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Abstract
A new proof is given of Rosenbrock's theorem on pole
allocation for linear time-invariant systems by state
feedback. The necessary conditions are proven by a geome-

trical argument. The sufficiency of thezse conditions is

proven by a recursive construction. Quastions regarding
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Notation and Conventions

The following definitions and assumptions are used

throughout:

u=gr" x=Rr".

A: X > X and B: U ~+» X are linear maps.
= Im(B).
= dim(B).

B
k
{Xj; j=1,...,k”} is the set of subspaces in the invariant
factor decomposition of A.
{pj(A); j=1,...,k”} is the set of invariant factors of A.
a(j) = degree(pjlk)).
{k(j); j=1,...,k} is the set of controlliability indices
of (A,B).
(s) is the linear span of s.
[81, = (8s BS; ..., An—ls), the controllability subspace
generated by S under A.
Assume X = [B]A ((A,B) is controllable) and k” = k (with no

loss of generality, see Appendix 1).

§(j3) = a(k=-j+1).
e(j) = x(k-j+1).
c(j) = % €(i) for 1<j<k. o(0) = 1.
i=1
n(j) = % §(i) for 1<j<k. n(0) = 1.
i=1
Shift basis for A -- a special basis “or X when det (AI-2a) =

An; see Appendix 1.



Feedback -- a linear map F: X -» U.

Elementary feedback —-- a feedback with dim(Im(F)) = 1.




Introduction

is the possibility of changing the poles of a system by

feedback. The most complete result on *he allocation of poles

of a finite dimensicnal linear time-invariant dynamical system
r I

by linear constant feadback is dus tc Rosenbrock 191 {p. 190).

Suppose we have a system (eithe liscrete or continuous

at

v

time) represented in the (Z- or Laplaca- ) transform domain
by Ax(A) =aAx(}) + Bu(x) with x(2) and u()) being polyno-
mials with coefficients in X = R anéd U = RM respectively,
where (A ,B) is a controllable pair. Let k = dimB =dim(Im(B))
and let { x(i); i =1, ..., k! be th=s controllability
indices of (A ,B). The main concern oZ this paper is the
following result:

Rosenbrock's theorem on pole assignmsnt. Given (A ,B), k,

and {k (i)} as above. Let {pi(k); i=1, ..., k} be any set

of polynomials which satisfies pi(l):p’_1(l) and

1~
) degree(p;(x)) = n. Leta’(i) = degree(pi(l)). Then the
i=1l

conditions

s SN

k(1) for 211 j such that I<3<k

J
Za’(i) >
i=1 L

i
are necessary and sufficient for the sxistence of a linear
map F: X = U such that {p;(l)} is ths s2t of invariant
polynomials of A" = 2 + BF.

Rosenbrock's proof is sketche
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The significance of the invariant polynomials lies in the
invariant factor theorem (App=sndix 1), which describes the
structure of a linear transformation of vectors spaces. This
is a consequence of a more gsneral theorem on the decomposi-
tion of torsion modules. (See the references in Appendix 1.)

The direct application of these algebraic idea to dyna-
mical systems is due to Kalman [7]. He introduced the notion
that a certain input-output map associated with a system may
be viewed as a module homomorphism, which gives rise to an
algebraic view of realization theory.

The polynomial matrix techniques of Rosenbrock bear a
strong resemblance to this view. Unfortunately Rosenbrock’'s
proofs are in terms of matrix manipulations which tend to have
no obvious intuitive interprestation. His proof of the above

elementary equivalence

Fh

theorem is essentially a sequesnce o
transformations which result in a certain special matrix. The
interpretation of this matrix as a representation of some
homomorphism is difficult. Furthermore, his sufficiency
arguments rely on assertions about a certain polynomial matrix
(F” in Appendix 3) which are not proven.

Kalman [6] claimed to give a proof of this theorem, which
is incomplete (Appendix 4). Basically, he tried to prove the
sufficiency of Rosenbrock's inequalities with an explicit
construction for a particular example. His necessity argu-
nment amounted to an unsubstantiated claim of the generality

of his construction.



There is also a sufficiency proof oy Dickinson [2], which

may be of interest. Appendix 5 contains a sketch and discus-

cr
U

sion of this paper. When coupled with transformation to and
from Brunovsky form, the proof shows how to construct a feed-
back. This is a more concise proof than that presented in
the following pages. A necessity proof is mentioned, but not
given in the paper.

In this paper we first give a conceztual proof of Rosen-
brock's theorem. In Chapter 1, we show a2 geometrical proof
of the necessity of the inegualities in the thszorem. 1In
Chapter 2 we pro&e the sufficiency by mesans of a construc-
tion in which the inegualities clearlv adpear. This might
be viewed as making good the claim of Xalman. However the
general situation is significantly mors complicated than
indicated by Kalman. The construction we give is not the
6nly one possible. This is contrary to Xalman's necessity
arguments.

In Chapter 3 we consider the issue of the multiplicity
of feedbacks available to obtain given invariant polynomials.
In Chapter 4 we discuss connections to the module theory
viewpoint and possible interpretations oI Rosenbrock's

proof.



Chapter 1. The Necessary Conditions

We shall prove the necessary conditions of Rosenbrock's
theorem, which are:
Theorem 1. For any linear map F: X » U, let A" = A - BF.
Then the set {o”(i); i=1,...,k} corresponding to the degrees
of the invariant polynomials of A” satisfies the inequalities

k (1) for all j such that 1 < j < k.
y = =

il .

o)
Y} a” (i) >
=1 X

The essential view of tha proof is to regard {a” (i)}
as providing upper bounds on the dimensions of controlla-
bility subspaces in terms of the generating subspaces'
dimensions. The above inegualities then arise as a special
case when the generating subsoaces are subspaces of 3.
Proof: The key geometrical fact is expressed in the
following lemma:

Lerma 1. For any subspace S g X, with dim(S) < k,
m
dim([s],.) < ) a”(1).

The intuitive idea of the lermma is that for a fixed

value of s = dim(S), dim([S]A,) will bes largest when

the projection of S onto each element of Xi has independent

components which are cyclic gznerators of the s largest X{.

When this occurs, the lemmz is satisfied with equality.
Proof of lemma: By Lemma Al (Appendix 1) {k(i); i=1,..

.,k} is the set of controllability indices of (A~,B).

ainm(1s1,.) = aim((a- g i=1,...,35) +



,-(i—l)S

dim([S]A,/(A R s . | §

[S]A,/(A’(i"l)s i=l,...,a"(3)) ~ [p

wo~

(T
I

’_l

(p](a7)s1,. C jejl [p;(A’)xJT]A, =
Ther=fore

. _ i-1 i-1
dim([p7(a7)8], ) < dlm(jil[pi(A )81,.) = jzldlm([Pi(A )Xj]AJ.

Since for j < i
dim([p;(a )Xj]A,) = degree(Pj(l)/Pi(l)) = a’(j) - a” (1),

we have

-1 i-1

} (@7(3) - a’(i)) = ) a’(3) - (i-1)-a”(i).
j:l j:l

¥ X
dlm([pi(A )S]A’) <
. ’(j—l) . . P P .
Clearly dim( (A S; 3=1l,...,07(i))) < a”(i)+-dim(S).
i=1
Thus dim([S],.) < a”(i)-dim(s) + Y at(3) - (i-1)-a”(i).
J=1
-Taking 1 = 1 + dim(S) completes the proof of the lemma.
We now complete the proof of ths thsorem using the
geometric significance of the controllability indices.
Take S = Bj C 8, where Bj satisfies
dim(B.) = j and dim(([8.1..) > } K (3)
J 4% T E5R
as in Lemma A2 (Appendix 1). Combining this last inequality

with Lemma 1, we have the desired ressult.

10



Chapter 2. The Sufficiency of Rosanbrock's Conditions

‘The proof of the sufficiency of Rosenbrock's conditions
rests on three steps:
1) Obtaining the Brunovsky canonical form. This form
can be obtained by feedback and an appropriate choice of
basis. See Appendix 2.
2) Given the Brunovsky canonical form, constructing a
feedback F for which the degrees of the invariant factors
of A" = A - BF are a specified set subject to Rosenbrock's
conditions. At the conclusion of this step the invariant
polynomials will be of the form ka’(i), as in the Brunovsky
form, but the cyclic generators of the invariant factors
will not generally all lie in 3.
3) Constructing a feedback to changs the invariant polyno-
mials as desired, without changing their degrees.

We shall only construct the feedbacks in steps 2 and . 3,
Appendix 2 gives references cn the construction in step 1.

First we give three examples of the construction in
step 2. The examples are presented first since the construc-
tion is quite involved, and the examples introduce a geome-
trical picture of the technicue. Thz examples illustrate
the increasing complexity of required feedback that can

arise, motivating the different cases in the proof.

11



Examples of Feedbacks to Change Degress of Invariant

Polynomials

In the following examples, drawings are provided to
give a geometrical picture of the vectors and maps under
consideration. In these figures, "+" symbols represent basis

vectors, arrows indicate the image of a vector under a given

map.
Example 1. k(1) = k(2) = 2 9 v
A%
V4; ;V
V3- o‘]—
Thus we are given v, = Bbl 3 Avl =V, o Av2 =0 ,
v3 2 Bb2 ¥ Av3 = v4 ’ Av4 = 0. So thes representation of
A in this basis is A = {00 and the reoresentation of B is
10
00
10
B = |1 . With feedback F we wish to obtain &(1) = 1 and
0 5
1 O
0 - .
4 4
6(2) = 3. We take F as indicated =+ z - , which has the
representation F = (0000) . Then ws obtain A2 = A + BF,
|1000]
with representation A2 = 100 . VWe taXs as a new basis
10
1 00}
| 10)
af2Y = 2 wbBin 2) _ . (2) 2 With i
Jl =V, i v2 = vl ; x3 v2 + v3, V. v4 - 1 this
basis we have representations 2, = (0 Y and B =(0 -1
C00 1 0
105 0 1
013 0 0 12



=]

Example 2. k(1) = x(2) = «(3) = 3.

0 0
3 0 +
We want 6(1) = 1, 8(2) =4, §(3) =4. » . .
S
RN S
V7. Y4 Va
We have the relations vl = Bbl r Vg = Avl 5 v3 = Av2 %
Av3 =0, v4 = Bb_2 . v5 = Av4 i v6 = AVD 7 Av6 =0 ,
v, = Bb3 : v8 = Av7 ’ v9 = Av8 . Av9 = 0. In this basis
A =(000 ¢ B= (1 ). Now we take Fl as indicated
100 0
010 0 I ¢ 0
000 1 A A 4
100 0 : . .
010 0 N N R
000 1 o
100 0 iy X "
. OIOJ N OJ : 0’ .
3,
so A, = A + BF) . Thus F; = [000000000}and A, = (000 . )
0100000090 | 100
000000000 010
1 000
100
010 .
000
100
\ 010
o s . (2) _ ;w2 _ . L 2) i
We plick as a new basis V= ¥y g Vo =V g vy U= Vo i
v§2)= Vs + Vi vé2)= Ve 7 oeeeid v52)= Vg In this basis we
have A, = 0 ]B = ( -1 ) Now if we pick F. as
> 2 00000 . : W Lk WS PACE &y
10000 0
01000 0o 1
00100 0
00010 0
000 1
100 0
010
\ ) | O) 13




we did Fl , as indicated, we find thaza*- v. has ninimal

polynomial 15 instead of A4. 5

B SR TR S S G

\

A I B L I

l'rJ
v

N

To remedy this we must also take F2.

e SIS SR =)
LI L S I S -

N

LI R e =)

<ii::
N

In the given basis we than have repressentations

Pé + F2 =101 00000O0O0 O!
00O0O0OOOC-10 0!
0000O0O0OCOOQ
,and A, = A, + B(F,+F.) = (0 1 )
sl 2" "2 00000
1 0000
01 00O0-1
001100
00O02X0O0
1 0 0O
100
L 01 0
Now we pick the new basis v{3)= v{z); v§3)= véz); V§3)= véz);

(3)_ (2)  _(3)_ _(2), _(3)_ _(2). _(3)_ _(2) )
v4 = v5 ; v5 = V6 ; v6 = V2 - v7 = v3 i v7,
(3% {2 €2):, 3. (29
Vg = Vg it Vit vgT = vg
In this basis we have the representztions

14



By = (0 ) B={ =1 )
0000 -1
1000 1 @
0100 0
0010 0
0000 1
1000 0 1
0100 0
i 0010 © ) .
Example 3. k(1) = k(2) = x(3) = x(4) = ¢ and we want
§(1) =1, &6(2) = 6(3) = &§(4) = 5. o e g 9
O S S
We have the relations v, = Bb._, . . . .
- = 17 s 3 4
v2 = Avl 7 v3 = Av2, etc. ; ; ; ;
In this basis we have the . . . .
: A4 4 4
representations . . . .
iz Ve Vs Y
a = {0000 ‘ ] B =1 )
1000 0 0 0 0 0
0100 0 " " " -
0010 0 L
0000 1 i i i ¥
1000 0 ...
0100 0 W A A %
0010 0 Y s wla
0000 1 RO
1000 0 . : :Fl:
0100 0
0010 0
0000 ¥
1000 0
0100 0
{ 0010 . 0
Taking }l as indicated we have the representations
F, = ([0000000000000000) and
0010000000000G0Q0QO
0000000000000000

0000000000000000



A, = A + BF, = (0000
z 1 1000 ?
0100
0010
1 0000
1000
0100
0010
0000
1000
0100
0010
0000
1000
0100
{ 0010/
- . (2) _ O ) I s o kddis £
We pick the new basis VTR VL VT E v vyt Vi
v£2)= Vai vé2)= v4+ Ve vé2)= Vei we-i v{§)= 16" In this
basis we have the representations
A2='0 ) B=r_l )
0000000 1
1000000 0
0100000 0 _
0010000 g X g0 0
0001000 0 3 ) % 4
0000100 0 ¢ . g .
0000010 0 3 0 4 P
0000 3. . . - .
1000 0 4 % s +
0100 0 ¥ v .J//.
0010 0 4 4 7 4
0000 3 . . . .
1000 0
0100 0
L 0010/ { 0
Now we take F2 as indicated, and we have representations
F2=oooooooo—1ooooooo] and
0000O0OO0O0OO0OODOODOOOODO
0010000000O0OO0O0OOOODVO
000000000000O0O0OO 0

16



A, =A_ + BF. = (0 i ]
3 2 2 0000000
1000000
0100000
001000 0-1
0001000
0000100
00000110
1 0000
1000
0100
0010
0000
1000
0100
{ 001 0
: S(3) L €2) _(3)_ _(2), _(3)_ _(2),
We change basis to Vl = vl : v2 = v4 - v3 = v5 :
(3) (2) (3) (2) 3 2 (3)_ (2 3) " 7
V4 = V6 H VS = V7 ’ V6( )= V8( ); 'v..; )— V2( ); V8( )-'—_- V:S’ );
(3)_ _i(2) (2), (3)_ (2), . (2). _(3)_ ..(2). .
Vg, "= Wy T Vg @ Vg =GR Wy § VS WyqtF s
v{g)= v{g). Our new representations are
Ag = (0 ) B=( -1 )
00000 -1
10000 10
01000 0
00100 0 P 0 0 $
00010 0 4 + 4 4
000000 1 . . . .
100000 0 S S R
010000 0o 1 . . . -
001000 0 4 4 e
000100 0 . . . .
006010 0 A )
0000 y ] T o .
1000 0 \<i§-/’/////
0100 0 \
{ 0010 { 0)

If we take F. as indicated in the manner of F

2 we find that

2’

_— . 7 s 5 iE 3D .
vy has minimal polynomial X' instead of A~ as we would wish.

So we take F3 also, which solves the problem.

X7
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looleNol
COOCO
OO0 oOO
D00
OO OO
e NoNeNoe

+B(F3+F)=

Our final basis change

(4) ...(3) . . (4) _
V7 = V8 7 ceiesess Vll =
(4) __ _(3) {3) (3)_
Yig = Vo W Vyg ¥ Wy

gives us the following representations:

B, =0 )
00000
10000
01000
00100
00010
00000
10060
01000
00100
00010
00000
10000
01000
00100
00010

is v{4)= v{3);

B=( -1

-1

1 0

0

0

0

1
2
0
0
0
(0

000000O0GOTO O
000000 0-1
00000O0O0-10
10000000
(0
00000
10000
01000
00100
00010
00
10
01
00
0 0
00
1
\

-

(ol eNoN o]

ot

loNoReNoe

CoOoOoo

LI L SR I S R S )
LI LA I TS S T S
I e T e )

oo OoOOO
o OOOCO
HFooooo

cCoHO
(on B o o i )
Hooo
&OOO

-r

s (4)_ _(3).
Yo = Vg

(3, (4)_ _(3). _(4)_ _(3) (3)
Vig F Vi TV i Vy3'= vgui4 vy3t;
(3) (3) . (4) _ _(3) .
vl -+ v15 - v16 = v16 & This

18
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Step 2. Changing the Degrees of the Invariant Factors.

3

We demonstrate the construction as a concatenation of
feedbacks. For the construction of the (i+l)St feedback,
we assume that the previous i feedbacks have resulted in
a certain cyclic structure with respsct to bases chosen
in previous steps. In other words, our sequence of feed-
backs will change the degrees of the invariant factors
one factor at a time. Consequently, the desired feedback
F is obtained by means of a recursion giving intermediary
maps arising from the sequence of feedbacks.

Suppose (A,B) is in Brunovsky form, and that V = {vl,
Saied Vn—l} is a shift basis for A with 3 = (Vo(j—l)+l; . .
vy KiFe TEE {bi; i=l, ...,k} be such that Bbi = Vo(i—l)+l’
Assume {ag”(i); i=1,...,k} satisfies the conditions

J
«”(i) > § «(i) for j =1, ..., k with equality for j = k.
il T i=1

e~

It is easy to see that this is equivalent to - (i) < (i)
with equality for i = k.
The recursion will have the following hypothesis:

5 (x r
(*) The map Ar: X »> X and the set Vr = {V1 ), S vé )}

satisfy (i) to (viii) below.
(1) Vr is a basis for X.

(ii) (Ar,B) has controllability indices {x(1),...,k(k)}.
§7(1) §7(x)

(iii) Ar has invariant polynomials {X PRR ) |

30 (xr+1)-n (r)’ 30 (x+2) Ak » and V_ is a

r - . oy

shift basis for Ar.

19



(iv) If j < r and o(j) # n”"(j), then there exists
(xr) (x) (x)

X € {Vn'(j)+l' Vn,(j)+2, Bdlee Vo(r+l)} such that
_ _ o, (x)
Bbj+l = X Vn’(j—l)+l'
; IR e sandl gree . w00
(v) If j <r and o(j) = n"(3), Bhewi ™ Yetsa1)a

where £ = min{t| k > t > j+1 and o(t) = n7(t)}
and s = min(2,r+1).

: s - ()
(vi) IEK >3 > x, Bbj+l Vo(j)+l'

(vii) For all x € X, there exists b ¢ [bl, . br+l]

such that Arx = AX + Bb.

(viii) For all 2 such that k Z2 &> Ly TE J £ 0(R).,
(x) }

then v. & ¥ souy

j 1 Vo (p)

We now prove the following proposition:

Proposition 1. There exists a feedback F such that

A = A + BF has invariant polynomials {fZ(l); i=l,...,k}.

Proof: The is proof is a recursive construction of a

sequence of maps Ar such that Ak—l has th

polynomials. The desired feedback will be the sum of the

v}

feedbacks Fr wnich yield Ar from Ar-l' We proceed as

follows: r = 1l: ©Let F., be the elemantary feedback given

1
by V. (1y-s-(1y F by- Let A, = A+ BF,. Let V, v, ™,
cees Véii} be given by
(1) _ . .
Ve Vs(l)—é'(l)+i for I 2a.2 67°6)
Vs 84 (T for §°(1) < 1 < g(1)

20
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; i-87 ()41, _ (1)
Vigegy T & Bby = Vst () =e(ly TV

for o(1l) < i < o(1)+87(1)

v, - for o (l)+87(1) < i <n

It is easy to directly verify that (*) hold for r = 1.
See Example 1 for illustration.
Now suppose that (*) holds for r = i. There are three
cases we must consider: (a) n” (i+l) = o(i+l),
(b) n7(i+l) < o(i+l) and £(i+2) > §7(i+l), and
(c) n7(i+l) < o(i+l) and é(i+2) < 67(i+l). We see
that case (a) is.trivial, case (b) utilizes the same

idea as Example 1 and the construction for r = 1, and

case (c) includes Examples 2 and 3 and requires more

effort.
We now demonstrate Ai+l 7 Vi+l ana Fi+l'
= = * ]
.Case (a). Take Ai+1 Ai and Vi+l Vi. (*) still holds

for r = 1 + 1.

Case (b). Take Fi to be the elementary feedback given by

(i) _ .
Vo(i+l)—5'(i+l) F—* bi+2' Let Ai+l Ai + BFi. Define
v§l+l) — (vél) for 1 < j < n” (i)

(i) o o FUEY o o G
Vo (i+1) =67 (i+1)+j-n- (i) TOr n7 (i) < J < n”(i+1)

(1) Fipae . .
¥ S for M T{i+I) < J < o(i+l)
(i) j=0 (i+1) -1, _ (i)
Vi-s*qaany T B BOi42 T Voo (i+1) +n” (4)
g vgi) for o(i+l) < j < o(i+1)+8” (i+1)

21
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o)

; for o (i+l)+87(i+l) < j < n.

We explicitly check now that (*) holds for r = i+l:

(1) By definition of Vi+l in terms of Vi it is clear that
the two sets are related by an invartible linear transfor-
mation.

(ii) Feedback does not change the controllability indices,

by Lemma Al.
(i+l)

(iii) Let X. =|[v_ >,. o s for 1 <:J < i42
(i+1) o ; :
[y 1] for i+l < j < k.
| o(j=-1)+1 AL

But only Xi+l and 2i¢2 differ from the cyclic subspaces
in the invariant factor decompostion for Ai' Furthermore

A;,, restricted to (R.; j#i+2) is egual to A, restricted to

~=

that subspace. Finzally, it is easy to see that ?i+l and

X have minimal polynomials 15 Wl#d) and Xc(l+2)_6 (i+l),

i+2

respectively.

< g picc ; 5 (i+1)
e F L - - - = -
(iv) The only difference from Vl is that Bb1+2 V0(1+l)+l
_ v(i+1)
n”(i)+1°

(v) For j < i and 2 < i+l this is true by hypothesis. For
(i)

s 3 0 1 2 =

S and our definition gives
(1+1)

Vn 2 (1) %1

W) _
=V tayan = PRy

(vi) This is clear by hypothesis and the definition of Vi+l'
(vii) Since A. 5 = Ai is non-zero only on a subspace of

i+
. i S . & [ 1 o o (i+1)
dimension one, we nzrely note that “i+lvc(i+l) = Aivo(i+l)

22



o pElin2)es  pmy (49

Bb.

i42° The rest follows by hypothesis.

(viii) This is obvious from the definition.

Case (c). 1In this case, Examples 2 and 3 are our guide.
0(i+2)—n‘(i+l)v(i)

i+l n”(i)+1
assumption that e (i+2) < 67 (i+l) prevents the construction

We want to obtain A = 0, and the

of case (b) from accomplishing this. Now we contruct Fi+l

recursively from elementary feedbacks. Let Gl be the

. (1)
elementary feedback given by Vo(i+l)—5’(i+l)}—+ bi+l' Let
Tl = Ai - BGl' Since g (i+l) < 67 (i+l), and since by (viii)

(1)

e(i)_ (1) i
Vo (i+1)-&~ (i+1)+1 € (Vl’ isnd vo(i)) v B Vo (i41) =6~ (i+1) +1
_ e(i) (i) _ ) ) _
= 0. But Ty VG (i41)-67 (14141 T BL 0 Vo (i41)-8(i41)4l =
(i) P
vc(i+l)—(6‘(i+l)—g(i))+1 # 0. So by (vii) we conclude

there is some smallest s; such that 0 < s, < e€(i) and

815{1) sy (i)
i Vo (itl)-§~ (i+1)+1 7 B Vo(i41)-5- (i+1)+1- Thus
: Sy 1) s (1) . i
Tl vo(i+l)—-5’(i+1)+1 = AV + Bb”, where

o(i+l)-¢"(i+1)+1

b” e (b b and b” # 0. Let G, be the elementary

L i+l] 2

. (i) —-_hKh =
feedback given by Vg(i+l)+sl — -b”’. Let T2 Tl + BG2.

, j (i) _ 3, (1)
Thus: T3 W Gary-5 (ramar ¥ Boges) = 2V Gaapasstiagy
3 0 = A
Bbi+l) for j < s, (and T, Ai on Ii except for
(i) (i) o
Vo (i+1)-8- (i+1) @P% Vg(i41)4s,) Accordingly

o (i+2)-n" (i+1) (i) e (it2) , (5)
T, Vi) +1 = T2 (Vo(is1)-6-(is1)+1 F Bb; )

2 Voli+l) -6~ (i+1)+1 T 3b7) +
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e(i+2)-s,

Sy _ -
+ T, (A7'Bb, , — Bb )
- E(i+2)"51 Sy (l) .
= T, AT W riaiy=6* (g i, - BBy ys)
_ Ae(i+2)—slAsl(v(i) + Bb ).
i o(i+1l)-87(i+1)+1 i+2
Now suppose we have integers 0 < s;< s2< ... < So_1 < e(i)
and a map Tg such that T2 = Ai on V. except for
(l) (l) o (3)
Vo (i+1)=87(i+1) " Vo (il)+sy’ "7t r Vo(itl)+s,  ” where we
(1) (l)
we Have ToVoli1)-8"1340) © Yoy« i) +d F By and
(i) = ) 5 v 1)
T£V0(1+l)+sj Vo(i+l)+sj+l ®BSRIA A s 1 Y BT AT

with 1 < j < f2-1. This implies

(1)

J o o)
Ty Vo (41 -8~ (441)41 ¥ Byl = 27V

for j < s . As above then, we either

(1)
0(1+l) =87 (i+1)+1

-1)

e (1)

T, (v

+ Bb; o)

smallest s, and b( with €(i) > s

2 2

(2-1)

0 #Db (b o%s y bDs such that

1+l)
(2-1)

lr

(1)

o (i+l) -6~ + Bb

= A Ly In

(1+1)+1
(1)

the elementary feedback G,:

take T2+1 = Tl + GZ‘

o

increasing sequence of "s."'s .

J
bounded above by (i),

(1)
o(i+1) =67 (i+1)+1

£° Vo(i+l)+s§

Since

+
Bb s

have

= 0, or there exists a

-1 and

(1)
0(1+l) =87 (1+1) +1 -

> s
T
this case we define
pop agtéed)

and we

In this manner we obtain a strictly

the sequence is

after at most s < e€(i) steps we
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e(i)

. e(i) 1) = -
ebtain T WoGslj-n"tisd)al ¥ BR3ap) = Ty BB =
(1) o(i+2)-n"(i+1) (i) _
Vo (i#1) 40y e T Ae(A)4L =
€ (i+2)+1 (i) __e(i+2), (i)
T Vorism) -8~ (i) = Tg (Vo (340 —67 tis1y 41 T Pigo)

= 0. We now take Ai+l = ls, and we define Vi+l as follows:

G4 = vf) for 1 <3 < n7(d)
j 3 -3 =
o) for n”(i) < § < n’(i+l)
j+o (i+1)-n" (i+1) ~
J-h"EEE) -~ (4) b, o : ;
JAi+l vn,(i)+l for n” (i+l) < j < o(i+2)
v for o(i+2) < j < n.

¢ 3

Finally we check that (*) holds for r = i + 1.
(1) It is sufficient to note that

j=n”(i+1)-1_(3) _ (i)
A3y VnT(d)+1 T V3-87(i41)

for n”7(i+l)+1 < j < o(i+l) and

F-n"(i+1)-1_ (1) N b2 % B o O )
Aj Ve tir+1l = Pia (Vo (i+1) =6~ (i+1)+1 * Pis2)
= v 4 x
(1) (3)
i i T : :
where x € (vl ey Vo(i+l)) for g(i+l)+l £ § € o{i*2).
(ii) Ai+l differs from Ai by feedback.

(iii) Only two invariant factors wesre changed in this step.

The definition of Vi+l makes it a shift basis, and the

_ ) (i) d
construction of Ai+l made [Vn’(i)+l]Ai¢1 0

(1) . s e . I
[VU(i+l)—n’(i+l)+l]Ai+l independent subspaces with minimal
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.+ e R {7 i+l .
30 (1+2) =87 (1+1) =nd i° ( ), respectively.
‘ ) o G E) -
(iv) We need only note that Bb,, 5 = Vo (Felyal =

polynomials

(1) o nanl) _ o (i+1) L fi41)
Vo (i+1)+1 ~ Vo (i+l)-67(i+1)+1 =~ Vo(i+1)+1 ~ Vn~(i)+1
(i) _ (i+1)

(v) If 2 > i+l1, Bbj+l = Variy+l T Ynt(itl)+1”
(i)

If g < i+1, vt v (1+1)

n7(2=1)+1 = "n7(2-1)+1°

(vi) By definition.

(vii) A, has been modified only by feedback into

(byr -v-s by o).
(viii) This is by coastruction.
k=1
Using this recursion, we take ¥ = ] F. and obtain
i=1

A" = Ak—l = A + BF having the desir=d invariant polynomials.

Corollary 1. Let Vk—l result from the last step in the

proof of Proposition 1. Then by reoxdaring {bl, sisreld bk}

into {Bl' Saal Bk} we have

(k-1)  _  (af
Vn’(j)+l Bbj+l or
i (k-1)
Bbj+l + X where x € (Vn’(j{l)+l’ e ey

9

(k)
\ Vn }

Proof: This is bescause the last step of the recursion

satisfies (iv) and (v) for r = k-1.
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Step 3. Changing the Coefficients of the Invariant Factors

As before, we exhibit the desired feedback as the sum
of feedbacks . We assume w2 have a map A: X - X and a

basis W, such that A  has invariant polynomials e (l);

1
e ; 2 o 5o oo (1)
i=l,...,k}. Wl is a shift basis for A} with wn’(i—l)+l

being the cyclic generator of the (k—i)th subspace in the
invariant factor decomposition for A7 Furthermore,

(1) + x.; i=1,...,k), where x; € [w(l)

B = [Wn'(i—1)+1 i o) el Tt

wél)) as in the conclusion of Corollary 1.

Now the feedbacks we shall construct will, at the
ith step, give the ith cyclic subspace the desired minimal
pélynomial. It may be noted during the construction,
however, that these minimal polynomials of subspaces
will not necessarily be the invariant factors at that
point. At the conclusion of the construction this will
have been remedied.

" The idea of the construction is to imitate the scalar
feedback "trick" as suggested by Kalman [6]. Unfortunately,
this does not work in the obvious manner, because in general
the projection of B on the subspaces of the invariant factor
decompostion has components which are not generators of the
factors. See Appendix 4. Therefore it is necessary to
change basis after the application of the "trick" to
each cyclic subspace to eliminate interconnections. An

example is given in Appendix 4.
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We now prove the following:

-~

Proposition 2. Given A~ as in Proposition 1, and W, =

as in Corollary 1, we can find a feesdback F such that

A° = A" + BF has invariant polynomials {ka (1),

87 (1) s
f q..AJ l; i=1l,...k} where the g.. are arbitrary.
_ =i

j=
‘ps 87 (i) .
. - _ 467 (1) j-1
Proof: Let p,_.(A) = A + j=z=1 qijx . Let r,
be the smallest integer such that (Ex')rixi = 0. Let

S be the largest integer such that diq # 0. Suppose

1
> 87 (L). . .- . i
r; (1) Then let Ciy , cl(ri_si) be defined by
egquations
i1 Yis,
i
c q. » + C. 1
il 1(si 1) i2 is;
€39 Fpy ¥ Cyp Fyop T imes F8pe Uy
i i
€129 T oeee F G55, Yi(s -1 T Cis +1) Tis,
c + ... -+

; " & c, B
i(ry ZSi+l) il iy Si) a.

Note that r, > §(i) implies ri > S, - We can write these

egquations in matrix form as

l1s.

Vv

k-1

the
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: = (q. 0 : o )
where Qi q:Lsi
q1(si~-l) 955 .
931 . : ® .
O qil - .
z . - 0
0 ... ) 0 Clion  wmis g.
\ ¢ = il 484 |
is a (r.-s.)x(r.-s.)-dimensioned matrix. (If r.~-s. < s.,
i 4 i Ti I i

one takes the first r,-s, eguations and rows for Qi.)
1

]

e,

T .
i (kL 00 ... 0)° , an (ri—si)—veCtor, and

S T
c; = (51 G5 --- Ci(r.—si)) » also an (r,-s;)-vector.

Since Qi is triangular, and = . # 0, it is easy to see
A

that this system of equations has a unigque solution.

We define recursively the maps Fi: X » U by

~ (1) _ (1) er . B —
Fiwj = 0, except for wn'(i-l)+gF* q; bi' fo? Al

§°(1). We assume that the Bi are ordered as in the conclu-

sion of Corollary 1. Wi+l is defined by
w$l+l) = wél) for j < u” (1~1)
S.~r.

(i+1) _ (1) o = .\ Si+j-1:
nTi-n4l T Ynta-na TR T j£1 cj5 (37 =5
s,7r;
=B, + § c..(R+F,)SitI 1,
i j21 13 i 1
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A . P R N

(i+1)
n"(i-1)+)

(i+1) . o )

—_— T
—

b n”(i-1)+3-1 © 9ij"n (i-1)+1

= (A7+F,
( rl)w

for 1 < j < §”7 (1)

w$l+l) = wgl) = wfl) for n™(i)y < 3 < n.
J J =
If r, < 87(i), we simply take Cij = 0. Notice that in
each basis change we have only changed basis for one

cyclic subspace, to keep it as an invariant subspace with

the addition of feedback. Let W™ = i, .
- k 5
Now we take A" = A7 + iElBFf We have pi(A)VﬂrTi—l)+l
i
= 0, which we see as follows: Let A, = A7+ ¥ B*j. By
— j=l -
construction, on the subspace (wi, S w;’(iﬂ we have
. o (B (D)
A Ai. So . pi(A )wn”(i—l)+l = pi(nQ‘Jn’(i~l)+l + x. +
s;7r;
) c..(8")Si*I71, ). since
L i i
j=1
4 pioe (1) - oy 87(1) .oz,
pi(Ai)wn’(i—1)+l ((A7) p (A7) )=, and
ST,

B 5.y Si+I=1 _ ¢z 87 (1) .
pl(Ai)(jz1 cij(A ) x;) (87) x;, we obtain the
k -
desired result. With F = ) Fos this completes the proof
i=1

of Proposition 2.

This immediately gives
Theorem 2. There exists a feedback T such that A = A + BF
has arbitrary invariant polynomials, subject to the necessa-

ry conditions stated in Theorem 1.

Proof: Take F = F + F“, from Propositions 1 and 2.
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A

Chapter 3. The Multivlicity of Feadbacks
C y of

In this chapter we suggest a classification of feedbacks
that produce a given set of invariant factors from a given
Brunovsky form. The feedbacks will be divided into
equivalence classes in which the elemants differ by an
element of the stabilizer subgro'» of the so-called feedback
group.

This group has as elements triples of maps (P,K,Q) which
act on pairs (A,B). See Brockett [1]. We take

“lpx,p 180y, 1t is easy to see

(P,X,0)-(3,B) = (P lap + p
that this defines a group with identity (I,0,I). We call
this group F. This group acts on any pair of matrices of
aépropriate dimensions. For a fixed pair (A,B) the
stabilizer subgroup H of F consists of those elements h g F
such that h-(A,B) = (4,B).

Since the identity is in H, it is easy to see that H
is a normal subgroup for (A,B) fixed. Thus we can form
eqdivalence classes of F modulo H.

First we give an example to illustrate the structure

of H. Take (A,B) in Brunovsky form with «(1)=2 and x(2)=1.

Sc A= (01 ) and B = (0 ]. Brockett gives formulas for the
00 E 3
1 1

general form cf an element of H when (A,B) are in Brunovsky

0ao0 CbO bd

form. In this case we obtain aOOl [OOO],[aO]). Thus H
b“d
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is generated by one feedback, one similarity which changes
the choice of invariant subspaces in the invariant factor
decomposition, and two similarities which are in a sense
trivial.

It seems that in general H can be decompcosed in this
manner. The generating feedbacks go frca elements in one
invariant subspaces to elements in other invariant subspaces
which have lower cyclic order. The sinilarities replace
a basis element with linear co bination it and other
elements of lower cyclic order. Thus it is seen how
H does not disturb the geometric structure of (3,B).

Let m: F = F/H be the canonical mzap. Let F* be the
subgroup of F consisting of f£ such that £+(A,B) = (A",B7)
for a fixed A” and any B”. We wish to characterize w(F¥).

One possibility is that some elements of 7 (F*) differ
by pure similarities. In the case A" = A for the previous
example, for any nonsingular Q, ({101 1,0,Q) lies in a

010 |
00—lJ
non—-zero coset of F/H.

From the construction of Dickinson (appendix 5), it

seems plausible that the cardinalitv of #(F*) is related to

-

the number of choices of B” such that (A7,B7) has the
correct controllability indices. Note that iIn the preceding
example Im{B”) is not necessarily isomorphic under similarity.

2 those £ such that

oy

An alternative is to take FA'B' to

£+(A°,B") = (A”,B”) for some B°". Then w(F*) = FA‘B‘/HA’B"
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Chapter 4. Connections to the Module Theory

From the module theory'point of view it would be
pleasing to give an interpretation of [:I-A -B| as a
module homorphism. Rosenbrock's proof woild tien amount to
a choice of bases for the domain and range such that the
homorphism has a diagonal representation.

For example, AI-A can be viewed as a module endomorphism
on the polynomials X[X]. Take ¢ =X[)A]. Define the evaluation
map €: ¢ > X by } xixi > ZAixi. Let ¥ = ker(e). Then
(LI - A) is a R[A]-isomorphism ¢ - ¥. We obtain a represen-
tation of AI-A iﬂ Smith canonical form by choosing two bases
for X[X] as follows.

| Let @Xi be an invariant factor decomposition of X under
A. Let X, be a cyclic generator of Xi’ and let pi(k) be the

minimal polynomial of Xi. Then we take as bases
a(l)—l_Aa(l)—l

Vs {(A—A)Xl, sEsy A )Xy reee s (A-R)X) -,
(Aq(k)—l—Aa(K)~l)xk, Xyr Xop o eeey xk} for the range and
v, = {(AI-a) -1 (AI-A)%X;, «.., (XAI-A) '1(A°‘(k) —1_po(k) —l)xk,

2

(XI—A)—lpl(l)vl, eve, (AI-A)~ pk(k)}. Represented as a

matrix in terms of these bases, AI-A is in Smith canonical

form. The interpretation of {AI—A -B} is more complicated.
B I

It is difficult to give an interpretation to the range when
the domain is any usual space. Taking the domain to be the

extended input module U((k—l)) direct summed with the space
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x((knl)) appears most natural. Sees Wyman [12]. Then those
elements of the domain which map onto elements of X((A-l))+0
with only finitely many terms constitute the free response
of the system with feedback. Then an appropriate basis for
the domain would be 0 direct summed with any basis for U
union the basis for the domain in the Smith form of

MAI-A+BF direct summed with F times this same basis. The
basis for the range would be analogous to the case in the
Smith form of AI-A. Still, this only gives an interpreta-
tion when we restrict the domain to the free response,

and it gives no help in picking F.

This approach to Rosenbrock's methods leads to similar
questions about the interpretation oif Rosenbrock's system
matrices and the MacMillan form. It seems that the signi-
ficance of zeros of a system must first bz understood, since
these are the non-trivial invariant factors of the system
matrix. Note via the MacMillan form that zeros give rise
to the possibility of finite response to infinite (in terms)
input, a situation beyond the scope of the ordinary "Kalman"
input-output map. Thus Wyman's input-output map seems to be
the appropriate object of study.

Finally we remark that for (A,B) controllable, if the
matrix C is chosen appropriately, the basis for U[A] which
will diagoralize the transfer function consists of those

elements which map to the generators of the invariant
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subspaces viewed as submodules. For example take

A =[01o B= (0 ). Choose C = [1000‘ .  Then
001 01 kOOOlJ
000 1
0 =1
. -1 -3 =2 : o ;
C(rI-A) "B = {A A . Tha generators of the invariant
-1]
0 -
subspaces are Bbl and ABbl—bZ. This change of basis then
has matrix representation [1 X T T
0 -1 0 -1
-3 -2 _ -3 . . ' "
A A 1 A} =[x 0 ], which is the MacMillan form.
-1 -1 =
0 =5 0 -1}- 0 X J

In the case when A hzs invariant factors of the form Ai,-such_
a'chcice of basis for U[r] se=ms to give the MacMillan form
whenever there are no zeros. When there are zeros, a left
equivalence transformation is needed, and the one for the

‘input ray not be the same.
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Appendix 1. Controllability Indices and Invariant Factors

In this section we present three results needed in the
text.

Controllability indices also go by the names of
"Kronecker invariants” and "minimal indices." Useful
discussions may be found in Gantmacher (V. II, p. 37),
Rosenbrock (pp. 90-95), Brunovsky (p. 175), Popov (p. 255)
and Wonham (p. 123). Essentially, Gantmacher defines these
indices in terms of the kernel of a pencil of matrices
A + 2B, and the other define the indices in terms of «
basis for the image of B and linear dependence of the images
of these basis elements under application of A. Rosenbrock
proves the equivalence of these two definitions (p. 96).

Invariant factors are well-known in algebra from the
theory of decomposition under a linear transformation. See,
for example Jacobson (pp. 79-86), Newman (p. 28) or Lang
(p. 397).

We use the following result (Invariant Factor Theorem) :
Theorem: Suppose X = R®. Let A: X -~ X be an endomorphism
of‘X. There exist a positive integer kX and subspaces xiC: X
for i =1, ..., k with the following properties:
’lexze...@xk

(ii) For i =1, ..., k A restricted to Xi is cyclic.
(id.d) TE pi(k) is the minimal polynomial of A restricted
to Xi then pl(k) is the minimal polynomial of A and

P, (%) | Py (X)) 4 «ees PL) | Py 1 (M) -
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(iv) k and {pi(k)} are unique, for Xk # 0.

(This phraseology is approximately that oﬁ Wonham, p. 16)
This theorem is adeguately discussed in the ci£ed
references, and we give no proof here. The set {pi(k)} is
variously called the invariant factors or the invariant
polynomials of A. For each of the polynomials pi(k) we

define a(i) as a(i) = degree(p,(2)). Thus a(l) > a(2) > ...

> a(k). It is an easy corollary that

k
Y @a(i) = n.
i=1
The second result we need is that controllability indices

are invariant under feedback. We shall »rove this as an eas
. = Y

I'h

consequence of the definition. We first give the definition
of controllability indices given by ionham (p.124).

The geometrical motivation for this definition is as
follows. Let Sj be the linear span of 8 and its images
under j applications of the map A. It is clear that the
increments in the dimension of Sj with increasing j must

be non-increasing. We can represent this in the following

manner:

K (k)

_1
|«
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The bottom horizontal line represents 8 by its length k, the
dimension of 8. The s horizontal line up represents the
increase in dimension of Si over Si-l by the length which

we call Py~ Thea height of the whole polygon i-1 units from
the right edge we call x(i).

It is easily checked that this scheme corresponds to the

following definition:

Definition: Let Sj = 8 + A8 + ... + AJB for i=20, 1, ...,

n-1. Let = 05 pj = dim(Sj / S ). The

°0 T ™ j-1
iBR o irollability index k(i) of (A,B) is the
number of integsrs in {po, SRR pn—l}
which are greater than or egual to i, for
£ = Ay ey s
It is easy to sez that the p, are nonnegative and
non-increasing, as are the «(i), and that the sums of both
these sets of integers are each n, the dimension of X.
We then obtain
Lemma Al. {x(i)} 1is invariant under feedback.
proof: For any F: X » U and A" = A + BF, we still have
Sj =B +A°B + ... + A’js s
From the preceeding discussion of the geometrical
meaning of the definition, or as a corollary to Wonham's
Theorem 5.10 (p. 122), we have also
Lemma A2. For any j such that 1 < j < k there exists

k
) ekd) .

i=1
This is most easily seen by picking a basis for B, and

a subset B. 8 such that dim(8.) = j and [B.]1, >
BJC B (SJ J By1a 2
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then applying the definition of the controllability indices,
keeping track of the depandencies of the images of the basis.
The lemma would be immediate from such a definition involving

an explicit choice of basis.

Note: We have used the integer k both for the dimension
of B and for the number of invariant factors of A. A priori
these need not be the same number. Suppose the latter is
k. Since we assum= (A,B) is controllable, we must have
k > k. So we remove the restriction of Xk # 0 in the

Invariant Factor Theorasm, and take Xk‘+l = es = Xk = 0.

Accordingly, (2) = ... = (M) = 1. Thus we can let

Pr-41 Pr

k™ = k.
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Appendix 2. Brunovsky Canoniczl Formn

The existence of the fcllowing was apparently first
proven by Brunovsky in a paper not available in translation
(ref. [6] in Brunovsky's paper listed in our bibliography) .
Rosenbrock (p. 97) proves it, as does Warren and Eckberg
(p. 438). The result is as follows:

Given a controllable pair (A7,B) there exists a feedback

F such that A%BF has invariant polynomnials AK(l), AK(k)

e 7
where {x(i)} is the set of controllability indices of (A,B).
Furthermore we can pick bases {bi; i=l,...,m} and

{vi; i=1,...n} for U and X respectivsly, such that (A=A"+BF)
VG(i—l)+l = Bbi for 1 =1, ..., X

Bbi = 0 for i =k+1, .ee.p, I

a)

and

b) Av, =V for i ¢ {o(1), ..., 0(kx)} and i < n

i+l
Av, = 0 for i € {o(1), ..., o(k)1}.
We call {vi} a shift basis for A.

In matrix form, this says that there is a representation

of A and B as A T, 0 ... 0| B (rl r, «.. 1, 0 ... 0)
6 T 0 see
012 *
s : . 0
0 ... 0 Tkj

where Ti is of dimensions k(i) xxk (i) and is zero everywhere
except for ones on the lower diagonal, and r, is column of
length k(i) with all zeros except for a one in the K(i—l)-!—lth

entry. We call (A,B) in this representation the Brunovsky
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canonical form for (A ,B).

T, =
2

)
‘o

0 = r. =
10 L
0o . .
0

0
.

e

o

e
o LI

Cer v OO

~—

-~
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Appendix 3. Rosenbrock's Proof

The following is a brief sketch of Rosenbrock's proof,
which appears on pp. 190-192 of his book. Assume A and
B have been transformad to Brunovsky canonical form by

feedback and change of basis.

We first make note of the facts that the invariant poly-

nomials of any linear map 4 are given by the non-unit
diagonal elements of the Smith form of the matrix AI-M.
"." denotes the equivalence relation of multiplication by
unimodular polynomial matrices. It can ba shown that
equivalent matrices have thz2 same Smith form.

Let ¥ be an arbitrary fe=céback man. To sketch the
proof we indicate the results of a seguence of equivalence
transformations which yield a simple form equivalent to
AMI-A-BF. By a right equivalence we have

AI-A B AI-A-3F 0
F I 0 I
so that the matrix on the left has the same invariant
polynonials as AI-A-BF, except for additional units.
Now by right egquivalence,

MI-A B _[-a B]
4

-

F I
where P consists of polynomials with coefficients which
are the elements of F. Then by lefit eguivalence,

-A B) -A B]

l
0]

P I p~
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where P° is zero except in columns 1, ¢ (L)+1, ..., x(k-1) + 1.

Finally, by right equivalence we have

-A B 3 2 8 0
= 0 0 F

where F~ = [fi(k) 200 ... fi(l)) and

+ K(l)f . ; 137%
3 ]=l:g(1—l)+j - ’

£7 00 = 2Ky
uj is the unit vector with a one in the jth row, and fj is
the jth column of F.

Using the fact that the ith invariant polynomial -is
given by the ratio of the greatest common divisor of all
ixi sub-determinants to the greatest common divisor of all
(i-1)x (1i-1) sub-determinants, the presence of the term

AK(l) in the ith diagonal element of F~ gives the necessary

conditions of Rosenbrock's theorem.

For the sufficient conditions, it is asserted that the
chqice of F will give any desired invariant polynomials
subject to the necessary conditions. A reference is made
to the proof of the previous theorem (Theorem 4.1, p. 186),
but since an inequality (4.26, p. 188) does not apply, this
does not work (4.27 doss necessarily hold, and so Lemma 4.1,
p. 184, need not apply).

This can probably be corrected, and the idea of the
proof of Lemma 4.1 can possibly be modified for the general

case.
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We demonstrate Rosenbrock's prooZ on Example 2 from

Chapter 2. This is a case in which his Lemma 4.1 does not

apply.
AI-A -B) = () -1
F I A=l
A
A -1
A =1
A
A -1
2
f11 - e - DR - .
oy seeie g aE  w
(B ... v eE  weh
T 0
A -1 0
0 -1
X =X 0
A =1 0
0 -1
2 =1
-1
_ 0
fn-..(f13+l) see T .o fi 1
21... D3 e (BsFN). .. D 1
(Br ... fu3 vee £ see (EER)
v | -1 0
-1 0
-1
-1 0
-1 0
-1
-1
-1
1

P1 P2 P3 Py Ps DPs P7 P3 Pg 1

{

where the p, are vector polynomials.

0 3
0
-1
0
0
-1
0
-1 0
X =]
fis 1
; 1
£2 L
0
0
-1
;
0
0
-1
1j

Wie take special note of
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|3

Pz

:

£a3202+£,20+E2,

Xa'l‘f] 3)\2+f123~+f11
f33)\2+f32.\+f31

fog A2 +5g A+ 5y

fig X 2 +f3 2+57 .
AS+F A2+ A+ 5y

"

|

Continuing with equivalences,

L

,

\

-1
-1
-1
-1
py 0 0 py O O
et B
-1
-1
=i
-1
-1

I 0 J . Now we wish to pick F so as to obtain the
0 F~

the desired Smith form for F~.

transform to an equivalent form where the diagonal elements
are monic polynomials whose degrees are the degrees of the
desired invariant polynomials and are higher than the

degree of any other element in the same column .

fis ,"_2+ 1

1 £
A3+f25 }.2+f'
f;kz":'f

P1 Py P7

Rosenbrock's idea is to

15 A

h
A
A

J

+1hy,

+6
+fy‘

|



by choice of F set the off-diagonal elements to zero and
the diagonal elements to the invariant polynomials, obtaining
the Smith form directly.

Unfortunately his formula for this transformation is
recursive and assumes that the diagonal elements in F~ are
of unequal degrees. It is not obvious what a generalization
would be. Furthermore, it is not shown that after transfor-
mation there is sufficient freedom from F to pick all the

coefficients as desired.
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Appendix 4. Kalman's Paper

We give a brief sketch and discussion of the paper by

Kalman mentioned in the introduction (see bibliography).

--Existence of the Brunovsky canonical form. Kalman's

proof is essentially the same as Rosenbrock's proof mentioned
in Appendix 3, except that Kalman's formulas for the basis

in which A is represented in generalizsd companion form

are incorrect.

~--Proof of Rosenbrock's theorem.

Sufficiency: Kalman gives a simple example and asserts
that "the general case is similar." The example the same
as our Example 1 in Chapter 2. This case of k(1) = k(2) = 2
is really the simplest non-trivial example possible. He
did as we have done, that is first change the degrees of
the invariant factors, and then change the coefficients of
the invariant polynomials. This latter step he does incor-
rectly. He asserts that "the scalar pole shifting trick
still works.”" It is easy to see that this is not so, unless
one proceeds step-wise and changes basis as we did in our
general construction. Specifically, Kalman has obtained

by feedback and change of basis the matrices

a° = {010 B” = (0 .
001 0l
000 %
0 1
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He suggests taking F = [0000) which gives
000z
A=A"-BF=(010 . He says that the A term
= 2,4
0 0 1-z
00O
-Q

"has no effect" on the characteristic polynomial [truel],
and hence the invariant polynomials "can be arbitrarily
chosen." This latter statement does not follow for the
following reasons:

First, as given, A has minimal polynomial A3(A + «),
so there is only one invariant factor. Presumably this
was an oversight, and Kalman intended also to apply the
scalar feedback trick to what was th2 larger of the two
invariant factors before the above feedback. So suppose

we want invariant polynomials (A = 1) and (A - 1)%(x + 2)

A% - 4X? + 5)x - 2. Applying the scalar feedback trick

directly we take F [—2 5 -4 OJ and so

0 0 0 -1

A” = A - BF = Unfortunately, A” has minimal

o+

1

NN ¥ o)
SO

X

polynomial (X - 1)3% (X + 2). This is easily seen by noting
that the vector (0] has cyclic order four, and computing

0

1
the determinant of A~.

For comparison with our construction, we first obtain
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A = (010 B =10 . Then we change basis to the columns

0011 01
000 1
1 1
£ — -l ,_.,"l
of T = |1001L}] . Then T AT = (010 | T "B = |0-1
0101 001 ' 00
0010 000 10
0001 1J 01
Then we take F~ = [-=2 5 -4 0] and obtain
0 0 0 O
A =r1tar - vlpr = (010 . as desired. Note that the
0 01
2-54

correct feedback to be applied to the orinal matrix

010 ) would be [o 00 o] + FT L = (-2 5 -4 3) , which is
001 00 0-1 0 0 0 -1
000

20

ﬁot an obvious consequence of the scalar feedback trick.
Secondly, if we look at our Examdle 2 in Chapter 2, we
see that Example 1 dces not show how to change the orders
of the invariant factors. Example 3 further cbmpounds the
difficulties. Kalman's proof by example, then, is the

simplest case, incompletely done.

Necessity: Kalman's argument is as follows: i) The
Brunovsky canonical form satisfies the necessary conditions,
and 1i) every controllable pair (A,B) can be obtained
from its Brunovsky canonical form by his construction in the
sufficiency part. Therefore the necessary conditions
always hold [presumably since the controllability indices

are invariant under feedback].
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Unfortunately, there >s no prooZ offered of the asser-
tion ii). 1Indeed, we have seen that the construction given
by Kalman does not generally work. The question of
uniqueness of the feedback to obtain a given cyclic

structure is discusssd in Chapter 3.
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Appendix 5. Dickinson's Pap=zr

Dickinson asserts that nescessity follows directly from
the structure of the multivariable controller form of
Luenberger. This does not ssa2m to be clear.

The sufficiency proof is based on the following result,
for which an explicit construction is gi&en:

Lemma. Let (F,G) have controllability indices {kx(i); i=1,
...,m}. If for some i and j x(i) > «(j)+2, then there is
a matrix G such that (F,C) have controllability indices
differing only in that x(i) is replaced by k(i)-1 and
k(j) is replaced'by x(j)+1. Reordering may be necessary.

To prove sufficiency from this, let Fo be the map
we wish to obtain from F by feedback, in rational canonical
form (diagonal blocks of companion matrices). If FO satis—
fies the necessary conditions, then there is a finite
éequence of sets of indices such that the first set is
the degrees of the invariant factors of Fo' the last set
is the controllability indices of (F,G), only two indices
in each set differ from the succeding set, and these indices
differ only by a unit increment in one index and a unit
decrement in the other.

By repeated application of the lemma, we can then
construct a matrix Go such that (FO,GO) has the same
controllability indices as (F,G). Of course, then these

two pairs have the same Brunovsky form.
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The desired feedback is then simply described, given
the transformations to Brunovsky form. Suppose (F°,G°)

is the Brunovsky form. Assume

..l _1
o - = m — zYy m v
E Tl (F G Kl)Tl T (F GK)T and

& ek o ik
G® = Tl GOSl T “GS.

Then it is easy to check that

S e | -
1 KlllT ) )TT

o P R e BT -1
Fo = TlT (F G(K SS 1- -
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