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ABSTRACT

A Flexible Machining System (FMS) is aptly described as
an automated job-shop. Machines are connected to one another
by an automated material transporter and the system 1is
intended to process a number of different Kinds of parts.
The system incorporates redundancy of function which allous
the processing of parts even though machine failures may have
occured. This research develops a method foxr scheduling
paxrts that considers and ,in fact, anticipates machine fail-
urxe.

Motivated by the complexity of the problem, a structure
for decision making is developed that identifies the funda-
mental decisiocns, and then systematically simplifies theirx
detexmination. A multi-level framework zesults whexe global,
low resolution models (netuwork gqueueing models coupled with
optimization algorithms), axe integrated with local, high
rasolution models (deterministc scheduling). In standard
hierarchical manner, the decisions of the upper levels are
accepted by the lowexr levels as constraints. Scheduling
algorithms are developed, implemented and demonstrated on
representative machining systems. Depending on the system
and part set, substantial improvement over moxe naive
strategies can be realized.
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Notation
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then |J!l = number of elements in set J.
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CHAPTER 1

INTRODUCTION TO FLEXIBLE MACHINING SYSTEMS

1.1 Introduction

This thesis is concerned with a new scheduling problem.
The problem is associated with a system that has recently
emerged from within the machining industry - the Flexible
Machining System (FMS). An FMS consists of a set of machines
in which parts are automatically transported wundexr computer
contxol £rom one machine to another fcr processing. The
system is generally designed to process a number of different
kinds of parts and 1is intended to operate without manual
intexvention. Cne might consider an FMS to be an automated
job-shop, although it is quite a bit more complex as we shall
see.

The significance of +the scheduling problem =for these
systems springs from their high initial <c¢ost and the high
interaction that occurs among the system's various elements.
An FMS user cannot afford low systam utilization, but the
means for increasing utilization are often not apparent.
This is particularly true if one considers that machines are
apt to fail. A system of ten machines, s2ach c¢cne of which 1is
down ten to thirxty pexcent of the time, is likely to harborx
at least one broken machine. This could severely inhibit
production, except that, FMS's are often structured so that
any one of several machines can process a yiven part. Redun-
dancy of function significantly raises system reliability but
not without its price. The complexity of the scheduling
problem is substantially increased along with system flex-
ibility. Not only must parts be optimally dirxected through a
system of high complexity., but the configuration of the
system is continually changing as well.

Two overriding concexrns have shaped the course of this
research. First, we believe the scheduling problem deserxves
a global treatment. The sole use of techniques that admit a
"short" view of the problem is shunned. Secondly, we recog-
nize the constraint on computation imposed by the availabe
computexr. The scheduling concepts and algorithms proposed in
this thesis are designed to adhere to this limitation.



1.2 Genexal Flexible Machining System Description

Te2: 1 Motivation for FMS's

The machining industzy has, in the past, efficiently
processed tuwo classes of parts, high-volume parts and low-

volume paxrts. Component parts associated with mass produced
end-items such as automobiles arxe typical examples included
in the high-volume catagory. In this case, it is economical-

ly advantageous to build a dedicated machining system called
a transfer line for each individual variety of part.

A transfer line is an arrangement of machines in which
parts are automatically transferred Zfrom one machine to
another and each machine performs a certain set of operations
(dzilling, boring, etc.) in parallel. 0f course, to gang
operations together and perform them simultaneously is <tThe
key to the system's high productivity and is the chief xeason

foxr its economy. Multiple~spindle tooling is genexally inte-
gral +to the machine (foxr all practical purposes), so the
system cannot be converted to process different parts. The

system is extremely inflexible.

Low-volume parts, arising from products whose production
raquirements are small, say fewer than 50, would include
prototype parts and othexr special needs. The system that
processes the low-volume part need not necessarily do so at a
high <rate but must be able to process different Kinds of
parts without incurring a high change-over cost. It must be
flexible. Standard manual job—-shops as well as stand-alone,
Numerical Control (N/C) machines (these are single-spindle
machines that <c¢an easily be programmed to automatically
perxform a sequence of operations on a part) are machining
alternatives for the low-volume part.

A large percentage of the machining that is being done
presently is considered to lie in the medium-volume category.
Agricultural and defense equipment (tractors, tanks, etc.)
are two areas that contribute to this gzroup. Machining these
parts poses ©problems because their production requirements
are either too low or too high to be economically processed
on one of the two machining systems previously menticned.

The central rxeason for designing Flexible Machining Sys-—
tems (FMS) 1is to economically process medium-volume parts.
The design philosophy has heen to combine the high-volume
features of transfer lines (multiple-spindle heads, automatic
transfer of parts among machines) with the flexibility of
stand-alone equipment. A number of medium-volume parts can
then be grouped and processed on one system, and no single
part need bear the system's high fixed cost.
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1.2.2 System Configquration

The general concept of an FMS allows tremendous freedom
in the way a system is configured and what its capabilities

are. Each FMS 1is likely to incorxpoxrate features that
distinguish it £xom all others so no two systems will be
exactly the same. This thesis will not treat the most
general systen, but to give the reader some perspactive and
to introduce some of the terminology that will be used, we
show a genexal FMS 1in Figure g EIE 29 This FMS 1s only
conceptual, but it includes most resources that have been
found to date in systems of this type. A description of each

resouxce 1is given next:

Machines The system is composed of a number of machines
that may oxr may not be identical. A machine
perxrforms an opexration on a part and so may be
genaralized to include inspection stations,
washing stations, loading/unloading stations,
etc.

Material

Handling

System

(MHS) Parts are transported from one machine to another
with this resouzrce and can take many forms.
Figure 1.1 shows a conveyer MHS. Vexy often, a

number of individual carts are employad that pick
up parts from one machine and transport them to

anotherx. The MHS often sexrves double-duty as an
in-process storage device foxr parts waiting to be
machinesd.

Pallets

Fixrtuxe

(pixture) Each part must he attached to a fixture for easy
handling internal to the system and =foxr propex
presentation to the machines. Because of theix

different shapes and sizes, a fixture is tailored
to each variety of part and one KkKind of part
generxally cannot use those fixtures designed Zor

another. There are cases, though, whexe this 1is
not true. Different paxts may sharxe a fixture,
either concurrently (more than one part on a fix-
ture) or separately. An important aspect of the
problem is that a limitad numbexr of =Zixtures
exist for each part. It will be seen that these
constraints can affect part scheduling in subtle
ways. In practice Ifixtures are generally not
separated from pallets. For this reason, we call

the combination a pixture.

9



Conceptual FMS

Figure 1.1:



Machine
Buffer
torage

Tools

Computex

A dedicated part storage area is provided in many
systems at the input and output of each machine.
(Figure 1.1 does not clearly illustrate this Zfea-
ture.) Othexr systems provide a common storage
area. Buffers help to isolate each machine from
fluctuations in its supply of parts; they act as
mini-inventories.

Tools might be considexed parxrt of the machine

and, therefozxe, not a resource in their ouwn
right. When tools are shared among machines,
this 1is no longer the case. Bringing parts

togethexr with tools on one machine then becomes a
compound scheduling problem; both parts and tools
must be scheduled.

The analyst concerned with scheduling parts
through the system recognizes the computer as a
resouxce with inherent limitations in 1its
capacity. The computer contxols much, if not
all, of the decision making foxr the system.
Parts are automatically zxouted through the
system, machines axe told how and when to process
parts, all with the help of the computex.

11



1.2.3 Part Set

The manner in which parts are attached to their fixtures
and the limited articulation of the machine tools, generally
prevent a part from being completely processed on one pass
through the system. It is not unusual for a part to require
three to six refixturings before it is completely processed.
These individual part "sides" are termed setups because they

must be setup on a fixture before entering the system. From
a scheduling point of view, each setup is a significant and
distinct "job" and must be considered as such. It is not the

number of parts that determines the size of the scheduling
problem, it is the number of setups.

Precedence relations generally constrain the ordex in
which the setups of a particular part can be processed. The
need to perform "rough" before "finish" machining and the
need to cut reference surfaces first are two reasons for
these constraints. Figure 1.2 shows an example precedence
diagram where Setup 1 and Setup 2 must both be processed
before Setup 3, but in no particular ordex.

Figure 1.2 Setup Precedence Diagram

12



Each setup visits one or more machines on its Jjourney
through the system and at each machine an goperation is
pexrformed. A machine visit may regquire a number of elemen-
taryv overations to be pexrformed (individual hole drillings,
etc.) but it is the overall time spent at a machine that is
significant for scheduling setups. This machine visit time
is called the operation prccessing time. Opexations need not
be performed in a strict ordex; partial precedence relations
arxe quite possible. An example operation precedence diagxram
is shown in Figure 1.3, illustrating anothexr important aspect
of the problem. Tooling may exist on different machines fox
some, if not all, operations. This is normally done as
insurance against the event of machine failure; if a machine
fails, parts can still be machined on alternative machines.

Since each of +the four operations can be processed on
one of two machines, there are, in this case, 2" = 16
possible operations/machine allocations. Each of these
sixteen alternatives is called a xrouting.

oP. 1

MACHINE
a OR b

oP. 3
MACHINE
d OR ¢

MACHINE
a OR ¢

Figure 1.3 Operation Precedence Diagram
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1.2.4 &2 Simplified FMS

The general FMS described above is an extremely complex
system. Embracing all of its complicating elements at once
does not seem analytically feasible, so simplifications will
have to be made. But where? Ignoring cextain aspects of the
problem may completely miss the mark and render any methodol-
ogy developed inapplicable. We wish to analyze an FMS that
balances +tractability against applicability, one that embod-
ies the important elements common to a laxge class of systems
that have been and will be built.

The fundamental FMS <characteristics considered in this
thesis are listed below:

Svstem Configuration

1. The number of machines in the system is arbitrary.
2. No blocking effects due to congestion on the IMHS
are felt.

A setup is blocked when it cannot ©proceed to its
destination due to the presence of anothex setup.
However, the effect of this blocking may not be

felt! If a setup's destination machine has suffi-
cient work to keep it busy until the setup arrives,
there 1is no zreal delay in its procduction. So

although blocking may indeed occur, the effects of
blocking (as perceived through production xzate) may
not.

3. No blocking occurs at machines.

The MHS may not have the capacity to retrieve parts
from machines as soon as an operxation is completed.
If another part is waiting at the machine's input
buffer, it is said to be blocked. Sufficient space
in the machine's output buffer however, can elim-
inate this problem.

4. Sufficient queueing space exists intexrnal to the
system, either dedicated storage or common storage.

We do not mean to imply that "infinite" queues
should be possible. Our treatment of the system 1is
such that the number of jobs internal to the systen
never exceeds some maximum value on the order of
15,

14



B Tooling is not sharxed among machines.

Although shared tooling has the potential of
providing great flexibility at low cost, dedicated
tooling is by far the norm on systems in use today.

6. Each setup <zrequires a unique pixture and upper
bounds on the number of each type of pixture exist.

Part Set
7o Partial precedence <relations for operations azre
allowed.
8. Machine alternatives for each operation are al-
lowed.
9. Precedence relations among setups are not allowed.
Opexrationally, precedence constraints among
setups can be freed by building wup a suitable
inventory of each setup. Consider two setups of a

part with the following precedence diagram.

SETUP . SETUP

Figuxe 1.4

They may be isolated <frxom one another if at some
prioxr time, several Setup 1 pieces are processed
before any setup Setup 2 pieces are done.

System Disturbances

10. Machines may fail in random manner.

Two important system characteristics not found in other
treatments of the FMS problem are included:

s Constraints on pixture availability exist (#6).

iis Machines are assumed to fail (#11).

15



1.3 Statement of the Problem

A formal statement of the problem requires specification
of a model and an obiective.

1.3.1 System Model

Following the terminology of Coffman (1976), the system
model is comprised of two parts:

(1)

(ii)

Resouzrces. The system contains a set of processors
M= {mi,mz2,...,1}. The processors we have in mind
are the machines and the MHS. Due to machine fail-
ure, this set 1is not constant; we shall assume a
probabalistic model for future processor availabil-
ity. In addition, a task may zregquire another
resource duxring its entire execution on some
Processor. The pixtures £fall into this category
and are described by: F = [(F4,Fz2,. . .} where F

sub(i) is the set of pixtures of type 1.

Task System. A task system is described by the
S-tuple (¢, <, {M sub(i)}, {£ sub(id)}, [t(ij)]) as
follows:

v = {$4,%2,...}Y 1s a set of
tasks to be pexrormed. Each
setup 1is generally comprised
of a number of individual
taskKs (machine operations,
MHS movements, etc.)

< is a partial order defined on
¥ that specifies the opera-
tion precedence constraints.

Each Msub (i) is a set of processors, one
of which must be chosen for
task 3 sub(i). Altexrnate
machines foxr operations would
he expressed through M
sub(i).

Each fsub(i) is an index for the pixture

type used by task 1. One
member of F sub(f sub(i)) is
chosen for each task i.

16



[£C(i3)] is a matrix of execution
times where t(ij) is the tinme

to execute 3 sub (i) on
processor m sub(3j). These
times are assumed determin-
istic.

R 4 System Obijective

The system objective must accurately reflect the will of
managemant. Management generally specifies a production
target that it hopes to attain over a certain time hoxizon.
For example, it might desire to produce 50 of Paxt 1, 90 of
Paxt 2, etc., over a period of a week. At the operxraticnal
level, however, this goal often translates to: "£inish the
production taxget as soon as possible." This later
interpretation of +the original objective 1is the one this
thesis considers and can be simply stated as:

Minimize T
Wwhezre

T = completion time of the production target

However, since the system model includes machine fail-
ure, which can only be described in a stochastic mannex, ue
will find it convenient to minimize the expected value of T.

1.3.3 System Control Variables

The above statement of the problem is complete, although
a bit austere. In ordexr to provide a better feel =Zor what
must be done, we may state, in general texms, what the
controls forxr the system are:

1. Seauence of setups into the system.

2 s Loading Time for each setup in the sequence.

3 Machine Assignment Zfor each operation of each
setup.

4. Orxdexr of Processing of Overations for each setup.

17



The difficulty of the problem stems from the
combinatorial nature of the controls and the number of dif-
ferent combinations possible.

FMS's with intricate material handling systems may have
additional controls. Examples include: determining the path
to transport setups from machine *o machine and choosing an
appropriate cart when carts are employed for transport. How—
ever, consideration of MHS decisions is beyond the scope of
this thesis. We assume that no controls are associated with
the MHS (this is the case with simple loop conveyoxr MHS'S),
oxr that sufficient capacity exists on the MHS to make
decision—-making trivial.

1.4 Previous Research

Two <xrather large bodies of =xesearch seem directly
applicable to the FMS scheduling problen, deterministic
scheduling and gqueueing theoxy. Briefly, the most relevant
facts about each area are discussed below.

Detexrministic Scheduling

Deterministic scheduling procedures are concerned with
finding the ordering of jobs on servers such that some objec-—
tive 1is met. The last 25-30 years have witnessed a tremend-
ous anmount of research covering most c¢irxcumstances [Conway et
al, 1967; Bakezxr, 1974]. One o the most studied problems 1in
this arxea corrxesponds somewhat to the FMS problem. It is the
job-shor scheduling proklem.

A fundamental charactexistic of the FMS, and one that is
common to Jjob-shops as well, is the manner in which parts
proceed through the system. In the standard Jjob-shop formu-
lation, partial precedence relations and alternate machines
axe not allowed, but different paxrts can visit machines in a
different oxrder from one another. We would be looking £foxr an
efficient method of scheduling the job-shop in hopes that it
could be easily extended to the moxre genezrxal FMS wvariant.
The contribution deterministic scheduling has made so far 1is
to assure us that efficient optimal seeking methods for job-
shops very likely do not exist. They bhelong to a class of
"difficult" problems whose time to solution is not bounded by
a polynomial function of the parametexrs (numbexr of machines
and parts). This c¢lass is said to be NP-Comvnlete [Coffman,
1976 1. Because FMS's seem to be magnitudes more complex than
job—-shops, and because the number of parts to schedule can be
quite high, pursuing an optimal solution seems ill-advised
and to date no one has attempted it.

18



Hueristic methods developed <from job-shop research are
feasible, though, and some work has been done to apply them
to FMS's. Stecke (1977) explores the utility of decision
rules for scheduling parts thrxough the system. In her uwork,
a very simple decision structure based on machine priority
and rart priority is set up. Part priorities are assigned by
standard dispatching rules (Shortest Processing Time (SPT),
Longest Processing Time (LPT), etc.) and machine priorities
are assigned in accordance with their total work load. If a
number of machines are idle, parts waiting for the machine
with the highest priority are ranked to determine which would
be ©processed next. That part with highest pricrity 1is
chosen. In all, sixteen different dispatching zules uwezre
tried with the result that SPT/TOT (Shoxrtest Processing Time
for current operation divided by the total processing time of
the part) seemed to perform best relative to the othex rules.

Schedule generation based on a priority structure is
often used and has a numbexr of clear advantages. They are
easy to implement, consume minimal computer time and are very
adaptable to unforeseen disturkances. But thexe is never a
clear connection between the strxucture and the global
concerxrns of the systemn. Finding good schedules within this
structure forces the analyst to use the "shotgun" method for
problem solving. That 1is, try every conceivable rule and
choose the one that generates the best schedule. We suggest
in following chapters that some decisions in the FMS problem
can be made effectively using priorxrity decision rules and
scme cannot.

The users of FMS's (there might be a total of twenty
FMS's in operation over the whole woxrld)} schedule their sys-
tems in some way but their woxrk is not well documented. One
very good treatment (Hutchinson, 1977) confirms our belief
that quick, simple rules incorpoxrating +the peculiarities of
each system are generally employed.

Queueina Theory

The first direct application of queueing theory to FMS's
is due to Solbexg (1978). Using the theory =for closed
networks as developed by Jackson (1963) and Gordon and Newell
(19673}, he constructs an analytical model for system behaviorx
that shows good agreement with those pexrformance measures
obtained <from simulating actual FMS's. Although the model
must make several unrealistic assumptions (equilibrium behav-
ior, exponential service times, etc.), its accuracy does not
seem to bhe overly sensitive to minor violations of these
assumptions. Some theoretical Jjustification for this will
appear in a forthcoming publication (Suri, 1980).

19



Anothexr work that wuses this same network of queues
theory as part of an optimal work allocation scheme is

performed by Secco-Suardo (1978). A formulation is given for
finding the optimal routing (i.e., our definition of routing)
for each setup. However, only one class of Jjob is alloued
within the network. In oxrder to account foxr pixture

constraints on each setup, an important practical concern, an
approach that associates each setup type with a separate
class must be taken. Baskett et. al. (1975) have extended
the theory to multi-class networKks,but numerical difficulties
can hamper its implementation (Reisexr and Lavenbexg, 1978).
So treating a multi-class pzroblem using the approach in
(Secco-Suardo,1978) raises serious questions about the feasi-
bility of arxriving at an optimal solution for largexr FMS's.

An approach that uses elementary gqueueing theory within
a network flow optimization scheme is discussed by Kimemia
and Gershwin (1979). There seem to be no numerical diffi-
culties associated with this methods but here again
constraints on pixtures cannot be specified, and machine
failurxe is not considezed.

1.5 Outline for Researxch

The FMS scheduling problem assumes an awkward position
relative to analytical techniques that are available.
Queueing theory is global in outlook and can be used fox
ovexall <xesource work Dbalance, but it does not have the
resolution to see the effects of different sequences oI
parts. On the other hand, deterministic scheduling theory
can resolve the differxence between different sequences, but
the capacity of the available computer does not allow for a
global trxeatment of the problem.

This thesis attempts to combine the two approaches 1in a
framework for decision making such that they complement one
another. In addition, we extend the state of the art in
modeling FMS's to include machine failure and limitations on
pixtures.

The second chapter begins by examining decision vari-
ables foxr the scheduling prxoblem and how they c¢an be
organized to reflect a global objective. A multi-level
structuzre for decision maKing emerges from a decision
partitioning concept. Each level of the structure solves for
certain decisions of the problem until, finally, all
decisions are fully resolved. We propose a three level frame-
work foxr the FMS considered in this thesis.

20



The algorithm for the first 1level in the structure is
developed in Chaptex - A recent advance in networxks o=
queues theory (Mean-Value Analysis) with very efficient solu-
tion procedures is used to model an FMS as a multi-class
network. This model is embedded in an optimization scheme
that minimizes the completion time of a given production
target assuming machines fail according to some probablistic

model. The algoxrithm provides a fixed schedule that speci-
fies the optimal mnix of setups to input to the system as a
function of which machines have failed. Also, the optimal

setup routing is detexrmined.

Chapter 4 discusses the Second and Third Level. Aftex
the mix of setups to be input has been determined, Level 2
undertakes the task of sequencing those setups into the
system. A dynamic program that uses a minimum of information
is constructed to do this. Loosely speaking, the objective
cf this algorxrithm is to deliver to each resource a steady
supply of work as dictated by Level 1. For this reason, it
has been dubbed the "Even-Flow Algoxrithm."

Eventually, every task must be assigned to a particular
resource at a particular time. Level 3 accepts this
responsibility. It incorporates decision rules in a real-time
envirxonment.

The performance obtained =frxom the multi-level decision
structure and its component algorithms is studied in Chapter
5 foxr FMS's of reasonable size. The effects cexrtain unmodel-
led transient phenomenon have on perxrformance are discussed
and experimentally observed.
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CHAPTER 2

STRUCTURING THE FMS SCHEDULING PROBLEM

2.1 Introduction

Having introduced +the FMS scheduling ©pvprxoblem in the
previous chapter, we must now constrxruct a formulation to
solve it. Considerxing the dimensionality of +the problem,
research has shown that the time needed to solve an exact
formulation 1is prohibitively long. Suboptimal solution
procedures must be constructed that yield "good" zresults
while remaining within the computational constraint imposed.

This chapter outlines a multi-level approach fox. solving
the FMS scheduling problem where each level is responsible

for <resolving <c¢ertain decisions. Through a succession of
levels, eventually all decisions arxre made and the problem is
solved, albeit a suboptimal solution. The computational

requirements Zfor this structure are lowexr than that of an
exact formulation bhecause all decisions are not solved in a
fully coordinated way. After partitioning the decisions of
the problem into groups, each group is treated in tuzn. The
pexfoxrmance of the multi-level decision structure depends
entirely on how decisions are defined and partioned.

Preliminary to defining the decisions c¢f the problem and
placing +them in a structuze, it is apprxopriate to introduce
the framewozk by which we view machine failure. It influ-
ences the way in which decisions are defined. A fundamental

happening we c¢all a system failure condition is examined
next.

2.2 Machine Failurxe Dynamics

When a machine breaks or is repaired, we say that the
system enters a new failure condition. A failurxe condition
is characterized by those machines that are currxently down
and, as time goes on, the system shifts from condition to
condition. A Condition Transition Diagram =£foxr a three-
machine problem is shown in Figuzxe 2.1.

Since machine failure is a random process, predictions
of futuxe behavior can be descxribed in" probabalistic terms
only. Assuming some initial starting point, therxe is an
associated probability of f£inding the system in each failuzxe
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Chapter 3 to help make rational work tradeoiffs among the var-
ious failure conditions. It is expected the best estimates
will be obtained from a combination of historical data,
preventive maintenance schedules as well as any analytical
models that may be devised.

No
Machines
Down

Figure 2.1: Failure Condition Transition Diagram

2.3 Multi-Level Solution Structure

One general <representation for the decisions of our
problem has alrxeady been given and appears in Section 1.3.3
as a set of "control wvariables". The four classes of contzrol
are repeated here for reference:

1. Sequence of setups into the system.

2. Loading Time for each setup entering the system.
3 Next Operation for each setup.

4. Next Machine for each setup.
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The representation is complete in the sense that no
other decisions need be made in ordexr to fully resolve the
prxroblem. Howeverx, other zrepresentations are possible as
well. Figure 2.2 shows an alternate set of decisions ue
shall use within a three-level decision-making structure.

Aside from the explicit devendence of decisicns on fail-
ure condition, the new representation differs from the old in
that +the sequencing decision is carried out in two steps.
First, the mix of setups is determined <for each failure
condition, then the sequence for setups comprising this mix
is Zound. 211 other decisions correspond to the oxiginal
representation.

Level 1: Major Resourxce Allocation Decicions
Major Temporal Decisions

For each failure c¢ondition, Zfind:

e Mix of setups entexring the system
* Machine for each opexration ¢f each setup

[
$
Level 2: Intermediate Tempoxal Decisions

For each failuxze condition, find:

|
|
|
| ¢ Sequence of setups into the system
|

|
¥
Level 3: Minoxr Temporal Decisions

For each failure conditon, f£ind:

|

|

|

i ¢ Input time for each setup

| * Next operation for each setup
I

Figure 2.2: Decision Structuzre for FMS Problem
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The structure indicates how the problem is simplified.
The top level makes those decisions that have a major impact
on the overall system objective while the decisions of the
last level have a minor impact. In genexal, the way in which
decisions should be partitioned is not easily quantified and
thus relies heavily on the experience of the analyst or tzrial
and erxxox. Dynamic resource allocation problems, however,
suggest two important quidlines for structuring decisions.
They are founded on a classification of decisions into two
types: resource decisions and teomporal decisions.

A resource-—-decision 1is concerned with a choice among
resources (e.g., the allocation of a task to one of several
machines) while a temporal-decision is concerned with the
+ime a particular task is allocated +to a resource (e.qg.,
determining the order in which the operations of a setup are
to be performed s The decisions of a dynamic resource al-
location problem can genexally be placed in one of these two
classes. In our problem, the "machine allocation" decision
is the only zresource decision, all othexrs arxe temporal
decisions.

£ The Relative Impoxrtance of Rescuxce Decisions

The system throughput is detexrmined mainly by the
resource(s) with the highest workload. Since ouxr systemn
objective 1is directly related to throughput, the
resource—-decisions associated with these bottleneckin
(oxr pacing) resources have high impact and should be
treated firxrst, before any others. Decisions associated
with resources of high capacity are less important to
the problem and can be put off to a lower level.

Our decision structure zreflects an FMS whose
machines have a worklocad at least as high as that for
the material handling system. Thus, the decisions
associated with machine allocation are treated at the
first level. If the capacity of the machines far exceed
that of the MHS, then the machine allocation decision is
of 1little consequence and can be made after all others
with little impact on the ovexrall objective. The
relative 1importance of resource allocation decisions,
then, is easily obtained by ranking the workload <for
each resource.

2% Ordexring Temporxal Decisions
Temporal decisions should be defined in a manner
that makes determining an orderxing very natural. In our

problem, the mix of setups entering the system is found
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first, then the sequence for those setups is detexmined,
and finally, very detailed information about when setups
are loaded and the order in which their operations are
performed is specified.

We are steadily narrowing the time at which a task

is to be allocated to its resources. First, each setup
is allocated to broad time periods characterized by a
particular failurxe condition. Then those setups assoc-—

iated within each failure condition are sequenced. This
further narrows the time at which they are to occupy
resources. Finally, each operxation of each setup is al-
located to its assigned zresouxrce at a particular time.
This notion of continuously narrowing the alloction time
for setups was the basis for expvanding the original
sequencing decision as we did.

2.4 Perxformance Measure for EFach Level

There is, associated with each level in the structure, a
mathematical formulation for <resolving decisions. The
rationale for making decisions comes =Zxom the performance
measure incorporatad within each formulation. Ideally, each
level chooses as its objective the same overall system objec-—
tive. In our case, this would be to minimize the completion
time of the production target. In practice, this is often
not convenient or even possible. The manner in which
decisions are defined, or the need to furthexr simplify the
solution procedure can force the adoption of alternate objec-
tives. When this is the case, an effort should be made to
relate the alternate objective to the original system objec-
tive.

The perxrformance measures we shall wuse in the decision
structure axe: -

Level 1 - Minimize the completion time of the
production target.

Level 2 - Maximize average production rate during each
failure condition.

Level 3 - Minimize the delay encountered by each setup

as it proceeds through the systen.

The exact meaning of each of these objectives and the
reason for their form will be made morxre clear when developed
in the context of the actual mathematical formulation.
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2.5

by gi
profi
broad
are ¢

Level

A Profile of Each Level

We shall preview what is to come in succeeding chaptezrs

ving a profile of +the formulation at each level. These

les will bring out +the main features and indicate, in
terms, how information flows between levels. Profiles

omprised of the following £f£ive characteristics:

T An objective function.

i Mathematical technigues used in formulating the

problem.
3. Inputs requirxed for the mathematical formulation.
4. Problem data needed for the forxrmulation.

The distiction between "Inputs" and "Pxoblem Data"
is somewhat artificial. Houwevexr, 1t 1s usefull in
the oxganization of the prxroblem.

5 OQutputs from the formulation.
1

Objective Minimize completion time for production
target.

Technigques Nonlinear mathematical programming.
Networks of gqueues theory.

Input Production target.

Problem Data Maximum number of each pixtuxe type.
Maximum number of setups allowed in the
system.

For each operation, all machine alterna-
tives and associated processing times.

Output Setup mix for each failure condition.

Setup routing for each failurxe condition.
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Level 2

Objective

Technique

Input

Problem Data

Output

Level 3

Objective

Technique

Input

Problem Data

Output

Maximize average production rate during
each failure condition.

Dynamic programming.

Setup mix for each failure condition.

Setup routing for each failure condition.

Not applicable. Aside from the input, no
other information is needed.

Sequence of setups into the system Zfor
each failure condition.

Minimize delay for each setup as it trav-
els through the system.

Dynamic decision rules.

Seauence of setups into the system.
Detailed information about the current

state of the system.

The exact information required depends

upon the decisions rules used. Examples
include setup processing times, number of
parts enqueued before each machine,

travel times, etc.

Loading time for the next setup.

Next operation for each setup after
having had an operation performed.

Notice that the output of each level is considered as input
to the following level.
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2.6 Information Feedback

The previous section highlights the two types of
information needed +to determine the output of each level:
input information and problem data. As time goes on, un-
expected changes in either type may justify re-solving the
level affected. Since the cutput of one 1level serxrves as
input to another, a chain reaction can occur where all suc-
ceeding levels musts be re-solved.

Aside from simply updating problem data, we shall
periodically xe-solve the Level 1 formulation on the grounds
that its Knowledge of future machine failure is not perfect.
As we shall see in Chapter 3, a scheduling strategy is
devised based on exvected machine failure Dbehaviox. TE
actual machine failure does not conform to our expectations,
then the computed setup mix and routing will, in fact, not be
optimal. Rather than continue contrelling the FMS with an
incorrect scheduling strategy, it is Dbetter to stop and
determine another based on those setups yet to be processed

frem the original production taxget. It may be necessary to
obtain new schedules several tTimes in the course of a
production zun. This process of obtaining new strategies

with updated information is called optimal oven-loop feedback
(Dreyfus and Law,1977) We shall discuss this in greatex
detail in Chapter 3.
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CHAPTER 3

LEVEL 1: SETUP MIX AND SETUP ROUTING

3.1 Introduction

The meodel and algorithm resident at Level 1 are devel-
oped in this chapter. Before the details are revealed, it is
helpful to motivate some of the development frxrcem a physical
point of view. Scheduling FMS's is the general concern of
this research, but scheduling them, when machines arxe allowed
to fail, is of particular interest. So we ask the question:
What should be done when a machine fails?

The dynamics of machine failure carry the system from
one configuration to anothex. It seems natural to partition
the time horizon for the problem into a serxies of disjointed
segqments. ZEach segment corresponds to a period during which
the configuration of the system remains constant. W= can
then make informed scheduling tradeoffs among those individ-
ual +time intervals by predicting future machine failure with

a probabalistic model. As we shall see, an interesting
affect suxfaces. A scheduling strxategy is devised that can
be intexpreted as anticipating Zuture machine failuzre.

Depending on the failed machine, certain parts may be defexr-—
red until some later time when conditions are perceived to be
moxre favozrable. The reason for +this is that, from a pro-
cessing point of view, parts see the system differently
depending upon which machines are douwn.

We begin with the Level 1 formulation that predetermines

setup mix and setup routing foxr each failuxe condition. Tkt
is a nonlinear mathematical program with an embedded network
queueing model. Following +this, appropriate algorithms are

developed to solve the formulation.
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3.2 Level

1

Formulation

One reminder beforxe a number of definitions are stated:

a setup can

proceed thxough an FMS on one or possibly mozxe

routes. A route is characterized by those machines visited by
the setup as it passes thrxough the system.

Define:

8(t)

P(t)

sri

Set of system failure ccnditions that are to
be considered in the problem formulation.

Set of distinct setup types to be processed.
Set of routes setup s can take through the

system during failure condition i. 1 € I , s €
S

Total number of s setups to be processed.

Actual time the system spends in failure
condition i over a time period of length t.

Expected provorxtion of time the system spends
in failure condition i ovexr a period of length
e

P (t) = Ef{e(t)}lst
i i

The expectation is performed over an ensemble
of "outcomes" forxr vect(8).

Rate of production of setup s using route x
during condition i.

Time to complete processing of all setups.
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Our objective is to minimize the time it takes to pro-

cess all setups. This completion time is a function of
machine failure, the producticn tarxget, and othexr parameters
whose influence is felt through vect(i). Our problem can be

written in the general form:

-> - -

MINIMIZE T (6(T), N, \) 3 1)

->

AN € L

where L is a complicated constraint set that depends on the
number of pixtures available for each setup. Note that
vect(®) actually depends on the completion time itself.

The problem is neot well posed, though, because there is
no way to predict vect(9) with certainty. OQuxr only recouxrse
is to minimize the expected completion time:

- - -

MINIMIZE E{T(6(T), N, A)} (3.2)

-

N € L

But this too is not promising because the functional form fox
T is not apparent, so formally taking an expectation is out
of the gquestion.

In order to continue, we must make the assumption that T
is approximately linear within the range of variation of
vect(8(T)), the only stochastic component of the problem. The
expectation operator can then be brought within T and applied
to vect(6(T)) dirxectly. The result is:

-> — -

MINIMIZE T(E{®e(T)}, N, \) (3.3)
-
AN € L

or
— - —

MINIMIZE T(P(T)T, N, ) (3.4)

AN € L
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A representation that brings out more clearly the dependency
on problem parameters is writen as follouws:

(P1) MINIMIZE T
-
A, T
st
= = A P(T) T 2 N s € S
i€l reR sri 1i s i e I
si r € R
si
(3.5)
&
N € L (3.6)

This formulation attempts to choose production rates for each
route of each setup duxing each system failure condition such
that the time to process all setups is minimized. The £first
set of constraints insure that the required number of each
setup are produced over the time horizon for the problem.

An alternate foxrm foxr PI1 that addrxesses the problem of
defining L is developed by introducing new decision variables
as follouws.

Define:
n
sri= Average number of pixtures devoted to route x
of setup s during condition 1.
-
n = {n , n y e}
i 111 121
-
7(n)
srm= Average total time setup s, using zroute x,
spends at machine m. This includes service
time and gqueueing time. Note that 7+ 1s a
function of the total pixtuxe allocation for a
particular failure condition. This relation-
ship will be defined in Section 3.Y4.
PMAX = Maximum number of pixtures to be resident
within system during any failure condition.
FMAX
s = Maximum numbexr of pixtures available for setup
S.
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Using Little's result for relating the number of setups resi-
dent in the sytem to flow rate (Kleinrock, 1975):

A = n /Z T (n ), (3.7)
sri sri m szrm 1

P1 is rewritten as follous:

(P2) MINIMIZE T
-
n,T °
8 . %
N
s
< T each s (3.8)
SP(T) = n
iel i reR sri
si
->
1S 7 (n )
m srm i
= n < FMAX each s,1i (3.9)
r sri s
Z Zn < PMAX each 1 (3.10)
s ¥ sri
n 2 0, T 2 0
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Problem P2 essentially balances the workload for all
setups over their routes and over the failure conditions
considered. One unit of each component of vect(n) carrxies a
demand for certain resources in some amount. The object 1is
to choose vect(n) such that the production target is achieved
(constraints 3.8), while minimizing the completion time Zfox

the production tarxget. Note that Little's equation assumes
average values for the components of vect(n), so they need
not be constrained to be integexs. Constraints 3.9 and 3.10

specify limits on the numbexr of each setup available and the
total number allowed in the system, respectively.

Aside from the nonlinearity of constraints 3.8, the only
other difficulty that could hamper the solution of P2 lies in
the evaluation of the texrms 7 sub(srm) contained in those
constraints. These machine visit times are, themselves, non-
linear functions of the allocation, vect(n). Unfortunately,
analytic expressions for these nonlinear functions are not
available. Problem P2 could be solved in a straightforward
manner using standard methods if they were available.
Section 3.4 discusses an iteritive technique derived £fxom
netwoxrks of queues theory that we shall wuse to evaluate
vect(r). The technigque is known as Mean Value Analysis (MVA).

An algorithm for solving P2 will be outlined subse-
quently. Before doing so, a formulation alternate to P2 1is
introduced and MVA is discussed. The alternate formulatiocn 1is
valid when the numbexr of available pixtures 1is not
constrained and the system is allowed to saturate. {The
system is saturated when the bottleneck resource is busy 1007%
of the time.) It is very easy to solve and will be used to
simplify the solution of P2.

3.3 An Approximate Formulation for Level 1

Our nonlinear formulation must be employed when the
number of each pixture type is constrained or limits azxe
placed on the total numbexr of pixtures allowed in the system.
If these constraints are relaxed, it 1is then possible to
construct a formulation that is almost linear and easier to
solve than problem P2. This interxests us because some sys-—
tems may indeed operate with little constraint on pixture
availability. Beyond this, the simplified formulation can be
used to provide a rxeasonable starting point for the algorithm
for the more interesting nonlinear problem.
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Define the following:

X = Number of setups using route r during
sri condition 1i.

2 = Process time for route r of setup s on
srm resource m.

o B = Set of resources that arxe operational
3. during state 1i.

As bhefore, we wish to minimize the completion time of
the production target. When pixture constraints are relazxed,
this is accomplished with the following program:

(P3) MINIMIZE T
-
X, T
s.t =S = X 2 N s2ach s 63 <11
i sxi s

=3 X ol < P (T)T each i, m € M'" (3.12)

s r sri srm h 2 i
X 2 0 each s,xz,1i (3.13)
sri

The first set of constraints insure that the production
target is met while the second set specifies that the worxk

allocated to each failure condition is less than the actual

expected +time available during that condition. Strictly
speaking, ® sub(sri) should be constrained to the integexs.
Houever, these values are generally quite high, the errox

involved in rounding the linear solution to the nearest feas-
ible, integer solution is small and will be ignored.

The solution of P3 is complicated somewhat by the
nonlinearity of T in constraints 3.12. It <¢an be solved
quite easily, though, through an iterative procedure where a
serxies of linear programs axe solved. The details of the
solution procedure have been relegated to Appendix A in oxrder
that we may proceed with the development "and algorithm Zfox P2
without distraction.
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3.4 Mean—-Value Analysis

3.4.1 Introduction

Various methods exist for obtaining the machine visit
times (7)) for a given allocation of pixtures vect(n). Brute-
force simulation of the desired system is one such method
that is highly accurate but vexy costly in terms of the
computation power required. We shall use a technigue derived
from Networks of Queues Theory that yields approximate
results for systems with determinisitic process times but is

very simple zxelative to simulation. Where simulation may
requizxe 15 seconds of computer time for one evaluation of
vect(r), MVA may require less than 0.1 second. We shall see

that the loss in accuracy in going to MVA is very small for a
wide c¢lass of systems.

MVA is a rather recent development in netwoxks of queues
theory that was first presented by Reiser and Lavenberg
(1978), and extended by Bard (1978). The method considers
closed netuworks, where a f£ixed number of johs circulate among
the nodes {machines), and vyields other performance measures
as well (e.g.,throughput, utilization, average queue size,
etc.). It takes its name from the fact that it deals mainly
with the first moment (mean value) of distrxibutions assoc-—
iated with the undexlying probability space of the problem.
The analysis is based on a relation between the mean waiting
time at a machine and +the mean queue lengths for a system

with one less 3job. This "mean-value" equation, togethexr with
Little's result applied to each setup and separately to each
machine, furnish the needed equations on which to base a

suitable algorithm.

One advantage MVA has over other gqueueing techniques 1is
its computational simplicity and easy implementation fox

multi-class networks. In multi-class networks, jobs arxe
associated with one of several <c¢lasses depending on their
distinguishing characteristics. By classifying Jjobs accoxd-
ing to setup, zroute and failure conditions (i.2., the Jjobs
associated with each n sub(szxi) constitute individual
classes), MVA enables us to predict system behavior on a
class—-by—-class basis. This is precisely what P2 requires.

Another advantage is that 1its associated algorithm has a
physically meaningful interpretation that is helpful for
extending the analysis to systems that are somewhat c¢loser to
actual FMS networks.
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A drawback +to MVA that is common to most aqueueing
techniques are the assumptions it <requires to yield exact
results. They are:

Assumptions

1 Under the condition that the gueueing discipline is
FCFS (First Come First Served), the service times
must be exponentially distributed and independent
of a setup's class membership.

2 The system is assumed to have reached probabalistic
equilibrium.

Probablistic equilibzrium for a network of queues 1is
the condition reached when the probability of
finding a given numbexr of setups in all quesuss 1s a
constant fuction of time. This is the standazrd
definition adopted by gqueueing theorists.

The FMS's we consider have FCFS gqueueing disciplines so

the first assumption is applicable. However, the properties
of most FMS's lie in strict violation of the first assump-—
tion. Since the service times for setups are £fixed at

constant values and since a particular setup on a particular
route during a particular failure condition constiutes a
class, the stochasitc factor needed to satisfy queueing
theory is not present. Regardless, we shall forge ahead and
demonstrate that quite reasonable predictions of performance
can be obtained using the theory in a heuristic fashion.

The second assumption is potentially painful. Incorpoxr-—
ating MVA into P2 implies that the system moves instantane-
ously from one equilibrium condition to anothexr as the fail-

ure condition changes. For any dynamic system, a transition
period will always follow an abrupt change in the
configurxation or contxol of the system. If these periods are

long enough and the occurance of disturbances often enough,
equilibrium may never be established. Chapter 5 examines this
issue in more detail and offers some evidence that suggests
equilibrium assumptions, although zrarely satisfied, yvield
adequate performance 1in many cases.
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3.4.2 MVA Algoxrithm

A complete development for the MVA algorithm is given in
Appendix B. This section merely presents the f£inal result
and demonstrates its accuracy by a small example.

Definitions:
n
s : Population size of setup s.
(Eventually, a <c¢class will be
associated with each component of
vect(n). During the MVA
development, routes and failure
conditions are not distinguished.)
N
n = (nq,N2,...,ns8): Population vector.
T
s,m : Service time of setup s at machine
m.
q
m : Equilibrium mean queue size at
machine m.
qQ
s,m : Equilibrium mean numbexr of setup s
at machine m.
r
s,m Equilibrium mean waiting time
(including serxvice time) of setup
s at serxrvice center m.
A
s : Setup s throughput.
e
3l : |S|-dimensional unit vector in the
ith direction.
M
s : Set of machines setup s visits for

processing.
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Also, vect(n) may appear as an argument for <certain
quantities, indicating that they are evaluated for a network
with population vect(n), e.g.:

-

g (n)
m
for mean queue size.
Algoxrithm MVA
1. Initialization: g =n /M| for all m in M ,
s,m S S s
q = 0 for all m not in M
s,m s
2. Repeat steps (3) to (6) until a suitable

convergence criterion is met.

q (n)
J j.m
3 & = S = 3
s,m ->
z q (n)
X J:l

s

4. T = t L b U (q - € ) Mean Value Egqn.
s,m s,m 3 j»m Jj,m j,m

5. A = n /T Littles Result for Setups
s s m s,m

6. q = A T Littes Result for Machines
s,m s s,m
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The operation count per iteration cycle £for this algorx-
ithm can be manipulated to 9%|S|*|M| + [S|. Experience has
shown that +the number of iterations required such that the
change from one iteration to the next is less than 14 1is on
the order S/2 when the procedure is started from an arbitrary
point. When given a good start, far fewer iterations are
needed. This will be significant in the algorithms to
follouw. The complexity of the algorithm then, is 0(S2).

In addition to its simplicity, another virtue of Algorx-
ithm MVA is that the population of each <c¢lass 1is not
constrained +to be integexr, or even greatexr than one for that
matter. This enables us to specify an average population
size for each <class that is fractional. Since the average
population ¢f individual <classes for an optimal solution is
not expected to be integer, this feature is most welcome.

3.4.3 MVA Test Results .

The MVA algorithm was run and c¢ompared against xesults
obtained <frxom simulation. The system simulated had 4
machines, a limit of six resident pixtures, a conveyer IMHS,
and processed an unlimited number of 10 different setups.
The operation times for each setup were chosen before the run
from a uniform distribution with range 1.0 minute to 29.0
minutes and fixed throughout the simulation. These opexation
times were used by algoxithm MVA for t sub(sm).

The difference between MVA and simulation results were
recorded for the main perxrformance measures and averaged ovex
50 runs. (Each run differed only in the values of process
times for each setup.) They appear in Figure 3.1.

The results show excellent prediction for average queue
size but throughput and utilization are biased somewhat below
that found for the simulation. This pessimistic prediction 1is
probably rooted in the exponential distribution MVA assumes
for operation sexvice times. Very large values that an
exponential distribution will vyield for operation times,
albeit with low probability, arxe not experienced by the

simulation. Any time thexre is a wide variation in sezrvice
times, the internal disruption caused =for setup flow will
lower throughput and wutilization. However, the relative

utilizations (obtained by scaling the highest utilization up
to 1.0 for both the MVA prediction and simulation result) are
predicted accurately as shown in Figure 3.2. Considering
that the bias is generally quite low (within 112), it 1is
expected that the optimal work-balancing decisions will not
be thrown off by using MVA as a model for the system.
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PERFORMANCE MEASURE % DIFFERENCE TYPICAL RUN
100%(SIM-MVA)/SIM

MEAN STD.DEV. SIM MVA
Throughput 11.0 5.8 .0526 .0427
(parts/minute)
Utilization
Machine 1 10.7 6.1 75.0 72.0
Machine 2 9.6 6.9 63.0 59.0
Machine 3 8.9 7.4 79.0 70.0
Machine & 10.0 a1 5% 46.0
Average Queue Size
Machine 1 0.4 15.0 1.4 1.7
Machine 2 -3.4 13.9 0.9 0.9
Machine 3 0.3 4.4 1.4 1.3
Machine 4 2.7 11.0 0.8 0.6

Figure 3.1 MVA Test Results

% DIFFERENCE

MEAN STD DEV.
Machine 1 -1.4 6.7
Machine 2 -0.6 5.5
Machine 3 -1.8 B’}
Machine 4 -2.4 807

figure 3.2 Relative Utilizations from MVA
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3.5 Alaorithm for Problem P2

Many nonlinear programming algorithms exist which could
be brought to bear on P2, even though the evaluation of
vect(r) may be somewhat involved. The simple form of the
objective and the few nonlinear constraints of the problem,
though, suggest an algorithm that appears in (Suri, 1978).
The algorithm is a variation on the successive linearization
method and is briefly described nou.

38 1 Modified Successive Linearization

The Levell problem has the following foxm:

MINIMIZE T

-

n,T
5
g (h,T)Y £ T each s (3.14)
s
= n < FMAX each s,i (3.15)
r sri s
Z Z n < PMAX each 1 ¢3.16:)
s r sri
n 2 0 T 2 0
sri
Starting from some feasible solution, we intend to

iteratively reduce T by some small amount and f£ind the change
in pixture allocation required to satisfy all constraints.
When it is no longer possible to zeduce T and obtain a feas-
ible allocation, we have reached a solution and the process

is stopped. The change in T at each step is small enough
that a linearized version of the original problem can be
solved =foxr the <c¢hange in allocation. Thus, the original

nonlinear problem is reduced to a series of linear ones.

Initial Starting Point

3
The algorithm must start from some feasible point n? and
T, A good starting point for vect(n) can be easily derived
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by chosing an allocation that is both feasible and corres-
ponds to the routes that were singled out in the approximate

formulation (problem P3). Having chosen vect(n®), a feasible
T is always available merely by setting it to some large
value. Houwever, the higher T° is, the more iterations the

algorithm must go through to reach optimality.
The following successive substitution method for finding

T® may be tried although it is not guaranteed to convezxge:

0 =0 0 0
T =max g (n , T ) T arbitraxry (3.17)
R+1 s k 0

However, even if it does not converge, the above equation can
be used to help bound the solution. The following Lenma
states a fudamental property of equation 3.17.

Lemma 3.1

Let T* be a solution to equation 3.17.

0 0 0
It i < T Then T*% < T
k+1 4 N
0 0 0
If T > T Then T* 2 T
k+1 K K
Proof: Place g sub(s) in a form corresponding to

equation 3.8 in P2 and write equation 3.17 as:

N
s

T S PI(T ) ¢ (3.18)
k+1 1 1 kK is’

s' = arg max g
s
>
wherxe ¢ are constants that depend on n® and XN
is'’ s'
(They are nondimensional setup flow rates.)
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LE T < T , then

N £T TP (T ) ¢ (3.19)
s' ki i Kk is"'

The time spent in failure condition i during a time period
of length T is:

T P (T) (3.20)
i

From physical considerations, this occupation time
is a nondecreasing function of T. Therefore, equation 3.19
immediately yields:

T < T
k
IEf T > T ,then
k+1 k
N 2T =T P (T ) ¢ (3.21)
s' ki i K is'
and
T 2 T
24

KKK
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The algorithm for problem P2 proceeds as follouws:

Algorithm P2

Step 1:

Step 2:

Step 3:

Step 4:

-

Set K = 0; choose an n° and find
T%, using successive substitution
as indicated by Equation (3.17).

(for kK > 0 only)

Kk* k =Kk 4
Set y = MAX g (n , T) (3.22)
s s
K k-1 k K
Ify < T , then let T =y and continue.
Otherwise, stop. Solution is:
k-1 k-1
n » T
-k =k k
Evaluate A (n , T )
s
K 3g(n,T) = =Kk k
where: A = s |l n= n ;T =T
s -~ (3.23)
an
4
Choose AT and set:
kK+1 k R
T = T - AT (3.24)
-k R+1 kR+1
Evaluate g (n , T )= g (3.25)
s s
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nd 4
Step 5: Determine An from the following linearization of

P2.
- k
An = arg min [Anl]
sri
s.t.
R+1 =k = k+1
g + A An £ T each s (3.26)
s s
k
= (n + An )} £ FMAX each s,1 (3.27)
" sri sxri s
k
== (n + An ) £ PMAX each 1 (3.28)
s r sri sril
k
n + An 20 each s,r,i (3.29)
sri sri
-k+1 =k -k
Step 6: Set n = n + An , (3.30)
Set K = k+1

Go to Step 2

Choosing AT for fast convergence 1is an exercise in
magic. Our technique initially sets AT to some large value
(e.g., AT = T/74). As long as substantial improvement in the
objective is realized, (e.g., T(k+1) = T(KR) £ AT(RIY*X3/4), AT
is not changed. If the goal for improvement is not met, AT
is reduced (e.g., AT(new) = AT(o0ld)/2), never to be increased
again. The increment is not reduced below some fraction of T
(e.g., AT 2 0.01%T) in ordexr to Keep solution time within
reasonable bounds. Choosing AT means choosing the various
multiplicative factors parenthetically introduced above.
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3.5.2 Computation of Gradients

The above algorithm zrequires the gradients of the
nonlinear constraints with respect to pixture allocation:

->

3 g (n)
s 1
(3.31)
-
d n
After chaining through several intermediate wvariables,

eventually the gradients of the queue lengths foxr each setup
on each of its routes on each machine is required:

: (3323

However, only the implicit relation (Equation B.15, Appendix
B} derived From 3Zlgorithm MV2 exists for determining the
individual gqueue lengths, so theixr gradients are not easily
obtained. If a vector is constructed =from the g's as fol-
louws:

a = (q y q Y (:3..:3:33)

then a vector version of Equation B3.15 may be written as:

- - -

-
qg = £ (g,n) (3.34)

The desired gradients axe obtained by expanding this

equation in a Taylor series about a given vect(n), then
dividing by an increment vect(An) and taking the limit as
that increment approaches zerxo. The result is:
- — ->
3 q = 3h -13h
= [ I - ] (3.35)
- — -
I n 3 q a n



The difficulty of +this method lies in the size of the

matrix that must be inverted, presumming the matrix is not
singulax. For typical problems, it may have xrank 100 orx
more.

The only altesrnative is to proceed in standard brute-

foxrce manner. Increment each independent wvariable in tuzn
from the c¢urrent point and form an approximate partial
dexrivative from the differences obtained. This is shoun

symbolically here:

- > -
dg(n) g{n + An e ) - g(n)
s s . s
= (3.36)
an An
i b

where vect(e(i)) is, the unit vector in the ith direction.

One application of Algorithm MVA is necessary to obtain
the partial derivatives for all components of vect(g) with
respect to one component of vect(n). Since the dimension of
vect(n) is:

n ™

= M
o

0

-

the computational burden could become high for large prob-
lems. Therxe are three methods for reducing this labor, xoute
elimination and failure condition =limination to be discussed
in the next section, and apprcoximate gradients.

Approximate gradients are easily obtained from Algorithm
MVA by <relaxing the convergence criteria so that feuwerx
itexations are needed. This is appropriate in the early
cycles of Algorithm 3 when it is presumed the cost function
i1s steep and precise evaluations o=f g(n) arxe not needed to
obtain a genexral dirxection for improvement. Howevex, as the
optimal point is approached, the components of the gradients
in the feasible direction become smaller and much more sensi-
tive to exrroxs in their evaluation. A labor saving strategy
relaxes the <convergence <c¢riteria initially and slowly
tightens it up as the optimal point is reached.
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3.5.3 Reducing Problem Size

Route EFlimination

It would not be unusual for the total number of xoutes
summed over all setups and all failure conditions to run into
the thousands.(A 5 machine, 10 setup example in chapter 5
generates over 800 possible <routes). This numbex has a
direct impact on the woxrk required to reach optimality so we
wish to eliminate, from the start, as many routes as possible
without jeopardizing the system objective.

One indication that very few routes will actually be
chosen by P2 comes from the approximate formulation, P3. Fox
this problem, the number of basic (non-zero) variables cannot
exceed the number of constraints, so the numbexr of routes

chosen will Dbe low if the number of constraints is lou. A
medium-size FMS with seven machines and fifteen parts may
have at most 15 + 8 * 6 = 63 constraints. The nonlinear

formulation P2 can of course choose more routes than problem
P2, but it is not 1likely to require the thousands that are
offexed. If we knew which routes wexe not needed, the sice
of the problem could be reduced substantially.

A good estimate of those routes that arxe not likely to
appear in the optimal solution again comes fxom prcblem P2
The "reduced costs" of the final LP can be used to rank all
routes according to how much each would increase the cost
should the route be used. If the numbexr of constraints in
the LP should be fifty, say, then it would not be unxeason-
able +o zrestrict the number of zroutes considered in the
nonlinear problem to the firxrst 150 in the ranking.

Failure Condition Elimination

The size of the Level 1 formulation is also related to
the number of system failure conditions. A ten—-machine prxob-
lem with its 1,024 different conditions would completely
overwhelm +the <computational zxesource 1if all had to be
considexed. However, many of these are of minor importance
because the probability of +their being occupied is so small.
This can be illustrated on a three machine system as follous.

A simple representation of the Condition Transition
Diagram that will serve our purposes is obtained by ag-
gregating the conditions according to the number of machines
down. This is shown in Figure 3.3.
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3
machines

douwn

Figure 3.3 Simplified Transition Diagram

Let:
-\t
\e = Distribution for time—-to-failure.
-ut
ue = Distribution for time-to-rxepair.
where:
1/ = mean time to failure
1/ u = mean time to repairx

If +the mean time-to-failure and repair is 20 hours and 2
hours, respectively, then standard Markov analysis gives the
following steady-state probabilities.

PROB(A) = 0.751
PROB(B) = 0.225
PROB(C) = 0.0225
PROB(D) = 0.000751

The point made here is that most states are not likely
to be occupied. The major means we employ to reduce problem
complexity is to ignore those conditions that rarely are.
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3.5.4 Numerical Example

We apply algorithm for P2 to a three-part , three-
machine problem, for two different cases. In the first case,
the number of available pixtures foxr each setup isas not
restricted. This 1is done to validate the procedure by
comparing results to those obtained using the approximate
formulation P3. In the second case, pixture availability 1is
constrained in order to compare changes relative to the Zfirst
case. The necessary input problem data is given next.

Production Target:

N{ = 75 N, = 100 Ny = 125
Number of Resident Setups:
case 1 case 2
PMAX 15 6
Number of Available Pixtuzres:
case 1 case 2

FMAX,4 not limited

o~

FMAX,2 not limited 4

FMAX3 not limited 3

Operation Processing Times:

The setup data, indicating setups, their operxations and
alternate machines appears in Figure 3.4. Operations are to
be performed in the order that they appear.

Failuxe Model:

A reduced four-state failure model is constructed for
this example in order to simplify the computer implementation
of the problem. This restriction is artificial and not an
inherent 1limitation of the level 1 formulation. All three
machines are assumed to have the same failure and repair
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MACH A TIME MACH B TIME

Setup 1
Op 1 1 7.94
Op 2 4 27.82 2 13.11
Op 3 4 12.83 3 9.98
Op U 3 11.02 2 20,36
Op 5 5 7.94

Setup 2
Oop 1 1 7.48
Op 2 3 2.70 U 1.39
op 3 2 27.58 4 5.14
Op 4 3 19.27 4 2283
Op 5 5 7.48

Setup 3
op 1 1 7.28
Op 2 3 7.65 4 11 27
Op 3 2 25.33 3 16.99
Op Uu 2 24.88 4 3.18
Op 5 5 7.28

Figure 3.4 Part Processing Times and Machine Alternatives

characteristics. The distribution satisfied by these failure
and repair times is assumed exponential, with a mean time to
£a2il and mean time to <zxepair of 5 hrs each. For the
continuous time Markov model shown in Figure 3.5, the steady-
state probabilities of being in each failure condition
becomes P1=.5,P2=p3=p%= _17.

no machine
machines 1
down down

Figuxe 3.5 Simplified Four-State Failure Model
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Results

We are interested in looking at the Level 1 solution for
one particular machine failure history. For this run, let us
assume that actual machine failures and repalrs occur as
expected in oxrder to assess, in some sense, the average case.
Later, the solution is examined when failures do not occur as
expected.

The total number of routes to consider over all failure
conditions is 44. It took 11 full iterations of algorithm P2

and .66 minutes of CPU time on an Amdahl computer to obtain
the results for case 1. They appear below.
Case 1:

Minimum time,T: Problem P2 = 4310 minutes

Problem P3

3950 minutes

Setup Mix:
CONDITION
Setup A B C D
P2 P3 P2 P3 P2 P3 P2 P3
1 43 35 0 0 8 11 24 29
2 60 65 30 27 9 8 1 0
3 75 81 28 28 2 0 20 16

Pixture Allocation (Problem P3 only):

CONDITION
Setup A B c D
1 4.4 0 6.9 8.1
2 4.0 7.1 6.2 5
3 6.6 79 1.9 6.4

Figure 3.6 Level 1 Results for Case 1
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The table for setup mix states the number of each setup
that are to be processed during the total time the system is
in each failuxe condition. Summing over all conditions
should yield the production target. The results show good
agreement between P2 and P3 formulations but the time to pro-
cess all setups is 11% highexr for problem P2. This is quite
consistent with the MVA test results of Section 3.u4.3, uwhere
reasons were suggested <for this behavior. Nevertheless, the
good agreement showun for setup mix supports the notion that
accurate prediction of zrelative utilizations, rather than
absolute utilizaticns, is sufficient when balancing woxKload.

The anticipatory nature of Level 1 is seen through the

differences in relative setup mix foxr each condition. In
fact, at times, Level 1 refrains from inputting certain
setups altogether. Evidently, it detects morxre favorable

conditions for these parts sometime in the future.

A practical problem in the operation of FMS's is Knouing
how many of each type of pixture to have on hand for each
setup. The advantage of wusing queueing techniques rather
than some procedure that reguires simulation is that this
information 1is found directly. The nonintuitive nature of
this information is demonstrated in +the table for pixture
allocation. Notice that although fewer pieces (43) of Setup
1 are allocated to Condition &, Setup 2 needs fewer pixtuxes
(4.0) to achieve its production. Setup 2 must be able to
proceed through the system £faster than Setup 1 during Condi-
tion A.

The zresults for *the constrained case are shown in Figuze
"7 . In this case, the completion time must, of course,
increase from that of the unconstrained <case. Pexrhaps the
most interesting point here is that Level 1 does not £ill the
system to the pixture 1limit during each failure condition.
With such a strategy, more setups may or may not be processed
during a given time ©periced, but it is cexrtain that the
completion time of the production target would be delayed.
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Case 2: Constrained

Minimum Time, T: 5050 minutes
Setup Mix:
Condition
Setup A B c
1 50 0 9
2 62 28 10
3 60 33 2

Pixture Allocation:

CONDITION
Setup A B c
1 2.0 0 2.0
2 2.0 2.0 2.0
3 2.0 340 0.4

Figure‘3.7 Level 1 Results foxr Case 2
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Alternate Scheduling Strategies

The effort involved in implementing complex scheduling
strategies can be justified only if there is sufficient
improvement ovexr other, more elementary, strategies. Two
alternatives that should be considexed are the following:

1z Selfish- A setup that follows the selfish strategy
has no preconceived allocation to resouzrces. The next
operation to be performed and the machine that performs
it are chosen by simple decision rules. Looking over all
those operations that can be performed next for a given
setup, the operation and machine are chosen according to
which operation can be processed the soonest. (This
includes processing time plus queueing time.)

2. Balance - This strategy balances the setup work
requirements over all resources for each failure condi-
tion. A simple linear program that assumes a saturated
system is used in this case. It is similax to the one
appearing in Section 3.3 except work is not balanced
over the all failure conditions.

For both these strategies, the mix of setups input to
the system is the same as that of the production target,
regardless of the prevailing failurxe condition.

We incorporate each strategy into a simulation for Case
1 of our example and obtain +the £following results. (The
Level 1 strategy has taken the name "Defer" to reflect its
anticipation of machine failure.)

Actual
Strategy Completion Time % of Selfish
Selfish 4473 minutes 100%
Balance 4294 967%
Deferx 4070 %1%

In this example, Level 1 is informed, in advance, of the
actual time spent in each failure condition. This information
- 1s used to specify the expected failurxe time that formulation
P2 requires. The performance actually achieved by the defex
strategy is better than that predicted (4310 minutes., pg.54)
because of the pessimistic nature of our network <cueueing
models (see discussion on pg.55). If machines do not £ail as
expected, then the prediction of the model is not accurate
and improvement over other strategies may or may not be
realized.
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Individual <zresults for a 20 run Monte-Carxlo simulation,
where the Level 1 formulation is not advised of actual future
machine failure, are shown in Figure 3.8.a. The completion
time for the production target varies widely depending on the
machine failure pattern. Evidently, the running time is not
long enough for machines to yield the same "average" failure
rates. Blso, we see that the completion time, averaged over
all 20 runs (4880 minutes), is significantly higher than that
expected (4070 minutes). This indicates that applying the
expectation operator directly to vect(®) in equation 3.3 1is
not strictly valid. We shall attempt, in the next section,
to regain some of this loss with an information feedback
proceduzre.

Minutes x 100

40 45 50 55 60
scals -~ ¢ : ! y
a. No Feedback -ttt ;
® Average

b. w/Feedback _, i
1 T 1

1 .8
1]
® Average

Figure 3.8 Completion Times for 20 Run Monte-Carlo Simulation

Minutes x 100
1 2 3 4 5 6 7

l ' 1 s it 4 1
" v Al Al T v T Ly

scale ‘ ;

a. MTF & MTR 4

4{ e

1000min. eAverage
300 min. ! e Average
¢c. MITF & MIR ' e

100 in.
. e l ® Average

Ficure 3.9 Improvement of Defexr Strategy Over Balance Strategy
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3.6 Information Feedback

The open-loop <results of the previous section can be
improved substantially if the Level 1 scheduling strategy is
periodically recomputed. With every update, a new production
target 1is derived fxom the orxriginal by subtracting those
setups that have already been processed. The basic philos-—
ophy associated with each update is: "Forxget about what has
happened in the past. What must now be done to schedule the
remaining setups in an optimal manner?" We may view the
information feedback process as a method that accounts for
past machine failure. Each updated scheduling strategy is a
function of the modified production taxget which depends on
the actual failure histozry. Our implementation anticipates
future machine failure through formulation P2 and accounts
for past machine failure through information feedback.

A diagram showing the open-loop feedback structurxe for
the Level 1 formulation appears in Figurxe 3.10.

Problem

Data | | Schedule | | Setups
---------------- - | | Strategy [ | OQutput

| LEVEL 1 | / | FMS |
| P3 ] | | |
+ | [ [ | |
---------------- - | | | | [
Production -t | | | i I
Target | I
| |
| |
| [
I |
| Sample/hold |
I / |

Figure 3.10 Level 1 Open-lLoop Feedback
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The sampleshold devices indicate that Level 1 will Dbe
recomputed ©periodically rathex +than continuously. This, of
course, goes without saying, since some finite perxriod of time
is required to solve P2. However, much longer update intex-
vals (e.g. 172 - 1 day) may be adequate. Certainly, if times
for future machine failure are Known very accurately, (this
is the case for planned doun—-time that is necessary for
preventive maintenence), then there is no need to continually
re~-solve the problem because the solution will not change
dramatically. It is only when failure behavior is uncertain
that wuwe have to <continually hedge our bets with neuw
scheduling strategies.

Example

Production <results for the example of <the previous
section are obtained using the information update implement-

ation of Figure 3.10. New scheduling strategies arxe obtained
every 250 minutes and whenever a machine fails ozxr 1is
repaixed. Figure 3.8b shows a general improvement in
performance 1is obtained. The average completion time  has

droped from 4880 min. to 4552 minutes.

The difference in performance for the Defer and Balance
strategy is shown in Figure 3.9 as a function of mean time to
fail (MTF) and mean time to repair (MTR). (Both strategies
are subject to the same 20 run Monte—-Carlo simulation.)

When rates of machine failure and zrepalr are high
relative to a given time horizon, predictions of future fail-

ure condition occupancy are fairly reliable; that 1is, the
variance in occupation times from run to run is lou. The
opposite 1s true when failure and zrepair rates are high
relative to the time horizon of interest. This is reflected

in Figure 3.9 where an MTF and MTR of 1000 minutes does not
perform as well as that for 100 minutes. In other words, the
more certain Level 1 is of future machine failure, the better
it will perform.
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CHAPTER 4

LEVEL 2: PART INPUT SEQUENCE

LEVEL 3: INTERNAL DECISION RULES

4.1 Introduction

Level 1 succeeded in narrowing the allocation of tasks
to resources to a degzree. The particular class of systems we
considexr are not constrained by the material handling system,
but rather by the machines. Thus, the Level 1 algoxrithm
focused on resolving those decision variables concerxrned with
machine allocation. These tasks were fully resolved with
respect to xesources, but the time for each decision was only
constrained to lie within periods defined by the occurrence
of machine failure conditicns.

This chapter develops algorithms that further limit
decisions at two final levels. Level 2 narrows the execution
time for all the loading tasks and, in so doing, effectively
constrains all othexr tasks as well. This is nothing more
than determining a sequence of setups for input to the
system. Level 3, being the last step in the decision making
process, must finally resolve all decisions fully.

4.2 Level 2: Part Input Sequence

4.2.1 Sequence_ Subproblems

All of the important =resource allocations have been
assigned, so our problem is largely one of scheduling in a
temporal sense, setups through the system. This is done
within the constraints imposed by Level 1. However, the
problem is still quite complex due to its size (noxmally a
larxrge number of setups and machines are involved), and
because the configuration of the system is changing at random
due to machine failure. Since a unique mix of setups (as
determined by Level 1) is associated with each failure condi-
tion, there is an opportunity for simplifying the problem.

We shall decompose the original scheduling problem into
a series of subproblems, one for each failure condition. The
results for each condition will be applied whenever the
system is in the same condition. The only difficulty is in
determining the objective for each interxrval and +the job set
over which to construct sequences. Since the length of each
time interxrval is unknown beforehand, this is not completely
straightforward.
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4.2.2 Subproblem Objective
The Level 1 objective is to minimize the completion time
for the production target. This is accomplished in the sub-

problems by maximizing the xate of production during each
instance of a failure condition.

As before, let

A = Production rate of setup s using route =z
sri during condition 1i.

Then the objective for the subproblem associated with each
failuxe condition is:

Maximize = = A = A o
S r sri i

A satisfies the setup mix for condition i
sri as detexmined by Level 1.

Even Work Flow

An alternate form for the objective that our algorithm
employs 1is obtained by examining Littles equation for each
failure condition:

A = n /T (4.1)
i i 4
where:

N = Average total setup production rate during
i condition 1i.

n = Number of setups internal to the system during
X condition i.

T = Average setup resident time during condition i.
i
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We have assumed in Chapter 3 that the network is closed so
the value for n has bheen determined and fixed. (This determ-
ination is another optimization problem that makes the
tradeoff betuween pixture cost and productivity.) With n
fixed, minimizing 71 is equivalent to maximizing \. But 7 is
the sum of average processing time, which cannot be changed
by sequencing decisions, and average queueing time which can.
So the objective for each subproblem can be realized by
minimizing the average gueueing time for setups internal to
the system.

Queueing time results because events occur that force a
resource to accept work at a rate faster than it can handle.
Queueing time can be reduced if for every operating hour, a
resource is not compelled to do more that an hour's work.
Our desire to minimize queueing time can thus be translated
to providing each resource with an even flow of workK. This
criterion, to be formalized in section 4.2.4%4, will determine
the input sequence for setups.

4.2.3 Subproblem Job Set

Finding a deterministic sequence for jobs is not a well
posed problem, until a finite job set is specified over which
to construct segquences. Since the duration of each failure
is not Kknown in advance, the total number of setups to be
sequenced is not Known either.

In order +to proceed, we again make the assumption that
equilibrium conditions exist at all +times. It is relevant
that the optimal control for any problem that zreaches
equilibrium approaches constant oxr periodic¢ values. When the
control is a sequence of jobs, evidently only those sequences
that are periodic need be considerzed. The following figure
shows three sequences of varying periods for three setups
whose <relative ratios are ) N [t The smallest set that
contains setups in the desired ratios is called a minimal
set. In this case the minimal set is {1 2 3}. Every failure
condition is likely to have a different minimal set.

Sequence Period
2 1 2% 123 128 & s 1 minimal set
b. 132 3 12 132312 . .. 2 minimal sets
c. 213231321 2 1 372 3 s 3 minimal sets

Figure 4.1 Periodic Sequences
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Since the sequence is periodic, we need only sequence
over those jobs contained in one period. This is not much
help, though, because the optimal number of minimal sets in a
period is not Knouwn. Houwever, we are compelled to limit
considexration to Jjust one minimal set. In addition to
reducing the size of the problem, requirements for the same
pixturxe type are reduced by using one minimal set.

The subproblems are now better defined. The objective
is to provide an even flow of work to resources (this 1is
formalized in the next section) and the job set ovexr which to
sequence 1is one minimal set. The sequence found is repeated
until the failuxe condition changes or the setups run out.

4.2.4 Seaguencing Algorithm

As stated before, this level will treat the input
sequencing decision only. Complexity issues discourage the
integration of any other decisions into the process. Opera-
tion precedence, delays due to bloc¢king and the hundreds of
other things that can alter the journey of a part through the
system will not be accounted =for in devising a sequencing
algorithm.

The flow of work to resources internal to the system
will be approximated by the work flow that appears at the
antrv voint (loading station) of the system. We assume that
each setup will demand time from evexy resource it will visit
the moment it entexrs the system. This obviously does not
conform to reality but for many systems it is a good =first
approximation. It 1is also assumed that the input time
instants occur at constant interxvals. The length of these
intervals need not be specified in our algorithm.

For simplicity., the algoxithm is first developed +to

control woxrk flow to a system with one zesource. A minor
modification will allow the same development to apply to a
system with many resouzxces. Define the following:

J = Finite job set to be sequenced.

X(t) = Subset of J that has entered the system at time t.

t = Process time of setup s.

s

A = Constant interval between input instants.
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Then:

u = T t /I1J] = average process time per part.
sed s
Wet) = = t = total work load deliverxred up to time t.
seX(t) s

To maximize the average rate of production, we minimize
the average gqueueing time for a part. This is accomplished by
feeding the machine woxrk no faster than it can process. The
following objective does this by keeping the work delivery

rate as close to the average rate as possible. (Formulating
an objective that minimizes queueing time directly is
possible but cumbersome. The objective we have chosen is

effective and easy to understand.)

V(K) = minimize max IW(R) - wkl (4.2
over
all sequences k=0 = |J]

where time, t» has been zreplaced by integers, K. The
constant increments of ime at which setups axe input allous
this time/integer mapping. Graphically, the objective 1is

shown in rfiguxe 4.2.

Recursion Relation
The cost associated with X(RkR), that set of jobs that has

already entered the system up to time kK, is just:

C(X(Kk)) IW(m) - wml (4.3)

[}
=
[
x

This may be recursively expressed as follous:

C(X(K)) = max {IW(kK) - wKkl, max IW(m)=wmli}
m=0 > k-1
= max {IW(R) - wkl, C(X(k-1))} (4.4
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MAX |W(K) - uwkl

Work
Input LY
(HRS)

average workK flouw

actual work flow

t OR Kk

Figure 4.2 Work Flow vs. Time

If we denote « as that job that must be added to X(k-1) to
obtain X(k), then the minimum value of C(X(K)) is obtained
from the above equation as follows:

min C(X(K)) = min max {JW(R)-wkl, C(X(K) - «a)} (4.5)
a a

Since the f£irxrst argument on the right-hand-side is independent
of a, we have:

min C(X(kK)) = max {IW(R) - wkl,min C(X(R)-a)}

a (4.6)
This zrecursive relation defines a D-P algorithm =for
finding an evenflow sequence. The next section modifies the
algorithm so that any number of rzxesourxces can be treated with
no substatntial increase in complexity. For now a simple 1

machine, 4 part example is given to illustrate the algorithm.
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Example

The four parts and their process times are:

£
Part | s
|
[
1 | 1
|
2 | 2 - w =2 172
|
3 | 3
[
4 | 4

The standard D-P diagram for this problem is shown below.
The integexrs within the c¢ixrcles represent the set X(K) and
the boxed numbers represent the cost of each node, C(X(RK)).
The heavy arrows indicate the optimal sequences.

wXk 10 7 172 5 2 172

Figure 4.3 D-P Diagram for Even—-Flow Sequence
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Two sequences satisfy the objective, they are 3, 1, 4%, 2 and

2, b, 1, 3s Note that one sesquence is the reverse of the
other, a consequence of the objective. This symmetry offers
the opportunity of saveing time in obtaining a segquence. We

could have stopped the algorithm at the second stage and
obtained the same results.

Extension to Multivle Resources
The Dbasic objective Equation 4.2) can be altered in a

number of ways to handle the multiple resource case. It has
tha Zorm:

V(R) = Minimize { max F(k)} (4.7)
n=0 =+ |J|

One version Zfor F(k) that controls the worxk flow to all
resources 1is:

F(kR) = Z {W (K) - w KI (4.8)
i i 3

where i1 indexes all resources.

B 528 Numerical Example

The verformance obtained from the even-flow D-P sequenc-—
ing algorithm 1is now compared with three other sequencing
strategies. They axe:

a. Arbitrary - A sequence for the minimal set is
arbitrarily chosen and held fixed.

B SPT - Setups are ranked according to the
sum of their processing times on
all resouxces. Those setups with
the Shoxrtest Processing Time arxe
input first.

(28 Random = The setup entering the system next
is chosen at random. In this
case, the sequence is not likely
to be periodic.

These sequencing algorithms are chosen because they are easy
to implement and <frequently used. The SPT zrule 1is partic-
ularxly popular. It has intuitive appeal and is, in fact,
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optimal for certain simple scheduling problems. The higherzx
complexity of the even-flow algorithm would prevent its use
if any of the alternatives pexrformed as well.

Each of the competing strategies is simulated for the
same system used for the example in Chapter 3. Points where
this system differs from that of Chapter 3 arxe the following:

LF Maximum number of setups internal to system = 5.
2. Pixture availability is unconstrained.
3. Machines do not fail.

Also, a larger minimal set is to be prccessed. It has ten

distinct setups and theix process times axe shown in the
table belouw:

MACHINE
N
SETUP 1 2 3 4 5
1 1 minutes 5 1 1
2 1 10 1
3 1 12 1
4 1 5 4 1
5 1 10 2 1
6 1 15 10 1
7 1 5 20 1
8 1 6 1
9 1 6 8 1
10 1 10 1
TOTAL TIME: 10 42 43 4y 10
(minutes)
Figuzre 4.4 Minimal Set for Sequencing Example
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The simulation was run for a fixed period of time (4,000

minutes) and the total production noted. The results are:
Stategy Sequence Production XX %2 of
(# Setups) Random

EVEN-FLOW* 8 56 427 110 3 9 905(setups) 1267%
SPT 1 8 49 2 10 3 6 5 7 861 120%
ARBITRARYXXX 806 MEAN 1127

(874 HIGH)
RANDOM 719 100%

¥ Run Time foxr Even-Flow Algorithm

5 seconds (Amdahl )

XX Maximum production (saturated system) = 909 setups

¥¥X  Statistics were collected over twenty-five separate runs
with a different sequence chosen at random for each run.

Discussion

Several points need to be brought out:

(. We have noted that the maximum possible production
rate for the example is 909 setup pexr 4000 minutes (i.e.

.23 setups/minute).

saturated system whezxe

busy 100% of the time.
this rate if there is

setups. Merely over-—

bottlenecking machine

This rate <corresponds to a
the bottlenecking <resource is
Any segquence can be made to yield
sufficient internal storage for
saturate the system until the
is assurxed a continual supply of

work, regardless of the sequence. Sequencing becomes an
issue because of the high cost of the storage and the
numbexr of pixtures needed to f£lood the system.

There is furthex
production with the
With larxger internal

motivation for getting the most

least number of resident setups.

populations <c¢omes c¢ongestion in

various forms. Setups are impeded in theix movements
about the system and a point is reached where increasing
the number of residents actually decreases the

production zrate. A

similar phenomenon oc¢curs for

automobile flow on congested highways. As the capacity
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of the system is reached, setup flow slows until every-
thing stops. No setup can move off a machine Dbecause
therxe is no place to put it and no setup can move into a
machine foxr the same reason. The system is said to bhe
in a state of "lock-up". Computer netwoxk specialists
have proposed different schemes for preventing lock-up
in their systems. One if them is analogous to what we do
- limit the numbexr of customers (setups) to some maximum
number.

2% The Process time for the minimal set were
constrxucted in a very special way. The work require-
ments of each setup varies significantly among the
resources. Thus if the first five setups were allowed to
be resident at the same time, machine 4 would go
completely idle. A similar situation occurs for machine
2 when the last five setups are resident. The work pat-
terns in this example are so stxong +that a reasonable
sequence could have been constructed manually. However,
the pattern need not be much more complaex before a
manual solution becomes difficult.

3. The PRandom strategy did not produce setups in
exactly the same ratios the other strategies did, but
this alone does not account for its inferiorx
rerformance. The main reason for this stems Ifrom the
underlying nature of random sequences. In chaptexr 5 we
examine how production due to a random sequence can be
lowered from that of a fixed sequence.

4. In fairness, the SPT rule was alterxed slightly to
take advantage of the obvious imbalance in wWoxK require-
ments between setups 1 - 5 and setups 6 - 10. A short
job was taken from the first set followed by a short job
from the second set. This adjustment gave Zfair
pexrformance relative to the evenflow strategy. However,
any sequence that alternates between these two sets 1is
likely to do well. For example, a Longest Processing
Time <rule, altered in the same fashion, gives a
production of 833 setups. The reasonable performances
in both of these cases is due mainly in the adjustment
made in the structurxe of the rule. The adjustment essen-
tially embodies the even—-flow concept.

5. An adequate supply of each pixture type is assumed
for wuninterxupted £flow of a £fixed sequence. When
pixtures are constrained, an entexing setup may not have
access to its pixture type. They may be occupied by
like setups still internal to the system. A gocd gques-
tion is: Shall we suspend the input flow rate until the
proper pixture becomes available,® or stray from the
optimal sequence and input a setup for which a pixturxe
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is available? Both strategies help and hindex

production in complementarxy ways. Production is
increased by inputting setups., but it can be lost if
internal delays build up. An occasional deviation from

the optimal sequence is innocent enough but pixtures can
be constrained that the question placed above may have
to be answered with every entry. This research does not
answer this aquestion. In the example of the third chap-
ter, we allowed an off-nominal setup to enter so long as
the production mix was satisfied within limits (i.e.,
the assigned production of no one part was allowed to
race ahead of that assigned for othexs).

4.3 Level 3: Internal Decision Rules

To this point, no decision has yet been fully resolved
with respect +to time; this is the function of the thixd and

last level in our decision making structuzxe. The complexity
of fully zresolving the constrained decision variables
resulting frxrom Level 2, however, is still quite hich if

optimality (within the constraints imposed by upper levels on
decisions variables) is desired.

We shall pull the problem to within the reach of avail-
able computation by adopting a view that is less global. As
opposed to solving foxr all decision variables together in one
global formulation, only one decision will be resolved at a
time using simple decision rules.

A decision zrule specifies a <c¢xiterion or procedure
according to which the decision 1is resolved. These criteria
constitute +the objective zfoxr decisions. Decision xules
generxally have an extremely narrow view of the problem so
they c¢annot be xzelated to the global objective very ef-
fectively. This is why several are genexally tried and the
best one chosen. The zrules we have <chosen to resolve
decisions are listed below:

1. Next Opexation Rule
Once a setup is internal to the system, the order
in which tasks arxe to be performed must be decided if

they are not constrained by precedence relations.

That operation whose machine has the least amount

of work queued before it will be chosen. This is called
the LWQ xule. If each machine alternative has the same

amount gqueued (for example, both are idle), then the
machine whose overall workload is highest will be
chosen.
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2 Input Time Rule

A setup will enter the system from the load station
when internal storage space for the setup is available
and the system contains fewexr setups than the maximum
allowed.

Other rules having to do with the intricasies of the
material handling system (which cart, which path fxom machine
to machine, etc.) are not needed in this study because of the
simple loop-conveyexr MHS that is used. This type most simply
satisfies the MHS assumptions specified in Chapterxr 1.

The detail with which we have treated Level 3 does not

comparxe with that of Level 2 nor Level 1. Rules were based
on reasonability ratherx than extensive analysis and
simulation. There are two reasons for this. First, the use

0of decision rules have been studied extensively in the past
twenty-£five years, and their success or failure seem to be

very problem dependent. Results obtained Zfor the particular
"system treated here would not necessarily translate to other
systems. Second, and more to the point, it is not clear what

the payoff would be from a thorough examination ¢f Level 3.
If decision variables are propexrly constrxrained down through
the upper levels (this is indeed the intent), the bottom
level should not have the freedom to adversely effect the
objective to any great degree.
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CHAPTEPR 5

TRANSIENT PHENOMENA IN THE FMS

5.1 Introduction

The structure for decision making that was developed in
Chapter 2 together with the algorithms of Chaptexrs 3 and 4
must be tested on a system of zealistic proportions to demon-
strxrate the utility of oux approach. In particular, the use
of equilibrium assumptions and the organization of decisions
is to be evaluated £foxr the class of systems we have chosen.

Before discussing the results of scheduling proceduzes,
certain effects that are inherxent to all dyhamic systems must
bhe examined. These effects come undexr the genexal heading of
"Transient Phenomenon" and arise from disturbances (machine
failure) that act on the system. The effects transients have
on the system 1s of 1interest because our algorxithms were
develovad wundexr the assumption that transients do not exist.
In ordexr to assess the vulnerxabilitv of ouxr algorithms, the
manner in which +these phenomenon degrade perxiormance should
be undexrstood.

52 Transient Phenomena

Three possible mechanisms by which performance can
differ from that predicted using equilibrium assumptions are
discussed belouw:

3 Surprised Parts Effect

Ouxr level 1 formulation assumes equilibrium behav-
ior prevails at all times. ITf a numbexr of setups are
allowed into the system according to one strategy , they
may not get thrxough the system before the system changes
to another and new equilibrium conditions axe assum=d to

prevail. It may be that setups previously allowed in
are precisely those that are least preferred by a new
strxategy. The system will not be "legitimate"™ until

these nuisance setups are able to exit, which may not be
for some time.
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s i 10 The Differential Rate Effect

For every failure state, the system processes a mix
of ‘parts that is determined by the Level 1 scheduling
algoxithm. Hence, associated with each failure state,
is an equilibrium part flow rate, r° that depends on
part processing times and the resident number of pazts
in the system. The actual flow rate, x, will equal x°
during equilibrium conditions only. In general, the
equilibrium rates from one condition to another will not
be the same and may, in fact, be quite different. This
mismatch can create problems.

The effect is most easily seen in a simple FMS with
flowshop <routing where setups flow from one machine to
another in the same ordexr (Figure 5.1).

” N — n

Figure 5.1 Flowshop Routing

Consider what happens when the system changes <from
State "1" to State "2" and r%; >> r%,. Parxts rxesident
in the system at the time of the state change will drain
from the system faster than entering parts can £ill it
up. The result is that idle time initially builds up on
machines early in the sequence and then moves down the
line as parts exit machines fastexr than they enter. For
closed systems, a similar effect occurs for the other
situation, r%, >> r%,.

iii. The Mini-Differential Rate Effect

System productivity can also be 1lowered in a way
that is related to the second effect, although on a
smaller scale. With a change of state comes a change in
setup mix and an associated change in setup sequence.
When the segquence changes, flow rates to individual
machines are altered slightly. If there are not suffi-
cient setups queued befoxre each machine, these
fluctuations <c¢an precipitate idle time. Figure 5.2
shows a Gantt Chaxt for a three-machine, thrxee-part
problem that has xeached deterministic equilibrium by
time t4. (Note that parts need not be queued Dbetween
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problem that has resached deterministic equilibrium by

time t;4. (Note that parts need not be queued Dbetween
machines at this time. Since all machines finish at
once, parts can proceed directly from one machine <o

another.)

Mach. 1 | 1| 2 [ 3 2 1 1 3 | 2 | 1
|1 _ | | | |
Mach. 2 | 3| 1 | 2 |3 | *xxkx| 2 | 1 13 | 2
T [ | | | 1
Mach. 3 | 2] 3 1 2 | 3 [ XX |2 [X%xxx| 1 |
|1 | _ 1 l___1__1 | I _
t t
1 2 tima iweeeme >
XXX denotes idle time
Figure 5.2 Transient Effect iii.
At time t;, the segquence changes from 1 2 3
to 2 1 3. The result is that the part flow out of

machine 2 1s fastex than the flow rate in and because
therxe was no part gqueued befoxe it, it must go idle.
Eventually, buffers will £ill and act as an inventory to
isolate each machine from differxential rate effacts and

a deterministic egquilibrium zreinstates i1tself. Until
that happens, idle time will accrus and lowerx
productivity. If sequence changes are Zfrequent, the

loss can he substantial.

This phenomenon is studied for the =five-machine
system described in Section 5.3. A simulation is run
for a fixed length of time for two sequence stratsgies,
Fixed and Random, and performance measurxes noted. For
the rxandom sequence, each part had the same probability
of entering next while the fixed strategy chose an arbi-
trary sequence and held it.

Two different operation precedence relations,
judged to generate the extremes in system behavior, are
used. The strict precedence relation confoxms to flow-—
shop routing and parallels the example of Figure 5.2. A
free precedence relation makes no constraint on the
sequence of operations. In this case, the decision rxule
of Chapter 4 is used to determine the next operxation.
The results showing throughput and wutilization for all
four combinations is given in Figurxe 5.3.

76



STRICT FREE

PRECEDENCE PRECEDENCE
THROUGHPUT AVE. THROUGHPUT AVE.
(setups) UTIL. (setups) UTIL.
FIXED 1932 .933 1980 .955
RANDOM 1633 .793 1823 .883
Number of Resident Parts = 8

Figure 5.3

As expected, for a given precedence relation, the
random strategy performs significantly worse than the
fixed strategy. The difference 1in perfiormance 1is
approximately 18% and 9% for the strxict and <free
precedence relations, respectively. Also not unexpected
is the superior performance of the free precedence rela-
tion over the strict zrelation. It is well KRnown that
frxeeing operation precedence constraints will increase
utilization (Conway,1976). But note in this example,
the improvement over a fixeds/strict strategy is not very
gr=at.

The lesson learned here is: Always try to hold the
sequence of parts into the system fixed. It may not be
optimal but it is likely to be very good.

The point at which equilibrium assumptions become
invalid in a practical sense really cannot be determined
without employing simulation methods. In the following
section, a numerical study is pexrformed that compazes
algorithm performance for changes in failure condition
of varying duration.

77



5+3 Algorithm Performance

5.3.1 System Confiaguration and Part-Set

System Configquration

Our three-level decision structure has been integrated
into a simulation of the system shown in Figurxe 5.4. It has 5
machines with two input buffers each and uses a conveyer MHS
(40 £t./min.). The queueing discipline is First-Come-First-
Sexve and if there is no room in the buffer foxr an arriving
setup, it circulates around the MHS and attempts entrxy at a
later time.

OUTPUT
MACHINE
2 4 BUFFER

INPUT
— BUFFER

LOAD UNLOAD

Figuxe 5.4 System Configuration
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Part Set

There is a production requirement foxr an equal number oZ
10 different setups. Each setup has five machining opera-
tions plus a load and unload operation. Each operation may
be performed on one of two machines with process times that
are, in general, diffexrent. Appendix C gives this
information foxr the ten different setups.

The number of resident parts is chosen to saturate the

system (max=15) and the number of pixtures was left
unconstrained. This allows +the use of the approximatiocn
formulation of Section 3.3 which avoids cextain complications
of implementing the full nonlinear formulation. In this

chapter, - we arxe concerned with =svaluating a scheduling
concept rather than testing the feasibility of an implement-
ation. Thus, restricting ourselves to the linear implement-
ation should not invalidate the conclusions we reach about
that scheduling concept.

53 2 Loss Due to Transient Phenomena

The algorithms at both Level 1 and Level 2 arxe designed
undexr the assumption that equilibrium exists for the duration
of each failurxe condition. This is, of course, not true but
to what extent are we penalized for assumimng it is? Considerx
the system during one instance of some failurxre c¢ondition and
dafine the following:

u = a symbol representing a "control vector" for
the prxoblem. It represents all decisions to
be made during the period of intexest.

_-D

A(u) = average production rate duxing the period

a of interest, assuming actual nonequilibrium
conditions. It is a function of the decisions
to be made.

\ X = maximum average production rate assuming
equilibrium conditions.
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We are interested in the drop in performance due to applying
optimal equilibrium controls when the system is not in
equilibrium. That is:

-
Performance = \X = X(uX)
Degredation e a e
->
wheze u¥ = optimal control assuming equilibrium
e conditions.

The degradation represents an upper bound to the performance
that <¢an be 1rxecovered if nonequilibrium techniques are
employed.

The collective loss over all instances of all failure
conditions is easily obtained using simulation. Actual algoxr-
ithm performance is obtained and compared with predicted

performance based on equilibrium assumptions. In orderx to
gquantify the effect transients have, they must be controlled
in some way. This is done through a specially constructed

machine failure model. It is most succinctly described by the
state transition diagram below.

d = holding time foxr each failure condition.

Figure 5.5 Failurxe Condition Transition Diagram
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The state alternates between the "all up" condition and one
of five "down" conditions and is held in each for the same
length of time. As d is decreased the general level of
nonequilibrium behavior increases. Algorithm performance 1is
obtained as a function of d.

Experimental Results

We shall vary d relative to a point of reference that is
characteristic of +the systems/part set combination. Define
the system response time, ¢, as follouws:

g = E{ Z 71 } £5...15)
ST m srm

It is the average length of +time it takes a part to go
through the system. Let:

T = d/¢o (5.2)
For high values of 7, system performance should approach that

predicted by the Level 1 scheduling strategy.

The simulation is run for a £ixed length of time and

performance obtained for various values of A Once again,
both stxict and free operation precedence relations are
tested. The results appear in rigure 5.6.
Free Prec. Strxict Prec. % of predicted
Tau Production Production production¥
(Setups) (Setups) Free Strict
6.0 179.7 173.5 97 g3
3.0 17752 170.0 a5 92
1.4 173.4 162 .1 a3 87
0.28 170.0 145.5 92 78
X Predicted Production = 185.6 setups

Figure 5.6
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The effect 7 has on actual production is clearly seen.

As T decreases, production decreases. The level of
degredation from egquilibrium performance reaches 92% and 78%
at 7 = .28 for free and stxict precedence, respectively. IL

failures occured at this frequency, this example would exper-—
ience a sizable loss for the fixed ©precedence raslation.
Performance for the strict precedence relation drovs ofi very
sharxply at = = 1.5. At this point, the loss of deterministic
equilibrium is beginning to bhe felt. The holding time 1is so
short at r = 0.28 (d4d = 10 minutes) that we have, essentially,
a random sequence of parts being input (one part input every
2.35 minutes). Notice that the total drop in performance for
this example is xoughly the same amount exhibited in g¢oing
from a fixed sequence to a random sequence in Section 5.2 (no
failures in that <case). This implies that performance 1is
being lost mainly through the second and thixd transient
effect rather than the first.

In the end, only simulation will wvalidate the goodness
of one strategy over another. This we do in the next
section.

53 3 Alternate Scheduling Strateagies

We compare the performance obtained by the Level 1
stxategy with that of the two others introduced in Section
3.5.4, Selfish and Balance.

The three strategies are compared =for different values
of 17 belouw.

T SELFISH BALANCE DEFER
Prod. Ave. Prod. Ave. Prod. Ave.
(Setups) Util. Util. BEil.
6.0 131.6 0.996 161.2 0.961 179.7 0.973
1.0 132.0 0.994 157.5 0.943 173.4 0.958
0. 28 131.6 0.996 156.4 0.951 170.0 0.959

Figure 5.7
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Since the system is assumed to saturate for this
example, a good uppexr bound on the improvement of Defer over
Balance 1s easily computed to be 127%. This is obtained
merely by adding up the operation processing times foxr the
tuo strategies and deriving production rates. The actual
improvement xruns from 11.5%2 for high values of 7 to 9% Zox
low values. The selfish strategy does a good Jjob at Xeeping
the machine utilized (average utilization overxr 938%) but the
defer strategy out perxrforms it by 33%, averaged over r. This
illustrates the fact that maximizing machines utilization 1is
not necessarily a good objective for scheduling.

The results show that the actual improvement of the
defer strategy over the balance strategy is vexy close to the
predicted improvement =regardless of he value for 7. An
important point is that our strategy may indeed be adversely
effacted by transients but other strategies may be as well.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

This study has developed an approach to scheduling FMS's
that includes features not considered befoxe: machine failure
and constraints on pixture type. In order to obtain good
performance and zremain within a budget imposed on problem
complexity, a multi-level solution strategy was developed
where each level further refines the decisions passed on from
the level above. The framework allous much freedom 1in
exactly how component algorithms are constructed. It enabled
us to combine two disparate disciplines in a complementary
fashion, queueing theory and scheduling theozry. The c¢class of
FMS's considered is qguite general as is the part set to be
processed.

The conclusions reached through this study axe
enumerated below:

Fis A scheduling strategy that anticipates machine
failure can be very beneficial, but its success
over other, less complex, strategiesis not assured.
It is dependent on the part set to be processed and
the manner in which machines fail. For any
particular case, our strategy must be evaluated
along with others using simulation methods.

2% Queueing methods (MVA in particular) have shown
they yield good predictions for ©purposes of
balancing work among resouxces. It 1is not
necessary that +they predict system performance
exactly. Relative accuracy seems sufficient.

3 The regularity (periodicity) of the setup sequence
is very important =Zfox systems that must limit the
number of resident setups allowed. A zxrandom
sequence creates minor variations in work flow rate
to each machine with the result that idle time can
build up. This indicates that it may be advisable
to keep extra pixtures of certain types on hand to
insure that each setup entexrs the system unintexr-
rupted, accoxrding to its place in the seguence.

4. Setup input sequences that rxely on a concept of
even-workflow can be constructed and they can be
effective. 15 o is not necessary reasonable
performance.
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Cexrtain limiting assumptions were made in the
development in order that a foothold on the problem could be
secuzxed. Thus the complicating effects of nonequilibrium,
blocking, and internal congestion were not modelled. How-
ever, they continue to threaten most systems. Continued
effort is required to undexstand the dynamics of these ef-
fects and their influence on system performance. Particularx
topics that extend the ideas of this research are the fol-
lowing:

Tis A very difficult, but important, problem lies in
the general area of suboptimal decision making in
laxge problems. Structured guidelines Zfoxr ap-

proaching large problems without any perceivable
structure themselves would be most uséeful.

2 Some systems can rerxoute setups in the event of
machine failure but it is necessary to physically
move the associated tools from the failed machine
and place them on another. The high change-overx
time required and limits on the tool capacity of
each machine add a new wrinkle to the problem
considered in this research. How long should a
machine be down before changing tools becomes
worthwhile?

< {8 Consideration of capacity limited material handling
systems carries with it myriad questions. How
should setups be routed through a crowded system?
ilhen do congestion effects begin to degrade
perfoxrmance and how is his detected? How should
strategies be altered when portions of the MHS
fail? The high interaction between the MHS and
machines makes this topic, potentially, very
important.

4. The objective of the seguencing algorithm is to
feed work to each resource at a rats commensurate
with its steady—-state avexage. Durxing trxansient
conditions when the egquity in machine backlog c¢an
be upset, this strategy may not be appropriate. A
minor adjustment in the sequencing algorithm will
allow an arbitrary woxrk "profile" to be tracked.
Specifying the profile to match actual zresource
availablitiy is the challenge herxe.

0 Constructing setup input sequences when pixture
constraints prevent an uninterupted <£flow deserves
more attention. Should the input rate be halted
until the needed pixture becomes available, or,
should one setup be chosen among those with idle
pixtures? In the latexr case which setup is best?
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APPENDIX A

ALGORITHM FOR ALTERNATE LEVEL 1 FORMULATION

The form for the approximate formulation is taken Zrom
rrohlem P3 (page 35) as follous:

Minimicze T

-

®,T

-
P(T) T X

=
N
X
IA
v
o

The formualtion is 1linear except Ior the texrm P(T)XT.
If the term P(T) is fixed at a constant value, the the prob-
lem is completely linear and easily solved.

Consider the simple algorithm on the following page. Tt
is based on the simple idea of successive substitution and is
not guaranteed to converge as it stands nouw. However, 1t may

be successfully modified with the help of he fcllowing
lemmna.

Lemma A&.1

Let T*¥ be a solution to P3.

k+1 4 k
a. IE T < T , Then TX¥X £ T

X+1 k k
B . TE T > T , Then TX > T

Proof:
First note that P(T)XT is a nondecreasing function of T.

This is seen through physical considerations since P(T)XT 1is
the total durxation of time a failure state i1s occupied.
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Algoxithm a.1

Step 1 : Set k=0 and choose an arbitrary initial
4
starting point for T
K
Step 2 : Evaluate P(T ).
Step 3 = Solve the following LP:
k+1
minimize T
-  k+1
®,T
s.t -
Ay ¥ £ N
s
i k k+1

A ® £ P(T ) T

R
v
=}

kR+1 Kk
Step 4 : If IT -T | £ 6, then stop. Problem P3
has been solved to within the tolerance
specified by 6 (6 is chosen to be some small
Kk
value, e.g., &6 = .001%XT )

Otherwise, set kK=K+1 and go to step 2.

Proof continued:

k+1 k k
as) I T > T , then TX < T.
k+1
Since T ,vect(x) is a feasible solution in step 3 and
K k+1 K k 4
and P(T )XT > P(T )XT , then T , vect(x) is feasible

K
solution fox problem P3. By definition, T* < T.

87



kK+1 k k
b:) T£ T > T , then T¥ > T

kK+1
Since T is the minimum feasible solution in step 3 and.
k+1 Kk 4
T > T , T cannot be feasible for problem P3. If
K+1

it wexe, the optimality of T in step 3 would be violated.

k
Therefore, T¥ > T

KK X

Lemma A.1 defines a series of upper and lower bounds for
TX. If these bounds £fail to converge in algorithm a.1, it is
gquite easy to intervene and genexrate tighter bounds; merely
choose T supex(K) to lie somewhere in between the two best
bounds so f£ar obtained. This procedure will yield T* to any
accuracy desired.
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APPENDIX B

MEAN VALUE ANALYSTS

B.1 MVA Algoxrithm

After a few definitions are stated, the fundamental
equations for MVA and the algorithm will be given. Following
this, heuristic extensions to the theory will be discussed.

Definitions:
n
s : Population size of setup S.
(Eventually, a <c¢lass will he
associated with each component of
vect(n). Duxing the MVaA
development, routes and failuzxe
conditions are not distinguished.)
-
n = (nq,N2,...,n8): Population vector.
t
s,m Mean sexvice time of setup s at
machine m.
q
m : Equilibrium mean gqueue size at
machine m.
q
s,m : Equilibrium mean number of setup s
at machine m.
r
s,m : Equilibrium mean waiting time
(including serxvice time) of setup
s at service center m.
A
s : Setup s throughput.
e
i : |Sl-dimensional unit vector in
direction i.
M
s : Set of machines setup s visits forx

processing.
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Also, vect(n) may appear as an argument for certain
quantities, indicating that they are evaluated for a network
with population vect(n), e.g.:

-

g (n)
m

for mean queue size.

Our basic mean-value relation (Reiser and Lavenberg,
1278) stated withocut proof is:

T (n) = t [1 + @ (n - e )] (B.1)

It zrelates the waiting time for a networK with population
vect(n) to the equilibrium average queus size of a network

wlith one less setup. The equation 1is intuitively vezxry
pleasing. It states that the waiting time for a setup is
equal to 1its own serxrvice time plus the amount o time
required to sexvice the mean backlog of a netwoxk with one
less setup. In othex worxds, an axriving setup se2es a network

with itself removed.

It 1is this zremarkable equation that suggests an algor-
ithm that starts with a network having no setups and
iteratively increasing the population size until the required
level for each setup is reached. The two remaining relation-
ships needed to define the algorithm are:

;i Little's result for classes:
A = n /T T (B.2)
s s m s, m
25 Little's result for machines:
a = A T (B.3)
s,m s s,m
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The iterative procedure for computing mean waiting
times, mean gueue size and throughputs is as follous:

Algoxrithm 1

1. Set g (0) = 0 for all m and s.
s, m
A For indices i; g Dy Tomaentg i ool T T Dol » « 2118

loop thxough steps (3) to (5) while changing i4
most rapidly.

-

Dy T « t [1 + £ g¢q (i-e )1 (B.Y)

s,m s,m 3 j.m s
4. A « 3 A (:B.5)

s s m s,m

->

5. g (1) <« )\ T (B.6)

s,m s s,m
There are no¥nqi¥...%¥ns recursive steps in the algorithm

above and it can be manipulated such that at each step the
number of additions and multiplicaticns/divisions 1is bounded
by 4*¥|S|*¥|M|[. M is the set of all machines.

It 1is evident from this opexration count that the
computational burden associated with MVA, as developed so
far, 1s much too high foxr practical puposes. In Section B.3,
we will present a modification to the method that speeds up
computation but yields approximate xesults.
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B.2 An Extension to MVA

The assumption that, at a given machine, all setups take
their serxrvice time from the same exponential distribution, 1is
too constraining foxr +the realities of FMS's. To allow our
methods to more accurately render setup-dependent sexvice

istributions, we make the following heuristic modification

(originally suggested by Reiser) to the mean value Equatiocn
B.7

T (n) = % + 2 t q (n~-e ) (B.7)
3 .

Notice that the average time each ¢lass spends at machine n,
tsM, has been distinguished and brought within the summation.
This maneuvexr does not comply with the orxriginal MVA assump-—

tions. Numerical results show,howevexr, that MVA, using the
approximation of the next section and extension above, still
predicts system performance with reasonable accuracy. These

results arxe given in section 3.4.3.

B.3 An Approwximation to MVA

We wish to wrest fxrom Algorithm B.1 the need to iterate
through all wvarious populations before arriving at the final

level n4,nz2,. . .nNS. Let us write:
- - J -
q (n-e ) = q (n) - € (n) (B.8)
s,m 3 s,m s,m
where:
j -
s € (n) = § HIY = 1 1if s = J (B.9)
m s,m s, 3 S,3J

0 othexwise
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If the correction texrms:

can be found (or estimated) from the queues for a network
with population vect(n):

q (n)

then the recursion of Algoxrithm B.1 can be replaced by a
simple iterative algorithm. Combining both the extension and
approximation, Algoxithm B.1 becomes:

Algorithm B.2

1. Initialization: a =n /M| for 2all m in M ,
s,m s s s
q = 0 for all m not in M
s,m s
2 Repeat steps (3) to (6) until a suitable

convergence criterion is met.

3. € = f(gq ). (B.10)

S, m s,m
s

4 T = t + 2% (q - € ) (B.11)
s,m s,m 3 j»m  Jj,m Jj.m

5: A =n /=T (B.12)
S s m S, m

6. q = A T (B.13)
s,m s s,m
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One estimate for the correction texrms that is fairly
intuitive, easily evaluated and gives good <rxesults is the
following:

a (n)
J j,m
€ = s = 3 (B.14)
s,m -
= q (n)
3 FpAl

0 otherwise.

This expression attempits to approximate +the difference
in gqueue length an arriving setup would see betw=sen two
networks, one netwocrk having one less setup of <c¢lass s.
Viewed another way, the approximation claims that if one
setup of <c¢lass s were to be added to the network, its mean
queue length at each machine would increase in proportion to
the gqueue lengths for the network without the additional
setup. Queue lengths for all other setup c¢lasses would
remain unchanged.

The operxration count pex iteration cycle for this algoz-
ithm can be manipulated to 9%|S|I*|MI| + [S]. Experience has
shown that the number of iterations regquired such that the
change from one iteration to the next 1is less than 12 1is on
the order S/2 when the procedure is started from an arbitrary
point. When given a good start, far fewer iterations are
needed. This will be  significant in the algorithms to
follow. The complexity of Algcrithm B.2, then, is of the
order 0(S?%?) which compares very favorably with Algorithm B.1.

Algorithm B.2 has another majoxr advantage over Algorithm
B.1. The population of each class is no longer constrained
to be integex, or even greater than one for that matter.
This enables us *to specify an average ©population size for
each class that is fractional. Since the average population
cf individual classes for an optimal solution 1is not expected
to be integer, this feature is most welcome.
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Convergence

Steps (3)-(6) of Algorithm 2 can be combined into the
following nonlinear interative form for n:

k
n T
k+1 s s,m
q = (B.15)
s,m K
T
i s,1
where:
k
q
K )4 s,m
T = t + Z t a - % (B.16)
s, m S,m 5 j,m J,m s,m )4
< g
i s,1

Convergence has not been analytically shown for any but the
most trivial cases. However, in no instance has the algorithm
been found not to converge.

The criterion used in Algoxithm B.2 is as Zfollous. Itexate
until:
R+1 R
q - q
s,nm s,m
max < d (B.17)
s, m k
q
s,m
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APPENDIX C

Part Processing Times for Chaptexr 5 Example

Machine Time Machine Time
Part 1
op 1 6 4.80 2 2.33
op 2 6 2.29 4 1.81
op 3 5 1.98 2 355
op Y 6 0::37 3 3.45
op 5 2 1.00 3 4.u45
Part 2
on 1 6 2.99 3 3.32
op 2 S 4.98 6 2.7
op 3 3 2.98 2 3210
op U4 6 0.67 2 3523
op 5 6 1.16 4 4.16
Part 3
op 1 5 151 4 0.50
op 2 2 0.52 5 1.45
op 3 2 14859 6 2../07
o» 4 3 14 27 2 4.55
op 5 2 3.94 6 bL.26
Paxrt 4
op 1 2 4.53 4 1.27
op 2 4 3.27 2 3.71
op 3 3 3.80 6 3.58
op 4 2 2.16 4 4.45
op 5 & 2.409 2 1.63
Part 5
op 1 3 1.09 5 1.48
op 2 5 3.89 6 0.65
op 3 6 1.62 5 2.52
op U 4 3.92 2 3.06
op 5 3 3.60 2 2.03
Paxrt 6
op 1 6 4.68 2 1.36
op 2 4 4.27 6 3.80
op 3 3 3.25 4 0.84
op 4 5 0.70 6 2.46
op 5 3 4.92 4 2.97
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