Remark: There exist finite-memory controllers that are not adapted (to

any memory set).

(10.2) Definition. Let M be a memory set. Then is a perceptive

strategy adapted to M if there is a policy : X[M]-> U such that

Prob {u(k)=[xM(k)]} = 1, kE<0,>

T is the policy (on X[M]) which realizes 4. [M] denotes the set of

all perceptive policies adapted to M. A perceptive strategy that is

adapted to some memory set is called a perceptive adapted strategy.

Interpretation: If #TY[M] then the inputs prescribed by i can be

computed on the basis of x (k) alone. Note again that the input

specified by and that specified by i need not coincide in situa-

tions which cannot occur when is used.

(10.3) Lemma. (a) O[M] C [M].

(b) If MCM', then [M]C[M]'.

A (feasible or perceptive)adapted strategy induces on any FPS a

free system whose underlying process is a Markov chain. Thus each

augmented state may be characterized as transient or recurrent, under

any particular adapted strategy. The memory state, likewise, may be

given these attributes.

-80-

(10.4) Definition. Consider an adapted strategy , along with a memory

state zM. If there is an is such that the augmented state [i,z] is

recurrent under A, then z is recurrent under ; otherwise z is tran-

sient under .

The concept of transient and recurrent memory states has the

following application: Suppose that some optimal (or -optimal)

strategy has been specified, by means of policy on a memory set to which

that strategy is adapted. If the performance index is average gain

over an undiscounted infinite horizon, then the policy may be modified

in a number of ways without affecting performance. In particular, the

input specified for any transient memory state may be replaced by any

other value, provided that it does not cause that memory state to be-

come recurrent. In this manner, an optimal or suboptimal strategy

adapted to a smaller memory set might be obtained.

-81-

11. Connectivity

Graph properties of Markov chains have been generalized to con-

trolled Markov chains by Platzman [1977]. These concepts are now

extended to FPS's.

(11.1) Definition. State i is connected to state j if there exists

an input-output word zZ+ such that Pi (z) > 0.
iJ-

Interpretation: If i is connected to , then it is possible for the

system to travel from state i to state , provided that appropriate

inputs are accepted. This does not imply availability of reset inputs

(which transfer the system to a given state with probability one).

(11.2) Definition. A connected class C is a set of mutually con-

nected states, none of which is connected to a state outside C.

Clearly the state set of any FPS contains at least one connected

class.

(11.3) Definition. An FPS is connected if its state set is a con-

nected class.

(11.4) Proposition. If an FPS is connected, then there is an integer

kXE<1,N> and a X[O0,1) such that, corresponding to any i,jeS, an

-82-

input word uU* exists, satisfying 1- ()P(())] <

Remark: x and X may be computed by enumeration on U . A more

efficient algorithm seeks a least costly path from node i to node j,

where -log[yEYYPitj (yu)] is the cost of a link from i' to j'

labeled with input u.

In a connected FPS, it is possible to select inputs which allow

the system to travel from any state to any other, provided that the

initial state is known. This assumption is avoided in (11.5), below.

(11.5) Definition. An FPS is reachable if there is an integer kp

and a p[O,1) such that, corresponding to every rcRN and jS, an

input word usU exists satisfying:

1 - [Z (U) EiCSi ij -((I < P

Interpretation: If an FPS is reachable, then for any value of the

information vector, there exists a sequence of inputs, which will drive

the state to a desired value with probability 1-p or more.

(11.6) Proposition. An FPS is reachable iff it is connected.

Proof: Assume connectivity and set p= k; p=l- (l-X). For any cHHN,

there is an iS such that i > 1/N. Selection of u according to (11.4),
1 -

-83-

for i as determined above and j as desired,satisfies the criterion in

(11.5). That reachability implies connectivity is trivial. t

Remark: Although reachability is the property required to establish

the existence of optimal strategies in FPS control problems, connecti-

vity is the property that can be decided algorithmically.

Reachability can be established by inspection in some systems (e.g. a

network of finite queues), and the bounds thus obtained will be tighter

than those obtained through connectivity arguments.

(11.7) Definition. An FPS is simply connected if its state set con-

sists of a single connected class, along with a (possibly empty) set

of states which are transient under all feasible strategies.

(11.8) Theorem. Let C be the connected class in the state set of a

simply connected FPS, and let M be a memory set. Then the augmented

system induced by M is simply connected, having connected class

X[M] = {[i,z] : iC, zess[M]nZ (e)} C X[M]

Proof: Augmented states of the form [i,z] with icS-C are clearly

transient. Those of the form [i,z] with zM-ess[M] cannot occur after

the ma[M]-th transition, by (8.12). To show that [i,z] and

max

[i',z']SX[M] are connected, select jC so that Pij(z) > 0 and Z"Z +

1]

-84-

so that Pji,(z") > 0, the existence of the latterbeing guaranteed by

(11.1). Then the augmented system may travel from state [i,z] to state

[i',z'] when the intervening input-output word is z"z'. t

An algorithm which decides whether a given state-observable FPS

is simply connected was introduced by Platzman [1977]. Simple

connectivity of the underlying process is not necessarily implied by

simple connectivity of the FPS, as is illustrated below:

(11.9) Example. Let U={1,2}, S={1,2,3}, Y={1}, (0) = (1/2,1/2,0) and

1/2 1/2 0

P(lll) = 1/3 1/3 1/3

L 0 0 1]

1/3 1/3 1/3

P(112) = 1/2 1/2 0

0L 0 1i

The single connected class is {3}; states 1 and 2 are transient under

all feasible strategies. Yet there exists a perceptive strategy under

which states 1 and 2 form a recurrent class: this is the strategy

u(k) = s(k).

The following algorithm will (in principle) determine whether or

not a given FPS is simple connected. It does so by seeking to discover

a strategy under which the state will never enter the connected class.

(11.10) Algorithm. Let C denote the unique connected class in the

state set of a given FPS. Label each nonempty subset H of S-C with

a binary digit denoted c(H); initially c(H)=0, for all HCS-C. Then

-85-

perform the following step, forrevery H CS-C, until the c(-) remain

invariant: set c(H)=l if, for every uU, either

iCHEyCYj £CPij (u) > 0

or

EyEy c({j : Pij(ylu) > 0, iH}) > 0

Then the FPS is simply connected iff c(H)+l, for all nonempty subsets

H of S-C.

(11.11) Proposition. If an FPS is simply connected, then there is an

integer k < 2# (S- C) such that the augmented system induced by M has a

simply connected underlying process whenever k . [M] < .
mmn

Proof: Define H(k) = {i : i(k) > 0} and assume that H(O)C S-C. Then

(11.10) implies the following: for any given values of H(k-l) and

u(k-l), either H(k) may contain elements in C, or there is a y(k) such

that H(k) will be distinct from H(0)... H(k-l). But there are 2#(S-C)_1

nonempty subsets of S-C, so H(2 #(SC)) may contain elements in C, i.e.

Prob{H (2#(S-C))fn is nonempty} > 0 under any feasible strategy. Thus,

internal states lying outside C are transient under any strategy adapted

to M, provided that . [M] > 2#(S-C) t
min -

When S-C is a large set, the enumeration of subsets of S-C is

computationally infeasible. A sufficient condition for simple

-86-

connectivity is now derived.

(11.12) Lemma. If, in the outcome of Algorithm (11.10), c(A)=l and

BD A,then c(B)=l.

(11.13) Theorem. An FPS is simply connected if its underlying process

is simply connected.

Proof: Simple connectivity of the underlying process implies c({i})=l,

V iS-C. Hence, by (11.12), c(H)=l for all nonempty subsets H of S-C.

In (11.10), this is the sufficient condition for simple connectivity.

t

-87-

12. Metrics

This section introduces metrics that are used to measure the "close-

ness" of approximations to the information vector. The continuity of

convex functions with respect to these metrics is then established.

a. Definition of the Metrics

(12.1) Definition. Consider We N, WER with w>O and rw>O. Then Trow

is a vector in HN having entries:

Tr *w
i 1

(TOW) i = w

Interpretation: This is merely Bayes' operator. For example, vr might

represent a priori probabilities of some random variable, s, on sample

space S. Given an event occurring with conditional probability wi pro-

vided that i is the true value of s, then wow is the vector of a

posteriori probabilities of random variable s.

(12.2) Definition. For ,f'HN, define

(a) c6[, '] = zizs (i-' i) ;

(b) A[7,f'] = sup{6[Tow, T'ow] : wERN, w>O);

(c) D[v,7] = 1 - min[{vi/7 : '.>0, iS} {'.I/7 : >0, iS}].

Remark: An interpretation of these functions is given in section 12b,

-88-

following the derivation of certain fundamental properties.

(12.3) Lemma. (a) <6[7r,,f'] = 1/2|j-'I'fj < A[f,w'] < 1;

(b) O <D[T,r'] < 1 .

(12.4) Lemma. A(ow, 'row] < A[,'], V,rr'cHN, wERN, w>O, 'w>O, 7r'w>O.

(12.5) Proposition. 6,A, and D are metrics on N.

Proof: A metric satisfies

(i) f[7,7'] > 0,

(ii) f[7,r'] = < -> = 7',

(iii) f[w,T'] = f[7',r],

(iv) f[7T,7'] +f[7',T"] > f[7T,Tr"].

(a) Since 1j is norm on RN, it defines a metric IJr-7' on N'. By

(12.3)(a), 6[-,'] is a metric on N

(b) Parts (i) and (ii) are trivial.

(iii) A[r,i'] = sup{6[ow,f'ow] : wR, w>O}

= sup{6 [f'OW, TOw] : WE£R w>0}

= A[' ,7r]

(iv) A[7,f'] + A[t',7T "]

> sup{6[Tow,fT'ow] + 6['ow, 7'"ow] : wRN, w>0}

> SUp{6[Tow,Tr"ow] : WERN, w>0}

= A[7T,7r"].

(c) Parts

(iii)

(iv)

-89-

(i) and (ii) are trivial.

D[r,7'] = D[7',7] by symmetry.

For 7,7' ,"HN, assume with no loss of generality

that Tf" > 0 and D[7r,r"] = 1 (/7'). If r

then D[f', '"] = 1 and D[7rr,r'] + D['T',r"] > 1 > D[7r,7"].

If i1 > O, then (1/TrI) = (71/7r)(TI /71") and (1-D[7,7'])

(l-D[r',7"]) < 1 - D[rr,7"], implying D[7r,7"] < D[7,n']

+ D[T7', r"] - D[7,'] D[7',Tr"] < D[r,Tr'] + D[r',r"]. t

(12.6) Theorem. (Evaluation of A). For r,'dTN, define:

c1 = min{i!/7T. : I > 0} ,

C2 = min{7i/7! : . >
0}.

Then

A['T,7'] =
1- C C

12

12

Proof: If {i : 7. > 0 ¢ {i : '! > }0 then A[n,''] = 1. To see this,
1 1

assume without loss of generality that there is an iS such that i > 0

and ! = 0. Then w 1 = 1 + (1 -)e} is a sequence in R for

which lim r 6[Towm, 7'ow] = 1, since (7row)i + 1 and (owm)i = 0
m + 1

By (12.3)(a), the sequence {wm} is supremal.

It follows from (12.5) that A[f,7] = O. The case 7.>0 <=-> 7i>0,
1 1

rr 7 ' remains. By (12.5), A[f,f'] > O. Assume without loss of gener-

ality that f > 0 and f' > O. Clearly 0 < c1 < 1 and 0 < c2 < 1; hence

-90-

-1
0 < C1 < C2 < X ·

Define:

A [T,r'] = sup{6[row,W'ow] : wE N , w>O, T'w/Trw= }

= SUplZi S wi . i. i) += u c : WRN , W >

T = 1, TO'w=

-1
which exists for all c < < c2 . Clearly

A[7r,'] = max{A [,T'] : c < < c2 }.

Now A[l,T'] may be expressed as the solution of a linear program

A [,rr'] =

max:

subject to:

a. = (-)+
1 i 1

1 1

Any optimal basic w that solves this linear program has at most two

non-zero entries; let these be denoted (i,j). Then

aw

TW = 1

F'w = 1

w> 0

where

-91-

AC[[,%,'] =

max: aiwi + aw
11 J3

subject to: w. > 0, w. > O0
1-- j -

iwi + j'wj

iWi

=1

=1

Assume without loss of generality that

(i,j) A = {(i,j) : ('i/ri) <1 1
(TrI /r) } .
J J

Now ai > 0 and a = 0; for otherwise one of the following must hold:

(i) ai = 0, a.

(ii) ai. > 0, a;

= 0 => A[T,7r'] = 0

> 0 => A[7,7r'] = aiwi + a w = (7i 3J i

+ (rj - !)w = 1 -
j J J

(iii) ai = 0, a > 0 => (i,j)~A.
1 J

Hence must be such that (7'/if.) < < (', /W.). The basic feasible
1 -- J J

solution with indices (i,j) is now seen to take the form:

1r -

I I

7r . r - Tr. r.

1 J J 1IT. - %.

- 'i1)w

1 = 0.

> 0Wi =
I

w =

J

-92-

and the corresponding expression for A [T,'] is

A [i,T[r'] = aw = aw.

(T. - i) (Ti - T.)

.Tr. - T r.1J 1

(TiFr Tr) (T! - Tj)

1 1 1

A[7,7'] = maxlAC[T,r'] : Cl < C < c2t'1 J2

= maxtA [ij[Tr'] : (i,j)cA, (i/ i)< C < (/~j)t
TV.TV + TV TV' - IT - -1 i1A[,' = max~A[TTi A' cl < [<

Since AC ij[T,'] is concave in , it achieves a unique maximum at

*= / Tr= . Thus

13

A[,'] = max(j)zA [T'T']t

-93-

- max(i,j) ACi, j) A

= /-Clt

b. Discussion

The metric 6 , also known as the Hajnal measure, has many applica-

tions in the theory of ergodic Markov chains; see Paz [1971]. Informally,

6[7r,w'] is the (minimal) "quantity" of probability that would have to

be "reassigned" in order to transform probability distribution into

probability distribution i' . Similarly, A[f,i'] is the minimal

quantity of conditional probability by which Ef and iT' might differ

if they were supplemented by identical observations (in the sense of

the interpretation following (12.1)). Consequently two information

vectors that are very close in the sense of 6 may be far apart in the

sense of A. This occurs because subsequent observations might cause

the two information vectors (representing similar a priori assumptions)

to be transformed into radically different conclusions.

(12.7) Example. Consider an FPS in which ff(O) = (1-c,), <<l,

1but it is desired to approximate 'r(O) by e = (1,0). In a 6 sense,

-94-

7(0) is "near" the approximation e ; this indicates that the uncondi-

tional expectation of a function of the initial state will not be signi-

ficantly affected by this approximation. Suppose, however, that every

input-output pair which subsequently evolves corresponds to transition

.1 0
probabilities . Given a sufficient number of input-output

0 .9

pairs of this form, the conditional initial state probability vector

1
tends to (0, 1); yet if the approximation f(0) e is used, then

1
the conditional initial state probability vector will remain e . Thus

an initial error, of 6-sense magnitude <<l, may lead to an eventual

error of 6-sense magnitude arbitrarily close to 1.

The distinction between 6 and A is also illuminated by an

examination of the topologies they induce on T : the topology induced

by 6 is continuous, but A causes i to be separated into faces of

the form IN(H) = {sIeI : Wi > 0 < > i£H} . These are exactly the

subsets on which a convex function over 51N is guaranteed to be con-

tinuous (with respect to the Euclidean metric; see Rockafellar [1970],

Chapter 10).

c. Some Properties of Metric D

Metric D is introduced mainly for the purpose of making continuity

of convex functions more explicit.

A[.,7T'] < D[l,f''] < 4A[L,T'].(12.8) Proposition.

Proof: Let cl,c2

-95-

be as in (12.6), so

A[7r,7'] =
1 - cc 2

1+ ClC2

D[7,T'] = 1 - min(cl,c2)

If c1 = 0 or c2 = 0 , then the result is trivial. However, if c1 0

and c2 O , then {i : ir. O = {i : i ! 0} and cl,c2 < 1,
2 ' 1 12-'

the entries of f and l' (respectively) sum to one. Now:

A[7r,r'] < 1 - / C < 1 - min(cl, c2) = D[r,7']

since

and

= 1 _ 1 -(A[(,T] 2
: 1 + A[, ']D[T,r'] < 1 -C 1C 2

4A[7r,i']

1 + 2A[T,7I'] + A2[I,7T']
< 4A[7,7r'].

(12.9) Lemma. Suppose ir,7'i . Then d [0O, 1] satisfies D[r,r'] < d

if a T,Tr £ such that:
if X ~~~ir,~~rr E~~~iN

7' = (l-d)7 + dr

i = (l-d)i' + d'

Proof: If d = 0, the proof is trivial. Assume d > 0 and let

= [' - (l-d)']/d, ' = [- (1-d)r']/d. Clearly I I = II' = 1. But

d > D[7r,'] <> l-d < (' /Tr.), ieS <=> > and similarly i' > 0.
_ - 1 1i

t

-96-

Thus ,w'£]N <> d > D[,7T']. t

(12.10) Corollary. Let = 7r(i), I Xi i , () >i 0,

7T(i), r' (i)s l
and Zi=l i = i=l i

Then:

Proof: Let d = supi i' D[r(i), r'(i)] and construct 7r(i,j), r'(i,j)IN

as in (12.9) so that:

r'(j) = (1-d)Tr(i) + d7(i,j),

T(i) = (1-d)'(j) + dr'(i,j).

Zi=l E j=1 .i %'.(ij) A

' = (1-d)r + dr

T = (1-d)r' + d'

a 00 i 1 1 i'is00
and I il = j XAiXr'(i,j) satisfy:

and, by (12.9), D[f,fr'] < d. t

d. Continuity of Convex Functions

(12.11) Definition. (a) V is the vector space of bounded real-

valued continuous functions on N

(b) II 11 is the "sup norm,"

vl = uPrN Iv(Tr) I

A

Then 1 =

D[ff,7'] sup,,i, DT~) r()

-97-

(12.12) Definition. For any vV, V£V denotes the White projection of

v, given by

v(E) = v(W) - v(e)

Remark: This projection generalizes a normalizing operation devised by

D.J. White [19631, for value functions having finite domain, to avoid

divergence in value iteration.

(12.13) Definition.

IIvllD = [supTs_1 v (r)] - [infi v(r)]

Interpretation: 1 '*1D is a norm on the subset V of V, where

N
V = {v : vV} = {vV : v(eN) = O}.

(12.14) Lemma. I V|| < I vl{D = I IIU < 211 vII

(12.15) Theorem. If vV is convex, then

iv(T) - v(') < D[r,rT'] ii VIID , r'7,STIN

Proof: Assume without loss of generality that v(wr) > v(7'). Following

(12.9), construct T' so that r = (1 - D[r,f'])W' + D[ff,1T']f' . Then

v(ET) - v(i') < (1 - D[T,I'])v(1r') + D[rr,fr']v(~1') - v(ff') = D[r,f']

[v(,') - v(_')] < D[r,r'] | vID . t

-98-

(12.16) Theorem. For every convex function vV, there is a quantity

j vilA < 411 vlD such that

IV(T) - V(') I < A[T,7'] II viA, 7T, r'eI N

Proof: Trivial, by (12.8) and (12.15).

-99-

13. Contraction Properities of T

If P is a stochastic matrix, and

P[P] = maxij£S 6[rowi[P], row.[P]] < 1,

then, for any T,'e ,

6[r, 'P] < [P] 6[f,7']

i.e. the transformation f[f] = P is a contraction mapping in .

One consequence of this property is that {Ipk approaches a unique limit

as k-*+ ; this is, of course, the vector of steady-state probabilities

for a Markov chain having transition probability matrix P.

This section generalizes the concept of contractions in state pro-

bability vectors to the information vector transition function T [defined

by (2.8) and (7.7)].

(13.1) Definition. An NxN substochastic matrix P is said to be subrec-

tangular if, for every i,j,i',j'eS,

P.. >0 and Pi,, > 0

> Pij > and Pi,'j >

-100-

(13.2) Definition. If P is a substochastic matrix and P # 0, then

(a) [P] = max{A[rowi[P]/(rowi[P]1), rowj[P]/(rowj[P]1)] :

rowi[P] # 0, rowj[P] 0}.

Also q[z] denotes a[P(z)].

(b) a[P] = max{D[row.i[P]/(rowi[P]1), rowj[P]/rowj[P]l)] :

rowi[P] 0, rowj[P] 0}.

Also a[z] denotes a[P(z)].

Remark: The evaluation of [P] or a[P] by enumeration requires N3

operations. This is comparable to the effort expended in multiplying two

NxN matrices.

(13.3) Proposition. (a) 0 < a[P] < 1 and 0 < a[P] < 1

substochastic matrices P 0.

(b) a[P] < 1 < > a[P] < 1 <=> P

gular.

(c) a[P] = 0 <--> a[P] = 0 <-->

for all

is subrectan-

P has rank 1.

The following lemma states awell-known property of the Hajnal measure.

(13.4) Lemma. If wR , and 7r,' N, then

Iw < []{maxi S i]- [wl < 6[fr']lmax.Ec Wi - minicS i]}

-101-

Proof: Assume without loss of generality that %Tw - 'w > 0. Now

Tw- 'w = i (S-i ')w

i(i)w + i-

iS i i i i£S i i) i

< iES (i - 't i) [maxieS w.]+ Z (i --7i i)

[min S wi]

= 6[L,r'][maxics w i] - 6[r,f'r'][minicS wi]isS 1 icS t

Remark: (13.4) may be viewed as a stronger version of (12.15), where

v is constrained to be linear.

Using (13.4), it is possible to demonstrate (13.5).

(13.5) Theorem. (Contraction property of T). If l,n'EIN

EZ+ (n,n') then

A[T(n,z), T(n' ,z) < a z] [nn' l

Proof: Construct row vectors { i} having elements

and

P(ij (z)/j, S P i j (z) ,

i

O,

if iI(z)

otherwiseJ

-102-

and define:

W = {w6R : w > 0, nP(zw > 0, n'P(z)w > 01

W = {wER : w > 0, w > 0, n'w > 01

I(z,w) ={i : rowi[P(z)]w> 01
1

A

Since 1, the N-vector of one's, is an element of each, W and W are non-

empty. Also, if zZ +(n,n') as required above, and woW, then I(z,w) is

nonempty. Finally a(z) = maxiiI(z){A[i, i]} by (13.2)(a). Now

A[T(n,z), T(n', z)]

< SUPWW i jCS

= SUPwcmaXJZS

= SUp wwmaXjCS

iEI(z,w) niPij (z)wj

nP (z)w

IEj J
EI J 3 wiCI(Zw) ij (z)W;

nP(z)W

E iI (Z,W)

iI(z ,w)'P(z)w ;)+

nWP (Z) W

iCI(z,w)ni (z)w j \ }

n ' P(z)w

I TJqiPij (- Wj

InP(z)w

- riP. ()w 1 \ £P i i1 sEJ ~i jj _ S w
-'P(z)w (zCw. ii])

EjeS TIi Pij , 1j
- sUPwemaXcS ViEI (z,wT) P (z)w

iEST' P (z)w j £JPij () Wz)w
n'P(z)w / SPij (z)w

js~~iij- ~ I j/j-~

-103-

Application of (13.4) now yields

A[T(n, z), T(p', z)] \

rItP (zw. E. izsiPi (Z)W. \ +
SUpWanJCS LEI(ZW)-P (z)w -'P(z)w

i - tW. ii i '

- W W iI (Z) jJ W)
njw n'w

i ii'
,i'EI(Z,W) EjS wi i /

< A[n,n'] · o[z],

where the last inequality follows from (12.4). -F

-104-

(13.6) Corollary. a[z z'] < []ea[z'].

Proof: By (13.2), a[z z'] = maxi,i'EI(z z') {A[T(e z z'), T(e , z z')]}

But, following (13.5),

A[T(e , z z'),T(e, z z')]

= A[T(T(e , z), z'), T(T(e , z), z')]

< a[z']A[T(ei, z), T(e1 , z)]

< [z'][z]A[e,e]

= c[z']Cz]. t

The corresponding result for a[z] is considerably weaker.

(13.7) Proposition. For q, 'l , zzZ+(n,m'), D[T(l7,z), T(',z)] < a[z].
N ' ' __ -

Ti(e P(z)l)
Proof: T(1T,z) = XiT(e,z) where X = TP (z) 1

(12.10)

I.completes the proof.

Remark: This is not a contraction.

(13.8) Corollary. a[z z'] < a[z'].

-105-

14. Detectability

a. Preview

The intuitive notion of detectability was introduced in Section 5d;

essentially, a detectable FPS has the property that the information

vector is arbitrarily closely approximated on the basis of the memory

state alone, if the memory set is sufficiently large. The extent to

which an information vector depends on input-output pairs not contained

in the memory state is given by a[z (k)], the contraction induced on

the information vector by the input-output pairs contained in the

memory state. Recall that by (13.3)(b), a[z (k)] < 1 iff P(z (k)) is

subrectangular.

Four types of detectability will be defined; these are:

(i) strong subrectangularity (SSR), a condition under which every

transition probability matrix is subrectangular.

(ii) weak subrectangularity (WSR), a condition under which every

transition has positive probability of generating an input-

output pair to which a subrectangular transition probability

matrix corresponds.

(iii) strong detectability (SDT), a condition under which there exists

a memory set whose essential elements each correspond to sub-

rectangular transition probability matrices.

(iv) weak detectability (WDT), a condition under which the memory

state at any given time has positive probability of corresponding

to a subrectangular transition probability matrix.

-106-

These definitions differ in the type of approximation closeness implied,

and in the complexity of procedures which establish this closeness.

The following implications are trivially verified:

WSR

SSR WDT
11_->

SDT

Each type of detectability will be investigated in turn. It will

be shown, for each, that a finite-memory -optimal observer may be con-

structed, and how the estimation error and memory size interrelate.

b. Strong Subrectangularity

(14.1) Definition.

rectangularity (SSR)

(14.2) Definition.

An FPS satisfies the condition of strong sub-

if P(z) is subrectangular, VzCZ.

For an FPS satisfying SSR, define

a = max {a[z]}

T = (-loga)/(log#Z)

Remark: The logarithms may be taken to any desired base.

Remark: By (14.1), SSR > a<1.

-107-

Remark: The definitions of T given here and later in this section

are consistent with (1.2).

(14.3) Proposition. If an FPS satisfies SSR then, for any mc<0,c>,

kE<O,m>

[z(k-m;k)] < a

Proof: By (13.6), a[z(k-m; k)] < a[z(k-m; k+l-m)] a[z(k+l-m; k+2-m)] ...

t

(14.4) Theorem. Consider an FPS satisfying SSR, .along with the memory

set M = {Z }. Let : M -+ be a mapping satisfying:

(z)P(z) 0,

T(z) = (O),

tz -nz+

z (m - l) nz+

Define i(z) = T(T(z),z). Then

A[n(k), (z (k))] < a , kc<0 ,>

Proof: If k<m , then (k) = (zM (k)). But if k > m, then

zM(k) = z(k-m, k)). But if k > m, then z M(k) = z(k-m, k) and, by (14.3)

and (13.5),

ot[z(k-1; k)] < am

-108-

A[n (k) (z M(k))]

< A[T(n(k-m), z(k-m; k)),T(7r (z (k)), z(k-m; k))]

< A [n (k-m), (zM(k)) am

< am t

Interpretation: There is a finite-memory observer requiring no more

than (#Z)m essential memory states which generates estimates of the

information vector lying within am of its true value (in a A sense;

(12.3)(a) determines and Ij--sense bounds on this error).

Generalization: The approximate relationship

m and maximum error is:

between essential memory

-T
£ = m

m ~ z-l/Tm= C (14.5)

However, the strict bounds are:

< (m/#Z)

m < (C/a)lT (14.6)

Specifically, this means that no more than (/a) essential memory

states are required to maintain a maximum error less than , and that

m essential memory states can achieve an error bounded above by (m/#Z)T.

-109-

c. Weak Subrectangularity

(14.7) Definition. An FPS satisfies the condition of weak subrec-

tangularity (WSR) if, for every iS, uU, there is a yY such that

P(ylu) is subrectangular and eiP(ylu) 0.

(14.8) Definition. For a FPS satisfying WSR, define

a = maxi£smaxuu yY Zj S Pij (yu)a[(u,y)]

T = (-loga) / (log#Z)

Remark: By (14.7), WSR --> a < 1.

(14.9) Proposition. If an FPS satisfies WSR, then for any m<0,->

ke<O,m>, scIN , and any strategy y

E {[n(k),T(7,z(k-m;k))]} < am
Y

Proof: (By induction) If m=O the result is trivial. But

E {a[z(k-m; k)]

= E{a[z(k-m; k-l)] E {[z(k-l; k)]Iz(k-m; k-l)}}

- E{a[z(k-m, k-l)] E {a[z(k-l; k)]
EY - Y

Iz(k-m; k-l), s(k-1), u(k-l)}

-110-

= E {a[z(k-m; k-l)] E {c[z(k-1; k)]
Y Y -

I z(k-m; k-l), s(k-1), u(k-1)}

= E {la[z(k-m, k-l)]

{zyCY EjsS Ps(k-l)j(ylu(k-l))o[(u(k-1)y)]}}

< E {a[z(k-m; k-l)] * a}
- Y

= a * E{a[z(k-(m-1); k)]}
Y

(14.10) Theorem. Consider an FPS satisfying WSR, along with the

t

memory set M = {zM nz+ }. Let ff : M + be a mapping satisfying:

((z)P(z) O,

((Z) = (0),

zzMnz+ i

z (m-l) *Z +

Define j(z) = T(T(z), z), then for any strategy y,

E {A[n(k), (zm(k))]} < m 7 -O

Proof: If k<m, then zm(k)EM-1 , and i(k) = n(k). But if k>m, then

Q(zm) = m, and, using (13.6) and (14.3), E {A[n(k), (zim(k))]}

= E {A[T(n(k-m), zm (k)), T(iT(zm (k)), zm (k))]} < E {a[z (k)] < a.

-111-

Interpretation: There is a finite-memory observer requiring (Z) m

essential memory states which generates estimates of the information

vector lying on the average within a of its true value (in a-.A sense).

Generalization: The approximate relationship between essential memory

m and mean error is:

-T

m =- (14.11)

However, the strict bounds are

< (m/#Z)

m < (C/a) l/T (14.12)

Specifically, this means that no more than (X/a) essential memory

states are required to maintain a mean error below , and that m

essential memory states achieve a mean error bounded above by

(m/#z) .

d. Strong Detectability

(14.13) Definition. An FPS satisfies the condition of strong detec-

ability (SDT) if there exists an integer such that P(z) is subrec-

tanguar, Z +
tangular, V zeZzZ .

-112-

(14.14) Definition. For an FPS satisfying SDT, define

k = max k + {a[]}
zZ Z

= min{k : k<l}

a=

T = (-log a)/(9log #Z)

Remark: By (14.13), SDT > a<1.

Remark: If an FPS satisfies SDT, then definitions (14.2) and (14.14)

are consistent, since =1.

(14.15) Proposition. If an FPS satisfies SDT, then for any m<O,o>,

kc<0,m>,

aEz(k-m; k)] < a

Proof: By (13.7), a[z(k-m; k)] < a[z(k-m; k-((m+Z)-l]9)]

c[z(k-((m-Q)-l)Q; k-((m+Q)-z)Q] · ... · c[z(k-Z; k)] < I t

(14.16) Theorem. Consider an FPS satisfying SDT, along with the of

memory set M = {Z nz }. Let T : M be a mapping satisfying:

-113-

Ir(z)P(z) 0,

7r(z) = r(O),

Define n(z) = T(7(z), z)

z z(m+-l) *n z+

. Then A[In(k), (zm(k))] < a

Proof: If k<m, then zm(k)M m - 1 , and (k) = n(k). But if k > m,

then (zm(k)) = m, and, using (13.6) and (14.15), A[n(k), n(k))]

= A[T(n(k-m) , zm(k)), T(Tr(zm(k)), zm(k))] < [z (k)] < e aY t

Interpretation: There is a finite-memory observer, requiring no more

than (#Z)m essential memory states which generates estimates of the

information vector lying within a of its true value (in a A

sense).

Generalization: The approximate relationship between essential memory

m and maximum error is

- -T
= m

m = s-lit

However, the strict bounds are :

< (m/(#Z))

(14.17)

T

m < (/)-l/T (14.18)

Specifically, this means that no more than (/a)-1 /T essential

memory states are required to maintain a maximum error below , and

that m essential memory states can achieve a maximum error bounded

-T
above by (m/(#Z)) .

e. Weak Detectability

(14.19) Definition. If k is an integer and : k* + U, then for

any z = (u,Y)(2,Y 2) ... (Ukyk)sZk define:

i f u+ 1
= [l Y1) ... (u,yj)], j< k >

otherwise

Interpretation: o[z,f] = 1 if z(O;k) = z can evolve when inputs are

selected according to the rule u(k) = [z(O;k)]. Thus, if 7T(0) is the

initial state probability vector, and inputs are selected according ,

then the probability distribution for random variable z(O;k) is:

Prob{z(0; k) = z} = [z,](r(O)P(z)l)

(14.20) Definition.

k iS max k FZ cY[z,](eiP(z)l)[z]

#bU~z)..z sk-

-114-

-115-

ak = maxi S max (zk*)

¢£U

z _k z, (e P(z)l)a[z]z~zk I

Interpretation: aR is the largest possible value of

E¥{a[z(k-k; k)]} where y is a feasible strategy. ag likewise is the

expectation of a[z(k-,; k)].

(14.21) Definition. An FPS satisfies the condition of weak detecta-

bility (WDT) if there exists an integer g such that a O < 1.

(14.22) Definition. For an FPS satisfying WDT, define

·* = min{, a<l}

* a = a-

·* a-

*T = (-log)/(9log #Z)

Remark: By (14.21), a<l.

Remark: If an FPS satisfies WSR, then definitions (14.8) and (14.22)

are consistent. If an FPS satisfies SDT then < and if =

then a < a.

-116-

(14.23) Proposition. If an FPS satisfies WDT, then for any i<O,o>,

k<0O,m>, rTciN , and any feasible strategy y,

Ey{a[z(k-m; k)]} < a

Proof: Consider atransformed system in which the input is a mapping

k : Z(l) + U, specified at intervals of 2 time units, each of

which describes u(k), u(k+l), ..., u(k+,-l) as functions of

e, z(k; k+l), z(k, k+2), ... z(k, k+-l) respectively. The output at

time k is z(k-Q; k). This transformed system satisfies WSR; the

desired result follows from (14.9). t

(14.24) Theorem. Consider an FPS satisfying WDT along with the memory

set M = {Zm Z} . Let : M + be a mapping satisfying:

(m-1)*rr(z)(z) / 0, sZ£nZ ZTr(Z) = r(O), zZ nz

Define i(z) = T(fr(z), z). Then, for any feasible strategy y,

E¥ {A[n(k), (z (k))], <(a

Proof: If k<m, then zm(k)£Z (m -l) * and q(k) = j(z (k)). But if

k > m, then zm(k)sZm and using (13.6) and (14.23),

-117-

Ey{A[n(k), n(zm (k))]} = Ey{A[T(n(k-m), zm (k)), T(7r(zm(k)), zm(k)]}

< E{a[zm(k)]} < 'm7 t
-EY

Interpretation: There is a finite-memory observer, requiring at most

(#Z)m essential memory states, which generates estimates of the infor-

mation vector lying on the average within a of its true value

(in a A sense).

Generalizations: The approximate relationship between essential

memory m and mean error is:

£ =m

m= £ (14.25)

However, the strict bounds are:

-T
< (m/#Z)

-<(-EO l1/T (14.26)m < (/a)

Specifically, this means that no more than (£/a) essential memory

states are required to maintain a mean error below , and that m

essential memory states can achieve a mean error bounded above by

(m/#Z) .

-118-

15. Decomposition of a Free FPS into

Detectable Parts

This section is concerned with FPS's that are not detectable. An

example of such a system was given in Section 5a. An FPS fails to be

detectable when some function of the (internal or augmented) state may

be recursively updated, but is never identified exactly. This function

depends on the input process, and for this reason, the decomposition

of an FPS into detectable parts is meaningful only in the case of a

free FPS.

(15.1) Definition. (a) Ci(k) = {j : Pij(z(O;k)) >O} C S

(b) C(k) = {Ci(k) : isS} - {0}

(c) p(k) = #C(k).

Interpretation. Ci(k) is the set of possible present internal states

given that s(O)=i. C(k) is the set of possible state configurations

which may result from specification of the initial state. In a

detectable system, (k) +l.

(15.2) Proposition. (a) Ci,(k+l) = {j : Pij(y(k+l)|u(k))>O,
13

isEC, (k) }

-119-

(b) C(k+l) = {{j : Pij(y(k+l) u(k))>O, iC',

C'sC(k)} - {0}

(c) i(k+1) < (k).

Consider a free connected FPS, i.e. one whose underlying process

has an entirely recurrent state set. If pairs [C(k), s(k)]

are considered in place of the internal state, recurrent chains of

such pairs may be determined. By (15.2)(c), (k) is constant within

each recurrent chain. If every recurrent chain is such that p(k)=l,

then the system satisfies WDT, because if C(k) is at any time reset

to {{i} : i(k) > O}, it will tend to a value containing one element,

indicating that the word of intervening input-output pairs had a

subrectangular transition probability matrix. On the other hand, if

p(k) remains greater than one for all time, then subrectangular input-

output words cannot occur.

If the free connected FPS is such that (k) need not tend to one,

then the process can be described as one of at most N detectable models,

which may be asymptotically identified. This decomposition is effected

by allowing p(k) to reach its minimal value, and by then assuming that

the current state lies in a particular element of C(k). This determines

the element of C(k) containing the current state at all times, and the

likelihood of a particular model can be updated periodically. Since

only one model is correct, its likelihood will approach one - unless

-120-

some models are identical, in which case it doesn't matter which is

identified.

Note that, in order to determine whether a free connected FPS

is detectable, one determines whether the process {{i : i(k)>O}}

(which equals C(k) if (k)=l) is simply connected in 2 . This

illustrates a duality between the notions of connectivity and detecta-

bility.

The decomposition procedure is readily extended to general free

FPS's. Transient states may be ignored since information vector entries

corresponding to transient states have expectation that vanishes

geometrically as the number of available (most recent) input-output

pairs increases, and contemplation of an infinite past eliminates

transient states at time zero. If the free FPS has more than one

recurrent class, then the test for detectability is performed on the

system restricted to one recurrent class at a time; certain recurrent

classes may be identified exactly on the basis of a particular output

configuration (that eventually occurs); others may be identified on the

basis of the infinite past; still others may be identical from an input-

output point of view.

Since the decomposition depends crucially on a classification of

states as transient or recurrent, it cannot be extended to FPS's with

inputs; in practical applications, though, it often suffices to consider

the free system under a particular adapted strategy.

-121-

16. Stochastic Realization of a Free FPS

The stochastic realization problem includes that of deciding

whether or not a given free FPS is equivalent to a state-calculable

one. Such a property would be desirable because it would indicate

that after a sufficiently long initial identification procedure, the

present state could be arbitrarily closely known, and the optimal

strategy in the steady-state could be computed by assuming that the

internal state was known exactly. This property would be equivalent

to the following condition: {n(k)} has a finite number of cluster

points in IN with probability one. It will be suggested here that

such is generally not the case.

(16.1) Theorem. For a given free, connected, strongly subrectangular,

FPS in minimal state form (Paz [1971]), the following statements are

equivalent:

(a) The FPS is equivalent to one that is state calculable.

(b) The process {z(k-N(N-1)/2; k)} is a Markov chain.

Proof: Assume first that every matrix of the form P(z), zZ N (N 1)/ 2

has rank zero or rank one. Then (a) and (b) trivially follow.

Now assume that there is a zZ N (N - 1) / 2 such that P(z) has rank

greater then one. Then there is a sZ+ and i, jS such that

-122-

z = Z'Z Z '

P () > 0

Pjj() >

and, naturally, P(z) has rank greater than one, and it is subrectangular

(by SSR). By Perron's theorem, P(2) has a left eigenvector ¶

corresponding to the eigenvalue of largest magnitude, and satisfying

~ > 0, jcJ(z). Consider the set {T(s, ()k) : k<l,oo>}. Clearly

this set either contains exactly one element or else it consists of an

infinite number of distinct elements. Using the word z selected above,

define fi(z) = T(r, z"). For any zN(N- Z)/ such that P(z) has

rank one, define (= T(e ,z) for any icI(z).

Now, if it is true that, for any z 1, z 2 Z ((NN)/ 2) nz,

T((z), z2) = (z 2)

then (a) and (b) follow trivially. On the other hand if

T(/(12),z) 2 (z2)

for some z , zZ (N(Nl)/) n Z, then an infinite number of distinct

possible information vector values exist (by decomposing z in the

manner described above), and (a) and (b) are both false. t

An algorithm based on the proof of (16.1) decides whether or not

a free FPS is equivalent to one that is state-calculable. A similar

-123-

algorithm will perform the same test for an arbitrary FPS. The FPS is

first decomposed into connected detectable components, following the

analysis in Section 15. The possible information vector values are

then enumerated. However, whenever an information vector value results

from a transition having subrectangular probability matrix of rank

greater than one, this information vector must coincide with the Perron

eigenvector for that transition probability matrix. Since the

enumerations are performed on extremely large sets, this decision

algorithm is computationally infeasible in all but the trivial cases.

At the same time, it should be clear that in very few cases will the

FPS actually be equivalent to a state-calculable system.

A more practical approach to stochastic realization is to appro-

ximate the FPS by a system whose state is the memory state induced by

a large memory set. This FPS is state-calculable because memory states

may be recursively computed, and the closeness of the approximation may

be established by detectability arguments.

-124-

CHAPTER III

STRUCTURE OF OPTIMAL CONTROLLERS

17. Finite-horizon Problems

The finite-horizon partially-observable Markov decision problem

was solved by Sondik [1971]. His results are reviewed here, in slightly

modified form.

Sondik showed that every finite-horizon problemhas an optimal

finite-memory solution. This may be demonstrated in a number of ways.

One of these is to argue that the information vector assumes values of

the form {T(rr(O), z) : (Z+((0)Y) k*Z }. Since this is a finite set,

the problem may be restated as a finite-horizon Markov decision pro-

blem with perfect state observation, where the memory state z(O; k)

is regarded as the state variable. The optimal policy will then deter-

mine the input on the basis of this memory state. A dual argument

states that at any time k, the remaining strategy (given the present

time and information state) can be expressed as a policy

[k n(k)] : Z(k- k) + U. Since there are only a finite number of

these, the optimal input may be computed by enumeration. A computa-

tional procedure which is based on the latter argument is now described.

Consider a modification of the finite-horizon FPS control problem

in which the information vector is regarded as a perfectly-observed

state variable. The expected incremental reward at time k takes the

form:

E{r(k) I (k), u(k)} = n(k)q(u(k)) (17.1)

-125-

The problem, consequently, is to maximize the performance index

E{Ek=ob(k) (k)q(u(k))}. Application of Bellman's Principle of

Optimality yields

k,K
v (7) =O

(17.2)

where v k is a real-valued function on "i representing the value of

being in a particular information state at time k for a problem with

horizon K. For ease of notation, extend the domain of vk' K to

by defining

(sl)vkK[/(Wl)], if

k, K] = 1 (17.3)

O, if =

Then (17.2) becomes

vk-1,K[f] = maxu u{b(k)Tq() + yyv,K ['rP(y u) I

(17.4)
K,K
v [1] =0

Now define finite subsets of RN:

-126-

Wk- 1,K = {q(u) + ZySY P(yju)w : usU, w Wk' K, ycY}}

(17.5)

WKK = {o}

Eq. (17.4) may now be expressed as

vk'K[T] = max{w : W k 'K } (17.6)kaxKWkKj (17.6)

Thus, each function vkK is convex and piecewise-linear with a finite

number of faces. Each region of %L throughout which vkK is linear,

is a region where the strategy-to-go is constant; thus the elements of

Wk,K may be viewed as controller states. Specifically, if

v [kK] = and w = q(u) + Z y P(ylu)W , then an optimal controller

faced with information vector n at time k selects input and is

k+l ,Kassured that v '[(k+l)] = (k+l)y(k+).y(k+l)'

The size of each set wK may be reduced by eliminating elements

that correspond to memory states which can never be reached. Specifi-

cally, if wowk'K is such that min {vk K [tr] - w} > 0, then w can

be eliminated from k' K without loss of generality. This test is

effected through the solution of a simple linear program.

Of course, this solution procedure is not necessarily applicable

to infinite-horizon problems, because the size of W 'K can increase

without bound as K. Drake [1962, 1968] and Sondik [1971] have noted

that, in certain problems, W K converges (except for a constant gain)

in a finite number of iterations; a finite-memory realization of the

-127-

infinite-horizon optimal controller is thus obtained. Although it is

true, in the infinite-horizon problem, that existence of a finite-

memory realization of the optimal controller implies that the value

function is piecewise-linear with a finite number of faces, this does

not in turn imply that the number of faces in the approximations v ,K

is bounded. Thus #W 'K may diverge as K +o, although, in the limit,

a piecewise-linear relative value function with a finite number of

faces is approached. Furthermore, many of the faces in WOK may

correspond to transient memory states. In the Machine Maintenance

and Repair Problem, the optimal value function is characterized by

well over thirty faces, only eight of which are required to realize an

optimal controller.

-128-

18. State-Observable Problems

A state-observable FPS is, of course, equivalent to a Markov

decision process. This section reviews known methods for its solution;

additional references are given in Section 4. Since y(k) uniquely

determines s(k), Pij (u) will denote ZyEY Pij(ylu).

The finite-horizon problem is solved by computing value functions:

vk'K(i) = max UU{b(k)qi(u) + jS Pij (u)v (j)

(18.1)

KK
v (i) = 0

The optimal decision at time k-l, for a system in state i, is the input

u which maximizes (18.1). Thus the optimal strategy selects inputs on

the basis of current state and time alone.

If b(k) = k then v = vK-k where

m fq P vm-1
vO(i) max EU{q i(u) + SjES Pij (u)v (j)}

(18.2)
0

v0 (i) = 0

m
As m00, v0 approaches a limit v* satisfying:

v*(i) = max uU{qi (u) + j S Pij (u)v*(j) (18.3)

-129-

Thus the optimal strategy in the infinite-horizon discounted problem

determines inputs on the basis of the present state alone.

Eq. (18.3) can be solved by computing the sequence {vm} accord-

ing to (18.2). This computational procedure is called value iteration.

If is large (i.e. near unity), then computational instability

may occur. This difficulty is avoided by defining:

g = (l-8)v*(N)

(18.4)

v*(i) = v*(i) - v*(N)

Eq. (18.3) now becomes

v*(i) = maxu U {qi(u) + Zj s Pij(u)0*()} - g (18.5)

v*(N) = 0

The function * is called a relative value function, and g* is called

the average gain. This follows from the decomposition:

v*(i)= v*(i) + = *(i) + k g

Eq.(18.5) might be solved by White's algorithm

M(i= maxUEU qi(u) + jS Pij (U)V -l(j)

^m m-1 -1 (18.6)v 0 (i) : (i) - V (N)

vo(i) 0 O

-130-

On the basis of v and v , MacQueen bounds on g may be computed:

-~m .M ^v~(i
minicS [Vo(i) - O(i)] < g <maxiS[v(i) - M(i)] (18.7)

Eq (18.5) may also be regarded as a linear program:

min: g

subject to: v*(i) > qi(u) + jS Pij(U)v*(j) - g, iS, uU

v*(N) = 0 (18.8)

As it turns out, an optimal basic solution will satisfy (18.8) with

strict equality for exactly one input corresponding to each state.

Thus, an optimal policy is obtained.

Now consider the infinite-horizon undiscounted problem. When

B=l, {vO } is not guaranteed to remain bounded; and even if it remains

bounded, it is not guaranteed to converge. Boundedness occurs if the

average gain does not depend on the initial state, and convergence

occurs if the optimal system if aperiodic.

Assume first that {mO} is bounded. Then difficulties relating-

to convergence are avoided by defining the problem as a limit of dis-

counted problems as B+l. Thus a solution to the linear program

min: g

subject to: v*(i) > qi(u) + JES Pij (u)*(j) - g,

iES, uU
v (N) = (18.9)

-131-

is sought. Computationally, convergence is assured by Schweitzer's

(damped value-iteration) algorithm

vml(i) = maXUCU{qi(U) + ZjS Pij (u)V (j)

m(i) -m-l (i) -v (N)] + (1-)-li) (18.10)

v (i) = 0, 0 < < 1

Odoni bounds on g may be computed

- Am
miniS[vm (i) - vm(i)] < g < maxics[v (i) - mv (i)] (18.11)

Simple connectivity is a sufficient condition for {vm} to be

bounded. A general Markov decision problem may be solved by decom-

posing it into simply connected subproblems, as described below:

(18.12) Algorithm (Solution of a Markov decision problem)

Step 1. Let S denote the "remaining region of S" and set S=S.

Let U(i) denote the admissible input set when the system is known to

be in state i, and set U(i) = U, iS. Also set (i) = Qin' iS.

Step 2. Determine a connected class C in (S,U), the Markov

decision process with state set restricted to S and input set

restricted to U(i) when the system is in state i. Since S is nonempty,

such a connected class exists.

Step 3. Solve the Markov decision problem within (C,U) to obtain

a gain g. Set (i) = g, VieC.

-132-

Step 4. Set S = S-C. For every triplet ieS, uEU(i), jES-S,

that satisfies Pij(u)> 0, set U(i) = U(i)-{u}. If U(i) = 0, then

set S = S-{i} . Repeat this elimination process until S, {U(i) : iES}

have been minimized. If S is nonempty, then return to step 2.

Step 5. Solve the system of equations:

g(i) = max(g(i), max uU[jcs Pij(u)g(j)])

This may be done by value iteration:

gm(i) = max((i), maXuc [Zjs P (ug m-(j)

g (i) =(i)

or by solving the linear program:

min: e

subject: g(i) > jS Pij (u)g(j) - e

g(i) > (i)

Step 6. Set U(i) = {u : g(i) = jS Pij (u)g(j)}, and

qi (u) = i(u) - g(i).

Now solve the Markov decision problem with incremental rewards

mi(u) and admissible input set U(i) while the system is in state i.

-133-

Since the average gain has been substracted from the incremental

rewards, the transformed system has gain zero, and within any class

of states for which g(i) is the same, the correct relative values

will be obtained.

Remark: The policy determined in Step 5 is gain-optimal. Step 6

is necessary only if bias optimality is desired as well.

-134-

19. Existence of a Solution in General

Infinite-horizon Problems

This section is concerned withwell-posedness of optimization

problems formulated in Chapter I. Its purpose is to establish con-

ditions under which an optimal strategy exists. In the present

analysis, the optimal strategy need not satisfy a finite-memory con-

straint.

A sufficient condition+ for existence of an optimal strategy is

that there exist a solution to the infinite dimensional linear program:

v*(ff) = max u u{q(u) + Zy (YrP(y(u)l) v*(T(I,u,y))} - g

(19.1)

If the relative value function v* exists, then there is a function ~*

which describes the input maximizing (19.1) as a function of r. If

4* is used to select inputs on the basis of the information vector,

then the optimal gain g* will be achieved. ~* will be called an

optimal feasible policy.

(19.2) Definition. An infinite-horizon FPS control problem is called

regular if it is either discounted or both simply connected and detec-

detectable.

+The straightforward proof parallels well-known arguments for the state-
observable case; see Kushner [1971].

-135-

(19.3) Theorem. Suppose either (a) that <1 or (b) that the FPS

satisfies conditions of connectivity and (weak) detectability.

If connectivity holds, then let p and p be as in (11.5); otherwise

define R = p = 1. If weak detectability holds, then let R and a

be as in (14.22); otherwise define - = a = 1. Finally, define

)/(l-) if <1l

L(B,) = Zk=0L(3 Ri) = SRi~k = if (19.4)
if =1 /

and

= L(.,Rip+R)Q (19.5)

1-B(~p +8) (l-p) (1-a)

Then there exists a solution v* to (19.1) having the following

properties:

(i) v* is continuous throughout

(ii) v* is convex

i v*11 D < Q

Remark. If =1, then = (kp+k)Q
(l-P) (l-a)

Heuristic Justification: Only the undiscounted (=), strongly con-

nected (p = 1), weakly subrectangular (=1) is considered here.

-136-

A solution v* = lim v is constructed by damped value
m-oo

iteration (18.10) where, following (17.3),

m+l m
v (T) = 1/2 (+1/2 maxU U {lq(u) + yY vm (rP(ylu))}

v0(T) = 0 (19.6)

Then

M m k m\ k
v = k0 (1/2) k v (19.7)

where v is the finite-horizon value function when k decisions

k
remain. Each v0 is convex by an arguments given in Section 17.

It is now demonstrated (by induction) that | vII D < . Since

v is convex, it achieves a maximum at some vertex of T . Let j be

the state that maximizes v (ei) and let u* be the input that maximizes

{ejq(u*) + y Y vo -l(eJP(ylu*))}, i.e. j is the most desirable initial

state for an m-transition problem and u* is the first optimal input

for such a problem when the initial state is known to be j. Then,

v0 (7) > q(u*) + Y v 1 (iP(ylu*)), VISIN.

Now:

m m
v (e - v (r))

< {eJq(u*) + syVo (e P(ylu*))}

- {7q (u*) + y vm-1 (7rP(ylu*))}yEY 0

/I

-137-

Qmax - Qmin
(,-1T(e ,u,))

EyEy[(eJP(ylu*)1) v0 (T(eJ ,u*,Y))

- (P (y u*))) vo- (T (r,u*,y))]

= Q + 7Tj Zy (eJP(ylu*)l)yY
[v0 (T(e ,u*,y)) - vO(T(,u*,y))

+ (1-Trj) y [(eJP(ylu*)l) v-1(T(eJ,u*,y)))j YCY V0

/ (-Tr .ej)

(1-Trj)

)P(ylu*)l vO (T (, u*,y))]

< Q i+ TyY (eJP (y u*) 1) a [(u*,y)] II v0- 1 11D + (1-j) v | D

< Q + [1-(l- a)]ll v - ID

But, for any 76lN,

m+l
v (r) = maxu U {7q(u) + Zyy v(7r(ylu)) < Qmax + m(ej)UEU yY M7pyu)<ma

and, letting be the input for which Z SiPi (y1u) < -p,
ics F yi i

vm+l(T) > q(u) + y y (rP(ylu))

-> Qmin + O(0y 7TP(y|))

> Q.in + v(ej) - Q - [-(l-p)(l-a)] I Vo-1II D

(19.10)

(19.8)

(19.9)

-138-

where (19.8) was used to obtain the last inequality. Thus

IVO IID < 2Q + [l-(l-p)(.1-a)] V (19.11)
0 D -U D(

Since I v D 0 = and Iv 1 I D < Q, it follows that

IIVOD Q.2 ' , mE<O,>
(l-p) (1-a)

Hence, by (19.6),

I V D ' 'I < 2Q ' mE<0,oo> (19.12)
(l-p) (1-a)

The damped value-iteration, (19.6), assures that, if {vm} has any

(pointwise) limit, then it converges uniformly to that limit; the sequence

{m} has a limit because it is convex and bounded; thus v* exists and is a

solution to (19.1). v* is convex and bounded, by convexity and boundedness

of {vm}.

Continuity of v* is most readily established in strongly subrec-

tangular systems. Here,

{rq(u) + y y(rP(ylu)l)v*(T(7T,u,y))}

is continuous in v for each uU, because {T(r,u,y) : erg} lies in

the interior of a face of IN (see Figure 5-1) and a convex function

is always continuous over a relatively open subset of its domain. Thus

the right-hand side of (19.1) is continuous, and v* is continuous.

-139-

Proof: The complete proof of (19.3) is given in Appendix A.

(19.13) Corollary. Let e be the information vector of maximal

value, in a connected, detectable, FPS control problem. Let kp,P

be such that, for any TEIN , there exists an input word uU 0 satis-

fying:

Y'iES 91 i ij * ,,) < P

Then || vlD < <2, where 2 is given by (19.5).

Interpretation: | v*11D may be bounded on the basis of reachability

of the most valuable state alone. In a network of queues, the most

valuable state is readily identified without solving the problem; (it

is the state in which all queues are empty). In this manner, a tighter

boundon IIv*i1D is obtained.

(19.14) Theorem. Consider a regular FPS control problem. If the

system is simply connected, then let C'aC be numbers such that the

internal state enters the connected class with probability 1-aC or more

after C transitions and let be as in (19.3) for the system restricted

to C; otherwise define C,aC=O, and let be as in (19.3) for the sys-

tem as specified. Then there exists a continuous, convex, bounded,

relative value function v* satisfying (19.1), such that

CQ

v*lD < + -aC

-140-

Proof: It is necessary only to demonstrate boundedness of values

{VO} in the proof of (19.3). Now

max e < + maxiS{V (e)}CQ + + (l-ac)maxic{v (ei)}

and so:

m (ei)) m i _C
Q

maxicS{V (e)}- max i{v(ei)} < Cm iE:S max iE:C l- c

Consequently, arguments given in the proof of (19.3) show that v*

satisfies the desired conditions. t

-141-

20. An Alternate Formulation for Irregular Problems

Consider the following problem, to which no optimal solution

exists.

(20.1) Example. U = {1,2}, Y = {1}, N = 3, r(0) = (0,0,1) and

P(ll = l) 1 0 P(112) 1 o .
0 .5 .5 5 0 .5

The incremental reward vectors are:

q(l) = , q(2) = o

The performance index is infinite-horizon undiscounted average reward.

A suboptimal solution may be obtained by the following argument: if

any reward at all is to be achieved, then the system must be made to

enter state 1, through initial application of input 2. Once state 1

has been reached, input 1 should be applied at all times. Unfor-

tunately, there is no way for the controller to learn whether state 1

has been entered. If input 2 is applied n times and input 1 is

applied thereafter, the performance 1-(.5)n is achieved; this may be

made arbitrarily close to 1. The supremum feasible performance g

can never be attained: if input 2 is applied at all times, then the

gain will be zero; and if input 1 is applied once, at time k, then the

system enters state 2 with probability (.5) and the performance

-142-

cannot exceed 1-(.5)k .

A well-known class of problems, to which no solution exists, is

the finite-memory hypothesis testing problem with choice of experiments,

also known as the N-armed bandit problem. In the two-armed bandit

problem, a gambler is confronted with two slot machines. For each coin

invested, one machine returns two coins with probability .6, none with

probability .4; and the other machine returns two coins with probability

.4, none with probability .6. It is not known initially which machine

is the more favorable.

Failure of an optimal strategy to exist is a consequence of the

infinitely-delayed splurge phenomenon discussed in section 5a. This,

in turn, results from null-transitivity of certain information states

in a system that is not detectable. Specifically, infinitely-delayed

splurges may occur when:

(i) Under £-optimal strategies, for sufficiently small,

p(k)>l; i.e. there are recursively-computable functions

of the state that may be interpreted as one-time hypotheses;

(ii) In the limit, where an infinite past is available, the

correct hypothesis may be identified exactly, and a

detectable problem results;

(iii) The cost of identifying an hypothesis is infinite.

-143-

Such problems may be solved in two steps, described below.

Step 1 (steady-state)

Under the assumption that the state was exactly known

at some point in the infinitely distant past, the problem

becomes detectable, and an optimal strategy exists. This

strategy might not satisfy a finite-memory constraint, but

its performance may be approximated, arbitrarily closely,

by a finite-memory controller in the following sense: for

any >O, there is a finite-memory controller whose average

reward, over a given time interval of length K, lies between

g*-e and g* with probability approaching unity as K+X.

Step 2 (initial identification)

The correct hypothesis may be arbitrarily closely

identified in a finite number of transitions. Let the

terminal reward be 1 if the hypothesis is correctly identi-

fied, and 0 if it is not. Then solve the finite-horizon

problem by the methods cited in Section 4, or by the

algorithm of Sondik. (The initialization procedure will

be described in greater detail in Section 21f).

-144-

This report is concerned with hypothesis-testing only to the

extent that it occurs in problems of statistical decision and control.

As long as a problem is detectable, its "dual control" aspects involve

a reasonable tradeoff between information and control; otherwise the

problem must be solved in two separate steps. If available memory is

limited, then it must be decided how much memory is to be allocated to

identification, and how much is to be allocated to steady-state per-

formance. Note that memory allocation in this sense is indirectly

determined by the discount (when <1l), since it specifies the manner

in which steady-state performance and identification costs are to be

compared.

-145-

CHAPTER IV

COMPUTATION OF £-OPTIMAL CONTROLLERS

21. Perceptive Dynamic Programming

a. The Basic Algorithm

It has been demonstrated, in Section 19, that there exist

solutions to regular FPS control problems. Yet, it may be impossible

to compute or to implement solutions that fail to satisfy a finite-

memory constraint. This section introduces a feasible computational

technique for the solution of such problems.

In the computational technique of perceptive dynamic programming,

an increasing sequence of memory sets, {Mn}, is used to construct

approximations to the original problem. Each approximation is para-

meterized by a memory set; the n-th approximation depends on memory

set Mn, but the iteration number n alone may be used to facilitate

notation. The approximation corresponding to memory set M is the

Markov decision problem that results when the augmented system induced

by M is assumed to be state-observable. The solution to this problem

is called a perceptive solution; it consists of a perceptive value

M
function v : X[M]+R and a perceptive gain g[M], obtained by solving

the system of equations:

v max c {q_ (i u) + Z P (i,j u,y))v T(z,(uy))]}
v [i,z_] uEU z jESyE Z

A

(21.1)- g] i,z X[M]

-146-

In (21.1), perception of delayed states is assumed only when the

memory state is essential. Optimal decisions and relative values for

the remaining memory states can be determined by solving:

--M
v [(O), z] = max uC{T ((), z)q(u)

+ ycy(T(7(O) Z)P(ylu)l)

i[ZiSZjESZkeS 1i(0)

Pjk(TM(z, (u,y)))

/[7T(O)P(z)P(ylu)l],

v [~(0), z(u,y) ,

* Pij(z(u,y)-T (z,(uy)))

v [j,TM(z, (u,y))]]

if TM(z, (u,y))eess[M]

otherwise

zZ + (ir(0))f ess [M] (21.2)

The policy maximizing (21.1) and (21.2) is denoted

A feasible strategy M is devised by constructing a policy

adapted to M which realizes it. Select any mapping : ess[M?] S

satisfying:

s[z]eI(z), V zeess [M]

The substitution of a state guess for a perceived state will be called

pseudo-perception. Define the feasible policy to be

(21.3)

-147-

-M (*Iz3, if zM-ess[M]
¢ tZ] = ((21.4)

~[sI],z], if zsess[M]

h[M] will denote the performance achieved by cM. Clearly:

h[M] < g* < g[M] (21.5)

For a given sequence of memory sets{Mm}, these bounds may be denoted

hn and g , respectively.

A key result is the following theorem, which states that

gnhn + 0 as n-+.

(21.6) Theorem. Suppose either (a) that <1 or (b) that the FPS

satisfies conditions of connectivity and (weak) detectability, and

let p,,a, L(8,k) and Q be as in (19.3)-(19.5). Also let a

be as in (14.22) if WDT is satisfied; otherwise define a=l. Then:

2.. [M]-± . [M]
(a) g[M] - g* < n in 4

· min [M] + £in [M]
(b) g[M] - i[M] < a mi

2. ['+]-Z.in L[N]' -

L(B,k [M]min)M]) + max mi L3, i[Q+B]
max min

-148-

Heuristic Justification: The proof follows an argument given in

Section 5e.

Proof: The complete proof is given in Appendix B.

The generalization to systems having transient states is straight-

forward.

(21.7) Corollary. For any regular FPS control problem:

. [M]-., . [M]
g[M] - hM] < an min

2 [M]- . [Ml /

.L(,XmaxiM]- min [M]) + m ax min 2L(~.) +
max min

m [i7 [M] i[M] QCQ

+ c (-a)

where aC and 2C are as in (19.14).

b. Discussion

The upper bounds {gn} are clearly nonincreasing. The lower

bounds {h } might decrease if an unfortunate choice of ^() is made.

If hn<h n , n>n', then n' may be substituted for n, since it is

adapted to M n. Hence, the bounds {hn } and {g n} can be made monotone.

If the family of memory sets {M n} = {Z nfZ + is used, then the

bounds will converge geometrically as well. Computational experience

-149-

indicates that convergence will occur more rapidly than predicted by

(21.6), but that may not be rapid enough to assure feasibility, due to

the fact that the computational effort (computer time or memory)

required to solve the perceptive problem increases as n+o . Since

computational effort is linearly related to the number of memory

states, the effort required to place the bounds within of each

-- l/tother is proportional to E , where T is given by (14.22).

A more favorable rate of convergence is obtained when the memory

sets are computed recursively. Memory states that are unlikely to

be recurrent under the optimal perceptive policy can be ommited;

those which were recurrent during the previous iteration may be

extended (by the addition in the memory tree of branches from the

nodes to which they correspond).

Problems of decoding a noisy Markov channel (see references

listed in Section 4) are subrectangular, and lend themselves to con-

vergence rate analysis. In most problems, however, there doesn't

seem to be much use in computing the contraction indices a and p

Execution of two or three iterations of perceptive dynamic programming

yields more reliable indicators of convergence rates.

c. Pseudo-perceptive Dynamic Programming

Pseudo-perceptive dynamic programming is a computational procedure

in which the delayed state is guessed and substituted into the model

-150-

before optimization is performed, resulting in a reduction, by a

factor of N , in the number of augmented states considered during each

optimization step. The performance obtained will be an approximation

to the optimal performance: if the delayed state is optimized, and not

merely guessed, then the performance obtained will be an upper bound

as well. However, pseudo-perceptive dynamic programming does not then

yield a lower bound to optimal feasible performance.

d. Recursive Computation of the Memory Sets

Experience indicates that the choice of memory sets is crucial to

efficient performance of the perceptive dynamic programming algorithm.

For example, computation time and storage requirements increase

linearly with the number of memory states; yet, certain memory states

can be shown a priori to occur very rarely in the optimally controlled

system.

Some recommended "tricks" are:

1) Do not add branches to node z of the memory tree if, whenever

the memory state is z, the optimal perceptive decision does

not depend on the delayed-state component of the augmented state.

2) Do not add branches to node z of the memory tree if z is

not recurrent under the optimal perceptive strategy

obtained during the most recent iteration.

3) Do not add branches to node z of the memory tree if all

entries of P(z) are small.

-151-

e. Minimization of Memory Size by Selective Pseudo-perception

The state guess s() may be selected according to an ad hoc

rule which causes the feasible strategy to perform as well as possible

(e.g. s = most likely state). It might instead be selected so that

the number of recurrent memory states under the feasible strategy

will be minimized. Such an approach assures that another iteration,

with a larger memory set, might be performed, although the current

feasible performance lower bound h[M n] will suffer. During the

final iteration, this approach to the selection of (-) may reduce

the cost of implementing the solution obtained.

f. Initialization Procedure

Suppose that a perceptive solution has been obtained, and that,

from this, a feasible policy has been designed. The feasible policy

determines near optimal decisions in the steady-state. It is also

necessary to determine an initialization procedure to be followed by

the controller.

A particularly simple way of doing so is the following: Repre-

sent the system under the feasible strategy as a Markov chain, and

determine the relative values of all augmented states. Then solve a

finite horizon problem, in which the input set includes the memory set

as well as an input representing a memory state indicates that

the feasible policy should be used thereafter, starting in the

-152-

specified memory state. The value function will be monotone increasing,

in the number of initialization steps allowed.

If the system under the feasible strategy is multiple chained,

then the finite horizon problem should be to maximize the eventual

gain. In the case of an N-armed bandit problem, the feasible (steady-

state) policy is trivially computed, since the previous decision

determines the optimal present decision. The initialization pro-

cedure then constitutes an identification of the correct hypothesis.

-153-

22. A Computational Algorithm

In order to assess the practicality of perceptive dynamic pro-

gramming, a computer program was written to solve general FPS control

problems with undiscounted infinite-horizon performance index. The

program is described below. Computational results, obtained using

this program, are described in the following section.

The source code, which is written entirely in PL/I, is listed in

Appendix C. It has a source length of 1250 cards, and the object code

occupies 110K bytes of storage on the IBM 370/168.

The program accepts the following data as input:

Title:

A character string of length not exceeding 32, which

identifies the problem to be solved.

Problem dimensions

N, the number of internal states.

NU, the number of inputs.

NY, the number of outputs.

NZ, the number of input-output pairs.

FMT, the output format (1 = "long", 0 = "short").

Termination specifications: (conditions under which execution

should be terminated)

MIN ERR, the minimum value of g -h

MAX M, the maximum number of memory states.

-154-

MAX ESS M, the maximum number of essential memory states.

MAX TIME, the maximum number of seconds to be allowed.

Transition probabilities:

Each matrix is preceeded by a list of input-output pairs

and a single zero which marks the end of that list; the

matrix is then listed in row-major order.

Expected incremental reward vectors:

The vector a(l), ... , q(NU) are entered in turn.

Computation then proceeds according to the following outline:

Step 1: Create a memory tree (hereafter denoted by M) con-

taining only the empty word e; and set ERR = Q.

Step 2: Solve the perceptive problem. This is done by damped

value iteration (18.10), along with the test for non-

optimal actions of Hastings [1976]. The optimization is

performed only on X[M], the connected class of augmented

states consisting of a delayed internal state along with

an essential memory state. Computation is terminated when,

after k steps of value iteration, the Odoni bounds (18.11)

1are within ERR
are within ERR (.001)(1.2) of each other.

Step 3: Flag memory states that are recurrent under the

optimal perceptive strategy (indicated by a "G" in the

printout). For those memory states only, determine the

feasible strategy which selects the input most likely to

be optimal.

-155-

Step 4: Determine hn by value iteration without optimi-

zation of inputs. Computation is terminated when, after

k2 steps, the Odoni bounds are witbin ERR [(.001)(1.2)1]
k

[(.01)(2)] of each other.

Step 5: Flag memory states that are recurrent under both

the optimal perceptive strategy and the feasible strategy

for the present iteration (indicated by an "H" in the

printout).

Step 6: Set ERR = the upper Odoni bound on gn} - the lower

Odoni bound on hn . Print a report of the current itera-

tion. If any termination specifications have been met,

then stop.

Step 7: For every triplet (z,u,y) satisfying

(i) z is an essential memory state that was recurrent

under the most recent optimal perceptive strategy,

(ii) u is an optimal input for some augmented state of

the form [i,z],

(iii) T (z, (u,y)) < z(u,y),

add to M the memory state which contains the

Z[TM(z, (u,y))] + 1 rightmost input-output pairs in z (u,y).

Also add whatever memory states are required to satisfy

(8.4). Then return to step 2.

-156-

Further details regarding execution procedure and methodology,

may be found in the source code.

The output consists of a page which lists the input data, followed

by an iteration report for each iteration performed. The iteration

report heading contains the following information:

Line 1: The iteration number, the number of memory states,

the number of essential memory states, the time at which

preparation of the memory tree for value iteration was

concluded.

Line 2: The upper and lower Odoni bounds on g , the number

of value iteration steps performed and the time at which

value iteration was concluded, in Step 2.

Line 3: The upper and lower Odoni bounds on h n , the number

of value iteration steps performed and the time at which

value-iteration was concluded, in Step 4.

In the long format, the iteration report heading is followed by a

table in which N+l lines are devoted to each essential memory state.

The column headings and data listed are as follows:

RC Recurrent state flags "G" and "H" are listed below. "G"

indicates that the memory state is recurrent under the

optimal perceptive strategy; "H" indicates that the

memory state is also recurrent under the feasible strategy.

I Delayed-state component of the augmented state.

-157-

U Input selected by the feasible strategy (first line), and

optimal perceptive inputs (following lines). An asterisk

(*) indicates that the feasible strategy always picks the

optimal perceptive input.

V(G) Relative value for the perceptive problem.

V(H) Relative value for the feasible problem.

PROBS For memory state z, P(z) is listed.

MEMORY STATES

The memory states are listed below in the form of a left-

handed tree.

In the short format, only the first line of each memory state table

is printed.

-158-

23. Computational Results

a. The Machine Maintenance and Repair Problem

The Machine Maintenance and Repair Problem was formulated in

Section 3, and a procedure, which in principle leads to a solution,

was then described. That procedure is in fact equivalent to perceptive

dynamic programming based on the fixed family of increasing memory

sets {Z(n-l)* +}.

The solution was actually obtained by perceptive dynamic program-

ming on the basis of recursively computed memory sets, as described in

Section 21d. The largest intermediary Markov decision problem solved

had 93 states.

The steps that lead to this solution are briefly described. Dur-

ing the first six iterations, perceived states determine the optimal

input, so feasible performance remains poor. Since pseudo-perception

initially takes the form "^=l, input u=l ("manufacture") is selected at

all times. On the seventh iteration, the input u=2 ("examine") is

selected whenever u=l ("manufacture") occurred four times previously;

but this is done only for the purpose of obtaining a perception free

of delay. In iteration eight, the memory set is augmented by branches

corresponding to input u=2 ("examine"); that input is no longer

selected and feasible performance increases for the first time. A

similar pattern continues until sufficient memory has been allocated to

realize the optimal strategy, and to eliminate suboptimal decisions

-159-

motivated by perceptive information structure.

Note that this problem is not detectable. Indeed, there are two

possible decompositions into detectable parts: if the machine is

never repaired, then there is only one recurrent state and the system

is trivially detectable; if the machine is repaired, then all infor-

mation previous to the repair is dispensable; in either case =0 .

The rate of convergence of perceptive dynamic programming is deter-

mined by the rate of absorption of transient states in the former case

which is aC = .99, C = 2 (very unfavorable). The convergence rate

for memory sets used in section 3 is bounded by:

gn_hn < (9 9)m-l [- 34025]

The actual convergence obtained was, of course, considerably more

rapid.

The input deck for this problem took the form:

// EXEC PLIXG,PROG='U.M13014.P10015.PLATZSYS.LOAD(LDMOD)'
//G.SYSIN DD *,DCB=BLKSIZE=2000

'MACHINE MAINTENANCE & REPAIR', 3,4,3,4,1, 20,.01,100,100,
1,1,0,

.81,.18,.01, 0,.9,.1, 0,0,1,
2,2,0,

.81,.09,.0025, 0,.45,.025, 0,0,.25,
2,3,0,

0,.09,.0025, 0,.45,.075, 0,0,.75
3,1,4,1,0,

.9025,.475,.25, .6525,.225,0, -.5,-1.5,-2.5, -2,-2,-2,
/*EOJ

The computer-generated report is given on the next 29 pages.

-160-

MACHINE MINTENA1CE REPAIR PRORLEM SPECS

3 STATES 4 INPUTS 1 OUTPUTS 4 /C PAIRS

TIME LIMIT: 20.00

MAX MEM: 1CC

MIN ERR: 0.010

M4X ESS MEM: 100

TRANSITION PROBABTILITIES:
Z (U, Y) P

I 1
C. 8100
C .0000
0.0000

2 2
C. 8100
C.0000
C.0000

2 3
C. 0000
C .0000
C.0000

3 1
4 1

1.0000
1.C0000
1. 0000

0. 12800
0.C9000
0.0000

0.0900
0.4500
0.0000

0.0 00
0.4500
0.0000

O.OCOO
0.0000
O. COO0

r'.C10O
0. 1C00
1.C000

0.C025
0.C25-0
0. 2500

0.0075
0.0C750
0. 7500

O. CO0
O. 000
O. COO

INCREMENTAL REWARDS:
U

1
2
3
4

C.9025 0.4750 0.2500
C0.6525 0.2250 C.CCCO

-0.5000 -1.5000 -2.5000
-2.0000 -2.0000 -2.0000

1

2

3

4

-161-

MACHINE MAINTENANCE & REPAIR PAGE 2 TABLE 1.01

ITERATION 1 MEM = 1 ESS MEM 1 TIME = 0.16

I 0.499 < G < 0.531 17 STEPS TIME = 0.25
I 0.250 < H < C.444 9 STEPS TIME = 0.26

+---------------------------------------

RC I U V(G) V(H) PRCBS MEMORY STATES

GH 1 <E>
1 1 2.61 2.76 1.0000 0.0000 0.0000
2 3 0.59 0.36 .C000 1.000C 0.OCO
3 4 0.09 -0.79 O. C00 O.00CC I.CCCC

-162-
MACHINE MAINTENANCE REPAIR PAGE 3 TAPLE 2.01

__________________--_______----___------------ ------------------

I ITERATION 2

1 0.494 < G
1 0.250 < H <

MEM = 3

0.495
0.395

ESS EM = 3

8 STEPS
14 STEPS

TIME = 0.36

TIME = 0.46
TIME = 0.50

+…----------------- -- --------- …--------------------------- -

RC I U V(G) V(H)

1
l 1 2.48
2 3 0.48
3 4 -0.02

1
1 1 2.07 2.63
2 3 0.32 0.43
3 4 -0.02 -0.80

1*
1 1 2.48
2 1 2.48
3 1 2.48

PRCBS

1.C00
O.COO
0. c00

0.8100
0.0000
0. o0

1. 0000
1. 0000
1. 000

0.0000
1.0000
0.0000

0. 18C
0.9000
0. 0000

0.000C
0.0000
0.0000

0.I0CO
0.00 0
1.0000

MEMnRY STATES

(E>

1
C . 01C
0. 1000
1.0000

4
O. C000
0.0000
0.0000

GH

G

I
I
I
I

-163-

MACHINE MAINTENANCE & REPAIR PAGE 4 TABLE 3.01

+…- -- - - ------- -- -- -- - -- - - - - -- - - -- - ---- - -- -- - - - -+

I ITERATION 3
1
I 0.477 < G <
I 0.250 < H

MEM = 5

C .478
0.385

ESS E = 5

10 STEPS
14 STFPS

TIME = 0.60

TIME = 0.81
TIME = 0,-39

+--

RC I U V(G) V(H) PRCBS

1
1 1 2.44
2 3 0.46
3 4 -0.04

1
1 1 2.01
2 3 0.36
3 4 -0.04

GH 1
1 1 1.67 2.27
2 3 0.27 3.39
3 4 -0.04 -0.69

1*
1 1 2.01
2 1 2.01
3 1 2.01

1*
1 1 2.44
2 1 2.44
3 1 2.44

1.,C0
0. COCO
0. o0

0. 8100
0.C000
0. 000

0.65s61
0.0000
C. CO

0.8100
0. 8100
0. 8100

l.COO0
1.0o00
1. C00

MEMORY STATES

0.0000
1.00CC
0.0000

0.1800C
0.9000
0.0000

0.3078
0.8100
0.0000

0.1800
0. 1800
0,1800

0.0000
0.0000
O. 00C

0. 0000
C. coC
1. 0CO

1
C .0100
0. 1000
1. 0000

1
0.0361
0.1900
1.0000

4
0.0100
0 .0 100
0 .0100

4
O . 000

. 0000
0.0000

G

G

I

I

-164-

MACHINE MAINTENANCE & REPAIR PA E 5 TAPBLE 4.01

+----------------- +----- - - - - - - - - - - - - - - - - - - -

I ITERATION 4
i
I 0.462 < G <
1 0.2503 H <

MEM = 7 ESS fEP = 7

C.464
0.3 2

12 STEPS
13 STEPS

TIME = 0.99

TIME = 1.30
TIME = 1.43

+…-- ---- ---- ------- --------- +---------

RC I U V(G) V(H) PROBS

1
1 1 2.41
2 3 0.45
3 4 -0.05

1
1 1 1.97
2 3 0.35
3 4 -0.05

1
1 1 1.62
2 3 0.25
3 4 -0.05

MEMORY STATES

<E>
1. C00
O.C000
O. 00

0.8'100
O.C000
0. 0000

0. 6561
0. 0000

. C000

0.0000
1.00CC
0.0000

0.180C
0.9000
0.0000

0.307E
0.8100
O. 000

0.0000
.C00C

1.CC00

1
0. 0100
0.10CO
1.0000

1
0 .0361
0. 1900
1.0000

1
1 1 1.33
2 3 0.18
3 4 -0.05

1*
1 1 1.62
2 1 1*62
3 1 1.62

1*
1 1 1.97
2 1 1.97
3 1 1.97

1*
1 1 2.41
2 1 2.41
3 1 2.41

4
. 0C361

0.0361
0.0361

1.92
0.34

-0.58

0.5314
0. 000
O.C000

GH

G

0

S

0.0734
0.2710
1.0000

1
0.3951
0.7290

OO000C

0. 3078
0.3078
0.3078

0.6561
0. 6561
0.6561

0.8100
0.8100
0.81CC

0.1800
0.1800
0.1800

0.0100
0 .0100
0.0100

4

1. C000
1.0 G00
1. C000

0.0000
O. OOCO
0. 000

0.000c
0.0000
0.0000

4

I
I
I

-165-

MACHINE MAINTENANCE & REPAIR PASE 6 TA9bl E 5.01

+-- ------- +

I ITERATICN 5

1 0.449 < G <
I 0.250 < H <

MEM = 9

C .452
0.374

ESS EM = 9

14 STEPS
13 STEPS

+---------------------------------------

RC I U V(G) V(H) PRCRS

1
1 1 2.39
2 3 0.44
3 4 -0.06

1
1 1 1.93
2 3 0.34
3 4 -0.06

1
1 1 1.57
2 3 0.25
3 4 -0.06

1 1 1.27
2 3 0.17
3 4 -0.06

1. C000
O. CC 00
0.C00

0.8100
O.CCCO
0. C0000

0. 561
.C0O 0

O. COO

0.5 314
O.COO0
O. COO0

GH 1
1 1 1.04 1.65 0. 4 305
2 3 0.09 0.31 0.0000
3 4 -0.06 -0.49 C.C000

1*
1 1 1.27
2 1 1.27
3 1 1.27

1*
1 1 1.57
2 1 1.57
3 1.57

1*
1 1 1.93
2 1 1.93
3 1 1.93

0 . 5314
0.5314
0.5314

0.6561
0. 6561
0.6561

0. 8100
0.8100
0.8100C

0.000C
1.00CC
0.0OOC

0.1800
0.9000
0.0000

0.3078
0.8100CO

. 00CC

0.3951
0.729C
O. COOC

0.451
0.6561
0.00CO

0.3951
0.395 1
0. 3951

0.3078
0.3078
0. 3078

0.180C
0. 1800
C. 18CC

EMORY STATES

0 on00O
C. t,OCO

1. 0 CO

0.0100
0.1000
1.C000

C .0361
0. 1900
1.0000

0 . 0734
0.27 10
1 .COO0

0. 183
0.3439
1.00Co

0.0734
0.0734
0.0734

0. 361
0.0 361
0 .0361

4
0.0100
0.0100
C .C 00

TIME

TIME
T E

1.55 I

2.01 1
2.18 I

I

1

1

1

4

G

4G

MACHINE MINTENaN1CE REPAIR

G 1*
1 1 2.39 .C000
2 1 2.39 1.C00o
3 1 2.39 1.COCO

-166-
PAGE 7 TABRLE 5.02

4

O.00c 0.0000
0.00CC 0.0OGC
O.OOCC C.CCCC

-167-

MACHINE MAINTENANCF REPAIR PAGE R TABLE 6.01

+-+-- --------

I ITERATION 6
I
I 0.438 < G <
1 0.250 < H <

MEM = 11

0.441
0.372

ESS EM = 11

16 STEPS
12 STEPS

TIME = 2.30

TIME = 2.98
TIME = 3.23

+ _---…---- -- -- ---------- ---- ---- --- ---- ---- ---

RC I U VG) V(H) PRC8S MEMORY STATES

1
1 1 2.37
2 3 0.43
3 4 -0.07

1
1 1 1.90
2 3 0.33
3 4 -0.07

1
1 L 1.52
2 3 0.24
3 4 -0.07

1
1 1 1.22
2 3 0.16
3 4 -0.07

1
1 1 0,.97
2 3 0.08
3 4 -0.07

GH 1
1 1 0.78 1.38
2 3 0.02 0.26
3 4 -0.07 -0.4C

G 1*
1 1 0.97
2 1 0.97
3 1 0.97

1.CCCO0 O.000C 0.CC
O.COO0 1.0000 0.0000

. C000 0.0000 1.0000

0.8100 0.1800 0.01CO
o.coo0 0.9000 0.1000
C.CCCO 0.00CC 1.C00o

0.6561 0.3078 0.0361
0.COOo 0.81CC 0.190o
0.O000 0.0000 1.00CO

0.5314 0.3951 0.0734
O.C000 0.729C 0.271C
O.COO 0.00G 1.00CO

0.4305 0.4513 0.1183
.CO000 0.6561 0.3439

0.0000 0.00c0 1.o000

0.3487 0.4836 0.1677
o.C000 0.5905 0.4095
O.COOO 0.000G 1.0000

0.4305 0.4513 0.1183
0.4305 0.4513 0.1183
0,4305 0.4513 0.1183

1*
1 1 1.22
2 1 1.22
3 1 1.22

4
0.5314 0.3951 0.0734
0.5314 0.3951 0.0734
0.5314 0.3951 C.0734

(E>

1

1

1

1

I

4

I
I
I
I

G

-168-

MACHINE NMANTENANCE REPAIR

1*
1 1
2 1
3 1

1*
1 1
2 1
3 1

1.52
1 .52
1.52

1.90
1.90
1.90

1*
1 1 2.37
2 1 2.37
3 1 2.37

0. 6561
0. 6561
0.6561

0.8100
0.8100
0.8100

P AG 9

0. 3078
0.3078
0.3078

0.18CC
0. 18CC
0.1800

C. 0361
0.0361
0.0361

T ,L E 6.02

4 1 1

4
C . 01CC
0.010
O.q CO

4
1. COO
1 .COO0
1.C000

0.00CC
O .0000
0.0000

C . COCO
0 .OCO
0. 000

k7

G

-169-
MACHINE MAINTENANCE & REPAIR PACE 10 T PLE 7.01

+ - +---+

I ITERATION 7

I 0.437 < G
I 0. 195 < H

MF = 13

C .439
0.369

ESS fEM = 13

13 STEoS
14 STEPS

TIME = 3.37 1

TIMtE = 4.08 I
TIME = 4.30 I

+---------------------------------------

RC I U V(G) V(H) PRC3S

GH 1
1 1 2.36
2 3 0.43
3 4 -0.97

GH 1
1 1 1.90
2 3 0.33
3 4 -0.07

GH 1
1 1 1.52
2 3 0.24
3 4 -0.07

GH 1
1 1 1.21
2 3 0.16
3 4 -0.07

GH 2
1 2 0.96
2 3 0.08
3 4 -0.07

2.94
0.43

-0. 1

2.4C
0.24

-0 . 96

1. 93
0.C7

-1.01

1.51
-10.0
-1.06

1.15
-0 .24
-1. 11

2
1 2 0.76
2 3 0.02
3 4 -0.07

2
1 2
2 3
3 4

0.59
-0.04
-0.07

2*
1 2 0.76
2 2 0.76
3 2 0.76

1.C'0O
0. C000
0. CO0O

0. 100
O.Cn00
0.co00

0.6561
0. CO
0. 0000

0.5314
O.COO0
0. 0000

0.4305
O. COO
O.C0

0. 3487
O. COO
0.00c0

0. 2824
0. C00
0. c000

0. 3487
0. 3487
0.3487

MEMORY STATES

0 .0000
1.0000
0. 00CC

0. 1800
0.9CCCC
0.0000

0.3078
0.8 1 CC
0.0000

0. 3951
. 7290C

0.0000

0.4513
0.656 1
0.0000

0.4836
0.5905
0.0000

0.498C
0.5314
0.0000

0.4836
0 .4836
0.4836

(E>
0.O 00
O .C00
1. CCC

1
0 .0100
0. CCO
1 .COCO

1
0.0361
0. 19CC
1. COO

1
0. 0734
0 .27 10
1. c000

0. 1183
C.3439
1. 000

C . 1677
0 .4095
1.C00

C.2195
0.4686
1.0000

C . 1677
0.1677
0.1677

I

.1

1

4

-170-

MACHINE A INTENANCE

2*
1 2 0.96
2 2 0.96
3 2 0.96

RE DAIR

0. 4305
0.4305
C.4305

PAGE 1 1

0.4513
0.4513
0.4513

0. 183
0. 1183
0.1183

TABLE 7.02

4 1 1 1 1

1*
1 1 1.21

2 1 1.21
3 1 1.21

0.5314 0.3951 0.0734
0.5314 0.3951 0.9734
0.5314 0.3951 0.0734

1*
1 1 1.52
2 1 1.52
3 1 1.52

1*
1 1 1.93
2 1 1.90
3 1 1.90

4
.36 1

0.0361
0 .C 36 1

1*
1 1 2.36
2 1 2.36
3 1 2.36

4
1.COOO 0.0000 0.0000
1.0000 0.0000 0.0000
1.CCOO 0.00CC O.00C

G

4

G

0.6561
0. 6561
0.6561

0.8100
0. 8100
0.8100

0.3078
0.30 7
0. 3078

0. 18CC
0. 190C
0. 1800

G

0.01C C
0 .0 100
0.0100

4

G

-171-

MACHINE MAINTENA-CE REPAIR PAGE 12 TABLE 8.01

+-_ +_--------------------------- --------------- _---------+

I I TERATION 9

t 0.432 < G <
I 0. 308 < H <

ME = 15

C .43 5
.40C

ESS Em = 14

14 STEPS
12 STEPS

TIME = 4.53 1

TIME = 5.36 1
TIME = 5.72 I

+…_--------------------------------------.+

RC I U V(G) V(H)

1
1 1 1.76
2 3 0.19
3 4 -0.21

1.89
-0.13
-O),gq

PR C S

0. 8100
O. OO
OCo00

1
1 1 1.37 1.47 C.6561
2 3 0.10 -0.22 0.COOO
3 4 -0.21 -0.88 O.COOO

1
1 1 1.06
2 3 0.02
3 4 -0.21

GH 2
1 2 0.81
2 3 -0.05
3 4 -0.21

1.1C
-0.28
-0. 76

0. PC
-3 . ? 3
-0.63

0.5314
O.COO
0. CO00

0. 4305
0. C0000
O.CnOO

0.18CC
0.900C
0.0000C

0.3078
0.81CC
0.0000

0. 3951
0.7290
0.0000

0.4513
0.6561
0. 0000

MEMORY STATES

I
0 .1C0
C. 0CC
1.CO

1
0 0361

00. L9C
1 .'000

1
C. 734
0.2710
1.0000

0. 1183
0.34 39
1. 0000

2
1 2 0.61
2 3 -0.12
3 4 -0.21

2
1 2
2 3
3 4

0,44
-0.18
-0.21

2*
1 2 0.61
2 2 0.61
3 2 0.61

GH 2*
1 2 0.81
2 2 0.81
3 2 0.81

GH

GH

GH

1
0.3487
O.COO0
0.C000

0. 2924
0.CCO0
O.COO0

0. 4836
0. 5905
0.0000

0.498C
0.5314
0.0000

0.4836
0.4836
0.4836

C. 1 677
C.4095
1 .eC0

C .2195
C,4686
1.000

0.1677
0.1677
0.1677

1

4
0.3487
0.3487
0.3487

0.80
0.80
0.80

0. 4 305
0. 4 305
0.4305

0.4513
0.45 1
0,.4513

4

0.1183
C. 1183
0. 1183

-172-

MACHINE MAINTENANCE REDATR PACE 13 TABLE 8.02

GH 1* 4 11 1
1 1.06 1.10 0.5314 0.3951 0.0734

2 1 1.06 1.1C 0.5314 0.3951 0.0734
3 1 1.06 1.1C 0.5314 0.3951 0.C734

GH 1* 4
1 1 1.37 1.47 0.6561 0.3078 0.C361
2 1 1.37 1.47 0.6561 0.3078 0.C361
3 1 1.37 1.47 C.6561 0.3078 0.0361

GH 1* 4
1 1 1.76 1.8S 0.8100 0.180C 0.01CO
2 1 1.76 1.89 0.8100 0.1800 0.0100
3 1 1.76 1.89 0.8100 0.180C 0.0100

GH 1 2
1 1 2.02 2.16 0.8100 0.09CC 0.0025
2 3 0.24 -0.06 O.C000 0.45CO 0.0250
3 4 -0.21 -1.06 O.CCO0 0.00CC 0.2500

GH 4 3
1 3 0.22 0.01 O.COO0 0.09CC 0.C075
2 3 0.15 0.01 O.COO0 0.4500 0.0750
3 4 -0.21 O.1 .COCO O.OOCC C.75C0

GH 1 4
1 1 2.23 2.41 1. 000 O.00 C 0.0000
2 1 2.23 2.41 1,.CC00 O.00CC 0.0000
3 1 2.23 2.41 1.Co0 O.00CC C.CrCC

-173-

MACHINE MAINTENANCE REPAIR Pi4GE 14 TABLE 9.01

+---------------------------------------

I ITERATION 9
I
1 0.429 (G <
1 0.284 H

MEM = 18

0.431
C .404

ESS MEN = 17

16 STEPS
13 STEPS

TIME = 5.96

TIME = 7.11
TIME = 7.73

+---------------------------------------

RC I U V(G) V(H)

G 1
1 1 1.75
2 3 0.19
3 4 -0.21

GH 1
1 1.36 -0.84

2 3 0.10 -2.56
3 4 -0.21 -3. 3

OH 1
1 1 1.05 -1.19
2 3 0.02 -2.62
3 4 -0.21 -3.22

GH 1
1 1 0.79 -1.49
2 3 -0.05 -2.66
3 4 -0.21 -3.09

GH 2
1 2 0.59 -1.74
2 3 -0.12 -2 . 69
3 4 -0.21 -2.97

1 1 0.43
2 3 -0.18
3 4 -0.21

GH 2*
1 2 0.59 -1.74
2 2 0.59 -1.74
3 2 0.59 -1.74

GH 1*
1 1 0.79 -1.49
2 1 0.79 -1.49
3 1 0.79 -1.49

PRC , S MEMGRY STATES

1
C. 81C0
O.COO
0.COO0

C . 561
0. C OO0
O. COCO

0.5314
C.COOO
O. COO

0.4' 05
O.C 00
O.C000

0. 3487
0.000O
C. C000

0. 2824
0.C000
0. CCO

0.3487
0.3487
0.3487

0.4305
0. 4305
0.4 305

0. 180CC
0.9000
0.0000

0.3078
0.8100
O.000C

0.3951
0.7290
0.0000

0.4513
0 .6561
O. 000c

0.4836
0.5905
O.00CC

0.4980C
0.5314
0. C0000

0.4836
0.48 36
0.4836

0.4513
0.4513
0.4513

o . 1 I CC
.10CC

1.00CO

1
C .0361
0. 1900
1.0000

1
0 . 0734
0 .2710
1.0000O

0.1183
0.3-439
1.0000

0.1677
C .4095
1.0000

1

1

1
0.2195
0.4686
1.0000

4
0.1677
0.1677
0.1677

4
C . 1183
0. 1183
C.1183

I

I
I

-174-

MACHINE AINTFNANCE REPAIR PAGE 15 TABLE 9.02

G H 1* 4 1 1 1
1 1 1.05 -1.19 0.5314 0.3951 0.0734
2 1 1.05 -1.19 0.5314 0.3951 0.0734
3 1 1.05 -1.1$ 0.5314 0.3951 0.0734

GH 1' 4
1 1 1.36 -3.84 0.6561 0.3078 0.0361
2 1 1.36 -0.84 0.6561 0.3078 C.0361
3 1 1.36 -0.84 0.6561 0,.307 C.0361

GH 1 2
1 1 1.58 -0.62 0.6561 0.2268 0.0196
2 3 0.14 -2.52 O. CO000 0.4050 0.0700
3 4 -0.21 -3.43 O.CcO0 0,00CC C.25C0

GH 1* 4
1 1 1.75 -0.41 0.8100 0.1800 0.0100
2 1 1.75 -0.41 0.8100 0.18C0 0.0100
3 1 1.75 -0.41 0.P1C0 0.18CC C.ClCC

1 2
1 1 2.01 0.8100 0,.0900 0.0025
2 3 0,.24 OCCO 0.4500 0.0250
3 4 -0.21 O.COOO 0.O0CC C.25CC

CH 1 1
1 1 1.81 -0.4C 0.6561 0.1539 0.0090
2 3 0.19 -2.46 O.CG00 0.405C C.0475
3 4 -0.21 -3.48 OCOO0 0.0000 0.2500

4 3
1 3 0.21 O.CCO0 0.09C0 0.0075
2 3 0.15 O.COO0 0.4500 0.0750
3 4 -0.21 O.C000 0.0000 0.7500

GH 4
1 1 0.14 -2.30 O.CnCO 0.153$ C.0271
2 1 0.07 -2.3C O.COO 0.4050 0.1425
3 4 -0.21 -2.30 O. CO00 O.0000C 0.75C

GH 1* 4
1 1 2.22 0.10 1.0000 O.00C O.COCO
2 1 2.22 O. 1C 1.COOO 0.0000 0.0000
3 1 2.22 0.10 1. COOO 0.000C O.COOO

-175-

MACHINE MAINTENANCE & REPAIR PAGE 16 TPRLE 10.01

ITERATION 10 ME = 23 ESS EM = 21 TIME = 8.06 I

0.430 G < C.431 12 STEPS TIME = 9.12
0.250 H < C.355 14 STEPS TIME = 9.27

+_________________--_---

RC I U V(G) V(H) PRCS MEcMORY STATES

1 1 1
1 1 -0.35 0.6561 0.3078 0.0361
2 3 -1.60 O. COO 0.81CC 0.19CC
3 4 -1.91 O.CJOO O.000C I.COCC

1
1 1 -0.66 0.5314 0.3951 0.0734
2 3 -1.69 O.C00 0.729C 0.271C
3 4 -1.91 0.0000 O.00CO 1.COCC

1
1 1 -0.92 0.4305 0.4513 0.1183
2 3 -1.76 O.CCCO 0.6561 C.343q
3 4 -1.91 O.CO30 O.000C 1.COCC

1 1
1 1 -1.12 0.3487 0.4836 0.1677
2 3 -1.82 O.CCOO 0.5905 0.4095
3 4 -1.91 0.0000 O.00GC 1.00CO

GH 1 1
1 1 -1.27 1.25 0.2924 0.4980 0.2195
2 3 -1.89 0.26 C.CCO 0.5314 r.4686
3 4 -1.91 -0,.37 0.0000 0.00CC 1.COCC

G 1* 4
1 1 -1.12 0.3487 0.4836 0.1677
2 1 -1.12 0.3487 0.4836 0.1677
3 1 -1.12 0.3487 0.4836 0.1677

1,1 4

1 1 -0.92 0.4305 0.4513 0,.1183
2 1 -0.92 0.4305 0.4513 C.1183
3 1 -0.92 0.4305 0.4513 C.1183

G 1* 4
1 1 -0.66 0.5.314 0.3951 0.0734
2 1 -0.66 0.5314 0.3951 0.0734
3 1 -0.66 0.5314 0.3951 . 07,14

-176-

MACHINE MAINTENANCF & REPAIR PACE 17 TABLE 10.02

1 2 1 1
1 1 -0.48 0.5314 0.3222 0.9488
2 3 -1.65 O.COOO 0.3645 C0.11C5
3 4 -1.91 O.COO O.0OOCO 0.2500

G 1* 4
1 1 -0.35 0.6561 0.3078 C.0361
2 1 -0.35 0.6561 0.3078 C.0361
3 1 -0.35 0.6561 0.3078 0.0361

1 2
1 1 -0.13 0.6561 0.2268 C.0196
2 3 -1.56 O.COO 0.4050 0.07C00
3 4 -1.91 0.0000 O.00CO 0.2500

1
1 1 -0.30 0.5 314 0.2566 0.0310
2 3 -1.61 O.C000 0.3645 0.0880
3 4 -1.91 0.C000 0.0000 0.?500

4 3
1 3 -1.58 O.COGO 0.081C 0.0165
2 3 -1.64 0.0900 0.4050 0.12C00
3 4 -1.91 O.CO00 0.0000 0.7500

1* 4
1 1 0.04 0.8100 0.180 O.01CC
2 1 0.04 0.8100 0.18CC 0.O1CO
3 1 0.04 0.8100 0.1800 0.0100

1 2
1 1 0.29 0.81CO 0.09CC C.0025
2 3 -1.47 0.C30O 0.4500 C0.0250
3 4 -1.91 O.COO O0.OCC 0.2500

1 1
1 1 0.09 0.6561 0.1539 0.0090
2 3 -1.52 0.000C 0.4050 0.0475
3 4 -1.91 C.COO0 0.0000CC 0.2500

1
1 1 -0.10 0.5314 0.1976 C.0184
2 3 -1.57 0.0000 0.3645 0.0677
3 4 -1.91 O.CCOO 0.000C 0.2500

4 3
1 3 -1.49 0.000 0.0900 0.0075
2 3 -1.56 O.CCOO 0.4500 0.0750
3 4 -1.91 .COCO O.OCC 0.7500

-17 7-

MACHINE MAINTENANCE REPAIR PAE 13 T4bLE 10.03

4 1 3
1 3 -1.56 O.COOO 0.1539 0.0271
2 3 -1.67 O.COOO 0.405C 0.1425
3 4 -1.91 C.CO0 O. COCC C.7500

4
1 3 -1.63 C.COO 0.1976 0.0551
2 1 -1.75 O.COOO 0.3645 0.2032
3 4 -1.91 O.CCOO O.COCC C.75C0

G 1* 4
1 1 0.52 1.COO0 0.000G c0.OCO
2 1 0.52 I.COO O.COC O.COCO
3 1 0.52 1.C 0 0 O.00OCC C.CGCC

-178-

MACHINE MAINTENANCE REPAIR PAGE 19 TABLE 11.01

+…4-_---------_-------- -

I ITERATION 11
I
I 0.423 < G <
1 0.259 < H <

MEM = 25

C.427
0.410

ESS MEM = 23

18 STEPS
12 STEPS

TIME = 9.42

TIME = 11.11
TIME = 11.55

+…-4--------------- ---------

RC I U V(G) V(H)

1
1 1 -0.36
2 3 -1.60
3 4 -1.91

PRCBS

0.6561
0.0000
O.C0

0.307E
0.81C0
0.00000

0.0361
O. 190
1.0000

MEMORY STATES

1 1

GH 1
1 1 -0.68
2 3 -1.69
3 4 -1.91

GH 1
1 1 -0.94
2 3 -1.76
3 4 -1.91

GH 2
1 2 -1.15
2 3 -1.82
3 4 -1.91

2
1 2 -1.32
2 3 -1.88
3 4 -1.91

4
1 1 -1.46
2 4 -1.91
3 4 -1.91

2*
1 2 -1.32
2 2 -1.32
3 2 -1.32

GH 2*
1 2 -1.15
2 2 -1.15
3 2 -1.15

O. C734
0.2710
1.0000

1
-1. 19
-2 . 6 1
-3.2C

-1.48
-2.65
-3.08

-1. 73
-2.67
-2.96

0. 314
0. 000
0. 00

0. 4305
O.c00
0.c000

0.3487
0.c000
0. 0000

0.3951
0.7290
0 .0000

0.4513
0.6561
0.0000

0.48 36
0.5905
0. 000

0.4980
0.5314
0.0000

0.4991
0 .4783
0.0000

0.498C
0 .4980
0.4980

0.4836
0.48 36
0.4836

I

I

I

4

0.11 83
0.3439
1.0000

0. 1677
0 .4095
1.0000

0.2195
0.4686
1. 0000

0. 2722
0.5217
1.0000

4
0. 2195
0.2195
0. 2195

C.1677
0.1677
0. 1677

0.2824
o. 000
O.C000

0.2288
O.C00
O.COO0

0. 2824
0. 2824
0. 2824

-1.73
-1.73
-1. 73

0. 3487
0.3487
0. 3487

I
I
I
I

-179-

MACHINE MAINTENANCE &

GH 1*
1 1 -0.94
2 1 -0.94
3 1 -0.94

GH 1*
1 1 -0,.68
2 1 -0.68
3 1 -0.69

-1 .48
-1.48
-1. 4 8

-1 19
-1.19

REPA R

0. 4305
0.4305
0. 4 05

0.5314
0.5314
0.5314

PArE 20

0.4513 0.1183
0.4513 0.1183
0.4513 0.1183

TABLE 11.02

4 1 1 1 1

4

0,.39 51
0.3951
0.3951

0 .0734
0.0734
o 0.0734

GH 1
1 1 -0.50
2 3 -1.65
3 4 -1.91

GH 1'
1 1 -0.36
2 1 -0.36
3 1 -0.36

1
1 1 -0.14
2 3 -1.56
3 4 -1.91

GH I

-1.01
-2 .58
-3. 3C

-0 .83
-0.83
-0. 83

1 1 -0.33 -0.82
2 3 -1.61 -2.54
3 4 -1.91 -3.38

4

1 3 -1.58
2 3 -1.64
3 4 -1.91

GH 1*
1 1 0.03
2 1 0.03
3 1 0.03

1
1 1 0.29
2 3 -1.47
3 4 -1.91

1
1 1 0.09
2 3 -1.52
3 4 -1.91

-0.41
-0.4 1
-0.41

0.0488
0. 1105
0 .250C

4
0 .036 1
0 .0361
0.C361

0.0196
0,.0700
0.2500

1

2
0.5314
O.C000
0. C000C

0.6 561
0. 6561
0.6561

0.6561
0. 0
O. CO00

0.5314
0.CCOO

.0CC00

0. 3222
0.3645
0. 00CCC

0.3078
0.3078
0.3078

0.2268
0.4050
0.0000

0.2566
0.3645
0.000

G

0.031C

0.2500

CC0o
O,.COO0
O. COCO

0.8100
0. 100
C. 1C00

3
0 .08 1C
0.4050
0. 0000

0. 180C
0.1800
0.18C

0.016 5
0,.1200
0.75 C00

C .01CC
0,1 . 1 0
0. 0100

0.C025
0O.0250
C .25CC

0.8100
0. 0000
0. COC0

0.6561
0. CCO0
O. CCO

2
0.09CC
0.4500C
O.00CC

0.1539
0.4050
0.00CC

0 0090
0.0475
C. 25C0

1

-180-

MACHINE MAINTENANCE REPAIR

GH
1 1 -O.1C
2 3 -1.57
3 4 -1.91l

-0.62
-2.4P
-3.41

4
1 3 -1.49
2 3 -1.56
3 4 -1.91

4
1 3 -1.56
2 3 -1.68
3 4 -1.91

GH 4
1 3 -1.63 -2.31
2 1 -1.74 -2.31
3 4 -1.91 -2.31

0.5314
0. CcO
0.C300

O. CCOO
0. CO
0.0000

0.CCOO
0 *C 000

O.COO
O. ,000
O. COn0

PArE 21

0.1976
. 3645
.00 CC

0.09CO
0.45CC
0.0000CC

0.1539
0.405C
0O.000c

0. 1976
0.3645
O.000C

0.0184
C. C677
C.25C0

TABLE 11.03

1 1 2

3
0.0075
C . 075C
0C.7500

1
0.0271
C0.1425
0.7500

I
0.0551
C.2 032
0 .7500

GH 1*
1 1 0.51
2 1 0.51
3 1 0.51

0. C 1. C000
O. 1C 1. C'GO0
0.10 1.C000

4
C0.O00
C .00CC
C . CCO

O . OC
. COCC

O.00CC

-181-

MACHINE MAINTENANCE REPAIR PAGE 22 TABLE 12.01

ITERATION 12 MEM = 31 ESS EM = 29 TIfE = 11.94

1 0.420 G < C.425 18 STEPS TIME = 14.10
0.317 < H < C.409 12 STEPS TIME = 14.38

RC I U V(G) V(H) PRCnS MEMORY STATES

1 1 1
1 1 -0.37 0.6561 0.3078 C.0361
2 3 -1.60 0.CCO 0.81C0 0.1900
3 4 -1.91 O. CCO O.00C 1.0000

1 1
1 1 -0.69 0.5314 0.3951 0,.734
2 3 -1.69 O.COOO 0.729C 0.2710
3 4 -1.91 C. COC C0.00C 1.C000

1 I
1 1 -0.95 0.4305 0.4513 0.1183
2 3 -1,.76 O,.COCO 0.6561 0.3439
3 4 -1.91 0.CCO0 O 00CO 1.COCC

1 1
1 1 -1.16 0O.487 0.4836 0.1677
2 3 -1.82 OCOO0 0.5905 0.4095
3 4 -1.91 C.CCOC O.000C 1.0000

1 1
1 1 -1.32 0.2824 0.4980C 0.2195
2 3 -1.88 O.CO000 0.5314 0.4696
3 4 -1.91 O.COCO 0.0OCC 1.CCOo

GH 4 1
l 1 -1.45 -2.29 0.2288 0.4991 0.2722
2 4 -1.91 -2.29 0.COO 0.4783 0.5217
3 4 -1.91 -2.29 O.CCOO 0.00CC 1,.CCO

GH 1* 4
1 -1.32 -2.14 0.2324 0.498C 0.2195

2 1 -1.32 -2.14 0.2824 0.4980 0.2195
3 1 -1.32 -2.14 0.2324 0.498C 0.2195

GH 1* 4
l 1 -1.16 -1,.96 0.3487 0.4836 C.1677
2 1 -1.16 -1.96 0.3487 0.4836 0.1677
3 1 -1.16 -1.96 0.3487 0.4836 0,.1677

-182-

MACHINE M4INTENANCE

GH 1*
1 1 -0.95
2 1 -0.95
3 1 -0.95

-1. 73
-1.73
-1. 73

REP I R

0.4305
C0.43C5
0.4305

0.4513
0.4513
0.4513

PAr 23

10.1183
0.1183
0.1183

T4BLE 12.02

4 1 1 1 1

2
1 1 -0.80
2 3 -1.72
3 4 -1.91

0.4305
O. C 000
O.Co00

0.3857
0.328C
0.00CC

0.C864
0. 1469
C. 25CC

GH 1*
1 1 -0.69
2 1 -0.69
3 1 -0.69

-1 · 41
-1. 41

-1.41

1
1 1 -0.51
2 3 -1.65
3 4 -1.91

1
1 1 -0.64 0.4305
2 3 -1.69 0.C000
3 4 -1.91 0.C000

GH 1*
1 1 -0.37 -0o.9 0.6561
2 1 -0,37 -O.9 0.6561
3 1 -0.37 -0.S9 0.6561

1
1 1 -0.15
2 3 -1.56
3 4 -1.91

1
1 1
2 3
.3 4

1

0.6561
O.COCO
0. COO

0.5314
C.COOc
0. C00

-0.32
-1.61
-1.91

1 1 -0.47
2 3 -1.66
3 4 -1.91

4
1 3 -1.58
2 3 -1.64
3 4 -1.91

0. 4 305
0.CC000

. COO0

O.COO0
C. CCOO
0. CCCO

0. 3266
0.328C
0.COCC

0.3078
0. 3078
0.3078

0.2268
0.4050
O. 0CC

0.2566
0.3645
0. 00C

. 2735
0.3280
0. 00CC

0.0810
0.4050

.00CC

4
0.0734

.C734
0. C0734

0. 5314
0.5314
0.5314

0.5314
0. CC
O.COCO

0.3951
0.3951
0.3951

0.3222
0.3645
O.00CC

C.0488
C.2 1105
0.25C0

2

1
0.0620
0.1244
0.25CC

4
0.0361
0 .036 1
0. 361

2
0.0196
0.0700
C .25CC

0.0310
0.0A 80
0.25C0

I

1
0 .0434
C. 1042
0.2500

0.0165
0.1200C
C. 75CC

3

-183-

MACHINE AINTENANJCE REPAIR PACE 24 TABLE 12.03

4 1 3 1
1 3 -1.65 C.CJOO 0.1385 0.0425

I -1.71 OCCCO 0.3545 0,13C
3 4 -1.91 G.CO00 O .00C 0.750q

GH 1* 4
1 1 0.03 -0,49 O.Q100 0.18C0 O,01CO
2 1 0.03 -0.49 0.810 O. 18CC C.ClCC
3 1 0,0.3 -0.49 O.81C0 0.18CC O,01CO

1 2
1 1 0.28 0.8100 0.09CC 0.0025
2 3 -1.47 0.COO 0.45CO 0.025C
3 4 -1.91 O.00C0 O.00CC 0.2500

1 1
1 1 0.07 C.6561 0.153S C.CO9C
2 3 -1.52 OCOO 0.405C 0.0475
3 4 -1,91 O. C000 0.0000 0.2500

1
1 1 -0.12 0.5314 0.1976 C.C184
2 3 -1.57 O.COO0 0.3645 0.0677
3 4 -1.91 O.C000 0.OOCO 0.2500

1
1 1 -0.30 0.4305 0.2256 0.0296
2 3 -1.62 O.COOO 0.328C 0.0860
3 4 -1.91 0.C000 O.0000 0.2500

4 3
1 3 -1.49 0.C000 0.09CC C.C075
2 3 -1.56 O.COOO 0.4500 C.0750
3 4 -1.91 0.0000 0.OOCC 0.7500

4
1 3 -1.56 O.CCCO 0.153S C.0271
2 3 -1.67 O.COO0 0.405C 0.1425
3 4 -1.91 O.COO O.OOCO 0.7500

4
1 3 -1.63 0.CO000 0.1976 C.0551
2 1 -1.76 O.COO 0.3645 0.2032
3 4 -1.91 O.COO0 0.0000 0.7500

4
1 3 -1.7n O.COO 0.2256 C0.887
2 1 -1.80 0C.OO0 0.328C 0.2579
3 4 -1.91 O.CCOO 0.0000 0.7500

I

-184-

MACHINE MAINTENANCE & REPAIR PACE 25 TABLE 12.04

GH 1* 4
1 1 0.51 O.C8 1.CC'0 O.00CC O.CCO
2 1 0.51 O.C8 1.COO0 0.00000 0.000
3 1 0.51 0.0C 1.CCO O.OCC O.COOC

-185-

MACHINE MAINTENANCE REPAIR PAGE 26 TABLE 13.01

+…-------------- - - - - - - - - - - - - - - - - -+

I ITERATION 13

1 0.421 < G <
1 0.421 < H <

MEM -33

0.423
0.423

ESS MEM = 31

17 STEPS
6 STEDS

TIME = 14.58

TIME = 16.61
TIME = 16.84

+…-- ---- ---- ---- ---------- +--_---- - - -- - - -- - - -- - -

RC I U V(G) V(H) PRCBS

1
1 1 -0.37
2 3 -1.60
3 4 -1.91

1
1 1 -0.70
2 3 -1.69
3 4 -1.91

1
1 1 -0.96
2 3 -1.76
3 4 -1.91

1
1 1 -1.17
2 3 -1.82
3 4 -1.91

1
1 1 -1.33
2 3 -1.88
3 4 -1.91

4
1 3 -1.46
2 4 -1.91
3 4 -1.91

4
1 3 -1.55
2 4 -1.91
3 4 -1.91

GH 3*
1 3 -1.46
2 3 -1.46
3 3 -1.46

0.6561
0. C 00
0. 0000

0.5314
O.COO
O.COO0

0. 4305
o.coo0
O. COO0

0. 3487
O.COO0
0. 0000

0.2824
0.0000
0.0000

0.2288
O.COO0
O. 000

0. 1853
0. 000
0.C000

-1.9C
-1.90
-1.90

0.2288
0. 2288
0.2288

MEMORY STATES

0.3078
0.81C
0.0000

0.3951
0.7290
0.0000

0.45 13
0.6561
0.0000

0.4836
0. 5905
0.0000

0.4980
0.5314
0.0000

0.4991
0.4783
0.0000

0.4903
0.4305
0. 000

0.4991
0.4991
0.4991

1 1
0.0361
0. 1900
1.0000

1
0. 0734
0 .2710
1.0000

0.1183
0.3439
1.0000

0.167'7
0 .4095
1. 000

C.2195
0.4686
1.0000

0. 2722
0.5217
1.0000C

0.3244
0.5695
1.0000

1

1

1

4
0. 2722
0 .2722
0,.2722

I

-186-

MACHINE MAINTENANCE REPAIR PAGE 27 TABLE 13.02

GH 1* 4 1 1 1 1 1
1 1 -1.33 -1.77 0.2824 0.498C 0.2195
2 1 -1.33 -1.77 0,2P24 0.4980 0.2195
3 1 -1.33 -1.77 0.2824 0.4980C 0.2195

GH 1* 4
1 1 -1.17 -1.61 C.3487 0.4836 0.1677
2 1 -1.17 -1.61 0.3487 0.4836 0.1677
3 1 -1.17 -1.61 0.3487 0.4836 0.1677

GH 1* 4
1 1 -0.96 -1.40 0.4305 0.4513 0.1183
2 1 -0.96 -1.40 0.4305 0.4513 0.1183
3 1 -0.96 -1.4C 0.4305 0.4513 0.1183

1 2
1 1 -0.81 0.4305 0.3857 C0.0864
2 3 -1.72 O.COOO 0.3280 0.1469
3 4 -1.91 C.COCO 0.OOCC 0.2500

GH 1* 4
I 1 -0.70 -1.13 0.5314 0.3951 c.0734
2 1 -0.70 -1.13 0.5314 0.3951 0.0734
3 1 -0.70 -1.13 0.5314 0.3951 0.0734

1 2
1 1 -0.51 0.5314 0.3222 0.0488
2 3 -1.h65 O.C000 0.3645 0.1105
3 4-1.91 OCOOO 000CC 0.2500

1
1 1 -0.65 0.4395 0.3266 0.0620
2 3-1.69 O.COO 0.3280 0.1244
3 4 -1.91 O,.CCOO .00C C.2500

GH 1* 4
1 1 -0.37 -0.81 0.6561 0.3078 C..361
2 1 -0.37 -O.81 0.6561 0.3078 0.0361
3 1 -0.37 -0.81 0.6561 0.3078 0.0361

1 2
1 1 -0,.16 0.6561 0.2268 C.0196
2 3 -1.56 0.0000 0.405C 0.0700
3 4 -1.91 C.COCO O.000C C.2500

1
1 1 -0.32 0.5314 0.2566 0.0310
2 3 -1.61 O.COGO 0.3645 0.n8380
3 4 -1.91 O.COO O.00C 0.2500

-187-

MACHINE MAINTENAYCE REPAIR PAGE 2 TAPLE 13.03

1 1 1 2 1
1 1 -0.48 0.4305 0.2735 0.434
2 3 -1.66 O.CCCO 0.328C 0.1042
3 4 -1.91 O.COCO O.00CC C.25CC

4 3
1 3 -1.58 O.COO0 0.0810 C.0165
2 3 -1.64 O.COOO 0.4050 0.1200
3 4 -1.91 O.CCOO O.00CC C.750C

4
1 3 -1.65 O.C00 0.1385 0,0425
2 1 -1.71 O.COO0 0.3645 0.1830
3 4 -1.91 O.CCOO0 O.OGC C.7500C

GH 1* 4
1 1 0.03 -0.41 0.8100 0.1800 0.01CO
2 1 0,.03 -0,.41 0.8100 0.18CC 0.0100
3 1 0.03 -0.41 0.8100 O. 18CC C.01CC

1 2
1 1 0.28 0.8100 0.09CC 0.0025
2 3 -1.47 O.COO0 0.45CC 0.0250
3 4 -1.91 O.C000 O.00GO 0.25C00

1 1
1 1 0.07 0.6561 0.1539 0.C090
2 3 -1.52 O.COO0 0.405C C.0475
3 4 -1.91 O.COO0 O.OOCC 0.2500

1
1 1 -0.13 0.5314 0.1976 0.0184
2 3 -1.57 O.COCO 0.3645 0.0677
3 4 -1.91 0.C000 O.COCC 0.2500

1
1 1 -0.30 0.4305 0.2256 0.0296
2 3 -1.62 0. CCCO 0.328C O.fC6C
3 4 -1.91 O.COCO O.0OC 0,.2500

4 3
1 3 -1.49 O. COCO 0.09CC C.C075
2 3 -1.56 O.C0G0 0.45CC C.0750
3 4 -1.91 O.COO0 O.0OCO 0.7500

4
1 3 -1.56 0.C000C 0.153 0.0271
2 3 -1.67 O.CO00 0.405C C. 1425
3 4 -1.91 O.CCOO O.0OCC 0.75CC00

-188-

MACHINE MAINTENANCE & REPAIR

4
1 3 -1.63
2 1 -1.76
3 4 -1.91

4
1 3 -1.70
2 1 -1.80
3 4 -1.91

GH 1*
1 1 0.51
2 1 0.51
3 1 0.51

O. CCO
0.C000
O. COOO

PAGE 29 TAPLE 13.04

1 1 3
0.1976
0.3645
0.0000

.o551
C .2032
0.7 5C0

1I

O. COCO
O.C000
O.C000

0.2256
0.328C
O.0CC

C.C 97
0.2579
0.7500

4

0.C7
0 .0C7
0.07

1. CCO
1.CCOO
1. COOO

O.0CCC
O.00CC
0.0000

C . CCO
0.0COC

-189-

b. A Computer Communication Problem

The problem to be considered in this subsection concerns several

units sharing a single communication channel. If any two units attempt

to transmit messages simultaneously, both will fail. As the units have

no means (other than the channel itself) of coordinating their efforts,

the decision to transmit is made on the basis of imperfect information.

A system of this type has been used to link remote terminals to a

central computer at the University of Hawaii; because this system is

called the ALOHA system, the problem has become known as the slotted

ALOHA problem. A more familiar example of this problem is that faced

by a newsman attempting to address the President of the United States

at a news conference; if he asks a question while another newsman is

doing the same, neither will be recognized.

The slotted ALOHA problem has been considered by Kleinrock and

Lam [1975], Lam and Kleinrock [1975], and others cited in the first

reference. Although the problem has been extensively studied under

the assumption that the number of units seeking to transmit is known

(to all units), no work known to this author considers the "dual con-

trol" aspect of the problem (characterized by the fact that clashes

are useful in identifying the number of units seeking to transmit).

The formulation to be considered here limits the number of units, but

recognizes the "dual control" aspect of the problem. Moreover, pre-

vious work resulted in strategies sufficiently complex to preclude

evaluation, even by simulation. In the present analysis, the system

-190-

under an adapted feasible strategy is a Markov chain having state set

SxM; exact evaluation of the controller performance is therefore

possible.

In the model to be considered here, there are four units, each

of which may be in idle or retransmit mode. During each time interval,

a message originates at an idle unit with probability .1. The unit

always attempts to broadcast a newly-originated message. The three

outputs are:

No transmissions attempted

Y = One successful transmission

Multiple transmissions attempted

A unit that has unsucessfully attempted to transmit subsequently enters

retransmit mode. It then selects an input

(Retransmit with probability .2

Retransmit with probability .9

Since the system, as viewed by a unit in retransmission mode, is

symmetric, all units select the same input on the basis of the same

input-output history. There results an FPS formulation having 5 states

(corresponding to the number of units in retransmit mode), 2 inputs,

and 3 outputs. The FPS is reachable and detectable. The performance

measure is throughput, i.e. the average number of messages successfully

transmitted per unit time.

-191-

The following results were obtained in four iterations:

h
lb ub

.302 .354

.309 .331

.313 .329

.312 .330

g
lb ub

.330 .372

.332 .336

.331 .332

.330 .331

essential
memory

1

6

26

98

effectiveness

> 91.2%

> 93.3%

> 94.6%

> 94.3%

"Effectiveness" was computed by comparing the lower bound on h with

the final upper bound on feasible performance, .331.

These results indicate that memory is not very useful for pur-

poses of decision-making in this problem, i.e. that the performance

that may be achieved on the basis of the most recent input-output

pair alone (iteration 2) is comparable to that which may be achieved

on the basis of an infinite past history. This might be attributed to

the small number of units involved; it is possible that a similar com-

putation with a larger number of units might yield entirely different

results.

time
(secs)

.39

1.54

5.46

23.49

-192-

CHAPTER V

CONCLUSIONS

The mathematical technique of dynamic programming assigns to each

state a value representing the expected rewards accrued when the system

is initiated in that state. A decision-maker uses these values to com-

pare immediate rewards with potential benefits if the system is made to

enter a desirable state.

Problems of decision-making under state uncertainty may, in

principle, be solved by dynamic programming, if the state of information

is itself considered to be a state. It may, however, be practically

infeasible to assign a value to each state of information, when the

number of possible states of information is sufficiently large.

The mathematical technique of perceptive dynamic programming

assigns avalue to certain information that might be acquired at a

cost. These values may be used to compare performance achievable on

the basis of existing knowledge with potential benefits if further

information is sought.

In this report, perceptive dynamic programming has been developed

in the context of control of finite probabilistic systems over an

infinite horizon. The system is assumed to be reachable, so that

performance will not depend on the initial state, and detectable, so

that performance will not depend on the initial state of information.

Specifically, reachability assures that the most desirable state can

-193-

be reached from any other state; hence the gain achievable when the

system is initiated in the most desirable state can be replicated when

the system starts in any other state. Detectability assures that the

information vector may be arbitrarily closely approximated on the basis

of a sufficiently long string of most recent input-output pairs; hence,

whatever information was available initially is irrelevant in the steady-

state. Reachability and detectability also imply that a performance

arbitrarily close to the supremum feasible performance may be achieved

by a finite-memory controller having a sufficiently large memory set.

Reachability and detectability have many implications in FPS's

that are similar to well-known properties of finite-dimensional linear

systems (FDLS). For example, detectability in a FDLS implies that the

observer state may be arbitrarily closely (in some suitable sense)

approximated on the basis of a sufficiently long string of most recent

input-output pairs. The analogous result for FPS's is given in Section

14. Moreover, any FDLS that is initiated in state zero may be expressed

in a form that is controllable and observable. The assumption that a

FDLS is initiated in state zero is equivalent to the assumption that it

has experienced an infinite past under a stablizing control. Similarly,

any FPS that has experienced an infinite past under an appropriate

decision strategy may be expressed in a form that is reachable and

detectable.

An algorithm for the solution of FPS control problems was implemented

on a digital computer, and two simple problems were "solved" to

-194-

demonstrate the efficacy of the method. It appears that more realistic

(and hence more complex) problems might be solved in the same manner,

but it would then be necessary that the computer implementation be pro-

blem-specific.

Possible extentions of the theory which would be beneficial in

extending its applicability include the following:

1) The recursive computation of memory sets (described in Section

21d) could be explicitely optimized (e.g. by means of a branch-and-

bound intepretation).

2) The computational efficiency of pseudo-perceptive dynamic pro-

gramming (described in Section 21b) might be compared with that

of perceptive dynamic programming. It is clear that pseudo-

perceptive dynamic programming converges less rapidly than does

perceptive dynamic programming, but the former requires less

memory and less time to complete an iteration.

3) Perceptive dynamic programming is most effective when the

index of detectability, a, lies near zero. In order for this to

occur, outputs need not yield good reliable state information;

they simply must preclude the possibility of better information

being acquired from less recent input-output pairs. Thus the

notion of detectability is useful in determining whether a given

problem may be solved numerically. If the problem cannot be

solved, then the notion of detectability might be useful in

-195-

suggesting a different observation structure, one that is more

conducive to solution. In particular, the following problem might

be posed: Determine outputs for a given underlying process such

that, when perceptive dynamic programming is performed up to a

maximumallowable memory size, feasible performance is maximized.

An output that happens to equal the optimal input given the state

would, of course, solve this problem.

4) The notions of reachability and detectability might be

extended to systems having a large state set and a great deal of

structure (e.g. routing in a network of queues). This could lead

to effective rules for decision-making on the basis of imperfect

state information when consideration of the exact state is

physically feasible, but precluded on grounds of complexity.

5) Notions of cross-reachability and cross-detectability might

be defined in decentralized systems, to indicate the extent to

which various decision-makers need to coordinate their efforts.

-196-

BIBLIOGRAPHY

ASTROM, K.J. [1965],
"Optimal Control of Markov Processes with Incomplete State Information,"
J. Math. Anal. Appl. 10, pp. 174-205.

ASTROM, K.J. [1969],
"Optimal Control of Markov Processes with Incomplete State Information
II: The Convexity of the Loss Function," J. Math. Anal. Appl. 26,
pp. 403-406.

BATHER, J. [1973a],
"Optimal Decision Procedures for Finite Markov Chains. Part I:
Examples," Adv. Appl. Prob. 5, pp. 328-339.

BATHER, J. [1973b],

"Optimal Decision Procedures for Finite Markov Chains. Part II:
Communicating Systems," Adv. Appl. Prob. 5, pp. 521-540.

BATHER, J. [1973c],
"Optimal Decision Procedures for Finite Markov Chains. Part III:
General Convex Systems," Adv. Appl. Prob. 5, pp. 541-553.

BELLMAN, R. [1957a],
"A Markovian Decision Process," J. Math. and Mech. 6, pp. 679-684.

BELLMAN, R. [1957b],
Dynamic Programming, Princeton University Press, Princeton, N.J.

BERTSEKAS, D. [1976],
Dynamic Programming and Stochastic Control, Academic, New York.

BROOKS, D.M. and LEONDES, C.T. [1973],
"Markovian Decision Processes with State-Information Lag," Opns.
Res. 21, pp. 904-907.

BROWN, B. [1965],
"On the Iterative Method of Dynamic Programming on a Finite State
Discrete Time Process," Ann. Math. Stat. 36, pp. 1279-1285.

CERNY, J. [1970],
"Approximation in the Space of Information Channels," Information
and Control 16, pp. 384-395.

CHANDRESEKARIN, B. [1970],
"Finite Memory Hypothesis Testing--A Critique," IEEE Trans. Inform.
Theory, Vol. IT-16, No. 4, pp. 496-497.

-197-

CHANDRESEKARIN, B. [1971],
"Reply to Finite Memory Hypothesis Testing--Comments on a Critique,"
IEEE Trans. Inform. Theory, Vol. IT-17, No. 1, pp. 104-105.

CHANDRESEKARIN, B. and LAM, C.C. [1975],
"A Finite-Memory Deterministic Algorithm for the Symmetric Hypothesis
Testing Problem," IEEE Trans. Inform. Theory, Vol. IT-21, No. 1,
pp. 40-44.

COVER, T.M. and HELLMAN, M.E. 11970a],
"The Two-Armed-Bandit Problem with Time-Invariant Finite Memory,"
IEEE Trans. Inform. Theory, Vol. IT-16, No. 2, pp. 185-195.

COVER, T.M. and HELLMAN, M.E. [1970b],
"Finite Memory Hypothesis Testing--Comments on a Critique," IEEE
Trans. Inform. Theory, Vol. IT-16, No. 4, pp. 496-497.

COVER, T.M., FREEDMAN, M.Z. and HELLMAN, M.E. [1976],
"Optimal Finite-Memory Learning Algorithms for the Finite Sample
Problem," Information and Control 30, pp. 49-85.

DeGROOT, M.H. [1970],
Optimal Statistical Decisions, McGraw-Hill, N.Y.

DERMAN, C. [1970],
Finite State Markovian Decision Processes, Academic, N.Y.

DRAKE, A.W. [1962],
"Observation of a Markov Process through a Noisy Channel,"
Sc.D. Thesis, Department of Electrical Engineering, M.I.T.,
Cambridge, MA.

DRAKE, A.W. [1968],
"Partially Observable Markov Models for Quality Control," Twenty-
Second Technical Conference Transactions of the American Society
for Quality Control, Philadelphia, PA, pp. 199-205.

DEVORE, J.L. [1974],
"A Note on the Observation of a Markov Source Through a Noisy
Channel," IEEE Trans. Inform. Theory, Vol. IT-20, pp. 762-764.

FLYNN, J. [1974],
"Averaging vs. Discounting in Dynamic Programming: A Counterexample,"
Ann. Statist. 2, pp. 411-413.

HASTINGS, N.A.J. [1973],
Dynamic Programming with Management Applications, Butterworths,
London and Crane-Russak, N.Y.

-198-

HASTINGS, N.A.J. [1976],
"A Test for Nonoptimal Actions in Undiscounted Markov Programming,"
Management Sciences 23, pp. 87-92.

HELLMAN, M.E. and COVER, T.M. [1970],
"Learning with Finite Memory," Ann. Math. Stat. 41, pp. 765-782.

HOWARD, R.A. [1960],
Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA.

HOWARD, R.A. [1971],
Dynamic Probabilistic Systems, Vols. I and II, Wiley, N.Y.

KAKALIK, J.S. [1965],
"Optimum Policies for Partially Observable Markov Systems," MIT
M.S. Thesis; also reported in MIT Operations Research Center
Technical Report No. 18.

KALMAN, R.E., FALB, P.L. and ARBIB, M.A. [1969],
Topics in Mathematical System Theory, McGraw-Hill, N.Y.

KAJSER, T. [1975],
"A Limit Theorem for Partially-Observed Markov Chains," Ann. Prob.
3, pp. 677-696.

KLEINROCK, L. and LAM, S.S. [1975],
"Packet Switching in a Multiaccess Broadcast Channel: Performance
Evaluation," IEEE Trans. Commun., Vol. COM-23, pp. 410-423.

KUSHNER, H.J. [1971],
Introduction to Stochastic Control, Holt, Rinehart and Winston, N.Y.

LAM, S.S. and KLEINROCK, L. [1975],
"Packet Switching in a Multiaccess Broadcast Channel: Dynamic Control
Procedures, IEEE Trans. Commun., Vol. COM-23, pp. 891-904.

LANERY, E. [1967],
"Etude Asymptotique des Systemes Markoviens Commande,t' Revue FranSais
D'Informatique et de Recherche Operationelle 1, pp. 3-56.

LANERY, E. [1968],
"Complements a l'Etude Asymptotique des Systames Markoviens a
Commande," Institut de Recherche D'Informatique et D'Automatique,
Rocquencourt, France.

LUENBERGER, D. [1969],
Optimization by Vector Space Methods, Wiley, New York.

-199-

MacQUEEN, J.B. [1966],
"A Modified Dynamic Programming Method for Markovian Decision Problems,"
J. Math. Anal. Appl. 14, pp. 38-43.

MINE, H. and OSAKI, S. [1970],
Markovian Decision Processes, Academic, N.Y.

ODONI, A.R. [1967],
"Alternative Schemes for Investigating Markov Decision Processes,"
M.S. Thesis, Department of Electrical Engineering; also reported in
M.I.T. Operations Research Center Technical Report #28.

ODONI, A.R. [1969],
"On Finding the Maximal Gain for Markov Decision Processes,"
Opns. Res. 17, pp. 857-860.

PAZ, A. [1971],
Introduction to Probabilistic Automata, Academic, N.Y.

PLATZMAN, L.K. [1977],
"Improved Conditions for Convergence in Undiscounted Markov Renewal
Programming," Opns. Res. 25.

ROCKAFELLAR, R.T. [1970],
Convex Analysis, Princeton University Press, Princeton, N.J.

ROSS, S.M. [1970],
Applied Probability Models with Optimization Applications, Holden-
Day, San Francisco.

SATIA, J.K. and LAVE, R.E. [1973],
"Markovian Decision Processes with Probabilistic Observation of
States," Mgmt. Sci. 20, pp. 1-13.

SAWARAGI, Y. and YOSHIKAWA, T. [1970],
"Discrete-Time Markovian Decision Processes with Incomplete State

Observations," Ann. Math. Stat. 41, pp. 78-86.

SCHWEITZER, P.J. [1971],
"Iterative Solution of the Functional Equations of Undiscounted
Markov Renewal Programming," J. Math. Anal. Appl. 34, pp. 495-501.

SCHWEITZER, P.J. [1973],
"Annotated Bibliography on Markov Decision Processes," Unpublished.

-200-

SCHWEITZER, P.J. and FEDERGRUEN, A. [1977?],
"The Asymptotic Behavior of Undiscounted Value Interation in Markov
Decision Problems," to appear.

SMALLWOOD, R.D. and SONDIK, E.J. [1973],
"The Optimal Control of Partially Observable Markov Processes over
a Finite Horizon," Opns, Res. 21, pp. 1071-1081.

SONDIK, E.J. [1971],
"The Optimal Control of Partially-Observable Markov Processes,"
Stanford Ph.D. Thesis; also reported in Stanford Information
Systems Laboratory Technical Report No. 6252-4.

SULMAR, J.J. 1974],
"Observation of a Markov Source Through a Noisy Channel,"
S.B. Thesis, Department of Electrical Engineering, M.I.T.,
Cambridge, MA.

VON NEUMAN, J. and MORGENSTERN, O. [1947],
Theory of Games and Economic Behavior, Princeton University Press,
Princeton, N.J.

WALD, A. [1950],
Statistical Decision Functions, Wiley, N.Y.

WHITE, C.C. [1976],
"Procedures for the Solution of a Finite-Horizon, Partially-Observed,
Semi-Markov Optimization Problem," Opns. Res. 24, pp. 348-358.

WHITE, D.J. [1963],
"Dynamic Programming, Markov Chains, and the Method of Successive
Approximations," J. Math. Anal. Appl. 6, pp. 373-376.

-201-

APPENDIX A

Proof of Theorem 19.3

a. Preliminaries

V has been defined, in (12.11), as the vector space of bounded,

continuous, real-valued functions on . V, along with the sup norm

| *I , is a Banach space. It will be shown that the sequence {vm ,

given by (19.6) or (19.7), is bounded, that it has a subsequence that

converges (pointwise) to a convex function v , that the subsequence is

Cauchy - implying v V, and finally that v satisfies (19.1). A corollary

states that {Im} itself is Cauchy in V, i.e. that vm converges uni-

formly to v

Since it cannot be shown immediately that v is continuous, {vm}

will be treated as a sequence in W, the vector space of Lebesque measur-

able functions on IN. If veW, then Ij vii denotes the ess sup norm of w.

Naturally VCW.

By abuse of notation, a constant (such as Q or g) may denote an

element of V that is a constant function over %i. Following (17.3),

vEW may be interpreted as a function on %i:

v is "convex" (over iTN)

< > v(s) + v() > v(+ '),

V ,t ', + P's%. (A.1)

W is partially ordered by "<" where:

-202-

v < v' <=> v () < v(rr) VrsIN (A.2)

It will also be necessary to consider the restriction of vW to

particular subsets of % that include the range of T(,z) when P(z)

is subrectangular. Define:

b(Z) = min{Tj(e ,z) : Pij(z) > 0, P(z) is

subrectangular, and zEZ }

II(b(Q)) = {TcH : either i = 0 or iT. > b(Q), VieS}1-~~~

(A.4)

II vii b(,) = supEiN(b ()){V (I)} (A.5)

b. A Transformation in W

(A.6) Definition. f : W -+ W is defined by:

fv(r) = maxuc {7fq(u) + y vP(ylu))

Interpretation: f is the operator of backward inductive dynamic pro-

gramming.

* f* *9
Remark: Eq (19.1) may now be expressed as v = fv - g

Transformation f has the following properties:

(A.3)

(A.7) Lemma.
-203-

v < v' >= fv < fv'

(A.8) Lemma. f(v + C) = fv + C, where C is a constant.

(A.9) Proposition. f is continuous in sup norm; in particular,

II fv - fv' 1I < II v - v' II

Proof: fv < f(v' + Iv - v' I) = fv' + {I|v - v'II

and similarly fv > fv' - 11

(A.10) Proposition. V V

(A.11) Proposition. If vW

v - v'11 t

> fvEV; i.e. f preserves continuity in v.

is convex, then fv is convex; i.e. f

preserves convexity in v.

Proof:

fv(W) + fv(')

= max U U {iq (u) + yEY W(iP (y u))}

+ maxu U {'q(u) + Zyw(P(yu))

> maXu {(+ f')q(u) + :yCY [w(iP(yu)) + w((yu)) + P(yu))]

> max U {(+ ') q (u) + yY [w((+ i')P(ylu))]}

= fw(+ r'). ±

-204-

Adopting the notation (14.19), multiple applications of f take

the form:

f v(r) = max

u(zk*)#UU

+ k (E J[z,]v(7rP(z))) (A.12)

Continuity of f, established in (A.11), is made stronger below.

This will be necessary in order to establish convergence of {vm} in

FPS's that satisfy only a condition of weak detectability.

(A.13) Proposition. f v - f v' i1 <

(1 - a k) k I v-v' IIb(k) + k+, sklj vv, II

Proof: For any >0, there is a fcTIN such that

k k l < k kI f v - f 'II < f V(iT) - f V'@) +

(Zk*)
Let %EU be the policy maximizing (A.12), where is as

described above. Now:

11 k - fkv I I - fk(- [Z (k-)* °[,- r(z)

T rPz)q(4(z))) + s(Z [Zk zfv'(P(z)))

icE (k-1) * r[z,fl R~z, W 7rP (z) q(())

-205-

o[z, [v(TrP(z)) - v' (rP(z))]

([z,,4] (rP(z) 1) [v(T(Tr,z)) -v' (T(r,z))]

c[z,O] (rP(z)1) II v-v IIb(k
I v-v, i

I v v-v b(k)'

II v-v' II,

[z,]4 (rP(z) 1)

1j V-V'II

if T(¶r,z)s (b(k))

otherwise

if P(z) is subrectangular

otherwise

if c[z] < 1

otherwise
I

I
a[z,4] (rrP(z)l) [(1 - z) Il v-v' II b (k) + cl] 11 v-v' 1]

b (k)
+ k-l II v-v' II

Taking the limit -£ + 0 completes the proof.

c. A sequence in V

(A.14) Definition. and {vm} are sequences in W defined by

m+l m
vO = fvo,

m+l m m
v = 1/2 v + 1/2 fv ,

Bkz

zkzZ

= kz

zkzZ

< kZE:k
zSZ

< kE

< kE
ZZkz~Z

< kz
ZkzZ

t

CT [Zfl (P(z) 1)

k(l - .-T
< $ - (Y.) 11 V-V' 11

-206-

0 0
v° =V O0

m m
Clearly (A.14) is consistent with (19.5). By (A.10), v0 and v

lie in V, and by (A.11) they are convex. Boundedness of {m} is now

established.

(A.15) Lemma. vO + mL(,k) in< k < vO + mL(B,k) ax
0 Qm - 0 - Vmax

Proof: By (A.14), L(S,k)Q in< vk < L(S,k)Q . (A.7) and (A.8)

complete the proof.

(A.16) Lemma. IIVOIID <

Proof: (By induction). The result is trivial for m=0, and follows

trivially from (A.15) for m<0,Qp+> .

The induction follows a plan given in the heuristic justification

of (19.3). Let j be a state that maximizes vm(ej) and let

(Z-l)*
~*U (Z -) be a policy that maximizes (A.12) when =ej and v=vO .

Now, for any Tr6N , and any mz<,co>,

m M
v0 (e) - v(T)

< v(eJ) (Z (-l)* z,p*]B ()P(z)q(G*(z))

- St (a[z,p*]vO -(nP(z)A
zZ

-207-

< L(B,Z)Q + Z co[z,*][v (eP(z)) -Vo (irP(z))]
z Z

+B j Z- cG[z,*](e P(z)l)
Z -

vm -kv (T(e ,z))- v (T('T,z))] + (1-) lvm-I (T (e ,-Z)) - i) II 'm 11 lD

< L(f,5)Q + + (1-ri)

D

< L(5,k)Q + [- Tj(1-a)] I I D

But, for any 1 , there is an input word Uu p such that:

iES g() P i j > -

Thus

vO (T) < L(S,())Qmax + -vO(e)
- max 0

and

m+ (G)) > L(,())Q. +
v0 - () m -in

(-)
EY -

< L(,O)Q

1 m- I I

v m (TP (I U^)

Iaff E i 1)a·z

> L(, (a))Qmin +

> L(, ())Qmin +

-208-

(_) vm
0 (a) P(Iya))

YEEy

Z(i) [vo(e) - L($,i)Q -

0

Using (A.15),

m+

1O P"D < L(

-(ii)
3,Z -Q(d))Q + p II + (II D

+k
< L(B, p+Z))Q +

and IIvm ID < ->

(A.17) Proposition.

II1

II mII

m+ +k
- P

< ,

IID

mc<0,> .

Proof: By (A.14),

vm = Zk<,m>k)(l/2)kvm

So (A.16) implies I vml D = Q . (12.12) completes the proof.

t

k

m-k
[1- (-P) 1-ia) I I 0 11

v

"i

-209-

d. Construction of a Convergent Subsequence

(A.18) Lemma. There is a subsequence {m(k)} of {vm} having the

following properties:

(a) {mv (k)} converges pointwise to a convex function w*cW.

(b) ~im. -(b) limk oo Ivm(k) _ 'w1 b(k) = vQ<T,O>

Proof: Theorem 10.9 of Rockafellar [1970] states that any bounded sequence

of convex functions on a relatively open set has a subsequence that con-

verges uniformly on closed subsets of its domain. {m} is bounded, by

(A.17). Consider the restriction of {} to l = {IE : i. > 0 iff iH

for some HCS. One of the following must hold: l is empty; H

contains exactly one point; or l is relatively open (in Rm). In each

case, there exists a subsequence of {vm} that converges pointwise on

and uniformly on closed subsets of . For any c<,oo> ,

i(b(Q))CI H is closed. Taking subsequences of {vm} recursively for

each H C S, the desired subseqence is obtained. t

(A.19) Proposition. There is a subsequence of {m} that converges in

(V, II 11), i.e. uniformly on i.

Proof: Define:

m+l m
w 1/2 w + 1/2 fwm

w = * .

-210-

Let {m(k)}kc<0,> be the sequence of indices derived in (A.18). Then,

for any >o, there is aK' such that:

< mK> m))(1/2)m . 2 < c/8

and a K" such that:

VkE<K" ,o>

By (A.9), if m>m, then

I1 m+m(k') Aimn < iI Ai+m(k') ~

Thus, for k,k' > K = max(K',K"),

HI ,m(k)+m(k')_ ,m(k) l

< II m(K)+m(k') _ m(K)II

- [m<,m(m(K)> ()(1/2)m a c I Gm vb(m(K))
-- < 1-Zmr<,()m

+ [E m(2Om(K\))(1/2)m a C (Lm<,()
II m(K) A1l
lv -WI

- 11^(K)_^O /M) + z0 m-/(K)(2)m a -Q]< m(K)-0 11 b(m(K)) + mE<O,m(K)> () (1/2)m j2

< £/8 + c/8 = /4

11 m(k)_^*l /8
v v 11b(m(K')) < - 8

-211-

and

II -w

<_ II m(k) Am(k)+m(k') + II m(k)+m(k') m(k)

< c/4 + f/4 = f/2 .

But now:

I 2m(k) ,2m(k')ll
iiv -v

Am(k)+m(kk m(k) I I + I Iim(k) Am(k') II

+ II m(k') Am(k)+(km(k) I

< £/4 + £/2 + f/4

Consequently
{^2m(k)

(A.20) Proposition.

} is a Cauchy sequence in (V, 11). t

If v*EV is a limit point of {vm} then v* satisfies

(19.1).

Proof: Define:

mn+l /
w = 1/2w + 1 /2 fw

0w = V/

II mI

-212-

Then, by (A.9), * is a limit point of {w m. It will now be demonstrated

th t WAm _ *

Define:

a) tm() = m+l() - wm()

b) = max T {tm() }

c) Rm = {~LN : tm() = m}

Since v* is a limit point of {wm},

point of { m}

it follows that t is a limit

and. t (r) is a limit point of {tm()},

Now tm w -w = 1/2[fwm-fwm-1] + 1/2[wm-w m-] < 1/2[fwm-fwm-1]

Thus, by (A.9),
m m-l
t <t

'O
Since t is a limit point

of {tm}, m t .

By the Weierstrass maximum theorem, Rm is nonempty. But

m m m-l m -1 <-/
t = 1/2[fwm - f + /2[w - w < 1/2 + 1/2 t +

Thus R c Rm - Since
·m 'o
t t , there is a TJ

tm(r) = t , Vmc<O,> . Suppose now that there exists a ~'cI

that to(T') # t and define

= to - t(',) > 0

Then wi () = mt0 4- *(r) and wm(') < (tO-C) + (m-1)t + v*(T').

1/2 tm-

VrcEN

, by (A.9).

such that

such

-213-

Hence

[im(r) V*(T)] + [V*(r') - wm(~,)]

=[w () - v*(rr)] + [*(r') -]

> mt - t+ - (m-l)t £

But, for some ms<l,c> , I wm-v*11 < /2 , since v* is a limit point

of {$m} . This is a contraction; hence to () = o , rN. Now

w = w + t . Identify g* = 2t to see that v* satisfies (19.3).

e. Summary and Proof of (19.3)

By (A.19) {v} has a limit point 'v* in V. By (A.20), v*

satisfies (19.3).

By (A.9), | vm+l- ,1| < II m-V*, and hence {^m} converges

in (V, ' |), i.e. uniformly on X1N , to v*. Thus v* is continuous.

Since each v is convex, it follows that v* is convex.

Boundedness of v is a consequence of (A.17)
Boundedness of v is a consequence of (A.17).

-214-

APPENDIX B

Proof of Theorem 21.6

a. Proof of Part (a)

First consider the discounted case, <1.

m
Define y to be a strategy which selects inputs optimally on the

basis of a finite number of delayed state perceptions, taking the form:

[s(k-Z(z(k))), y(k)], if z(k)cess[M] and k<0O,m-l>

y (k =
[y(k)], otherwise

(B.1)

m
Then the inputs prescribed by y at times k<m-l,oo> take the form

-*[m(k)] where P)* is the optimal feasible policy corresponding to

the solution of (19.1), and

T(T(O),z(k)), if k<O,m-l> and z(k)gess[M]

n(k) = T(eS(k-(z(k))) ,z(k)), if kE<O,m-l> and z(k)cess[M]

T(nm(kl),(k k-l),y(k)), otherwise

(B.2)

-215-

Note that {n m(k)} is the information vector process which results when

the observation process is {ym (k)} .

Also define strategy y , which selects inputs {u(k)}k<O m l>

according to y+l and inputs {u(k)}kc<m, > according to ym.

Then

g(, m) < g(o,ym)

since r

the basis

(B.3)

maximizes g(3,) over the set of strategies realizable on

of observations (B.2). Thus

g((, + l) -g(ym)

= (1-) [E m+l{ k=O 8kr(k)} - E a{kOs r(k)}]

Y Y

- (1-)S m[E m+l
¥

{Z_ k-mr(k)} - E {km k-m r(k) }
Y

= (1-B) m [E m+l
Y

{v*(+ l (m))} - E

Y

{v* (m (m)) I]

= (-ar B Em+l
<

< (1-) m E +l

{v* (nm+l (m)) -v*(nm (m))}

{A[nm+l(m) ,n(m)]}I v* A (B.4)

If m=O or (with probability one) z(m-l)4ess[M], then

g(,y m) = g(0,Tm+l). Otherwise

-216-

= m(m), if z(m)8ess[M]

and

=T (T(es(m - l- (z(m -1))) ,z(m-l- (z(m-1)); m-Q

if z(m)cess[M]

so A[m + l (m) ,n (m))] <
a [z(m)],

0,

if z(m)cess[M]

otherwise

- min
< , by (14.23).

Substitution into (B.4) yields

(l) []-, Ig(, ym+l) _ g(8,ym) < (_)8m - min]77,uy - a 11 v*llA (B.6)

Q [M]
Now g[M] = g(3,y], and g* = g(B,y) = g(,y). Moreover

Iv*I A < 40 by (12.16) and (19.3). Thus

00

g[M] - g _< Zm= .
mln

[M] g(,ym+l) g(B,ym)

kmin[] - min[] 40
= ~ a

Take the limit B+1 to prove (21.6)(a) in the undiscounted case. t

nm+l (m)

nm+l ()

nm (m)

(B.5)

1

(B.7)

s(m-P,(z(m)))=: T(e' ,Z(m))

-217-

b. A Bound on Perceptive Values

The following intermediary result will be required:

JvMi,] - M(i,z] < , V[i,z], [i',z']X[m]. Intuitively, this

must be true in the limit as . [M] -* , for then v M[i,z] +v*[T(i,z)]
min

and by (19.3)(c), v*[n] - v*[n']l < .

In order to bound vM[i,z], attention will be focussed on v [s,z],

which is defined by (21.3). The pair [,z] may be regarded as a gener-

alized perceptive state, signifying that input-output word z has evolved

since the information vector was known to equal . Naturally

M [iz] = M [ei ,z] (B.8)

-The following additional properties of M
The following additional properties of v

(B.9) Lemma.

(B.10) Lemma.

(B.11) Lemma.

are readily established.

--M
v [Tr,z] is convex in Ir, for any zM.

V M[,z] < maxjcES M[eJe]}

-- M m s{ M{ [eJie]}
v [T,z] > min _ .

Proof: The relative value of being in the generalized perceptive state

[r,z] can only decrease if certain information is withdrawn. An observer

in generalized perceptive state [,z] at time k perceives information

of the form

([s(k-(z(k'))),y(k')], if k'-k(z(k')) > k-k(z)

and z(k')sess[M]

[y (k')], otherwise I k'E<k,O>

-218-

whereas an observer in generalized perceptive state [T[7r,z],e]

k, perceives information of the form

[s(k-Q(z'(k'))), y(k')],

[y(k')],

if k'-Q(z(k')) > k

and z(k')eess[M]

otherwise

Since, in the former case, more information (specifically, perception

of states s(k'),K'e<k+l-k(z),k>) is available, it follows that

--M --M -M
v [7,z] > v [T(f,z),e] > v [T(7r,z),e]

> min , {v [' ,e]}

(B.12) Lemma. 1lvM [-,z] D < -- M Il [I e] 1 IID V ~ ~~- '

t

V zEM.

Proof: By (12.11)(d),

Iv 'zII D = maxw 7T
-M] } - min {M] }
{V [T,z]} - min v [7r,z]}

7TSIN

But (B.10) and (B.11) imply

{v M [¶r,e] } < min
TIE:,N

{V [r,z] } <

< max }-M
TEJTIN IV [1T,e]l t

at time

k'c<k,O>

min * maxar7TJ[N

M{v ,z] }
Iv [7r,zl]

±

-219-

M ,
(B.13) Proposition. v [i,z] - v [i',z'] < ,

V [i,z], [i' ,z]X[M]

Proof: It suffices to show that IIvM[,e] D < Q . Define j to be the

state which maximizes vM[j,e], and let * denote an optimal perceptive

strategy adapted to M, constructed according to (21.1) for (0)=eJ;

i.e. * selects inputs optimally on the basis of information s(O)=j

and {x (k)} . Then, by (21.2),

v(e,e] = E { k<0,-l> (k

_ v [e ,z)], if z (Q)ess[M]

+ t

vM[xM(Q)], if zM (¥)ess[M]

[s(O)-j} - L(8,Q)g[M]

and, for any T7JN ,

v[,e] > i S i Ei* {zkE<O,S--l> k q(k)

vM [,zM ()], if zM(i)&ess[M]

+ B

vM xM(Q)], if zM ()Oess[M]

js(O)=i} - L(B,T)g[M]

-220-

Thus

-M ,ejv [e ,ell
-M

- v [r,e]

< L(B,)Q

+ T TjEr,j ~p*

+ ' (1 - .)
J

-M

V

0,

j M-[e ,z ()]

max[i,z] eX[M]

- v M [rr,z ()] ,

if z () eess[M]

otherwise

{v [i,z]} - min[iz][M] M [iz] }

< L(B,)Q)Q

if z (Q)&ess[M]

+ T-j E*

a [zM()],

0

v M [',ZM(Q) li Is(o)=j}

+ (1-T) 11 v M [,e] 11 D

< L(S, i)Q + a' Trall v [,] l D+ (1-Tr)IID j
-M elD[',_] IID

< L(S, -)Q + S [1-r -a)] I v [,e] ID
2~ ~ ~ ~~ -

Is(O)=j}

otherwise I

-221-

But, for any 7rsN,

is ys ()
yEy -

there is an input word

1-p
1J

Thus, for any

-M e] >
v [7r,e] L(,k(a)) Qmin

-M N
([-,z M(()),

iisS 1

vM [x(Q(M))],

if z (Q())gess[M]

otherwise

Is(O)=i, u(O)... u((u))=u} L(B,k(i))g[M] - L(f,g(u))g[M]

> L(_,(u))Q

+ -ziS E{v [TZ k(a)
yEY g

where (B.11) was used to obtain the second inequality. Thus:

II m[-e] IID < maxk<O,g ,
D -- Xks OZP

{L(,k)Q + k [L(B,,)Q

liv vM[,e] D

< maxk<O > {L(,k+k)Q + k+[l1-(l-p)(l-a)j]l |vM[' e]I|
p

TU such that

7r % ,

U. _vp)) el [s(0)}

k

-222-

which implies I v

c. A Bound on Pseudo-perceptive Deterioration

M.
Let v [i,i,z] denote the value of being in augmented state [i,z]

while believing the augmented state to be [i,z], where i,iEC. Speci-

fically,

M MvM[,i,Z] = q (iu*)+ yy ZjS PM (i,j,(u*,y))vM[j,T (z,(u*,y))]

- g[M], z£ess[M] nZ+(e ,e) (B.14)

MA
where u* maximizes (21.1) in the evaluation of v [i,z]. Eqs (21.1)

and (B.14) may also be written:

M = T(e
v [i,z] = T(eS

jeS

lu*)l

vM [j,T(z, (u*,Y)) - g[M]

-J

(B.15)

v [i,i,z] = T(e,z) (u*) + yP(u*)l

-223-

(Pz(i,j, (u*y)) \
i ,z)P(y[j ,TM (z,
T(ei,z)P(yiu *) l

Since 6[T(e ,z) ,T(e ,z)] < a[z],

and (B.11)

application of (13.4), (2.13)

to (B.15) yields

+ T(e i,z)L (u*) + yyP(y I *)1

,TM(z,(u*,y))]

Combining (B. 16) and (B.17),
4.

Mv i] v M v [, - i,Z]

< [z] [Q+2Q] + T(ei,z) EY-yP(Ylu*)l

P (i,j,(u*,y)) P (i,j,(u*,y))

EjESj£S | Ai
T(e ,z)P(ylu*)l T(e ,z)P(ylu*)l

v [z,T (z,(u*,y))]

(u*,y)) - gM]

(B. 16)

P (i,j, (u*,y))

JS T(ei ,z)P(y lu*) 1

)$vMc[j - g[M]

(B.17)

M
v ,Z] < zl [QQ]

(B.18)

-224-

Define:

M NA
F(z) = max. {v [i,z] - v i,z]}

1, ia:C

Naturally

M
v [,z] -V [ji z]

~M< ^
< v [,z] - v j,j ,z]

< F(z)

Substituting (B.19) and (B.20) into (B.18),

F(z) < maxi C max u z [Q+BQ]

+ Z y(T(e,,z)P(y lu)l)

tl[z(u,y) - TM(z,(u,y))]F(TM(z,(u,y)))

If M=Z and =l, then:

F(z) < a:z] [Q+]

+ c[Z]Sha[Q++Q]

+ a[z] Baa[Q+SQ]

= al:z] [Q+Q]

(B.19)

(B.20)

(B.21)

(B.22)

-225-

In the more general case, multiple step versions of (B.18) and (B.20)

are constructed, following (14.19) and (A.13), to obtain:

F(z) < max C max (k-l)* (kl), ([z',]T(e ,z)P(z')l)
1 cu(Z) _z'

Q(z')[z z' - TM(z,z')][z'][Q+Q] + k([z',]T(ei,z)P(z
z'eZ

8k [z z' - TM(z,z ')]F(TM(z ,z ')) }

Finally, note that:

M M
v [i,z] -- v [i,i,z]

< v [i,z] - v [i,i,z]

M^
+ {[i,i,z] - V [i,z]

v ^ M
+ v [i,z] - v [i,i,z]

< 2F(z)

(B.23)

(B.24)

d. Proof of Part (b)

The proof of part (b) is constructed in exactly the same manner

as that of part (a), except that the incremental deterioration in per-

formance due to pseudo-perception, given by (B.23), is used in place of

the incremental value of perception.

-226-

Consider first the discounted case. Define y

which selects inputs at times <O,m-l> according to

maining inputs according to . Then

Q [M]
mlg($,7

to be a strategy

M and the re-

) = g(, M) (B.25)

(B.26)g(,7) = g(B, M)

(B.4), and using (B.23), (14.23), and the convention

if a<b,

g(,ym)_ g(B, m+l)g(,) -- W +g(1,y)

< (1-) BmE m+l {v [z (m)] - v [sm(z(m)), x (m)]

< (1-S)Sm E m+1 {2F(zM(m))}

Y

< (1-k)UmE m+l {k=O k3 [z (m)z(m;m+k)-zM(m+k)]
Y

t[z (m+k)]} 2[Q+S]

<(1-s)m E m+l {z 0k=B [z(m-min[M]; m+k-Q [M])]

a[z(m+k-k . [M]; m+k)]} 2[Q+SQ]
mmn

< (l-8)3mE m+l {Zk=O k[z(m- in[M];

Q2 [M] Q+
m+k-a x[M])]} m 2[Q+S]

max

Following

z(b;a)=e

-227-

max [M] in

(+ (ax[M]- in[MI]) - -1
+ max nn L(,)(-e) }

Q [M]-min
ta 2[Q+BQ]

Summing as in (B.7) completes the proof, in the discounted case.

Take the limit: t+1 to prove (21.6) (b) in the undiscounted case.

t

-228-

APPENDIX C

Listing of the Computer Program

PL/I OPTIMIZING COMPILER /* DECLARATIONS */

STMT LEV NT

/*

/*

/*

1 0 DCL 1 MODEL EXTERNAL,

2 N FIXED BIN,
2 NU FIXED BIN,
2 NY FIXED BIN,
2 NZ FIXED BIN,

MODEL PARAMETERS */

/* NUMBER OF STATES
/* NUMBER OF INPUTS
/* NUMBER OF OUTPUTS
/* NUMBER OF SYMBOLS IN Z

2 (M,ESS_M) FIXED BIN, /* MEMORY STATES COUNTER
2 ERR FLOAT BIN, /* RROR, USUALLY G.HIGH-H.LnW
2 (MAX_M,MAX_ESS_M) FIXED BIN,
2 MIN_ERR FLOAT BIN, /* USER-SPECIFIED BOUNDS
2 FMT FIXED BIN, /* OUTPUT FORMAT

2 (P_PRCBS, P_RWDS, P_ZCCDE) POINTER,
/* POINTEPS TO STPUCT *, BFLOW

2 P_ROOT POINTER, /* ROCT OF MEMORY TREE
2 P_ESS_NODE_1 POINTER, /* START CF ESS NODE CHAIN

2 G,
3 (HIGH,LOW) FLOAT BIN,
3 STEPS FIXED BIN,

2 H LIKE MODEL.G,

2 P NODE POINTER,
2 P_REL POINTER,
2 P_REC POINTER,

/* BOUNDS ON G
/* DYNAMIC PROG STEPS COUNTER

/* PRESENT NODE
/* RELATIVE NODE, AG TO SCAN
/* RECURRENT NODE

2 (LEV,MAX_LEV,L0,LOO0) FIXED BIN,
/* LENGTH OF BRANCH OF P_NODF

2 (U,Y,Z) FIXED BIN; /* INPUT/OUTPUT/IO PAIR

3 1 0 DCL 1 STRUCT_ZCODE BASED(P_ZCODE), /* TRANSLATES (U,Y) TC Z
2 (NU1,NY1) FIXED BIN,
2 ZCODE(NU REFER(Nl), NY REFER(NY1)) FIXED BIN;

4 1 0 DCL 1 STRUCT_PROBS BASED(P_PROBS), /* ORIGINAL TRANS PROBS
2 (NZ2,N2) FIXED BIN,
2 PROBS(NZ REFER(NZ2),N PEFEP(N2),N REFFFP(N2)) FLOAT BIN;

5 1 0 DCL 1 STRUCT_RWDS BASFD(P_RWDS), /* ORIGINAL IMM REWARDS ARRAY
2 (NU3,N3) FIXED BIN,
2 RWDS(NU REFER(NU3), N PEFER(N3)) FLOAT BIN;

DCL0020
DCLO030
DCL0040
DCL0050
DCL0060
DCL0070
DCL0080
DCL0090

*/ DCLO100
*/ DCLO110
*/ DCLO120
*/ DCL0130

DCLO140
*/ DCL0150
*/ DCL0160

DCL0170
*/ DCLO180
*/ DCL0190

DCL0200
DCL0210

*/ DCL0220
*/ DCL0230
*/ DCL0240

DCL0250
DCLO260

*/ DCL0270
*/ DCL0280

DCL0290
DCL0300

*/ DCL0310
*/ DCL0320

*/ DCI.033n
DCL0340
DCL0350

*/ DCL0360

/ DCLO370
DCL03 0

*/ DCL0390
DCL0400
DCLO41 0
DCLO420

4/ DCLO430
DCL0440
nCL0450
DCL0460

*/ DCL0470
DCL0480
DCL0aqO

0.

-229-

PL/I OPTIMIZING COMPILER /* DECLARATIONS */

STMT LE NT

/*
/* ENCRY TREE SPECIFICATION

*/

/* */
/***************************************

DCL 1 NODE BASED(P_NCDE),
2 PESS_NODE POINTER, /* POINTS TO ESS_NODE, BELOW
2 (P_TPM,P_BRANCHES) POINTER,/* POINT TO SUBSTRUCTS OF NO

2 P_BACK POINTER,
2 Z_BACK FIXED BIN,

/* IDENTIIIES PREVIOUS NODE
/* IDS BRANCH ON PREVIOUS NO

2 (NO,NZO) FIXED BIN,
2 RO#SUM(N REFER(NO)) FLOAT BIN,

/* ROWSUM(I) = SUM/J TPM(I,J
2 TPM(N REFER({NO),N REFER(NO)) FLOAT BIN,

/* TRANS PROBABILITY MATRIX
2 BRANCHES(NZ EFER (NZO)),

3 P_BRANCH POINTER,

3 EBR ANCH BIT ALIGNED;

/* IDENTIFIES NODE ALONG BRA
Z FROM CURRENT NODE

/* IS BRANCH A NODE IN Z+?

7 1 0 DCL 1 ESS_NODE BASEC(P_ESS_NODE),
2 P NEXT ESS NCDE POINTER, /* NEXT NODE IN ESS NODE CHA
2 (NOO,NU00,NZ00) FIXED BIN,

2 (P_VGP_VHPP _GP_PPZ,P QZ) POINTER,
/* POINT TO SUBSTRUCTS, ELO

2 REC, /* FLAGS WHICH ID
3 (TO,FROM,GH) BIT ALIGNED,

2 UH FIXED BIN, /* INPUT - STEP

REC MEN ST

2 P_NEXTZ(NZ REFER(NZO0)) POINTER,
/* NEXT (ESS_)NODE, IF NEXT

I/O PAIR S THE SUBSCRIPT

2 VG(N PEFER(NOO)) FLOAT BIN,/*
2 VH(N PEFER(NOO)) FLOAT BIN,/*
2 (N REFER(N00)) FLOAT BIN, /*
2 UG(N RFER(NOO)) FIXED BIN,/*

RELATIVE VALTIE - STEP G
RELATIVE VALUE - STEP H
WORKSPACE FOR LHS OF)YN
OPTIMAL INPUT - STEP G

2 PZ(NZ REFER(NZOO),N REFER(NOO),N REFER(NO0)) FLOAT BIN;
/* TPN OF AUGMENTED SYSTEM

2 QZ(NU REFER(NUO0),N REFER(NOO)) FLOAT BIN;
/* INCREMENTAL REWARDS F'R

AUGMENTED SYSTEM

DCLO0510
DCLOS520
DCL0530
DCL54 0
DCL0550
DCLO560
DCL0570

*/ DCL0580
DE */ DCL0590

DCL0600
*/ DCL0610

DE */ DCL0620
DCL0630
DCLO640
DCL0650

I) */ DCL0660
DCL0670

*/ DCL0680
DCL0690

NCH DCL0700
*/ DCL0710
*/ DCLO720

DCL0730
DCLO740

IN */ DCL0750
DCL0760
DCL0770
DCL0780

W */ DCLO790
DCL0800

'S */ DCLO810
DCLOB820

*/ DCL0830
DCLOR40
DCL0850
DCLO86O

z */ DCL0870
DCL0880

*/ DCL0890
*/ DCL0900

PR */ DCL0910
*/ DCL0920

DCL0930
DCLO9UO

*/ DCLO950
DCLO96 0
DCL0970

*/ DCL0980

6 1 0

-230-

PL/I OPTIMIZING CONILFR /* DECLARATIONS */

STMT LEV NT

************* ************************* DCL1000
/* */ DCL1010
/* FAST REFERENCE OF NODAL PARAMETERS */ DCL1020
/* */ DCL1030
/************************************** DCL1040

DCL1050
8 1 0 DCL (FP_TPM,FP_BRANCHES,FPVG,FPVH,FP_W,FP_UG,FPPZ,FPQZ,FPFLAG) DCL1060

POINTER; /* POINT TO STBICTfRES, RELOW */ DCL1070
DCL1080
DCL1090

9 1 0 DCL F_TPM(10000) BASED(FP_TPM) FLOAT BIN; DCL1100
DCL1110

10 1 0 DCL 1 F_BRANCHES(10000) BASED(FP_BRANCHES), DCL1I20
2 FP_BPANCH POINTER, DCL1130
2 F E_BRANCH BIT ALIGNED; DCL1140

DCL1150
11 1 0 DCL F_VG(10000) BASED(FP_VG) FLOAT BIN; DCL1160

DCL 170
12 1 0 DCL F VH(10000) BASED(FP VH) FLOAT BIN; DCL1180

DCL1190
13 1 0 DCL F (10000) ASED(FP W) FLOAT BIN; DCL1200

DCL1210
14 1 0 DCL F_UG(10000) BASED(FP_UG) FIXED BIN; DCL1220

DCL1230
15 1 0 DCL F_PZ(10000) BASED(FP_PZ) FLOAT BIN; DCL1240

DCI.1250
1b 1 0 DCL F_QZ(10000) BASED(FP_QZ) FLOAT BIN; DCL1260

DCL1270
17 1 0 DCL FLAG(10000) BASED(FP_PLAG) FIXED BIN; /* GNFRALLY OVER UG(*) */ DCL1280

DCL1290
18 1 0 DCL DP_SKIP(10000) BASED(FP_W) FIXED BIN; /* HASTINGS SKIP, OVER */ DCL1300

*/************************************** * DCL1 320
/* */ DCL1330
/* MISC DECLARATIONS */ DCLI340

/* */ DCL 350
/*************************************** DCL1360

DCL1370
19 1 0 DCL (NULL,LINENO) BUILTIN; DCL13q0
20 1 0 DCL TIMING ENTRY(FIXED BIN(31,0)); DCL1390

DCL1400
21 1 0 DCL 1 IIM EXTERNAL, /* TIMES IN SC/100 */ DCL1410

2 (PREP,G,H,LIMIT) FIXED BIN(31,0); DCL1420

-231-

PL/I OPTIMIZING COMPILER FPSOPT: PROC CPTIONS(MAIN) REORDER;

SCURCE LISTING

STMT LE NT

1 0 FPSOPT: PROC OPTIONS(MAIN) PEORDER: MAIN0010
MAIN0020

2 1 0 %INCLUDE D1 (DCL); MAIN0030
4 1 0 DCL (PPeP_G,SCLVE_,PREP_H,SOLVE_H,REPRT) EXT ENTRY; MAINO040

MAIN0050
5 1 0 DCL IT FIXED IN; /* ITERATION NUMBER */NAIN0060
6 1 0 DCL (TOT_PAGE,IT_PAGE) FIXED BIN; /* PAGE CCUNTERS */MAINO070
7 1 0 DCL TITLE CHAR(32), (I ,J) FIXED BIN, B BIT, P POINTER, S FLOAT BIN;MAIN00O80
8 1 0 DCL BAR CHAR(62) INIT(('+' (60)'-' ll '')); AIN0090
9 1 0 DCL TE CHAR(6) INIT('TIME ='); MAIN0100

MAIN0110
10 1 0 CN NDPAGF(SYSPRINT) BEGIN; MAINO120
11 2 0 PUT EDII('I','J','I',',') (COL(1), A,COL(86),A,PAGE,A,COL(86),A); MAINO130
12 2 0 PUT EDIT(TITLE) (SKIP(6),CCL(14),A) ; AIN0140
13 2 0 TOT PAGEF = TnTPAGE+1; MAIN0150
14 2 0 I' TOT PAGE > 1 MATN0160

THEN PUT EDIT('PAGE',TOT_PAGF) (X(6),A,F(3)); NAIN0170
15 2 0 IF IT>0 MAIN0180

THEN DO; MATNO190
16 2 1 IT PAGE = IT PAGE+1; MAIN0200
17 2 1 PUT EDIT('ITABLE', IT*100 * IT_PAGE) (X(6),A,F(6,2,-2)); MAIN0210
18 2 1 IF IT_PAGE=1 MAIN0220

THEN DO; MAINO230
19 2 2 PUT EDIT(BAR, ' ITEATION',IT,'MEM =',M, MAIN0240

'ESS MEN =',ESS M,TE,'IMF.PREP,'!','',' ',', MAIN025n
G.IOW,' < G <',G.HIGH,G.STEPS,' STEPS',TE,TIME.G,'I', MAIN0260
'I',H.LOW,' < H <',H.HIGH,H.STFPS,' STFPSI,TE,TETIM.H, MTN270
'I' ,BAR) MAIN0280

(SKIP(2),2(COL(14),A),P(3),X(4),A,F(3),X(3),,F3), MAIN200
X(3)} ,A,F(6,2,-2), X (3),A,COL(14) A,CCL(75),A, MAIN0300
2(COL(14),A,F(8,3},A,F8,3,"(q, A,X(7),A,F(6,2,-2), MAIN0310
X(3),A), COL(14),A); MnIN032

MAIN0330

20 2 2 IF FMT=1 MAIN0340
THEN PUT EDIT('RC I V(G) V(H) PPnBS') MAIN0350

(SKIP (2) ,COL (14) ,A) MAN0360
21 2 2 ELSE PUT EDIT('IC lU) (CnL(14).A); MAIN0370
22 2 2 PUT EDIT('MEMORY STATES') (CCL(63),A); MAIN0390

MAIN0390

23 2 2 END; MAIN0400
24 2 1 LO

=
0; MAIN'410

25 2 1 END; MAIN0420
26 2 0 ELSE PUT EDIT('PROBLFM SPECS') (COL(63),A); MAIN0430
27 2 0 END; MAINO44O

-232-

PL/I OPTIMIZING COMPILER FPS OPT: PROC OPTIONS(MAIN) RORDER;

STMT LEV NT

/** MAIN0460
/* */ MAINO470
/* READ MODEL AND PRINT TITLE PAGE */ MkIN0480
/* */ MAIN0490
/*************************************** MAIN0500

MAIN0510
28 1 0 TITLE="''; MAIN0520
29 1 0 MAX_LEV, MAX_M,MAX_ESS_M,IT,FMT,TOT PAGE = 0; MAIN0530
30 1 0 ., ESS_ = 1; MAIN0540
31 1 0 MIN_FRR=0O.; AIN0550
32 1 0 TIME.LIMIT = 3; MAIN0560

MAIN0570
33 1 0 GET LIST(TITLE, N,NU,NY,NZ,FMT, TIMF.LIMIT,MIN_EPP,MAXM,.AX_ESS_M) ;MAIN050
34 1 0 TIME.LIMI = TIME.LIMIT*100; MAIN0590
35 1 0 SIGNAL ENEPAGE(SYSPRINT); MAINO600
36 1 0 PUT FDIT(N,' STATES',NU,' INPUTS',NY,' OUTPUTS',NZ,' I/O PAIRS', MAIN0610

'TIME LIMIT:I,TIME.LIMIT,'IIN ER: ',MIN_ER, MATNO620
'MAX MFM:',MAX_M,'MAX ESS MFM:',MAX_RSS_M) MAIN0630
(SKIP (2) ,COL (19),4(F(4),A) ,SKIP(2), COL (22) ,A,F(6,2 ,-2) ,MAIN0640
COL(53),A,F(5,3), SKIP(2),COL(22),A,F(4),COL(51),A,F(4)) ;MAINO650

MATN0660
37 1 0 ALLOCATE STRUCT_ZCCDB,STRUCT_PROBS, STPUCT_RWDS,NODE,ESS_NOD; MAIN0670

MAIN0680
38 1 0 ZCCDE = 0; MAIN0690

AIN0700
39 1 0 P_RDOT,P_FSS_NODE_1 = P_NODE; MAIN0710
40 1 0 P_BACK,P_NEXT_ESS_NOCF = NULL; MAINO720
41 1 0 P NEXTZ = PROCOT; MAIN07

3
0

42 1 0 P_TPM,FP_TPM = ADDR(TPM(1,1)); MAIN0740
43 1 0 P_BRANCHES, FP_BRANCHES = ADDR(BRANCHWS(1)); MAIN0750
44 1 0 P_VG,FP_VG = ADDR(VG(1)); MAIN0760
45 1 0 P_VH,FP_VH = ADDR(VH(1)); FAIN0770
46 1 0 P_W = ADDR(W(1)); MAIN0780
47 1 0 P_UG, FP_UG = ADDR(UG(1)); MAIN0790
48 1 0 P_PZ = ADDB(PZ(1,1,1)); MAINOA00
49 1 0 P_QZ = ADDR(QZ(1,1)); MATN081 0
50 1 0 PEC.G,PEC.H = '1'B; MIINOR20
51 1 0 DO I=1 TO N*N; MAIN08R0
52 1 1 F TPM(I)=0; MAIN0840
53 1 1 END; MkIN080
54 1 0 DO I=1 TO N; MAIN0860
55 1 1 FP_VG(I),F_VH(I) = 0.; MAINO0870
56 1 1 F UG (I) 1; MAIN0880
57 1 1 F_TPM((I-1)*N + I), OWSUM(I) = 1.; MAIN0890
58 1 1 END; ATINO900

-233-

PL/I CPTIMIZING COMPILER FPS_OPT: PROC OPTIONS(MAIN) RECODER;

STMT LEV NT

***** * *******************************
/* PLACE INPUT POBS TN PZ */
/***************************************

59 1 0 FUT EDIT('TRANSITION PROBABILITIES:,'Z',' (U, Y) ','P')
(SKIP(3),CL(14) ,A,SKIP ,COL(15),A,X(7),A,X(9)A);

60 1 0 DO Z=l1 TO NZ;
61 1 1 IF LINENO(SYSPRINT)+3+(N/10+1)*N > 55

THEN SIGNAL ENDPAGE(SYSPRINT);
62 1 1 PUT EDIT(Z) (F(16)) SKIP(2);
63 1 1 GETUY PAIR:

GET LIST(U);
64 1 1 IF U=O THEN GOTC GFT TPM;
65 1 1 GET LISI(Y);
66 1 1 PUJT EDIT(U,Y) (COLUMN(22),2 F(3));
67 1 1 ZCODE(U,Y) = Z;
68 1 1 GC T GET_UY_PAIR;
69 1 1 GET_TPM:

IF LINENC(SYSPRINT) + (N/10+1)*N > 55
THEN SIGNAL ENDPAGE(SYSPPTNT);

70 1 1 B = 'O'B;
71 1 1 FP_PZ = ADDP(P_PZ->_PZ((Z-1)*N*N + 1));
72 1 1 DO I=1 T N*N;
73 1 2 F PZ(T)

=
0.;

74 1 2 END;
75 1 1 GET LIST((F_PZ (I) LO 1=1 TO N*N));
76 1 1 DO I=1 TC N;
77 1 2 PUT SKIP;
78 1 2 PUT EDIT((F_PZ(J) LO J=(I-1)*N+ T I*N)
79 1 2 END;
30 1 1 DC T 1= TO N*N;
d81 1 2 3 = B I F_PZ(I')-,=.;
R2 1 2 END;
83 1 1 F_E_BRANCH(Z) = B;
84 1 1 F_P_BRANCH(Z) = NULL;
85 1 1 END;

) (CL (3), 5 F(8,4));

/* COPY PZ INTO POES

86 1 0 FPPZ = PPZ;
87 1 0 P

=
ADDR(PROBS(1,1,1));

88 1 0 DC I=1 0 N*N*NZ;
49 1 1 P->F_PZ (I) = F_PZ (I);
90 1 1 END;

MAINO928
M!IN0930
M.TN09q40
!ATNO050
MAIN3960
MAIN0970
MAIN0980
MATNO990
nAIN1000
MAIN1010
MAIN1022
!AIN1030
MAIN1040
MAIN100
MAN1060
MAIN1070
MAIN0O80
M TNO 0
MAIN1100
mIN1110
MATN1120
MATN1130
MAIN1140
MAIN1150
MAIN1160
MATN1170
MAIN1180
RMIN1190
MAN120n
MAIN1210
MAIN1220
MAIN1230
MAIN1240
1AIN1250
MIN1260
MAIN1270

*/MAIN1280
MAIN12qO
MAIN1300
PIN1310

MAIN13?0
MAI 1330

-234-

PL/I CPTIMIZING COMPILER FPS OPT: PROC OPTIONS(MAIN) RFORDER;

STMT LEV NT

/***************************************/ MAINI350
/* VERIFY STJM/Y,J/ P/T,J/(YIU)

=
1. */ MAIN1360

**/ MAIN1370
MAIN1380

91 1 0 B = 'O'B; MAIN13qO
92 1 0 DO I=1 TO N; MATN1400
93 1 1 DO t]=1 TO NU; MATN1410
94 1 2 S = 0.; MATN1420
95 1 2 DO Y=1 TO NY; MAIN1430
96 1 3 Z = ZCODE(U,Y); MPIN1440
97 1 3 IF Z=0 MAIN1450

THEN DO J = (Z-1)*N*N+(I-1)*N+1 TO (Z-1)*N*N+I*N; MAIN1460
98 1 4 S = S + FPZ(J); NAIN1470
99 1 4 END; MAIN14PO

100 1 3 END; MAIN1490
101 1 2 IF ABS(S-1.) > 1E-4 THEN DC; MAIN1500
102 1 3 PUT EDIT('ERROP: TRANS. PROBS. DO NOT SUM T ONE FOR I =',I, MAIN1510

', U =',U) (SK!P(2),A,?(3),A,F(3)); MAIN1520
103 1 3 B = '1'B; MATN1530
104 1 3 END; lA!N1540
105 1 2 END; MATN1550
106 1 1 END; MAIN1560
107 1 0 IF 3 THEN STOP; MAIN1570

-235-

PL/I CPTIMIZING COMPILERP FPS_CPT: PROC CPTIONS(MAIN) PRERDEF;

ST4T LEV NT

*/$******t** *6**** ************************ MAIN1590
/* PLACE INPUT REWARDS IN QZ AND RWDS */ MAIN1600
/** MAIN1610

MAIN1620
109 1 0 If' LINENC(SYSPRINT)+3+(N/l0+1)*NU > 55 MAIN1630

THEN STGNAL FNDPAGE(SYSPRINT); MAIN16I0
109 1 0 PUT EDIT('INCEMENTAL EWAFDS:','U','Q') MAIN1650

(SKIP (3) ,X (13) ,A,SKIP,COL (27) ,A,X (10) ,,) ; MAIN1660
110 1 0 PUT SKIP(2); MAIN1670
111 1 0 G.HIGH =-IE10; MAIN1690
112 1 0 G.LOW= 1E10; MAIN1690
113 1 0 DC U=1 TC N; MAIN1700
114 1 1 FP_QZ = ADDR(P_QZ->F_QZ((U-1)*N+1)); MAIN1710
115 1 1 GET LIST((F_QZ(I) DC I=1 TO N)); MAIN1720
116 1 1 PUlT EDI.(U) (COL(25),F(3)); MAIN1730
117 1 1 PUT EDTT((F_QZ (I) DO I=1 TO N)) (COLUMN(36), 5 F(8,4)); MAIN1740
118 1 1 DO I1 T N; MAIN170O
119 1 2 G.HIGH = MAX(G.HIGH,F_QZ(I)); MAIN1760
120 1 2 G.LOW = MIN (G.HIGH,F_QZ(I)); MATN1770
121 1 2 FND; MAIN1780
122 1 1 END; MAIN17qn

MAIN1900
123 1 0 FPQZ = PQZ; MAIN1q10
124 1 0 P = ADD?(PWDS(1,1)); MAIN1820
125 1 0 DC T=l TO NNII; MAIN18330
126 1 1 P->F_QZ(I) = F_QZ(I); MAIN1R40
127 1 1 END; MAINlq5n

MAINIR60
/* MTSC PRELIMINAIFS */MATN1870

128 1 0 ERR = G.HIGH - G.LCW; MAIN1RQO
129 1 0 'F MAX M<=O THEN MAXM=10000; MAIN1890
130 1 0 IF MAX ESS_ M=O THEN MAX_ESS_M=1000; MATN1900
131 1 0 IF PMT=O & FMT-=1 MAIN1910

THEN DO; MAIN19?0
132 1 1 PUT EDIT('*** INCCRRECT CUTPUT FORMAT',FT,

'
SPFCIFIFD ***') MAIN1930

(SKIP,X(10),A,F(4)) ,A) MAIN1940
133 1 1 STOP; MAIN1950
134 1 1 FND; MAIN1960

-236-

PL/I OPTIMIZING COMPILER FPS_COPT: PROC OPTIONS(MAIN) REORDER;

STMI LEV NT

/* */
/* MAIN SECTION CF THE PROGRAM */
/* */

135 1 0 LOOP:
IT = IT+1;

136 1 0 IT_PAGE = 0;
137 1 0 CALL TIMING(TIHE.PREP);

/**
/* */
/* SOLVE FOR OPTIMAL GAIN G
/* AND OPTIMAL VALUE VG */
/* (USE VH AS INITIAL GUESS) */
/* (LEAVE SOLUTION IN BOTH VG AND VH) */
/* */
/***

138 1 0
139 1 0

CALL SOLVE G;
CALL TI.ING(TIME.G);

/***
/* */
/* SOLVE FOR FEASIBLE GAIN H */
/* AND CORRESPONDING VALUE VH */
/* (USING VH AS IN7TIAL GUESS) */
/* */

140 1 0 CALL PREP H;
141 1 0 CALL SCLVE_H;.
142 1 0 CALL TIMING (TIME.H);

143 1 0 CALL REPORT;

144 1 0 CALL PREP_G;
145 1 0 GCTO LOOP;
146 1 0 END;

MAIN1980
MAIN1990
MAIN2000
MAIN2010
MAIN2020
MAIN2030
MAIN2040
MAIN2050
MAIN2060
lAIN2070
MAIN2080
MAIN2090
MkIN2100
MAIN2110
MAIN2120
MAIN213
MAIN2140
MAIN2150
MAIN2160
MAIN2170
MAIN2180
MAIN2190
MAIN2200
MAIN22

1
0

MAIN2220
MATN223O
MAIN2240
ATN2250

MAIN2260
MATN2270
MAIN2280
MAIN2290
MAIN230n
MAIN2O10
MAIN220
MAIN2310
MrIN2340
MATN2350
MAIN2361
MATN2370

'+/

-237-

PL/I OPTIMIZING COMPILER PREP_G: PROC REORDER;

SOURCE LISTING

STMT LEV NT

1 0 PREP G: PROC REORDER;

2 1 0 %INCLUDE DD1(DCL);
/***

/* */
/* ADD NODES AS REQIPED (FOLLCOWING RC.G) */
/* COPY V INTC V_FEAS
/* PRUNE OUT NODES WHICH ARE N LONGES ESS
/*
/**t**t****

DCL ADDNODE EXT ENTRY;
DCL (BT(0O:NU),BZ(O:NZ),B,bA) BIT

(I,ZZ,Z_STRING (0:MAX_LEV))

6 1 0 BA = 'O'R;
7 1 0 PNCDE,P1 = PESS_NODE_1;

8 1 0 A LOCP:
IF -FEC.G THFN GOTO END_A_LOOP;

9 1 0 BU,BZ = O'R;
10 1 0 FP_UG = P_UG;
11 1 0 DC I=1 TO N;
12 1 1 B(I(F riG(I)) = '1'B;
13 1 1 END;

14 1 0 DC rJl= TO NU;
15 1 1 IF BU ()

THEN DO Y=1 TO NY;
16 1 2 BZ{(ZCCDE(J,Y)) = ''B;
17 1 2 END;
18 1 1 END;

ALIGNED, (P,PO,P1) POTNTER,
FIXSD BIN;

/* ADD NEW NODES

PRPG0010
PRPG0020
PRPGO030
PRPG0040
PRPG0050
PRPG0060

*/ PRPG0070
*/ PRPGOOBO
*/ PRPGOOQO

**/ PRPG0100
PPP0O0110
PPPGO 120
PPRO 130
P P PGO140
PRPGO0150

*/PPPGO160
PRPG0170
PRPG0180
PG0 0190
PPPG0200
PRPG0210
PPPG0220
PRPG0230
P9PG0240
pRPGO250
PRPG0260
PRPGO270
PRPG0280
PPPG0290
PRPS0300
PRPG0310
PPPGO 320
PPPG0 330
PRPG0340

4 1 0
5 1 0

_

.r

:

-238-

PL/I OPTIMIZING COMPILER PREPG: POC REFRDER;

STMT LEV NT

19 1 0 DO ZZ = 1 TO NZ; PPPGC360
20 1 1 IF BZ(ZZ) PPPG0370

THEN DO; PPPGO 30
21 1 2 P,PO = P_NODE; PRPG0390
22 1 2 LEV = -1; PRPGO400
23 1 2 ALCOPI: PRPG0410

LEV = LFV+1; PPPG0420
24 1 2 Z_STPING(IEV) = P-> Z_BACK; PPGO430
25 1 2 P = P-> P_BACK; PnP;0440
26 1 2 IF P-=NULL nRPG0450

THEN GOTO A_LC'P1; PPPG0460
PFPG0470

27 1 2 Z_STRING (LEV) = ZZ; PPPG0490
23 1 2 P NODE = F ROOT; PPPGO490
29 1 2 A_LCOP2: PRPG0500

FPPRANCHES = P RANCHE7; PRPG0510
30 1 2 Z - Z_STRING (LZV); PPPG0520
31 1 2 IF F_E_EFANCH(Z) PFPGO05O

THEN GOTO OUT_ A; rPPG0540
32 1 2 P F_P_BPANCH(Z); PPPG0550
33 1 2 IF P=NULL PRPG0560

THFN DO; pnPG0570
34 1 3 IF -REC.G THEN GOTC CUT_A; PpPG05qO
35 1 3 FF_UG = P_rTG; P PG0590
36 1 3 U = UH; P PG0A00
37 1 3 DC I=1 TC N; PPPG0610
39 1 4 IE' F_UG (I) -=O F_rlG(I) ,= r PRPG0620

THEN DO; PFPGO630
39 1 5 CALL ADDNCDE; PFPG0D40
40 1 5 BA = 1'B; PFPG060
41 1 5 GOTO OUT_A; PPG660
42 1 5 END; PPPG6070
43 1 4 END; PPGO690
44 1 3 GCTC CT_A; PPO 06 90
45 1 3 END; PPPG0700
46 1 2 P_NCD = P; PPPG0710
47 1 2 LEV = LTV-1; PPG0720
48 1 2 IF LEV>=O PRPG0730

THFN GOTO A LOCP2; PPPc0740
49 1 2 pT A: P9P(;0750

P NDF = PO; PnG0760
50 1 2 END; PPG0770
51 1 1 END; PRPG0780
52 1 0 END A LOOP: P PG()790

P NODE = PNEXT_FS _NCDE; DPPG08)0
53 1 0 IF N(nE-,=NULL npnR1

THEN GOTO ALCOP; PPPG0820

-239-

PL/I OPTIMIZING COMPILER PREP_G: PROC REORDER;

STMT LEV NT

/* CHECK: WAS ANYTHING ADDED? */PRPGO84054 1 0 IF BA PRPG0850
THEN DO; PRPG0860

55 1 1 SIGNAL ENDPAGE(SYSPRINT); PPG0870
56 1 1 MIN ERR = 1.E10; PRPG0880
57 1 1 PUT EDIT('*** NO MEMORY STATES ADDED - AT MOST ONE MORE IRATtON'PRPG0890

II' WILL BE ALLOWED ***') (SKIP(2),X(10),A); PRPGO900
58 1 1 RETURN; PRPG091059 1 1 END; PRPGO920

/* CLEAN CUT SS NODE CHAIN */PRPG0930
60 1 0 P NODE = PESSNODE_1 PRPGO940
61 1 0 PRE LOOP: PRPG0950

P_REL = P _NODE; PRPG0960
62 1 0 P NODE = P NEXT_ESS_NODE; PRPGO970
63 1 0 IF P NODE-=P1 THEN GOTO PRELOCP; PRPG0980
64 1 0 GOTO ENTER LOOP; PRPGO990

PRPG1000
65 1 0 PRUNE LOOP: PRPG1010

PPEL = P NODE; PRPG1020
66 1 0 P _NODE = P_NEXTESS_NOD; PRPG103
67 1 0 IF P NCDE=NULL THEN RETURN; PRPG1OO

PRPG1050
68 1 0 ENTER LOOP: PRPG1060

FP_BRANCHES = P BRANCHES; PRPG1070
69 1 0 DO Z=1 TO NZ PRPG1080
70 1 1 IF F_E _BRANCHZ) & PP_BRANCH(Z)=NtlIL PRPG1090

THEN DO; PPG1100
71 1 2 FPUG = PUG; FPVG = P_VG; FP_VH = P_VH; PRPG11074 1 2 DO Ir1 TO N; PRPG1120
75 1 3 IF F_UG(I)=O THEN F_VH(I) = F_VG(I); PRPG1130
76 1 3 END; PRPG1140
77 1 2 GOTO PRUNE LOOP; PRPG1150
78 1 2 END; PRPG1160
79 1 1 END; PRPG1170

PRPG1180
80 1 0 ESSM ESS -I; PRPG1190
81 1 0 PREL -> P_ESSNODE -> P_NEXT_ESS_NCD = P_NEXT_ESS_NODE; PRPG120082 1 0 FREE ESSNODE; PPG1210
83 1 0 PESS NODE = NULL; PRPG1220
84 1 0 PNODE - P RE; PRPG1230
85 1 0 GOTO PRUNE LCCP; PRPG1240
86 1. 0 END; PRPG1250

-240-

PL/I OPTIMIZING COMPILER ADDNODE: PROC REORDER;

SOURCE LISTING

STMT LEV NT

1 0 ADDNODE: PROC REORDER; ADDNO010
ADDNO020

2 1 O X%INCLUDE DD1(DCL); ADDNOO30
ADDN0040

/******4* **/ ADDN0050
/* */ ADDNO060
/* ADD BRANCH Z TO NODE P NODE */ ADDN0070
/* ALSO ADD OTHER NODES AS REQUIRED TO MAINTAIN */ ADDNO080
/* RECURSIVE PROPERTIES OF THE MEMORY SET */ ADDNO090
/* */ ADDNO1nO
/**/ ADDN0110

ADDNO120
4 1 0 DCL SCAN EXT ENTRY; ADDNO130

ADDNO140
5 1 0 DCL Z_ADD FIXED BIN INIT(Z), PO POINTER INIT(P_NODE); ADDNO150

/* REGISTERS TO SAVE INITIAL ADDNO160
VALUES OF Z AND P_NCDE */ADDNO170

ADDNO190
6 1 0 DCL R(N) FLOAT BIN; /* R SUM OF NEW TPM */ADDN0190
7 1 0 DCL Z_STRING(O:MAX_LEV) FIXED BIN; ADDN0200
8 1 0 DCL P_NEN(0:MAX_LEV) POINTER; AODN0210

ADDN0220
9 1 0 DCL (S,SV,E) FLOAT BIN.(I,II,J,K,UU) FIXED BIN, (B,BB) BIT ALIGNED, ADDN0230

(P,1,P2,FP_PROBS,FP_RDS,FP_TPM2) POINTER; ADDN0240
10 1 0 FP_RWDS = ADDR(RNDS(1,1)); ADDNO250

ADDNO260
/* FILL IN Z_STRING WITH ADDN0270

DESCRIPTION FOR P_NODF */ADDN029O
11 1 0 Z_STRING(O) = Z_ADD; ADDN0290
12 1 0 DO =1 TO MAX_LEV; ADDNO300
13 1 1 P1 PBACK; ADDNO310
14 1 1 IF P1=NULL ADDNO320

THEN GOTO OUT; ADDNO330
15 1 1 Z_STRING(I) = Z_BACK; ADDN0340
16 1 1 P_NODE = P1; ADDNO350
17 1 1 END; ADDNO360
18 1 0 OUT: ADDN0370

MAX_LEV MAX(MAX_LEV,I); ADDN03RO
IQ 1 0 LEV-.L0 I: ADDN0390,, . _

- -- -~ - -

-241-

PL/I OPTIMIZING COMPILER ADDNODE: ROC REORDER;

ST.T LEV NT

/* THIS LOOP ADDS BRANCH ZADD ADDN0410
TO PO UNIQUE PRECEDENTS */ADDNO420

20 1 0 LCOP1: ADDNO430
LEV = LEV-1; ADDNO440

ADDNO450
/* FIND P_NCDE FOR GIVEN Z_STR */ADDN0460

21 1 0 P_NODE = P_ROOT; ADDN0470
22 1 0 DO I = LEV TO 0 BY -1; ADDN0480
23 1 1 P = P_NODE; ADDN0490
24 1 1 P_NODE = P_BRANCHES->F_P_BRANCH(Z_STRING(I)); ADDNO500
25 1 1 END; ADDNO510

ADDNO520
26 1 0 IF P_NODE-=NULL ADDNO530

THEN GOTO NO_MOEE_ADr; ADDN0540
ADDN0550

/* ALLOCATE NEW NODE */ADDNO560
27 1 0 ALLCC NODE,ESS_NCDE; ADDN0570

AnDN0580
/* LINK TO OLD NODE */ADDNnO90

28 1 0 Z_BACK = Z_ADD; ADDNO600
29 1 0 P_BACK = P; ADDN0610
30 1 0 P->P_BRANCHES->F_P_BRANCH(Z ADD) = P_NnDE; ADDNO620

ADDN0630
/* PLACE NEW NODE AT START O ADDNO640

FSS NODE CHAIN */ADDNO650
31 1 0 P NEXT ESS NODE = P_ESS_NODE_1; ADDNO660
32 1 0 P_NF(LEV),P_FSS_NODE_1 = P_NODE; ADDNO670

ADDN0680
33 1 0 P TP = ADDR(TPM(1,1)); ADDN0690
34 1 0 FP _BPANCHES,P_BRANCHES = ADDR(BPANCH.S(1)); ADDN0700
35 1 0 P_VG = ACDR(VG(1)); ADDN0710
36 1 0 FP_VH,P_VH = ADD(VH(1)); ADDNO720
37 1 0 P_ = ADD((1)); AnDN0710
38 1 0 FP_GPU, G = ADDR(IJG(1)); ADDN0740
39 1 0 PPZ - ADDR(P2(1,1,1)); knDN0750
40 1 0 FP QZ,P_QZ = ADDR(QZ(1,1)); ADDN0760
41 1 0 REC.G,REC.H = '0'B; ADDNO770

/* rUPDATE MEMnPY COUNT'RR */ADDNO780
42 1 0 M H N1; ADDN07q0
43 1 0 ESS_ = ESS.M+1; ADDNO800

ADDN0810
44 1 0 P_NCDE P; ADDNOq20

-242-

PL/I OPTIMIZING COMPILER ADDNODE: PROC REORDER;

STMT LEV NT

/* COMPUTE TPPM,VH AND QZ */ADDNOR40
/* PESET UG TO SHOW R(I) > 0? */ADDNO850

45 1 0 FPVG = PVG; ADDNO860
46 1 0 DO = 1 TO N; ADDNOP70
47 1 1 SV,?(I) O.; ADDNO980
48 1 1 FPTPM = ADDR (P_ES NODE 1->P_T->_TM->F TP((I-1)*N+1)) ; ADDNO890
49 1 1 FP_ PZ = ADDR(PROBS(Z_ADD,I,1)); ADDNO900
50 1 1 DO J = 1 TO N; ADDNO910
51 1 2 S = 0.; ADDNO0920
52 1 2 II = 1; ADDNO930
53 1 2 FP_TPM2 = ADDR(P_'Pl->F TPM(J)) ; ADDNO04O
54 1 2 DO K

=
1 TO N; ADDNO950

55 1 3 E = F_PZ(K) * FP_TPM2->F_TP1 (II); ADDN099O
56 1 3 II

= I+N; ADDN0970
57 1 3 S = S + E; ADDNO990
53 1 3 SV = SV + E * F VG(K); ADDNO990
59 1 3 END; ADDN1000
60 1 2 F_TPMjJ) = S; ADDN1010
61 1 2 P(I) = R(I) + S; ADDN1020
62 1 2 LND; ADDN1030
63 1 1 P_ESS_NODE_I->ROWSUM(I) = R(I); ADDN1040
64 1 1 IF (I)>0 ADDN1050

THEN DO; ADDN1060
65 1 2 FUG(I) = 1; ADDN1070
66 1 2 F_VH(I) = SV/R(I); ADDN1090
67 1 2 rlU = 0; ADDN190
68 1 2 DO U=1 TC NU; ADDN1100
69 1 3 S = 0.; ADDN1110
70 1 3 DO J=1 TO N; ADDN1120
71 1 4 S = S + F_IP(J) * FP_FWDS->F_QZ(UU+J); ADDN1130

72 1 4 END; ADDN1140
73 1 3 F_QZ(nU+I) = S/R(I); ADDN1150
74 1 3]H = UU+N; ADON1160
75 1 3 END; ADDN1170
76 1 2 END; ADDN1180
77 1 1 ELSE F_JG(I)

=
; ADDN190

78 1 1 END; ADDN1200

-243-

PL/I CPTIMIZING COMPILER ADDNODE: PROC REORDER;

STMT LEV NT

/* COMPTE F_BRANCH,P_BRANCH */ADDN1220
79 1 0 DO Z=1 TO NZ; ADDN1230
80 1 1 FP_PZ = ADDR(PROBS(Z,1,1)); ADDN1240
81 1 1 F_P_ ANCH(Z) = NULL; ADDN1250
82 1 1 P_ESS_NCDE_ 1->P_ESS_NODE->P_NEXTZ(Z) = NULL; ADDN1260
83 1 1 DC I=1 TO N; ADDN1270
84 1 2 IF R(I)>O ADDN1290

THEN DO J=1 TC N; ADDN1290
85 1 3 IF F_PZ((J-1)*NI) > 0 ADDN1300

THEN DC; ADDN1310
86 1 4 F_E_BRANCH(Z) = '1'B; .DDN1320
87 1 4 GOTO NEXT_Z; ADDN1310
88 1 4 END; ADDN1340
89 1 3 END; ADDN1350
90 1 2 FND; ADDN1360
91 1 1 FF_ BRANCH(Z) = '0'B; DDN1370
92 1 1 NEXT Z: ADDN1380

END; ADDN1390
93 1 0 GOTO LP1; ADDN1400

-244-

PL/I OPTIMIZING CC!PILER ADDNODE: PROC REORDER;

STMT LEV NT

94 1 0 NO MORE ADD: ADDN1420
P REL = P NODE; ADDN1430

95 1 0 L0 = LEV; ADDN1440
96 1 0 B = '1'B; ADDN1450

ADDN1460
97 1 0 DO LEV = LO0O+1 TO L-1; ADDN1470
98 1 1 Z 1; ADDN1480
99 1 1 P NODE = P_NEW(LEV); ADDN1490

100 1 1 FP UG = P_UG; FP TPM = P_TPM; ADDN1500
102 1 1 CALL GET P PZ; ADDN1510
103 1 1 DO Z=2 TO NZ; ADDN1520
104 1 2 CALL GET_PZ; ADDN1530
105 1 2 END; ADDN1540
106 1 1 END; ADDN1550

ADDN1560
107 1 0 LEV = LOO; ADDN1570
108 1 0 P_NODE P_REL; ADDN1580
109 1 0 P_REL = P_ROOT; ADDN1590
110 1 0 Y = Z_STRING(LEV+1); ADDN1600
111 1 0 F2 = P_ ESS NODE _1; ADDN1610
112 1 0 B = '0'B; ADDN1620
113 1 0 IF PSS NODE=NIJLL THEN GOTO NEXT SCAN; ADDN16I0

ADDN1640
114 1 0 LOCP2: ADDN1650

IF P NEXTZ(Y)=NULL mHEN GCTO NEXT_SCAN; ADDN1660
115 1 0 P=P_NODE; ADDN1670
116 1 0 DC =0 TO LEV; ADDN1680
117 1 1 Z_STPING(I) = P->Z_PACK; ADDN1690
118 1 1 F = P-> P_BACK; ADDN1700
119 1 1 END; ADDN1710
!20 1 0 P1 = P_REL; ADDN1720
121 1 0 Z = Y; ADDN171
122 1 0 FP_IIG = P_UG; FP_IPM = P_TPM; ADDN1740
124 1 0 CALL GET_E_PZ; ADDN1750

ADDN1760
125 1 0 NEXT SCAN: ADDN1770

CALL SCAN; ADON1780
126 1 0 IF P NODE'=NIILL ADDN1790

THEN GOTO LOOP2; ADNI800
ADDN1810

127 1 0 FINISHED: /* ESTORE CALLING Z,P_NODE */ADDN1820
PNODE = P; ADDN1830

128 1 0 Z = Z_ADD; ADDN1840
129 1 0 RETURN; hDDN1R50

-245-

PL/I OPTIMIZING COMPILER ADDNODE: PROC REORDER;

STMT LE NT

130 1 0 GET_R_PZ: PROC;
131 2 0 DO =1l TC N;
132 2 1 R(I) = ROSUMH(I);
133 2 1 END;

/* THIS ENTRY COMPUTSS R(*) FIRST

134 2 0 GET PZ: ENTRY; /* COMPUTE P_NFXTZ,PZ
135 2 0 P

=
P_ROOT->P_BRANCHFS->F_P BRANCH (Z);

136 2 0 IF P=NULL
THEN GOTO COMP2;

137 2 0

138 2 1
139 2 1
140 2 2

141 2 2
142 2 2

IF B
THEN DO;
P2 = NULL;
DO I = LEV TO 0 BY -1;

TOP:'
FPBRANCHES = ADDR (P->P_BRANCHES->F_E_BRANCH (Z_STRING(I)));
P1 = F_P_BRANCH(1);
IF F_E_BRANCH(1)
THEN PETURN;

143 2 2 IF P1 = NULL
THEN DO;

144 2 3 P2 = P;
145 2 3 P = P ROOT;
146 2 3 GOTO TOP;
147 2 3 END;
148 2 2 P

= P1;
149 2 2 END;

150 2 1

151 2 2
152 2 2
153 2 2
154 2 1

IF P2 = NLL
THEN DO;

P2 = P1;
P1 = P_-OOT;
END;

END;

*/ ADDN1870
ADDN1880
ADDN1890
ADDN1900
ADDN1910

*/ADDN1920
ADDN19q0
ADDN1940
ADDN1950
ADDN1960
ADDN1970
ADDN1980
ADDN1990
ADDN2000
ADDN2010
ADDN2020
ADDN2030
ADDN2040
ADDN2050
ADDN2060
ADDN2070
ADDN2080
ADDN2090
ADDN2100
ADDN2110
ADDN2120
AnDN2130
ADDN2140
ADDN2150
ADDN2160
ADDN2170
ADDN2180
ADDN2190
ADDN2200
ADDN2210
ADDN2220

i-

-246-

PL/I OPTIMIZING COMPILER ADDNODE: PROC REORDER;

STMT LEV NT

/* COMPUTE PZ WHERE P1,P2 ARE ADDN2240
Z(P_NODE) IZ = Z(P1)IIZ(P2) ADDN2250
PNEXTZ(Z) = P2 */ADDN2260

155 2 0 IF P NEXTZ(Z)=P2 ADDN2270
THEN RETURN; ADDN2280

156 2 0 P_NEXTZ(Z) = P2; ADDN2290
157 2 0 DO J=1 TO N; lDDN2300
158 2 1 S = 0.; ADDN2310
159 2 1 FP TPM = ADDR(Pl->PTTPM-F TPM(J)); ADDN2320
160 2 1 FP_PZ = ADDR(P_PZ->F_PZ((Z-1*N*N+J)); ADDN2330
161 2 1 S = P2 -> ROWSUM(J); ADDN2340
162 2 1 II = 1; ADDN2350
163 2 1 DO I=1 TO N; ADDN2360
164 2 2 IF F_UG(I) '=0 DDN2370

THEN F_PZ(II) = F_TPM(II) * S / R(I); ADDN2380
165 2 2 II I+w; ADDN23O
166 2 2 END; ADDN2400
167 2 1 END; ADDN2410
168 2 0 RETURN; ADDN2420

/* COMPUTE PZ WHERE hDDN2430
P NEXTZ(Z) = P_ROOT */ADDN240

169 2 0 COMP2: ADDN2450
BE = '0'B; ADDN2460

170 2 0 IF P_NEXTZ(Z) P_ROOT ADDN2470
THEN RETURN; ADDN2480

171 2 0 P_NEXTZ(Z)PROOT; ADDN2490
172 2 0 DO I=1 TO N; ADDN2500
173 2 1 IF F_UG (I)-s ADDN2510

THEN DO; ADDN2520
174 2 2 FPTPH ='ADDR(P_TPM->F_TP((I-1)*N+1)); ADDN2530
175 2 2 PP_PZ = ADDR(P_PZ-)>_PZ((Z-1)*N*N+(I-1)*N.1)); ADDN2540
176 2 2 DO J-1 TC N; ADDN2550
177 2 3 FP_PROBS ADDR(PROBS(Z,1,J)); ADDN2560
178 2 3 S 0.; ADDN2570
179 2 3 II=1; ADDN2580
180 2 3 DO K=1 TO N; ADDN2590
181 2 4 S =S F TPM(K) * FP_PROBS->)_PZ(II); ADDN2600
182 2 4 II = II+; ADDN2610
183 2 4 END; ADDN2620
184 2 3 F_PZ(J) = S/R(I); lDDN2630
185 2 3 BB BBIS)O .; ADDN2640
186 2 3 END; ADDN2650
187 2 2 END; ADDN2660
188 2 1 END; ADDN2670
189 2 0 IP -.BB THEN P_NEXTZ(Z)=NULL; ADDN2680
190 2 0 RETURN; ADDN2690
191 2 0 END; ADDN2700
192 1 0 END; ADDN2710

-247-

PL/I OPTIMIZING COMPILER PREP_H: PROC REORDER;

SOURCE LISTING

STMT LEV NT

1 0 PREP H: PROC RFCRDER;

2 1 0 INCLUDE DD1 (DCL);

/* CCMPUTE UR AND REC. *

4 1 0 DCL (BU(0:NU),BZ(O:NZ),B,BB) BIT ALIGNED, PP POINTER,
(S,T) FLOAT BIN, I FIXED BIN:

/* STEPO COMPUTE UH = MOST LIKELY CPTIMAL INPUT
/* P_REC = LIKELY G-RECURRENT NODE

5 1 0
6 1 0

7 10
8 1 0
9 1 1

10 1 1
11 1 2

12 1 2
13 1 1

14 1 2
15 1 2
16 1 2
17 1 1

P_NODE, P_PEC = P_ESS_NODE_I;
LOOPO:

FP_UG = P_UG;
T -. ;
DO U=l TO NU;

S=.;
DO I=1 TO N;

IF FUG (I) =
THEN S = S + ROWSUM(I);
END;

IF S>T+1E-4
THEN DO;

UH = U;
T = S;
END;

END;

18 1 0 IF REC.H THEN P REC = P_NODi;
19 1 0 REC.G, REC.H = 'O'B:

20 1 0 P_NODE = P NEXT_ESS_NODE;
21 1 0 IF PNODE -r NULL

THEN GOTO LOOPO;

22 1' 0 BB = 1'B; /* FIRST PASS FINDS REC.

PRPHOO10
PRPH0020
PRPH0030
PRPH0040

**/ PRPH0050
*/ PRPH0060
*/ PEPH0070
*/ PRPH0080

**/ PRPH0090
PRPH0100
PRPHO110
PRPH0120
PRPH0130

*/ PRPHO140
*/ PRPHO150

PPPH0160
PRPHO170
PRPHO180
PRPH0190
PRPH0200
PRPH0210
PRPH0220
PRPH0230
PRPH0240
PRPH0250
PRPH0260
PRPH0270
PRPH0280
PRPH0290
PRPHO300
PRPH0310
PRPH0320
PRPH0310
PPPH0340
PRPH0150
PRPH0I360
PRPH0370
PRPHO380
PRP103QO
PRPHO0400

.G */PRPH0410

-248-

PL/I OPTIMIZING CONPILFR PREPH: PROC REORDER;

STMT LE NT

/* STEP1 SET P REL = LIKELY RECURRENT NODE AND SET PTO=0O

23 1 0 STEP1:
P_NCDE = P_ESS_NODE_1;

24 1 0 LGOP1:
P REC = P_NODE;

25 1 0 REC.TO = '0'B;
26 1 0 P_NODE = PNEXT ESS_ NODE;
27 1 0 IF P NODE-=NULL

THEN GOTC LOOP1;

/* STEP2 SET REC.FROM = 0

28 1 0 STEP2:
P_NODE = P_ESS_NODE 1;

29 1 0 LOOP2:
REC.FROM = 'O'B;

30 1 0 P NODE = P_NEXT_ESS_NCODE;
31 1 0 IF PNODE -= ULL

THEN GOTO LOOP2;

32 1 0 RPT2:
P NODE = P_REC;

33 1 0 REC.TO,REC.FRCM = 1'R;

*/ PRPH0430
PRPHO440
PRPH0450
PRPHO460
PRPR0470
PRPHO480
PRPH0490
PRPH0500
PRPH51 0
PRPHO520
PRPH0530
PRPH0540

*/ PRPH0550
PRPH0560
PRPH0570
PRPH0580
PRPH0590
PRPH0600
PRPHO610
PPPH062 0
PRPH0630
PRPH06 4 0
PRPH0650
PRPH0660
PRPH0670

-249-

PL/I OPTIMIZING COMPILER PREP H: PROC REORDER;

STMT LEV NT

/* STEP3 FILL REC.TO AND REC.FROM

34 1 0 RPT3:
B = 0'B;

35 1 0 P_NODE = P_ESSNODE_1;
36 1 0 LOCP3:

IF ((-REC.TOIFEC.FROM) & (BBIREC.G))
THEN DO;

37 1 1 BZ = 'O'B;
38 1 1 IF B THEN DO;
39 1 2 BU = '0'B;
40 1 2 FP_UG = P_UG;
41 1 2 DO I=1 TO N;
42 1 3 BU(F_UG(I)) = '1'B;
43 1 3 END;
44 1 2 DO U= TO NU;
45 1 3 IF BU(U)

THEN DO =1 TO NY;
46 1 4 BZ(ZCODE(l,Y)) = '1'B;
47 1 4 END;
48 1 3 END;
49 1 2 END;
50 1 1 ELSE DO Y=1 TO NY;
51 1 2 BZ(ZCODE(UH,Y)) = '1'B;
52 1 2 END;
53 1 1 DO Z=l TO NZ;
54 1 2 IF BZ(Z)

THEN DO;
55 1 3 PP = P_NEXTZ(Z);
56 1 3 IF PP-=NULL

THEN DO;
57 1 4 PP = PP->P_ESSNODE:
58 1 4 IF (-REC.TO)&PP->PEC.TO

THEN B,REC.TO = 1'B;
59 1 4 IF (PP->REC. FRM)&REC. FOM

THEN B,PP->REC.FROM = '1'B;
60 1 4 END;
61 1 3 END;
62 1 2 END;
63 1 1 END;
64 1 0 P_NODE = P_NFXT_ESS_NODE;
65 1 0 IF P_NODE = NULL

THEN GOTO LOOP3;

66 1 0 IF B THEN GOTC RPT3;

*/ PRPH0690
PRPH0700
PRPH0710
PRPH0720
PRPH0730
PRPH0740O
PRPH0750
PRPH0760
PRPHO770
PRPH0780
PRPH0790
PRPHO800
PRPH0810
PBPH0820
PRPH0830
PRPH0840
PRPHOR50
PRPHO860
PRPH0870
PRPHO880
PRPHO890
PPPH0900
PRPHO910
PRPH0920
PRPH0930
PRPHO940
PRPH0950
PRPH0960
PRPH0970
PPPH09RO
PRPH0990
PPPH1000
PRPH1010
PPPH1020
PRPHlO30
PRPH1040
PRPH1050
PRPH1060
PRPH1070
PRPH1080
PRPH1090
PRPH 100
PRPH1110
PPPH1120
PRPH1130

-250-

PL/I OPTIMIZING COMPILER PREP_H: PROC REORDER;

STHT LEV NT

/* STEP4 CHECK FOR CHAINS NOT CONTAINING P REL

67 1 0 PP = NULL;
68 1 0 P NODE = P_ESS_NODE_I;
69 1 0 LOOP4:

IF REC.FPOM 6 (REC.TO) (BBIREC.G)
THEN DO;

70 1 1 P_REC = P_NCDE;
71 1 1 GOTO STEP2;
72 1 1 END;
73 1 0 IF (REC.TO) (REC.FROM) (BBIREC
74 1 0 P NODE = P_NEXT_ESS_NODE;

.G) THEN PP=P_ NODE;

75 1 0 IF PNODZ -= NULL
THEN GOTO LOOP4;

76 1 0 IF PP-=NULL
THEN DO;

77 1 1 PREC = PP;
78 1 1 GOTO RPT2;
79 1 1 END;

/* STEP5 FILL IN REC.G/REC.H (ACCORDING TO BB)

80 1 0 P NODE = PESS_NODE 1;
81 1 0 LCCP5:

IF BB
THEN REC.G = REC.TO PEC.FRO;

82 1 0 ELSE REC.H = REC.G & REC.TO & REC.FROF;
83 1 0 P_NODE = P_NEXT_ESS_NODE;
84 1 0 IF PNODE = NULL

THEN GOTO LOOP5;

85 1 0

86 1 1
87 1 1
88 1 1
89 1 0

IF BB
THEN DO;

BB = 'O'B;
GOTO STEP1;
END;

END;

*/ PRPH1150
PRPH1160
PRPH1170
PRPH1180
PRPH1 190
PRPH1200
PRPH1210
PRPH1220
PRPH1230
PRPH1240
PPPH 1250
PRPH1260
PRPH1270
PRPH1280
P}PH1290
PRPH1300
PPPH 131 0
PRPH1320
PRPH 1?30
PRPH1340
PRPH1350
PRPH1360

*/ PRPH1370
PRPH1380
PRPH1390
PRPH1400
PPPH1410
PRPH1420
PRPH1430
PRPH1440
PRPH145O
PRPH1460
PRPH1470
PPPH1480
PPH14QO
PRPH1500
PRPH1 510
PRPH1520
PRPH1530

-251-

PL/I OPTIMIZING COMPILER SOLVEG: PROC REORDER;

SOURCE LISTING

STMT LEV NT

1 0 S)LVE_G: PROC REORDER;

2 1 0 %INCLUDE D1 (DCL);
4 1 0 DCL (I,J) FIXED BIN, (SSS,T,TOL)

RT LABEL(RT_G,RT_H), (B,BB)
5 1 0 DCL (WRK(N),WRK2(N)) FLOAT BIN;
6 1 0 DCL STRUCT_FLAG(N) FIXED BIN;

FLOAT BIN, (P.P_LHS) POIF
BIT ALIGNED;
/* LHS MAX AND 2ND MAX,
/* DO DP FOR PREFIX I?

7 1 0 P_LHS = ADDR(WRK(1)); FP_FLAG = ADDR(STRUCT_FLAG(1));
9 1 0 PT = RT_G;

10 1 0 G.STEPS,H.STEPS=O;
11 1 0 TOL = ERR*1E-3;
12 1 0 ERR = Il10;

13 1 0 PNODE = P_ESS_NODE_I;
14 1 0 GLOCOPO:
15 1 0 FP_W = P_W; FP_UG = P_UG;
16 1 0 DO I=1 TO N;
17 1 1 DP_SKIP(I) = SIGN(F_UG(I)) - 1;
18 1 1 END;
19 1 0 P_NODE = P NEXT_ESS_NODE;
20 1 0 IF P_NODE=NULL

THEN GOTO G_LOOPO;

SOLV0010
SOLV0020
SOLV0030

ITER, SOLVO0040
SOLV0050

STEP G */SOLV0060
*/SOLVO070

SOLVO08R
SOLVO090
SOLVO100
SOLV0110
SOLV0120
SOLV0130
SOLVO140
SOLV0150
SOLVYO60
SOLV0170
SOLV0180
SOLV0190
SOLV0200
SOLV0210
SOLV022 0
SOLV0230

-252-

PL/I OPTIMIZING COMPILER SOLVE_G: PROC REORDER;

STMT LEV NT

21 1 0 GLOOP: SOLY0250
G.HIGH = -E10; SOLV0260

22 1 0 G.LO = 1E10; SnLV0270
23 1 0 G.STEPS = G.STEPS+1; SCLV0280
24 1 0 TOL = TOL*1.2; SOLV0290
25 1 0 S=.; SOLV0300
26 1 0 P_NODE = P_ESS_NODE_1; SOLV0310

SOLVO320
27 1 0 G_LOOP1: /* COMPUTE VG = MAX/U/ Q(U) + SUM/Y/ PZ VH */SOLV0330
28 1 0 FP_UG = P_UG; FP_VG = P_VG; FP_W = P_W; SOLV0340
30 1 0 DO I=1 TO N; SOLV0350
31 1 1 F VG(I) = -1.E5; SOL0360
32 1 1 END; SOLV0370

SOLV0380
33 1 0 DO =1 TO NU; SrLV0390
34 1 1 FP_QZ = ADDR(P_QZ->F _QZ((t-1)*N+1)); SCLVO400

SOLVO0410
35 1 1 BB = '0'B; SLV0420
36 1 1 DO 11 TO N; SOLV0430
37 1 2 B = DP_SKIP(I)=O (F_UG(I)=U&DP_SKIP (I) >O); SOLV0440
38 1 2 IF B SoLO45O

THEN DO; SOLV0460
39 1 3 STRUCT_FLAG(I) 1; SOLV0470
40 1 3 #WK(I) = F_QZ(I); SOLV0480
41 1 3 BB = '1'B; SOLV0490
42 1 3 END; SCLV500
43 1 2 ELSE STRUCT_PFLAG(I) = 0; SOLVO510
44 1 2 END; SOtV0520
45 1 1 IF -BB THEN GOTO NEXT_U; SOLV0530

SOLV0540
46 1 1 GOTO DP_OP; ScLVO550
47 1 1 RT-G: SOLV0560

DO I=1 TO N; SOLV0570
48 1 2 IF DP_SKIP(I)=0 SOLVO580

THEN DO; SOLV0590
49 1 3 IF RK(I)>F_VG(I) SOLV0600

THEN DO; SOLV0610
50 1 4 WRK2 (I) = VG (I); SCLV0620
51 1 4 F_VG(I) = RK(I); SOLVO630
52 1 4 F UG(I) = U; SOLV0640
53 1 4 END; SOLV0650
54 1 3 ELSE RK2(I) = AX (RK(I) ,RK2(I)); SOLV0660
55 1 3 ENW; SOLV0670
56 1 2 END; SOLV0680
57 1 1 NEXTU: SOLV690

END; S0LV0700

-253-

PL/I OPTIMIZING COMPILER SOLVE_G: PROC REORDER;

STNT LEV NT

58 1 0 DO =1 TO N; SOLV0720
59 1 1 IF DP_SKIP(I)>O SOLV730

THEN DO; SCLVO 740
60 1 2 DP_SKIP(I) = DPSKIP(I) - 1; SOLVO750
61 1 2 FVG(I) = WRK(I); SOIV0760
62 1 2 END; SOLV0770
63 1 1 ELSE IF DP_SKIP(I)=O SOLV0780

THEN DP_SKIP(I) = MIN(100.,(F_VG(I)-WRK2(I))/ERP) ; SOLV790
64 1 1 IF F_UG(I)-,=O THEN S = (S+F_VG(I))*.5; SOLVO80
65 1 1 END; SOLV810
66 1 0 PNODE = P NEXT_ ESS_NODE; SOLV0820
67 1 0 IF P NODE-=NULL SOLV081O

THEN GOTO G_LCOP1; SOLVO840
SOLVO850

68 1 0 PNODE = PESSNODE1; SOLV0860
69 1 0 G_LOCP2: /* VH = VG - S AND GET ODONI OUNDS */SOLVO87
70 1 0 FP_UG = P_UG; FPVG = P_VG; FP_VH = P_VH; SOLV880
72 1 0 DO =1 T N; SOLV0990
73 1 1 IF F_UG(I) -= 0 SOLV0900

THEN DC; S0LV0910
74 1 2 SS = F_VG(I) - F_VH(I); SOLV0920
75 1 2 G. HIGH= MAX(SS,G.HIGH); G.LCW = IN(SS,G. LOW); SOLV930
77 1 2 F_VH(I) (F_VG (I)+F_VH (I) -) *. 5; SOLV0940
78 1 2 END; SOLV09SO
79 1 1 END; SOLV0960
80 1 0 P_NODE = P_NEXT_ESS_NODE; SOL0970
81 1 0 IF P NODE NULL SOLV09pO

THEN GOTO GLCOP2; S(LV090
SOLV000

82 1 0 CALL TIMING(TIME.G); SOLV010
83 1 0 IF TIME.G > TIME.LIMIT THEN RETURN; SOLV1020

SrLV1030
84 1 0 ERR = G.RIGH - G.LOW; SCLV10O0
85 1 0 IF ERR > TOL SOLV1050

THEN GOTO GLOOP; SOLV1060
SOLV1 070

86 1 0 RETURN; SOLVO080O

-254-

PL/I OPTIMIZING COMPILER SOLVEG: PROC REORDER;

STMT LEV NT

87 1 0 SOLVE_H: ENTRY; S"LV1100
88 1 0 RT - RT H; SLV1110
89 1 0 TOL = TOL*1E-2; SOLV1120

SOLV1130
90 1 0 H LOOP: SOLV1140
91 1 0 H.HIGH =-1E10; H.LOW = 1E10; SOLV1150
92 1 0 H.STEPS = H.STEPS+1; SOLV1160
93 1 0 TOL = TCL*2; SnLV1170
94 1 0 S=O.; SILV1180
95 1 0 P NODE = P_ESS_NODE_ 1; SOLVl190
96 1 0 HLOOP1: SLV1200

IF -REC.H THEN GOTG H OUT1; SnLV1210
97 1 0 FP_FLAG = P_UG; FP_W,P_LHS = P_W; SOLV1220
99 1 0 U = UH; SOLV1230

100 1 0 FP_QZ = ADDR(P_QZ->F_QZ((U-1)*N+1)); SOLV1240
101 1 0 DO I=1 TC N; SnLV1250
102 1 1 IF FLAG(I) -= 0 SOLV1260

THEN FW(I) - PF_QZ(I); SnLV1270
103 1 1 END; SOLV120
104 1 0 GOTO DP_OP; SLV1290
105 1 0 RTH: SOLV1300

DO I=1 TO N; SOLV1310
106 1 1 IF FLAG(I) = 0 SOLV1320

THEN S = (S+F_W(I))*.5; SOLV1330
107 1 1 END; SOV1340
108 1 0 HOUT1: SOLV1350

P NODE = P _NEXT ESS NODE; SOLV1360
109 1 0 IF P NCDE-=NULL THEN GOTO H_LOOP1; SOLV1370
110 1 0 P_NODE = P_ ESS_NOdE 1; SnLV1380
111 1 0 H LOCP2: SOLV1390

IF REC.H THEN GOTO H_OUT2; SOLV1400
112 1 0 FP [rG = PUG; FP_W = P_W; FP_VH = P VH; SOLV1410
115 1 0 DO I=1 TO N; SOLV1420
116 1 1 IF F_UG(I) = 0 SCLV1430

THEN DC; SOLV1440
117 1 2 SS = F_W(I) - F_VH(T); SOLV1450
118 1 2 H.HIGH = NAX(SS,H.HIGH); H.LOW = MIN(SS,H.LOW); SOLV1460

120 1 2 F_VH(I) = (F_W (I)+F_VH(I)-S)*.5; SOLV1 470
121 1 2 END; SOLV1480
122 1 1 END; SOLV1490
123 1 0 HOUT2: SCLV1500

P NODE P NEXT_ESS NODE; SOLVI510
124 1 0 IF P NOCDE-,=NULL THEN GOTO H_LOCP2; SOLV1520
125 1 0 CALL TIMING(TIME.H); SOLV1530
126 1 0 IF TIME.H > TIME.LIMIT THEN RETURN; SOLV1540
127 1 0 IF H. HIGH - H.LOW > TCL SOLVI550

THEN GOTO H_LCOP; S0LV1560
128 1 0 RETURN; SOLVi570

-255-

PL/I OPTIMIZING COMPILER SOLVEG: PROC REORDER;

STMT LEV NT

129 1 0 DPOP: SOLV1590
SOLV1600

/**********************4****************4**4,4444** 44 , SOLV1610
/* COMPUTE THE OPERATION CF DYNAMIC PROGRAMMING: */ SOLV1620
/* # = Q(U) + SUM/Y PZ(Z=(U,Y))*V_FEAS(T(*,Z)) */ SOLV1630
/* IN NODE P_NODE WITH U AS SPECIFIED AT CALL TIME S/ SOLV1640
/ ***********************~********************************/ SOLV1650

SOLV1660
DO Y-1 TO NY; SOLV1670

130 1 1 Z = ZCODE(U,Y); SOLV1680
131 1 1 IF Z=0 SOL71690

THEN DO; SOLV1700
132 1 2 P = P NEXTZ(Z); SOLV1710
133 1 2 IF P-=NULL StLV1720

THEN DO; SOLV1730
134 1 3 FPVH = P->PESSNODE->P_VH; SOLV1740
135 1 3 P = ADDR(P_P%->F_PZ((Z-1)*N*N+I)); SOLV1750
136 1 3 DO I=1 TC N; S0LV1760
137 1 4 IF FIAG(I) -= 0 SCLV1770

THEN DC; StLV1780
138 1 5 FP_PZ = ADDR{P->F PZ((I-1)*N+1)); SOLV1790
139 1 5 SS = 0.; SOLV1800
140 1 5 DO J=1 TO N; SQLV1810
141 1 6 SS= SS+ F_PZ(J) * F_VH(J); SOLV1820
142 1 6 END; SOLV1l30
143 1 5 P_LHS->F_W(I) = P_LHS->F_W(I) + SS; SOLV1840
144 1 5 END; SOLV1850
145 1 4 END; SnLV1860
146 1 3 END; SCLV170
147 1 2 END; SOLV180
148 1 1 END; SOLV1890
149 1 0 GOTO RT; SCLV1900
150 1 0 END; SOLV1910

-256-

PL/I OPTIMIZING COMPILER REPCRT: PROC REORDER;

SOURCE LISTING

STMT LEV NT

1 0 REPORT: PROC REORDER; RPT010
RPT0020

2 1 0 %INCLUDE DD1(DCL); RPT0030
*************************************** RPT0040

/* */ RPT0050
/* PRINT RESULTS */ RPT0060

/* */ RPT0070
/************************************** RPT0080

4 1 0 DCL (I,J) FIXED BIN, P POINTER, C CHAR(1) ALIGNED; RPTOO90
5 1 0 DCL SCAN EXT ENTRY; RPT0100

RPTO110
6 1 0 SIGNAL ENDPAGE(SYSPRINT); RPTO120

RPT0130
7 1 0 ERR = G.HIGH - H.LOW + .E-10; PPT0140
8 1 0 P_NODE,P_ EL=P_RO0; RPT0150
9 1 0 LEV,L0,LOO = 0; RPT0160

10 1 0 IF P ESS NODE-=NULL RPT0170
THEN GOTO PD; RP"01R0

RPT0190
11 1 0 LOOP: RPT0200

CALL SCAN; RPT0210
12 1 0 IF P_NODE'=NULL RPT0220

THEN GOTO PD; RPT0230
RPT0240

13 1 0 IF ERR<= IN_ERP I M >= MAX_ ESS_N >= MAX_FSS _ PPT0250
I TIME.G >= TIME.LIMIT RPT0260

THEN DO; RPT0270
14 1 1 PUT EDIT('I,'I *STCP*') (COL(1),A,COL(86),A); RPT0280
15 1 1 STOP; RPT02q0O
16 1 1 END; RPT0300
17 1 0 RETURN; RPT0310

-257-

PL/I CPTIMIZING COMPILER REPCRT: PROC REORDER;

STMT LEV NT

18 1 0 PD: RPT0330
IF LINENO (SYSPPINT) > 55-N*FMT RPT0340
THEN SIGNAL ENDPAGE(SYSPRINT); RPT0350

19 1 0 PUT SKIP(2); RPT0360
RPT0370

20 1 0 IF REC.G THFN PUT EDIT('G') (COL(14),A); PPT0380
21 1 0 IF REC.H THEN PUT EDIT('H') (); RPT0390

PPT0 40 0
22 1 0 J = UH; RPT0410
23 1 0 PUT EDIT(J) (COL(19),F(3)); PPT0420

RPTO4 30
24 1 0 FP_UG = PTII;; RPTO440
25 1 0 C = '*; RPT0450
26 1 0 DO I=1 TC N; RPT0460
27 1 1 IF F_UG(I) =0 F_UG (I) -=J RPT0470

THEN DO; PPT0480
28 1 2 C = ' ; RPT0490
29 1 2 GOTO STAR_OUT; RPT0500
30 1 2 END; RPT0510
31 1 1 END; RPT0520
32 1 0 STAR OUT: RPT0530

PUT EDIT(C) (A); RPT054n
RPT0550

33 1 0 IF P_NODE = P ROOT RPT0560
THEN PUT DIT('<E>') (COL(73),A); RPT0570

34 1 0 ELSE DO; RP"0580
35 1 1 PUT EDIT(Z_BACK) (COL(MAX(1,76-!EV*3)), F(3)); FPT0590
36 1 1 P = P NODE; PPT0600
37 1 1 DO I-LEV-2 TO LO BY -1; PPT0610
38 1 2 F = P->P_BACK; RPT0620
39 1 2 PUT EDIT(P->Z BACK) (F(3)); PT0630
40 1 2 END; RPT0640
41 1 1 END; PPT06%0

PPT0660
42 1 0 IF FMT=O RPT0670

THEN GOTO LOCP; RPT060
RPT0690

43 1 0 FP_TPM = P TPM; FP_VG = P VG; FP_VH = P_VH; PPT0700

46 1 0 DO I=1 TO N; RPT0710
47 1 1 IF F_UG(I)'=0 PPT0720

THEN DO; RDT0730
48 1 2 PUT EDIT(I,F_UG(I),F VG(I)) (COL(16),2 F(3),F(6,2)); PPT0740
49 1 2 IF PFC.H THEN PUT EDIT(F_VH(I)) (F(6,2)); PPT0750
50 1 2 PUT EDIT((F_TPM((I-1)*N+J) DO J=1 TO N)) (CCL(34),5 F(8,4)); RPT0760
51 1 2 END; RPT0770
52 1 1 END; RPT0780
53 1 0 GOTO LOOP; RPT0790
54 1 0 END; RPT000

-258-

PL/I OPTIMIZING COMPILER SCAN: PROC PFFORDER;

SOURCE LISTING

STHT LEV NT

1 0 SCAN: PROC EORCER;

2 1 0 %INCLUDE DD1 (DCL);
/* FIND NEXT FSS NODE AFTER P_NCD IN TREE CRDFR */

4 1 0 CCL FIXED BIN;
5 1 0 LO = LEV;
6 1 0 NFW NODE:

I = 0;
7 1 0 CLIMB:

FP _BANCHES = D_BPANCHES;
8 1 0 DO Z = I+1 TC NZ;
9 1 1 T F E_BRANCH(Z) & F P_BRANCH(Z)-=NULL

THEN GOTO NEXT _LFV;
10 1 1 END;

/* AL
EX]

11 1 0 DCWN:
IF LEV=LOO
THEN CO;

12 1 1 P NODE = NULL;
13 1 1 FETUPN;
14 1 1 END;
15 1 0 LEV,LO = LEV-1;
16 1 0 I = Z_BACK;
17 1 0 P_NODE P_PACK;
18 1 0 PFEL = PREL -> P_bACK;
19 1 0 GCT-O CLINE;

/* CL:
20 1 0 NEXT LEV:

LEV = LEV+1;
21 1 0 P NODE = F PRANCH(Z);
Z2 1 0 PREL = P_REL -> P_BRANCIIES -> F_P BRANCI
23 1 0 FP BPANCHES = P_BRANCHES;
24 1 0 DO Z = 1 TC NZ;
25 1 1 IF F_E_RANCH(Z) & F_P_ERANCH(Z) =NULL

THEN PETURN;
26 1 1 END;
27 1 0 GnTO NEW _NODE;
28 1 0 END;

L BRANCHES HAVE BEEN
?LOPFD, GC BACF DOWN

IEB BPANCH Z

(Z);

SCAN0010
SCANOn20
SC'N0030
SCAN0040
SCANO050
SCAN0 900
SCAN9070
SCANOPO
SCAN0090
SCAN0100
SCAN0110
SCANO 120
SCAN 130
SCANO140
SCAN015
SCAN0160

*/SCAN0 70
SCANO10
SCAN019O
SCA N020n
SCAN0210
SCAN0220
SCAN0o 230
SCAN0240
SC9N0250
SCAN0260
SCAN0270
SCANO28O

*/SCAN0299
SCNO 300
SCAN0310
SCA NO 320
SCN0 330
SCAN0340
SCANO 50
SCAN030
SC'NO37 0
SCAN0380
SCANn3qO
SCA NO400

-259-

SYMBOL TABLE

a[P], a[z],

a

{b(k)}

C

C(k)

D

i
e

e

ess[M]

E }
y

g(b,y), g(3,y), g(y)

g[M], gf

h[M], hn

I(z), J(z)

k

K

Z(z)

L, ,

L($,g)

M

m

N

D-sense spread of normalized range, 100

Detectability index, 49,53,115

Finite-horizon weights, 28

Connected class of states, 81

Detectable classification of states at

time k, 118

Metric on N,87,94-96

Unit vector, 11

Empty word, 62

Essential part of memory set, 70

Expectation under strategy y, 26

Performance indices, 28

Perceptive gain, 145

Pseudo-perceptive gain, 147

Possible states (preceding, following)

evolution of z, 63

Time, 21-22

Horizon, 22

Length of word z, 62

(Reachability, detectability) time
constant, 48-49, (82,115)

Discounted time interval, 135

Memory set, 66

Value-iteration step, 128,136

Number of states, 21

-260-

n

P (i,j ,z)
z

P(y I u)

Prob { }
Y

q(k)

q (u)

qM(i,u)

Qmax' Qmin' Q

r(k)

row. [P] ,

s(k)

S

T(n,u,y), T(n,z)

TM(z,z')

u(k)

U

k,K
v

v*

V

x (k)

X[M]

Iteration number, 37-38,145

Transition probabilities of augmented
system, 76-77

Transition probability matrix, 21

Probability under strategy y, 25-26

Expected incremental reward at time k, 28

Expected incremental reward vector, 29

Expected incremental rewards for augmented
system, 76-77

Bounds on expected incremental rewards, 29

Reward at time k,

Row of a matrix, 11

N-dimensional Euclidean space, 11

State at time k, 21

State set, 21

Information vector transition function,
26,64

Memory state transition function, 68

Input at time k, 21

Input set, 21

Finite-horizon value function, 125

Infinite-horizon relative value function,
134

Banach space of continuous bounded real-
valued functions on N , 96

Augmented state at time k, 75

Augmented state set, 75

X[M]

y(k)

Y

z M(k)

z

z

()+

<a,b>, [a,b], [a,b)

0o

1.1
11 .11II liI
H1 ''D ' '| ||A

c[P], a[z]

a, a

Y

A

r (k)

pi(k)

7' (0)

-261-

Connected class of augmented states, 83

Output at time k, 21

Output set, 21

Memory state at time k, 66

Set of input-output pairs, 62

Set of input-output words, 64

Positive part, 11

(Integers, reals) between a and b, 11

Subtraction of rightmost part of word, 65

Bayes' operator, 51,82

Sum of vector components, 12

Sup norm, 96

Variation of convex function, 97-98

A-sense contraction, 100

Detectability index, 53,106,109,112,114

Discount, 28

Decision strategy, 24,78

Hajnal measure, 87,93

Metric on INi 87,89

Information vector at time k, 26

Number of detectable classes, 118

Initial state probability vector, 21

Unit simplex of (stochastic, substochastic)
vectors, 11

-262-

Reachability index, 48,82

Policy compatability flag, 114

Elasticity of memory effectiveness, 16-17,
106,109,112,114
Feasible strategy and the policy that
realizes it, 78

Pseudo-perceptive strategy derived from

M , 146-147

Optimal feasible strategy, 134

Set of feasible strategies adapted to M, 78

Connectivity index, 81-82

Perceptive strategy and the policy that

realizes it, 79

Optimal perceptive strategy adapted to M,
146

Set of perceptive strategies adapted to M,
79

Value of information, 50,135

p

a[z,f]

T

-k

D[M]

X

A, T

Y [M]

Q

-263-

GLOSSARY

accept: The action in which a system receives an input, 21.

augmentation: Transformation of an FPS to one having augmented states,
58,76.

augmented state: Transformed state consisting of a delayed internal
state and a memory state, 57,75.

concatenation: Two or more words (strings) placed end to end so as to
form a single word, 62.

connectivity: A relation between states i and j indicating that the
system in state i may eventually enter state j provided that suitable
inputs are selected in the interim, 81.

controller: A dynamical realization of the decision strategy, 24.

control problem: The problem of designing a controller which realizes
an optimal or -optimal strategy, 31.

decision strategy: A (possibly probabilistic) rule for the selection
of plant inputs, 24.

detectability: A condition under which the information vector is
increasingly insensitive to increasingly delayed information, 105-106,53.

emit: The action in which an output is generated by the system, 21.

essential memory state: A memory state that is recurrent under some
policy, 70.

estimation problem: The problem of recursively computing an estimator
or sufficient statistic. In the case of an FPS, the estimator is the
information vector, 30.

feasible: A strategy is feasible if it can be realized on the basis of
available information; otherwise it is perceptive, 78.

finite-memory constraint: The constraint that a decision strategy be
realizable by a finite-state automaton, 24.

finite probabilistic system: A discrete-time, finite-input, finite
output finite-state stationary controlled stochastic process, 13,20-22.

FPS: See "finite probabilistic system."

-264-

free FPS: An FPS whose input set contains but one element, i.e. an
FPS whose input process may be ignored.

free system induced by a decision strategy: The system which results
when a plant and its controller are considered as a single unit, 23-24.

horizon: Length of the time set, 22.

infinitely delayed splurge: Phenomenon arising in the absense of detec-
tability, 48,142.

information vector: A vector, which may be computed by an observer,
whose i-th entry is the a posteriori probability that the system is in
state i, 26.

information vector transition function: The rule by which an observer
updates the information vector, 26.

memory set: A vocabulary of input-output words available to the observer,
57,65-66.

memory state: The word of most recent input-output pairs retained by
the observer, 57,65-66.

memory state transition function: The rule by which an observer updates
the memory state, 68.

memory tree: A graphical representation of the memory set, 66-68.

observer: A system which accepts plant outputs and computes the
information vector (or an approximation thereof), 30.

perception: An output which has been artificially added to the plant to
facilitate computation, 35,54.

plant: The system to be observed or controlled, 13,18.

policy: A finite array which specifies the decision strategy, 14,78-79.

pseudo-perception: An approximation to a perception, obtained by guessing
the value of the perception on the basis of the memory state, 54,146.

reachability: A condition under which the state of an FPS can be made
to assume a desired value with probability bounded from below, for any
initial state probability vector, 48,82.

realization: Specification of system components which will act according
to a given rule, e.g. a controller realizes a decision strategy, 14,24.

-265-

representation: Specification according to a particular system of

notation, 20,22.

reward: The component of a performance index which depends on an parti-
cular input-output pair as well as the states preceeding and following
it, 27; the expected incremental reward depends only an input and the
state preceeding it, 28-29.

state-calculability: A possible FPS property, given by (2.3), 23.

state-observability: A possible FPS property, given by (2.4), 23.

statistical decision problem: A control problem in which plant dynamics
are unaffected by input values, 30.

strategy: See decision strategy.

subrectangularity: A property of substochastic matrices given by (13.1)
99; also, a possible property of FPS's given by (14.1) and (14.7),
105,106,109.

SDT: Strong detectability.

SSR: Strong subrectangularity.

valued finite probabilistic system: An FPS, along with a process of
incremental rewards or expected incremental rewards, making possible
the definition of performance indices as a function of strategy, 28.

VFPS: See "valued finite probabilistic system."

WDT: Weak detectability.

WSR: Weak subrectangularity.

