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ABSTRACT

In this thesis we study the general problem of reconstructing a function, defined
on a finite lattice, from a set of incomplete, noisy and/or ambiguous observations.
The goal of this work is to demonstrate the generality and practical value of a
probabilistic (in particular, Bayesian) approach to this problem, particularly in the
context of Computer Vision. In this approach, the prior knowledge about the
solution is expressed in the form of a Gibbsian probability distribution on the
space of all possible functions, so that the reconstruction task is formulated as an
estimation problem. Qur main contributions are the following:

1. We introduce the use of specific error criteria for the design of the optimal
Bayesian estimators for several classes of problems, and propose a general (Monte
Carlo) procedure for approximating them. This new approach leads to a substantial
improvement over the existing schemes, both regarding the quality of the results
(particularly for low signal to noise ratios) and the computational efficiency.

2. We apply the Bayesian approach to the solution of several problems, some of
which are formulated and solved in these terms for the first time. Specifically,
these applications are: the reconstruction of piecewise constant functions from noisy
data; the reconstruction of piecewise continuous surfaces from sparse and noisy
observations; the reconstruction of depth from stereoscopic pairs of images and the
formation of perceptual clusters.

3. For each one of these applications, we develop fast, deterministic algorithms
that approximate the optimal estimators, and illustrate their performance on both
synthetic and real data.

4. We propose a new method, based on the analysis of the residual process,
for estimating the parameters of the probabilistic models directly from the noisy
observations. This scheme leads to an algorithm, which has no free parameters, for
the restoration of piecewise uniform images.

5. We analyze the implementation of the algorithms that we develop in non-
conventional hardware, such as massively parallel digital machines, and analog and
hybrid networks.
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Chapter 1

INTRODUCTION

A fundamental problem in the design and analysis of systems endowed with
perceptual abilities is the construction of internal representations of the physical
structures in the external world. The precise form of these representations is not well
understood, and is the subject of much current research in Artificial Intelligence
and Psychology. It is clear, however, that these representations should integrate
prior generic knowledge about the physical properties of the external world with
- measurements from a number of different sensory modalities. Furthermore, in
order to be effectively action-oriented, the representations should provide compact
descriptions of the physical structures of interest at different levels of detail.

This problem' is not exclusive of biological perceptual systems; it arises
whenever information from a set of sensors has to be processed, stored and retrieved
in an efficient way. Thus, it is of fundamental importance, for example, in the
design of computer vision systems; in the reconstruction of subterranean geological
structures from geophysical data and in the design of biomedical imaging systems.
The motivation for this thesis is to increase our understanding of the principles
underlying the process of integrating prior generic constraints with the available
observations, for the construction of these representations. In particular, we will
address the problem of reconstructing, in a way that is consistent with the available
sensory data, the value of certain properties of the physical structure of interest over
a discretized region of space.

To define these early perceptual processes in a more precise way, let us model
the specific properties of the physical structure as functions f that map a (compact)
region 2 C R" into R™. In the most interesting cases, f will be either a scalar
(m = 1) or a vector field (m = 2) defined on a two-dimensional region. This is



the case, for example, of the problems of image restoration and segmentation, and
of the recovery of: depth from stereo; lightness; shape from shading; and the
computation of optical flow in computer vision, as well as many problems in the
recovery of geological structure from geophysical measurements.

We will assume that the available data consists of several sets of qualitatively
different measurements {gi,...,gp} that in general are modeled as:

9: =Hi(f)Df1D2fv-')ni)

where Df denotes the derivative of the property f; n; is a noise process, and H;
is some operator (for example, in vision problems, the different measurements may
correspond to: stereo disparity; brightness; color, etc.). We will also assume that
this information is collected with different sampling patterns {S;, ..., Sy}, that is,
the observations g; are defined only on the finite set S; C Q. Since most physical
phenomena consist of events that occur at a variety of scales, and in general,
events at widely different scales have little influence on one another, the numerical
descriptions of the behavior of a property over a range of scales can be used
effectively to produce a physically meaningful hierarchical decomposition of the
original structure into individual substructures ("objects") which can be subsequently
described in symbolic forms that are more compact and easy to manipulate (see
Marr, 1976 and 1982; it is not surprising that there is psychophysical evidence
suggesting the presence of a multiscale processing hierarchy in the human visual
system; see Campbell and Robson, 1977, and Marroquin, 1976).

Thus, the solutions we are looking for consist on a family {f,} of numerical
descriptions of the function f at different scales (indexed by «) at the sites of some
lattice L C 2 (the finest scale representation should correspond to the best estimate
of the actual value of f at the sites of L). To illustrate this idea, in figure 1-a we
present a binary pattern, and in figures 1-b through 1-e, its numerical representation
at increasingly coarser scales. This family of descriptions was generated by the
algorithm described in section 5 of chapter 4.

In general, the observation processes g; do not determine the value of f in a
unique and stable way (that is to say, these problems are ill-posed in the sense of
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Figure 1. Representation of the binary pattern (a) at increasingly coarser scales.

Hadamard; see Poggio and Torre, 1984). Therefore, the algorithms we are looking
for should be able to regularize the problem by incorporating constraints on the
solution generated by some prior knowledge about its general characteristics.

Finally, because of the large number of variables involved, reasonable speed
of performance will usually require that these algorithms be distributed, and thus,
efficiently implementable in parallel hardware.

l. Regularization Analysis and Cooperative Algorithms.

Among the most successful solutions to these type of problems are those
that formulate them as variational problems, where the measurement and generic
constraints are separately represented in the following way:

Let us consider the case of only one set of "perfect” measurements (i.e., with
no noise) g defined on the set S, and suppose that the constraints that they impose
on the solution can be expressed in the form:

fsA(f,y)=0
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where A is a positive definite, real valued function that measures the incompatibility
of the value of the property f with the observations g. In general, the observations
will not be perfect, and so, we will only require that the error fg A(f,g) be small.
- However, there may be a large number of configurations that minimize the error.
To find a unique solution, an assumption about the global smoothness of f is
introduced by means of some positive definite, real valued function P(f,Df,...)
which measures the "jaggedness" of f. If both A and P are convex, the desired
solution will be the unique minimizer of the "energy" functional:

U(f,0) = [, Alf,0) +) [, P(7, DS, ) (1)

where ) is a parameter.

This approach has been applied with varying dégrees of success to the
problems of surface interpolation (Grimson, 1981b, 1982; Terzoupulos, 1983,
1984a); computation of visual motion (Horn and Schunk, 1981; Hildreth, 1984a,b);
recovery of shape from shading information (Ikeuchi and Horn, 1981); computation
of subjective contours (Ullman, 1976; Brady et al., 1980; Horn, 1981); lightness
(Horn, 1974), and edge detection (Torre and Poggio, 1983).

In a recent paper, Poggio and Torre (1984) have shown how functionals of
the form of equation (1) can be derived in a rigorous and systematic way using
regularization methods (Tikhonov, 1963; Tikhonov and Arsenin (1977); Wahba
(1980); in this context [ P is called a stabilizing functional, and )\, the regularization

parameter).

Once the functional (1) is specified, its minimization can be carried out by
standard variational methods (Courant and Hilbert, 1953). Since usually one is
interested in the value of f only at the discrete set of points L, the solution of the
resulting Euler-Lagrange partial differential equations can be obtained as the fixed
point of a relaxation (cooperative) algorithm of the form:

&Y =F(s®)  deL (2

This algorithm can be efficiently implemented in parallel hardware using a
network of locally connected processors (one for each site ), or even by some
analog network (see Poggio and Koch, 1984).

11
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It is interesting to note that it is also possible, and sometimes easier, to
embed the prior knowledge about the solution, and the constraints imposed by the
observations, directly in a cooperative network of a given form, without explicitly
defining a global variational principle. This approach has been used by Marr and
Poggio (1976) for the stereo matching problem. We will have more to say about it
in chapter 6.

It is also possible, in principle, to incorporate qualitatively different measure-
ments into a single cooperative process, by a simple modification of the energy
functional:

Suppose that we have M sets of measurements, and that each set g; places some
constraints on f (and/or its derivatives) which can be expressed by the functionals:

./._A—i(gi,f,Df,...)=0 i=1,...M

The solution will now be constructed as the global minimizer of the functional:

M

() = Y aif.0) [, A+ [ P(£,Df,..) 3)
i=1 § ,
where the parameters a; measure the relative weight we wish to assign to each set
of measurements.

If all the functions A; are convex, the solution will again be unique, and
the minimization of (3) may be carried out by means of a cooperative network
(this approach has been used by Terzopoulos (1985) for the surface interpolation
problem, when the depth value f is known at some set S; of sites, and the slope
(Df) at a different set S,).

The approach we have been discussing — which we will call the "standard
regularization method” is very attractive: it provides a unified framework for the
formulation of a variety of problems, and it leads to computationally efficient
algorithms. However, it has some important limitations (some of them pointed out
by Poggio and Torre):

(i) Very often the assumption that the solution f is smooth over the whole
domain Q is not justified. What is more commonly true is that  can be

12



partitioned into a small set of disjoint connected regions, and that while f
is smooth in the interior of each of them, it has discontinuities along the
boundaries between regions (which in turn are piecewise smooth curves).
This limitation is a serious one, because very often the discontinuities of
f, which the regularization methods tend to hide, arec the most important
parts of the surface, in particular if one is trying to compute a symbolic
representation for it.

(ii) The meaning of the parameters of the energy functional is not always
clear, and they often have to be selected on a purely empirical basis.

(iii) In many cases, the choice of the particular (often quadratic) form for the
functions A and P is arbitrary, and is determined mainly by the tractability
of the uniqueness problem for the solution, and by the simplicity of the
(linear) minimization algorithm (in some cases, of course, there may be
other theoretical or experimental considerations that justify this choice).

(iv) The interaction between qualitatively different observations is purely
additive. One would like to be able to include more realistic non-linear

modes of interaction.
2. Probabilistic Formulation.

A different approach is to model the function f, whose reconstruction solves
a perceptual problem, as a random field that has to be estimated from a set of
noisy, and possibly ambiguous measurements. Within this formulation, one can -
adopt a Bayesian viewpoint (see Good, 1983), and assume that the best way of
expressing the prior knowledge about the nature of the solutionis in the form of a
(prior) probability distribution Py. This distribution, together with a probabilistic
description of the noise that corrupts the observations, allows one to use Bayes
theory to compute the posterior distribution Py, which represents the likelihod of
a solution f given the observations g. In this way, we can solve the reconstruction
problem by finding the estimate f which either maximizes this likelihood (the so
“called Maximum a Posteriori or MAP estimate), or minimizes the expected value
(with respect to Py,) of an appropriate error function. This formulation has several
advantages over the "Standard Regularization" approach:

1. Flexibility.

13



With simple modifications in the prior probabilistic model for f, one can
generate algorithms that reconstruct not only smooth, but piecewise constant or
piecewise continuous functions. It is also possible to include explicitly into the
- model prior knowledge about the geometry of the curves that bound the smooth
patches (i.e., about the discontinuities) of f.

2. Generality.

This approach provides a general framework for the formulation of a wide
variety of perceptual problems. We will show, for instance, how it can be used
for: image segmentation; surface reconstruction from sparse data; modeling of
perceptual grouping processes; stereo matching, etc. Furthermore, the incorporation
of qualitatively different measurements into a single cooperative estimation process
can be made in a natural way: if the noise processes n,, no, ..., np associated with
the sets of measurements gy, . ..gp are independent, the joint posterior distribution
P(f | g1,-...9m) will be simply:

_ PN, P | £)
H;'Ail p (9;‘)

P(f|g1,...9m)

3. Precise Interpretation.

The parameters that appear in the reconstruction algorithms that are derived
using this approach have a precisé statistical interpretation (for example, the relative
weight of the evidence provided by each set of observations, will be determined
by the variance of the associated noise process); also, the plausibility of the
prior assumptions about the behavior of the solution can be explicitly verified
by generating sample functions of the random field defined by P;, by means of
an appropriate Monte Carlo procedure. Finally, one can choose the precise loss
function whose expected value will be minimized by the Bayesian estimator.

3. Computational Efficiency.

As we will see, if the random field defined by P, is Markovian (i.e., if the
probabilistic dependencies are local), the estimation algorithms will be distributed,
so that it will be possible to implement them efficiently in parallel hardware.

14



3. Goals of this Thesis.

The objective of this work is to apply the probabilistic approach we have just
described to the solution of a general class of perceptual problems. In particular,

we will;

1. Present a class of random fields with local probabilistic dependencies, that can
be used very effectively to model the behavior of a wide variety of functions.

2. Develop appropriate loss functions, and the corresponding optimal estimators for
different classes of problems.

3. Develop general distributed algorithms for computing these estimates.

4. Apply the above results to several specific problems, to illustrate the generality
and practical value of this approach.

5. Develop more efficient algorithms for each of these particular cases.

We now present a list of our main contributions:
3.1. Summary of our Main Contributions.

1. Optimal Bayesian Estimators.

Several researchers have used Bayes theory and Markov random field (MRF)
models for the restoration of piecewise uniform images. It has been implicitly
assumed by most of them that the maximization of the posterior probability
(which leads to the- Maximum a Posteriori or MAP éstimator) is the best possible
performance criterion. We introduce the use of different specific error criteria
for the design of the optimal Bayesian estimators for several classes of problems,
and propose a general procedure (which is based on some existing Monte Carlo
techniques, such as the Metropolis algorithm) for approximating them. We show,
both theoretically and experimentally (in particular for the case of the restoration of
piecewise uniform images) that this new approach leads to a substantial inprovement

15
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over the existing methods, both regarding the quality of the results (particularly for
low signal to noise ratios) and the computational efficiency.

2. Novel Applications.

Throughbut this thesis we present several examples of the application of the
probabilistic approach, and of the optimal estimation procedures that we have
derived, to several problems, some of which are formulated and solved in these
terms for the first time. The results that we get show that this approach can provide
a unified framework for the integration of a variety of related perceptual tasks into a
single cooperativé process. Also, these results represent, in several cases, a significant
improvement over those obtained using existing schemes. Specifically, these new
applications are the following:

- a) Surface Interpolation.

The problem of reconstructing a piecewise continuous surface from sparse and
noisy data is formulated using a Bayesian approach, using two coupled MRF’s
to model the behavior of the smooth patches, and of the curves (discontinuities)
that bound them. Although this type of coupled model has been used before
(in the context of the restoration of piecewise uniform, noisy images), its
adaptation to this problem requires some non-trivial modifications: the local

_interactions between the elements of the fields have to be redefined in an

_appropriate way, and the general estimation algorithm has to be modified to
make it computationally feasible. The practical value of the resulting algorithm
is illustrated using both synthetic and real data.

b) Signal Matching.

This problem consists in finding the corresponding points in two signals when

- one is obtained from the other by shifting it by a variable amount. We study in
detail a specific instance: the reconstruction of depth from a stereoscopic pair
of images, and show how to formulate it using our general framework. The
performance of the algorithms that we construct is also illustrated by means of
synthetic and real examples.

¢) Formation of Perceptual Clusters.

16



We suggest that the process of formation of perceptual clusters of certain dot
patterns can be modeled in terms of the estimation of binary images corrupted by
multiplicative noise, and illustrate the application of our estimation algorithms
to this task.

3. Efficient Algorithms.

Although the Monte Carlo procedure that we have developed for approximating |
the optimal estimates is perfectly general, for each particular application it is often
possible to design alternative (some times deterministic) algorithms that improve
significantly the computational efficiency. It has been our concern in this work to
develop such alternative fast algorithms for each one of the applications that we
present. Specifically, we have developed the following algorithms:

- a) Estimation of One-Dimensional Signals.

We present a new deterministic algorithm of minimal complexity which
computes (exactly) the MAP estimate of binary, one-dimensional MRF’s, and
a rigorous proof of its optimal performance. We also develop an alterhative
scheme for the same purpose, based on dynamic programming principles,
which can be extended to handle more general situations (such as the MAP

estimation of piecewise constant one~dimensional signals).
b) Estimation of Two-Dimensional, Binary MRF’s.

We heuristically motivate and develop a new deterministic algorithm for
approximating the optimal Bayesian estimator of two—-dimensional MRF’s. We
find, experimentally, that the quality of the results produced by this scheme is
equivalent to those obtained by the general Monte Carlo procedure, and the
computational efficiency (execution time) is improved at least by an order of
magnitude.

For the case of the MAP estimation of binary patterns, we develop a modification
to the "Simulated Annealing" procedure, which improves its computational
efficiency. It is based on the computation of "coarse solutions” (formed by
aggregating the elements of the field into blocks) which are then progressively
refined.

17
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¢) Reconstruction of Piecewise Continuous Surfaces.

In this case, we also develop a heuristic, deterministic scheme whose experimental
performance is practically equivalent to that of the Monte Carlo procedure,
and improves significantly on its computational efficiency.

d) Stereo Matching.

We propose a new algorithm for solving the stereo matching problem in
some simple cases. This scheme is based on the direct implementation of the
local constraints (generated by the probabilistic model) in a highly distributed
cooperative network of a particular form: a "Winner-Take-All" network. We
show rigorously that, for noise-free observations, the state of this network will
converge to the correct solution, and estimate the maximum number of required

~ iterations (which is usually very small). The application of this technique to
the reconstruction of the depth of real objects from stereoscopic photographs
is discussed, and some modifications to the algorithm are introduced, which
permit us to produce results whose quality is comparable to those of other
"state of the art" algorithms.

4. Parameter Estimation.

In the context of the estimation of two-dimensional, binary fields, we study the
case where the parameters that characterize the field model and the noise are not
known, and have to be estimated from the noisy observations, a situation that, so far,
has never been treated. We present a maximum likelihood procedure, which based
on an analysis of the residual ("innovations") process, permits the simultaneous
estimation of the field and the parameters of the system. We apply this technique
to the construction of an algorithm, which does not have any free parameters,
for the reconstruction of piecewise uniform images, and perform experiments to
demonstrate its performance.

5. Parallel Implementations.
An important issue regarding the practical value of the algorithms that we

develop is their possible implementation in certain non—conventional hardware,
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such as massively parallel digital machines; hybrid and analog computers, etc. In
this connection, we make the following contributions:

a) Monte Carlo Procedures.

We analyie the parallél implementation of the general Monte Carlo procedure for
approximating the optimal Bayesian estimators. We show that the convergence
of certain widely used algorithms (such as the Metropolis and Heat Bath
schemes) cannot be guaranteed in this case. We justify the selection of an
appropriate algorithm (the "Gibbs Sampler”), and present an estimate of its
computational complexity.

b) Reconstruction of Piecewise Continuous Surfaces.

The parallel implementation of both the modified Monte Carlo procedure
and the deterministic algorithm that solve this problem are analyzed, and
their computational complexity is estimated. We also propose schemes for the
construction of hybrid (digital/analog) and analog networks that implement
these procedures, and perform digital simulations to evaluate experimentally
their performance.

¢) Estimation of Two-Dimensional Binary Fields.

The computational complexity of the parallel implementation of the fast
.deterministic algorithm that performs this task, is estimated and compared with
that of the general Monte Carlo scheme. |

We also propose the adaptation of a class of analog networks proposed by
Hopfield and Tank (1985), so that we can obtain an approximation to the
optimal estimate of the field from the equilibrium state of this system. The
performance of this scheme is assessed experimentally by means of numerical

simulations.
3.2. Thesis Overview.

This thesis is organized in the following way:
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In chapter two we will introduce the basic concept of a Markov random field:
show how to compute the corresponding probability distribution, and present Monte
Carlo procedures for gencrating sample functions. In chapter three, we develop
loss functionals for. the image segmentation and surface reconstruction problems,
and derive the corresponding optimal Bayesian estimators. We also present general
algorithms for computing these estimates, and discuss their implementation in
parallel hardware.

These results are applied, in chapter four, to the problem of segmenting
piecewise constant images given noisy observations. For the particular case of
binary images, a very efficient distributed algorithm is developed, and we present
a procedure for the case when the model and the noise parameters are not known,
and have to be estimated from the noisy data. Also in this chapter, we show how
these principles can be applied to the problem of computing the perceptual clusters
that are formed in some dot patterns.

In chapter five, we treat the problem of reconstructing piecewise smooth surfaces
from sparse and noisy data, without blurring the boundaries between continuous
regions; we discuss the use of Markov random field models to embody the prior
knowledge about the shape and location of the discontinuities, and show how
to adapt the general reconstruction algorithms developed in chapter three to this
problem. We also develop a special purpose efficient algorithm for this case, and
discuss its f)arallel implementation.

Chapter six is devoted to the problem of the reconstruction of depth from
stereoscopic images. As in the previous cases, we first present a probabilistic
formulation of the problem, and extend the general methods of chapter three for
implementing a solution. Then, we develop special purpose algorithms that improve
the computational efficiency. The performance of these algorithms is illustrated
u'sing both synthetic and "real” images.

Finally, in chapter seven, we summarize our results, and suggest areas where
future research may be fruitful.
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Chapter 2

LOCAL SPATIAL INTERACTION MODELS

1. Introduction.,

The key to the success in the use of the probabilistic (and in particular, Bayesian)
approach for the solution of the class of reconstruction problems in which we are
interested, is our ability to find a class of stochastic models (that is, random fields)
that have the following characteristics:

(i) The probabilistic dependencies between the elements of the field should
be spatially localized. This condition is necessary if the field is to be used
to model surfaces that are only piecewise smooth; besides, if it is satisfied,
the reconstruction algorithms will be distributed, and thus, efficiently
implementable in parallel hardware.

(ii) The class should be rich enough, so that a wide variety of qualitatively
different behaviors of the desired solutions can be modeled.

(iii) The relation between the parameters of the models and the characteristics
of the corresponding sample fields should be relatively transparent, so that
the models are easy to specify.

(iv) It should be possible to represent the prior probability distribution Py
explicitly, so that Bayes theory can be applied.

‘(v) It should be possible to specify an efficient Monte Carlo procedure for
generating sample fields from the distribution, so that the ability of the
model to represent our prior knowledge can be verified.

Fortunately, there is a class of models that satisfies these characteristics: the
class of Markovian Random Fields (MRF) on lattices. We will describe them in
this chapter, and we will also show how they satisfy the required conditions. To
do this, we will need two important results: the Hammersley-Clifford theorem,
which is related to conditions (iii) and (iv), and the Metropolis and Gibbs-sampler
algorithms, which will permit us to satisfy condition (v).
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2. Markov Random Fields.

The concept of a MRF is a direct extension of the concept of a Markov process
to higher dimensions and originated in the work of Ising (1925) on the construction
of models for ferromagnetic phenomena. The definition for a two dimensional
continuous MRF was introduced by Wong (1968), following Levy (1956) (see also
Dobrushin, 1968), and in intuitive terms it says that a random field is Markovian
if for any closed curve that separates the space into two regions, the knowledge of
the value of the field along the curve, makes the field in these regions mutually
independent.

More useful for our purposes (since usually we will be interested only in
reconstructing the field at the sites of a regular lattice) is the definition of a discrete
MRF, a generalization of the concept of a Markov chain. A discrete Markov
random field on a finite lattice is defined as a collection of random variables, which
correspond to the sites of the lattice, whose probability distribution is such that
the conditional probability of a given variable having a particular value, given the
values of the rest of the variables, is identical to the conditional probability givenf
the values of the field in a small set of sites, which we will call the neighborhood
of the given site. In formal terms we have the following (see Geman and Geman,
1983, and also Woods, 1972 for an alternative definition):

Let S be a finite set of N sites, and G = {G,,s € S} be a neighborhood
system for S, i.e., a collection of subsets of S for which:
(i)s¢g G, forall se S.

(ii) s € G, if and only if r € G, for all r,s € S.

Let F = {F,, s € S} be any family of random variables indexed by s € S, and
suppose, for simplicity, that these variables take values on some finite sets {@,}
(the definition can be extended, with some technical modifications, to the case of
continuous state space). We will call any possible sample realization f :

(.fan'“vfan) ’ fa.' GQM
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Figure 2. Sites 1, 2, 3 and 4 are the neighborhood of site 5
a configuration of the field. Let Q be the set of all possible configurations (i.e., the
sample space), and let P be a probability measure in Q. F is a MRF with respect

to G if: L
@) P(F=7F)>0,foral feQ((F=f) denotes the event: (F, = f, for
all s € 9)).

(ii)P(Fa=fa|Fr=fr 7’753)=P(Fa=fa|Fr=fr TGGJ)'

for every s € S.

It is clear from this definition , that if the size of the neighborhoods is small,
a MRF will satisfy the first condition we required from our class of models. The
direct specification of a MRF from this definition (i.e., in terms of the conditional
probabilities), however, is not very convenient because of the following reasons:

Firstly, the functions defining valid conditional distributions for a MRF cannot
be chosen arbitrarily, since they have to satisfy a set of consistency conditions (that




<,

result from Bayes’ rule; see Besag, 1972), and are, in general, very difficult to specify
directly. Secondly, although the joint probability distribution P, can be uniquely
determined from the conditional probabilities, its computation is, in general, a
highly non-trivial task. Finally, there is no obvious intuitive relation between the
form of the conditional probability distributions and the qualitative behavior of the
sample fields.

To overcome these difficulties, we need an alternative way of defining a MRF.
This is done as follows.

2.1. Markov-Gibbs Equivalence.

First, we need the following definition:

Given a system of neighborhoods on a lattice, we define a "clique” C as either
a single site, or a set of sites of the lattice, such that all the sites that belong to C are
neighbours of each other. For example, on a 4-connected lattice (Fig. 2), the sites
L, 2, 3 and 4 form the neighborhood of site 5, and the cliques are sets consisting
either of single sites, or of two (vertically or horizontally) adjacent sites (nearest
neighbours; see Fig. 3).

The result we are looking for is contained in the Hammersley-Clifford theorem
(Hammersley and Clifford, 1971) which states that if F is a MRF on a lattice

- § with respect to the neighborhood system G, the probability distribution of the

configurations (sample functions) generated by it will always have a definite form,
which is that of a Gibbs distribution: '

Py(f) = S 3

where Z is a normalizing constant, 8 is a parameter, and the "Energy function"
U(f) is of the form:

U(f)=%:Vc(f)
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Figure 3. Cliques for the 4—connccted lattice of Fig. 2.

where C ranges over the cliques associated with the given neighborhood system,
and the potentials Vi (f) are functions supported on them. Thus, in our example of
a 4-connected lattice, U would be of the form: ’

U =SVl + S Vil f)+ X Vlfafy)

ivjeNH ) "1j€NV

where Ny and Ny denote the sets of all horizontal and vertical nearest neighbor
pairs of sites of the lattice (figure 3 (b) and (c)), respectively, and V,, V; and V., are
some functions.

A simple proof of this important result can be found in Besag (1972). We
present here a brief sketch:

Without loss of generality, we may assume that 0 (the configuration with f; = 0
for all 7) belongs to 0 (otherwise, we simply perform a translation of the origin).

Since F is a MRF, we have that
P0) >0
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so that the quantity
P(f)
P(0)

is well defined.

The key step is to note that we can always write:

P(f) _ o

P(0)
with
Q) = X f:Gilf) + 323 fifiGii(fir £) + -
+fl- . -fnGij...n(fh .. -fn)

for some functions G;, G,j, .. ..
Now, for any configuration f and any selected site 7, we define the conﬁguraﬁon

f®) as being equal to f everywhere, except possibly at site <, where it is equal to 0:

f(') = {fl:' -‘fi—lx 0, fi+17~- -rfn}

Using Bayes rule we find that:
P(f) _ PUil £33 #9) Plfjd #3) _
P(f0) ~ P(0] f35 #9)- P55 #19)
_PUilfii #9) _
= exp[f.'G;(f,') + E .fiijs'j(fi: f)) +.. ]
]

exp[Q(f) — Q)] =

Note that because of the Markov property, the above quotient of conditional
probabilities can depend only on the value of f at those sites which are neighbors
- of site .

Now, suppose [ is not a neighbor of z, and consider a particular configuration f
which is equal to 0 everywhere, except at sites 7 and /. By the above considerations,
we have that:

Q) — QUY) = £.Gif) + f:iGulfi, i)
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depends only on f;, which means that Gy(f;, fi) = 0.

By a similar reasoning, one can show that G; ; . m(/fi, ..., f) can be different
from 0 only if the sites ¢, 7, ..., m are neighbors of each other, i.e., if they belong to
the same clique. The proof is completed by defining:

_%V(fl'p ERY) fm) = fir .. -fmGi,...m(fi; .. 'fm)

It is important to note that whereas the functions defining valid conditional
probabilities for a MRF cannot be chosen arbitrarily, the form of the potentials
Ve is not restricted in any way, and can be used freely to specify the required
behaviour of the field f (which is what one does in practice). The relation between
these potentials and the conditional probabilities is given by the following formula
(which follows from Bayes rule):

exp[—5 Ceuiec Ve (f)]
Teeq: exP[—§ Teuicc Ve (f9)]

P(F;=f; | Fj = fj,7 #1) = (1)
where Q; is the set of allowable values for the state of F;, and f9 is the configuration
which is equal to ¢ at site <, and coincides with f everywhere else.

There are other ways of representing certain classes of MRF’s. For example,
Woods (1972) has shown that every homogeneous Gaussian MRF defined on a
finite lattice satisfies a difference equation of the form:

Jam = 2 hklfn—k,m—l + Unm
D(P)

where fam is the value of the field at site nm and u is a (non-white) stationary
Gaussian field whose autocorrelation function satisfies;

c, m=n=20
E[tunmuoo] = { —hmnc, (m,n) € D(P)
0, elsewhere

where
D(P)={(k,}) : 0< Kk®+1%2< P?)
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and also .
c, ifn=kand m =1
E [f nmukI] = ]
0, otherwise
the numbers kg can be interpreted as the coefficients of the linear minimum mean
square error estimator of fmn given its neighbors out to distance P, and u as the

estimation error.

This representation (called a "Conditional Markov" (CM) model by Kashyap
(1983)) can then be used to generate sample functions (Woods, 1972 also presents
an algorithm, based on the discrete Fourier transform, for the generation of sample
realizations of the field », and for the computation of the joint distribution for f).
A field that satisfies a difference equation of the form:

fam = D hkifa-km—i + Wom
D(P)
where' {wn,} are independent random variables, is called a "Simultaneous
Autoregressive” (SAR) model by Kashyap ( a similar representation can be obtained
for fields with exponential autocorrelation functions; see Habibi, 1972). Although
it is claimed that for any homogeneous SAR model it is possible to find a MRF
with the same spectral density, albeit with a different neighborhood structure, it
is in general very difficult to compute the joint distribution explicitly from the
SAR representation. On the other hand, the Gibbs representation has the following

advantages:

() It is perfectly general: it applies to discrete valued fields, and it can be
easily generalized to the case of continuous valued ones.

(ii) It is easy to generate sample functions from the distribution (we will discuss
algorithms for doing this in the next section).

(iii) Since the posterior distribution is also a Gibbs measure, the optimal
estimates can be obtained directly from the posterior energy function.

For these reasons, this is the representation that we will adopt.
3. Generation of Sample Configurations of MRFs.

3.1. The Metropolis and Gibbs-Sampler Algorithms.
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The earliest successful Montecarlo procedure for the generation of sample
functions of MRF’s was developed by Metropolis et al. (1953) for the numerical
computation of thermodynamic properties of many-particle systems in thermal
equilibrium. To desc,ribe’it, let us consider a System with N particles, each of which
may be in any one of a finite number of allowable states, Let fj denote the state of
the 5** particle (we will refer to the N7 —vector f as the global configuration of the

system), and let 7 (f) be the corresponding energy.

1,...,n. It is a well known fact, from statistical physics, that when the physical
system is at thermal equilibrium at a given temperature 7, its configurations will be
distributed according to the Gibbs measure:

(1) = 5 expl- 20 (2

Therefore, we want n(f) to be the invariant measure for our chain. If the chaip is
regular (ie., if it is possible to go between any (wo states in some fixed number of
steps), (f) will be the unique vector satisfying:

TPe=nx

where Pg is the transition matrix of the chain (see Kindermann and Snell, 1980).

Also, since a system in equilibrium looks the same if we reverse the time
direction, we require that the associated chain be reversible, that is,

Pr(fn+ 1) =3 f(n) = ¢) = Pr(fln —1) = j | f(n) =)

For a regular chain, reversibility is equivalent to the "detajled balance” condition:

"NPe(f, £) = =(£)Po(F, £) 3)

where f and f’ are any two global configurations, This condition means that, if
We consider a large collection of isolated, identical Systems, each one in thermal
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equilibrium at the same temperature (the so called "Canonical Ensemble"), the
number of systems going from state f to f* must equal the number of systems going
from f’ to f. This condition is also sufficient for the convergence of the chain to
the desired Gibbs measure.

The algorithm proposed by Metropolis generates a regular chain that satisfies
(3). 1t is as follows:

Suppose that we visit the particles of the system (i.e., the sites of the lattice) in
some random sequential order (for example, we choose the next site to be visited at
random with uniform distribution). When a particle j is visited, we update its state

as follows:

(i) Choose a new state }”j randomly from the set of allowable states using a
uniformly distributed random number.

(ii) Compute the increment in energy AE; that results from moving the state
of the jt* particle from f; to ;.

(iii) If AE; < 0, make the move, i.e., set f; = f,
If AE; > 0, generate a new random number r, uniformly distributed
between 0 and 1.

Ifr < e 8BlT set f; = f;.

If r > e~AEi/T leave f; unchanged.

If we denote by ¢(f, f) the probability of proposing the state f when the
system is at state f (i.e., the probability of visiting particle 7, and selecting the state
}’,- for it; note that ¢ must be a symmetric, irreducible stochastic matrix, so that
a(f, }) = q(7, f), by construction), we have that

Po(f,7) = q(f, F) min(1,e2Y/T)

Pg(F, f) = g(F, f) min(1,€8V/T)

where
AU = U(f)-U(f)

Therefore, if AU < 0,

PC(f)}.) = Q(fr}.) and Pc(},f) = q(f,}')eAU/T
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and if AU > 0,

PC(fr})=q(f)}‘)e_AU/T and PC(}':f)=q(f;}.)

Clearly, in bbth cases, (3) is satisfied.
This is not the only chain that satisfies (3). Another possibility is to set:

(f) _
©(f) + =(f)

= q(f, f) !
1

+ eAU/T

Po(f, }) =/, })

in which case we get the "heat bath" algorithm (see Gidas (1984) and Hastings
(1982)).

A different construction, called the "Gibbs sampler" has been proposed by
Geman and Geman (1983) (see also Besag (1972)). In this scheme, too, at each
iteration only one site is modified; its new state, ?J- is selected at random from the
conditional distribution given by equation (1). These authors show that provided
only that we keep visiting every site, (i.e., that we update its state "infinitely often"
the resulting chain is ergodic, and its invariant measure is given by (2) (note that
reversibility is not required in this case). It is not difficult to see that for binary
systems this method is equivalent to the heat bath algorithm.

3.2. Statistical Mechanics Interpretation.

To get an intuitive grasp on the way these algorithms work, it is useful to
recall some results from statistical mechanics (see, for example, Reif, 1965). When
a macroscopi;: system (i.e., a system with a large number of degrees of freedom)
is in thermal equilibrium at a given temperature T, its state f will be such that
the Gibbs free energy F is minimized. The relation between F(f) and the internal

energy U(f) of the system is given by:

F(f)=U(f)=TS
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where the entropy S is:
S =InQ(U)

and QU) is the total number of feasible configurations of the system with energy
equal to U.

From this relation it is clear that at high temperatures, a system in equilibrium
will adopt a disordered, high energy configuration (which will have a high value of
S), while at low temperatures, the dominant tendency will be towards low energy
states. The probability distribution of the equilibrium energy is given by:

Py(U) = 7 0T (U)
where Z is a constant. Since €)(-) is a rapidly increasing function of U, and the
negative exponential is rapidly decreasing, Py will be sharply peaked around a
value U"(T). Using the fact that (U) = O(U™), where n is the number of degrees
of freedom of the system, one can show that the relative width AU of this peak will

be inversely proportional to the square root of n:

AU 1
u*  Vn

(This result holds, in fact, not only for the energy, but for other related
thermodynamical properties as well). This means that, for large n, the Metropolis
(or Gibbs sampler) chain will generate (asymptotically) configurations whose energy
is very close to U™(T'), which is an increasing function of T'.

To illustrate this, let us consider a binary system on a four-connected square
lattice, whose energy function is given by:

U() = £ S Volfi £)

with
-1, if fi=f;
1, otherwise

Ve(fu £;) = {
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Figure 4. Sample patterns of the two-dimensional Ising model at 0.8 (left), 1.0 (center) and
1.2 (right) times the critical temperature. C

where C ranges over all the nearest neighbor cliques of the lattice (this is the two
dimensional Ising model with "free boundaries" — since the only interactions that
contribute to the energy are those between elements of the field that belong to the
lattice — which we will later discuss in detail).

In figure 4 we present typical equilibrium configurations generated at three
different temperatures using the Metropolis algorithm with random updating order.
The temperatures used correspond to 0.8, 1.0 and 1.2 times the critical temperature
for this model (the critical temperature is defined as the maximum value of the
temperature for which the effect of fixed conditions at the boundary of a square
lattice is felt at the center, no matter how large the lattice is. For the two-dimensional
Ising model it equals 2.273).

In the limit of very large lattices, the equilibrium energy per spin (which is
proportional to the total length of the boundaries between "black” and "white"
regions) is given by (see Wannier, 1959):

U'(T) 2
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Figure 5. Equilibrium values of the cnergy (a) and average density (b) for an infinite Ising
net (from Wannicr, 1959)

where we take the + or — sign, above and below T, respectively. k is the Boltzmann

constant; « is given by:
__ 2sinh(1/7T)

- cosh?(1/T)
and K(-) is the complete elliptic integral of the first kind (see, for example,
Hildebrand, 1976).

The average density of "black” elements can be computed by the expression:

cosh?(1/T)

ﬂmmﬂ¢mﬁwn—mm

Cu(T) =51+

The shape of these functions is illustrated in figure S.

From a qualitative viewpoint, one can see that the temperature, which is the

only free parameter of this model, controls the granularity (average cluster size and
cluster density) of the sample patterns.

Other examples of patterns generated with these algorithms (or some variations
of them) may be found in Cross and Jain (1983) and Hassner and Sklansky (1980),
where they are used as models for texture; in Geman and Geman (1983) as models
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for piecewise constant images, and in Grenander (1983), where they are used to

produce more complex patterns.
3.3. Continuous Valued State.

Any of the two algorithms presented in section 3.1 can be generalized to the
case where the state of each particle can take any real value on a compact set
(e.g., a closed interval) at the expense of their computational efficiency. A different
approach that seems promising is based on the fact that a vector f which obeys the
stochastic differential equation:

df = —gradU(f)dt + V2T dw (4)

where w is a vector Wiener process with unit variance (a collection of independent
Brownian motion processes), will be, under suitable smoothness conditions on
U, distributed asymptotically (as ¢ 1 oo) according with the Gibbs measure (1)
(see Grenander 1984; Geman and Hwang, 1984). This means that we can use a
numerical simulation of (4) (see Wong and Zakai (1965)) to generate the desired
patterns. This approach has two interesting advantages, that result from the fact that,
in a numerical simulation, the increments dw are approximated by independent, |
* identically distributed Gaussian random variables:
(i) We only need to generate Gaussian random numbers, for which efficient
algorithms exist.
(i) All sites can be updated at the same time, so that efficient parallel
implementations can be adopted. |

The probability distribution of the configurations generated by the system at
any given time can, in principle, be obtained by solving an apprdpriate system
of partial differential equations (i.e., the Kolmogorov equations; see for example,
Karlin and Taylor, 1981); this will not be practical in most cases, however, so that
the rate of convergence of this algorithm will have to be assessed in an experimental

way.
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We will now describe how an extension of the techniques presented in this
section can be used to find the.global minimum of arbitrary energy functionals.
As we will show in the next chapter, this method will be particularly useful for
minimization in the variational principles which represent the Maximum a Posteriori
estimated solution to a reconstruction problem.

4. Simulated Annealing and Global Minimization.

Simulated annealing is a new technique, developed by Kirkpatrick et al (1983)
for the solution of combinatorial optimization problems. It is based on the idea
that any cost functional of N variables, each of which can take values on some
finite set, can be considered as the energy function of a physical system whose state
corresponds to a particular value of these variables. Therefore, we can use, say,
the Metropolis algorithm to genetate, at any given "temperature” T (which now
becomes a parameter of the optimization process) samples from the corresponding
Gibbs measure. Since as T | 0 this measure converges to an impulse (or set of
impulses) corresponding to the state (or states) of minimum energy, the state of the
system in thermal equilibrium at zero temperature will correspond to the value of
f that minimizes U(f) globally.

One serious difficulty, however, is that attaining thermal equilibrium might take
a very long time at low temperatures. Kirkpatrick's idea was to start at a relatively
high temperature (where thermal equilibrium is reached very fast), and then, to
slowly cool the system, until "freezing" occurs and the state stops changing.

4.1. Discrete Valued State.

Geman & Geman (1983) were able to show that if the temperature is lowered

at the rate;
C

T= log(n +_1) (5)

where n is the number of iterations, and C is a constant, this algorithm (using the
Gibbs sampler) will in fact converge (in probability) to the set of states of minimal
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energy. They also showed that this chain is asymptotically ergodic in the sense that
- for any real valued function Y of the global state at time ¢, f(t), we have:

lim ! i Y(f(t) = / Y (w)dPs(w)
where Q is the set of allowable global states. This means that we can use time;.'

averages to estimate ensemble averages. Similar results have been obtained by Gidas
(1984) for the Metropolis and heat bath algorithms.

The minimal value of the constant C in equation (5) for which convergence
can be guaranteed has not been determined in general. The value found by Geman

and Geman is:
C=NA

where N is the total number of sites in the lattice, and A is the largest absolute

difference in energies associated with pairs of global configurations that differ at

only one site. This value, however, is too large to be of any practical use in most

applications. Gidas (1984) has shown that if U has not more than two local minima,
C can be computed as:

- 1

C=x

where A’ is the minimal energy change between a local minimizer anda neighboring

(in the sense that it differs at exactly one site) configuration. He also conjectures

that this expression holds in general, but this result has not been confirmed.

In a recent paper, White (1984) characterizes the initial annealing temperature
in terms of the standard deviation of the "density of states” (the number of possible
states of the system, per unit energy, for each value of the energy) when this function
is approximately Gaussian (which seems to be the case for a large class of systems).
In some particular cases this value can be determined analytically from the structure
of the problem, but in general, it has to be computed numerically from a simulation

of the system at high temperature.

For the class of systems in which we are interested, we have found, by a trial
and error procedure, that a value of C equal to 1.5 times the natural temperature of
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the system ( i.e., the temperature associated with the Gibbs distribution of the prior
MRF model) produces a reasonable convergence behaviour (of the order of 500
iterations), but clearly, more research, both theoretical and experimental is needed
in this area.

Another important factor which determines the computational efficiency of
simulated annealing is related to the difficulty in computing the increment in energy
AUj associated with a change in the state of the 5 variable. If the energy function
comes from the probability measure of a MRF, the computation of AU; will require
only the states of the variables in the neighborhood of 5. Suppose now that we color
the sites of the lattice in such a way that any two neighbors will always be of different
color. In a parallel implementation we can, in principle, update the states of all
the sites that are of the same color in a simultaneous way. The minimum number
of colors needed to satisfy this condition is called the "Chromatic Number" of the
graph that describes the neighborhood structure of the MRF, and it is bounded
below by the size of the largest clique of the system. This number, then, determines
the minimum number of steps that are needed in a parallel machine to update the
state of the whole lattice. We will analyze these implementations in more detail for
some particular examples in the next chapters.

4.2. Continuous Valued State.

All the available convergence results for the annealing algorithm hold only for
the case where the set of allowable values for the state of each variable is finite. If
this set is infinite, but compact, we can still use these results to find approximate
solutions by discretizing it. However, the computational complexity will increase
as we increase the resolution of this discretization. An attractive alternative is to
generalize the approach discussed in section 2.2 by making T in equation (4)
time dependent. A convergence proof for this modified scheme, for smooth energy
functions that satisfy appropriate boundary conditions, can be found in Geman and
Hwang, 1984.
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5. Discussion.

We have presented a class of probabilistic models with local dependencies
which can represent prior generic knowledge about the solution of a reconstruction
problem: the class of MRF's on finite lattices. We have seen how they can be
completely specified by defining arbitrary "potential functions” which are supported
on the cliques of the associated neighborhood system. It is thus easy to define
families of fields with a wide range of different behaviors. For example, if the only
prior knowledge that we have is that the reconstructed surface should be piecewise
constant, we may use a 4-connected lattice with Ising potentials:

-1, if |i—jl=1and f;=f;
Ve(fi f;) = {1, if |i—jl=1and f; # f;
0, otherwise

In this case, the natural temperature of the system will index a one parameter
family of fields with varying degrees of granularity.

Smooth surfaces can be modeled using the same neighborhood system, but

with quadratic potentials:

(i— 5?3 if i—jl=1
Velfo i) = {0, otherwise

‘More complicated, non-isotropic patterns can also be modeled, using slightly
larger neighborhoods (as in Cross and Jain, 1983). Also, as we will see in chapter
5, an appropriate choice of the lattice and the neighborhood system, permits one
to use a MRF to model sets of piecewise smooth curves on the plane. Using this
construction, it is possible to model the behavior of a piecewise smooth function
defined on a two-dimensional lattice (a "piecewise smooth surface”) by coupling
two MRF’s: one for the smooth portions, and another for the curves that bound

them.

We showed how the probability distribution of the configurations generated by
a MRF has the same form as the one associated with a macroscopic physical system
in thermal equilibrium, so that one can use Monte Carlo procedures that simulate
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the behavior of such systems to generate sample functions of arbitrary MRF’s, The
Markovian property of the models imply that the computations performed by these
procedures are local in nature (the updating rule for each site depends only on
the states of its neighbors), so that, in principle, efficient parallel schemes can be
designed for their implementation. We will examine this question in detail in the
next chapter, where we discuss the use of MRF models and Bayes theory for the
optimal solution of reconstruction problems.



Chapter 3

OPTIMAL BAYESIAN ESTIMATORS

1. .Introduction.

The use of the Bayesian approach for the solution of reconstruction problems
requires the development of the following items:
(i) A prior probabilistic model for the functions to be reconstructed.
(ii) Stochastic models for the observation processes.
(iii) Appropriate loss (error) criteria.
(iv) Estimators that are optimal with respect to (i), (ii), and (iii). ’

(v) Efficient algorithms for the computation of these estimates.

In the previous chapter, we discussed item (i), and presented a class of
probabilistic models that can be used very effectively to encode prior generic
constraints about the solutions of reconstruction problems. In this chapter we will
develop the remaining necessary ingredients that are necessary to perform optimal '

reconstructions in the general case.

First of all, let us formulate the class of problems of interest in a precise way,
and present a general stochastic model for the observation process.

2. Problem Formulation.

We mentioned in chapter 1 that there is an important class of perceptual
problems whose solution can be found by reconstructing a function f : R" ~
R™ on a finite set of points that lie inside a compact domain @ C R™. Although
the methods that we will develop are, in principle, perfectly general, for the sake of
clarity we will confine ourselves to the important particular case when n = 2 and
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m = 1. We are, therefore, interested in reconstructing the value of a function [ at
each one of the N sites of a lattice L (we will denote the value of the function at
site « € L by f;).

2.1. Stochastic Model for the Observations.

Let us assume that we have a set of observations g on a subset S of the sites
of L, and that the process by which these observation are obtained can be modeled
by:

g9; = Y(Hj(fhin;) , JES (1)

Here , Hj(-) is an operator with local support that represents some kind of (in
general non-invertible) degrading operation (such as blurring); ¥ is an operation
invertible with respect to n; (so that n; = v~1(g;, H;(f))); it may represent,
for example, noise addition or multiplication followed by a memoryless non-
linear transformation. n; represents a scalar noise process with known probability
distribution P,;. We will assume that n; is independent of n,, for all # 7, and
also that it is independent of f.

Given f, the conditional probability distribution for the observations Py p will
be given by:
FPyslg f) = ]e:g Poi(¥ ™Y (gi, Hy(f))

Assuming that P,;(n;) > 0 for all ¢, and all possible values of n;, we can define
the functions &; by:

(S, 9:) = —In Ppi(V ™ Y(g;, Hi(f)) - (2)

so that we can write the conditional distribution as:

Pys(9; f) = exp[— ezs ®:(f,9:)] (3)
As an example, consider the case of additive , zero mean white Gaussian noise. We
have:

Hi(f)=f;
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U(a,b) =a+b

P,(z) = ! exp[—z?/20?
2no
Pyylei f) = I —— eol~(fi - %)’ /20%) =
= exp[— Y {In(v2r0) + 2%2(1'.- - 0%}
€S

2.2. Posterior Probability Distribution.

Since we are using a MRF model for the field f, its prior distribution will be

of the form:
PIf) = - expl—7-Vol )] (4)
with
Uo(f) = ; Ve(f)

where C ranges over the cliques of the neighborhood system of f.

Using Bayes rule, we find that the posterior distribution is:

Py(£)Py)4(9; f)
Pg(g)

Using the expressions (3) and (4) for P; and Py, and recognizing that Py(g) is
a constant for a given set of observations, we get that the posterior probability will
also follow a Gibbs distribution:

Pyo(f39) =

Ppo(fi9) = El}; exp[—Up(f; 9)] (5)
with
Up(f;8) = 7 Uolf) + X @£, ) ©)
0 €S

Where Zp is a constant, and the functions &; are defined by (2).
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We can now provide a physical intcrpretation of the posterior distribution, by
considering that, while the prior distribution (4) describes the behavior of a free field
in thermal equilibrium (see section 3.2 of chapter 2), the distribution (5) describes
the behavior of the same field coupled with a fixed (but spatially varying) external
field whose value is given by g. The functions ®;, whose magnitude depends on the
noise variance, can then be interpreted as the coupling strengths between the two
fields. This coupled system is also Markovian, and if

fI;(f) = fI,‘(f;) forallze S

its neighborhood structure will be identical to that of the original field.

The importance of this interpretation lies in the fact, which will be proved
in the following sections, that the optimal estimate for f can be obtained simply
by observing the equilibrium behavior of this coupled field. Before considering this
question in detail, let us define the appropriate cost functionals for the applications
we are interested in.

3. Cost Functionals.

The Bayesian approach to the solution of reconstruction problems has been
adopted by several researchers. In most cases, the criterion for selecting the optimal
estimate has been the maximization of the posterior probability (the Maximum a
Posteriori or MAP estimate). It has been used, for example, by Geman and Geman
(1984) for the restoration of piecewise constant images; by Grenander (1984) for
pattern reconstruction, and by Elliot et. al. (1983) and Hansen and Elliot (1982) for
the segmentation of textured images (a similar criterion — the maximization of a
suitably defined likelihood function — has been used by Cohen and Cooper (1984)
for the same purposes).

Since the use of this criterion defines the optimal estimator as the global
minimizer of the posterior energy Up (equation 6), it is closely related to the
standard regularization method that we discussed in chapter 1. Indeed, if we assume
quadratic potentials for the prior MRF model, the term Uy(f) corresponds to a




global smoothness assumption (the "stabilizing functional”), and if the observations
are corrupted by additive Gaussian noise, the term ¥ &,(f, g;) will also be quadratic,
so that Up will have a unique minimum. For more general prior and observation
modéls, the MAP estimator may be considered as an extension of the standard
regularization approach. Thus, the variational principle proposed by Blake (1983),
on a purely pragmatic basis, for the reconstruction of piecewise constant images is
very similar to the one derived by Geman and Geman (1984). Even in this case,
however, the precise probabilistic formulation in the latter case is preferable, since
it provides a precise interpretation of the parameters, and a practical means for
verifying the adequacy of the prior assumptions (via the experimental analysis of
sample fields).

In some other cases, a performance criterion, such as the minimization of the
mean squared error has been implicitly used for the estimation of particular classes
of fields. For example, for continuous-valued fields with exponential autocorrelation
functions, corrupted by additive white Gaussian noise, Nahi and Assefi (1972) and
Habibi (1972) have used causal linear models and optimal (Kalman) linear filters
for solving the reconstruction problem,

The minimization of the expected value of error functionals, however, has not
been used as an explicit criterion for designing optimal estimators in the general
case. We will show that this design criterion is in fact more appropriate in our case,

- for the following reasons:
(i) It permits one to adapt the estimator to each particular problem.

(ii) It is in closer agreement with one’s intuitive assessment of the performance
of an estimator.

(iii) It leads to attractive computational schemes.

We will now propose design criteria for two particular problems: image
segmentation and surface reconstruction.

3.1. Error Criterion for the Segmentation Problem.

Consider a field f with N elements each of which can belong to one of a finite
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set @; of classes. Let f; denote the class to which the i** element belongs. The
segmentation problem is to estimate f from a set of observations {g;, .. . gp}. Note
that f; does not necessarily correspond to the image intensity. It may represent, for
example, the texture class for a region in the image (as in Elliot et. al., 1983), etc.

A reasonable criterion for the performance of an estimate f is the number of
elements that are not classified correctly. Therefore, we define the segmentation

error e, as:
LY N A LY
es(f:f)= ;(1_6(ft_fz)) ;fi:fiEQl' . (7)
where if 0
1, Ifa=
§(a) =
(a) {0, otherwise (8)

3.2. Error Criterion for the ReconStruction Problem.

In this case, we also consider a field f with N elements which can take values
on finite sets {@;}, but now we assume specifically that f; represents the intensity

- of an image (or the height of a surface) at site 7. This suggests that an estimate I

should be considered "good" if it is close to f in the ordinary sense, so that the
total squared error:

- N rS
er(f, f) = _=21 (fi — 1)? ' (9)

will be a reasonable measure for its performance.

Let us now derive the optimal estimators for these error criteria.
4. Optimal Bayesian Estimators.

To derive the optimal estimators with respect to the criteria stated above, we
first present the general result (which can be found, for example in Abend, 1968)
which states that if the posterior marginal distributions for every element of the field
are known, the optimal Bayesian estimator with respect to any additive, positive
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definite cost functional C may be found by independently minimizing the marginal

expected cost for each element.

In more precise terms, we will consider cost functionals C(f, 7) of the form:

cif, = EL Cifi, ;) (10)
tE
with
=0, ifa=0"b
’ C,-(a, b){ . i
>0, ifas%b ,foralls

We will assume that the value of each element f; of the field f is constrained

to belong to some finite set @; (the generalization to the case of compact sets

is straightforward). The Optimal Bayesian estimator }'. with respect to the cost
functional C is defined as the global minimizer of the expected value of C over all
possible f and g:

LY

ety =, ot 1 )P0 =

=inf [, O(f DaPrf:0) (11)

We now have:
Theorem 1:

The optimal estimate of a field f with respect to the positive definite cost functional
C can be found by minimizing independently the marginal expected cost for each
element, ie.,

A

Fi=q¢ : X C{rqP(r|g) < > Gilr,9Rir |9

r€Q; reQ;

for all s 5~ ¢, and for all s € L.

Py(r | g) is the posterior marginal distribution of the element s:

Pyfr|g) = Z Py,(f39) (12)

Si=r

47




Proof:

First, we note that since C is positive definite, and since

Pro(f,9) = PIIg(f; 9)Fy(9)

- - where P,(g) is a constant for a given set of observations, we can write, from (11):
Zf: C(f, F )P(f;9) = ir}lf ; C(f, PPpy(£;9)
- Using (10), we rewrite the right hand side as:
inf ; 2 Cfi F)Ppy(fi9) =
- ' = iqu 2 C(fit }.:')Pﬂy(f; g) =
mfz E Z C(”i?z’)PIIg(f; 9)
t 1€EQ f:fi=r
- From (12), we find that this expression is equal to:
me > Cir, }:)P(r | g)
t TEQg
which, since C is positive definite, we can rewrite as:
>inf 3 Cir,f)P(r|g) u
i J; rcQ:
The optimal estimators for the error criteria defined in section 3, can be easily
derived from this result:
- In the case of the segmentation problem,' we put
Cilfo F;)=1-6(f; - 1))
- and get that

Y (1= &(r, 1)Pr | 9) = 1= P(J; | 9)

TEo
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and therefore,

L ]

-

fi=4q€@Q; : Pq|g) > PFis|g)
forall s % q (13)
We will call this estimate the "Maximizer of the Posterior Marginals” (fuspaz)-

For the reconstruction problem, we set:

Cilfu £ = (fi — £)?

now,
S (r—q)fP(r|g) < Y (r—9)*Pr|9g)
r€Q; reQ;

- implies that

—2qF + ¢ < —257 + 5%

or equivalently,
(F—q)? < (F—s)?

where

so that the optimal estimate is:

fi=a€Qi + (fi—q? < (7;'—3)2
forall s # q (14)

We will call this estimate the "Thresholded Posterior Mean" (Frpas).

Note that these results still hold if the sets @; of allowable values for each
element, or the individual cost criteria C; are not the same for all . In particular,
we may assume that the index < varies over the union of two lattices:

i€ Li|JLe
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and let the field at the sites of L, represent the height of a piecewise smooth surface,
and at the sites of Ly, take an integer value to indicate the presence (and possibly
the direction) of a boundary between two adjacent continuous patches (see Geman
and Geman, 1984; ‘we will explain this construction in detail in chapter 5). If we
now define a mixed error functional:

em(£, )= 2 (fi— 5P +X T (- 6(fi— 1)

€L, t€Lg

for any positive value of ), the optimal estimate will be:
= {}'TPM(':)- t€ly
' Turm(), €L

The main obstacle for the practical application of these results, lies in the
formidable computational cost associated with the exact computation of the marginals
and the mean of the posterior distribution given by (5), even for lattices of moderate
size. In the next section we will present a general distributed procedure that will
permit us to approximate these quantities as precisely as we may want.

5. Algorithms.

The algorithms that we will propose are based on the use of the Metropolis or »
Gibbs Sampler schemes that we presented in chapter 2, to simulate the equilibrium
behavior of the coupled MRF described by equation (5). We recall that the Markov
chain generated by these algorithms is regular, and their invariant measure is the
posterior distribution Py,. The law of large numbers for regular chains (see, for
example, Kemeny and Snell, 1960) establishes that the fraction of time that the
chain will spend on a given state f will tend to Pyi4(f;9) as the number of steps
gets large, independently of the initial state. This means that we can approximate f
by:

PRI W
f‘~ﬂ—k¢§kf' (15)
and the posterior marginals by:
1 n
Flalo)~ = L 81" -9 (16)
t=
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where f{t) is the configuration generated by the Metropolis algorithm at time ¢,
and k is the time required for the system to be in thermal equilibrium, From these

values, Fppp and frpas can be easily computed using (13) and (14).

This proéeduré is related to the use of simulated annealing (see section 4 of
chapter 2) for finding the global minimum of Up (i.e., the MAP estimate: see
Geman and Geman, 1984). In our case, however, we are interested in gathering
statistics about the equilibrium behavior of the coupled field at a fixed temperature
T = 1, rather than in finding the ground state of the system. This fact gives our

procedure some distinct advantages:

1 Itis difﬁcult to determine in general the descent rate of the temperature
(annealing schedule) that will guarantee the convergence of the annealing
- process in a reasonable time (it usually involves a trial and error procedure).
Since we are running the Metropolis algorithm at a fixed temperature, this

issue becomes irrelevant.

2. Since in our case we are using a Monte Carlo procedure to approximate
the values of some integrals, we should expect a nice convergence behavior, in
the sense that coarse approximations can be computed very rapidly, and then
refined to an arbitrary precision (in fact, it can be proved (see Feller, 1950)
that the expected value of the squared error of the estimates (15) and (16) is
inversely proportional to n).

~ The main disadvantage of this procedure is that in the case of the segmentation
problem, a large amount of memory might be required if the number of classes
per element m is large (we need to store the N(m — 1) numbers that define the
posterior marginals).

With respect to the relative performance, we point out that in many cases,
particularly for high signal to noise ratios, the MAP estimate is usually close to the
optimal one. If the noise level is high, however, the difference in the performances
of the two estimators may be dramatic. This is illustrated in the example portrayed
in figure 6: panel (c) represents the MAP estimate of the binary MRF (a) from the
noisy observations (b); it is clear that the approximations to the MPM estimates
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shown in panels (d) and (e) are better than the MAP from almost any viewpoint. An
intuitive explanation for this behavior comes from the fact that the MAP estimator
is implicitly minimizing the expected value of a cost functional Cumar(f, ]‘) which is
equal to zero only if f; = f; for all i, and is equal to, say, M otherwise. If the signal
to noise ratio is sufficiently high, the expected value of the optimal segmentation
error will be very close to zero, so that Tmpa and Fmap will coincide. In a high
noise situation, however, the MAP estimator will tend to be too conservative, since
from its viewpoint it is equally costly to make one or one thousand mistakes. The
MPM estimator, in contrast, can make a better (although more risky) guess, since
making a few mistakes has only a marginal effect on the expected cost. We will
return to this example, and analyze in detail the relative performance of both
estimates in the next chapter. '

6. Computational Complexity and Parallel Implementations.

We have seen how the optimal solutions of reconstruction problems , for a
large class of cost criteria, can be obtained from the observation of the evolution
of the Markov chain generated by the algorithms presented in chapter 2. In this
section, we will discuss the following questions:

() Which of these algorithms is the best one to use on a serial machine, from
the viewpoint of the computational efficiency.

(ii) Which one is best suited for an implementation in parallel hardware.

We will also describe a parallel machine that is currently under construction at
Thinking Machines Corporation and at the MIT Artificial Intelligence Laboratory:
the "Connection Machine" (Hillis, 1985), and present estimates for the execution
time of these-algorithms in that particular piece of hardware.

6.1. Serial Complexity.

Suppose we are running our algorithms on a serial machine. In the three cases
(Metropolis, Heat Bath and Gibbs Sampler), we first have to select the next site
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Figure 6. (a) Sample function of a binary MRF. (b) Output of a binary symmetric channel
(error rate: 0.4) (c) MAP cstimate. (d) Monte Carfo approximation to the MPM estimate. (e)

Deterministic approximation to the MPM estimate.
whose state has to be updated. Assume it is site . Let AU, denote the increment
in the posterior energy associated with replacing the value of the state of the #*h
element by the value ¢. Using (6) and the expression for Uy of (4), we get:

AU, = —Cze: (Ve(FD) = Vol ) + B:(F @, g:) — 04(f, 45) (15)

where ., .
p={f o (18)
q, =1

Let C(AU) denote the computational cost of evaluating (15).
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The necessary steps for updating the state of site « are, in the Metropolis scheme
(see section 3.1 of chapter 2):

(i) Select the candidate state ¢ from the set Q; (generate a uniform pseudo-
random number in the range (0, |Q;[], with cost C(prn), and load ¢ from
a table, with cost C(load)).

(ii) Compute AU,

(iii) Check if AU, > 0 (cost: C(comp)). If not, set f; = q. Otherwise, go to
(iv):

(iv) Compute ezp[—AU,] (cost: C(ezp)).

(v) Generate a new uniform pseudo-random number in the range (0, 1).

(vi) Compare it with exp[—AU,).

Therefore, we have that the total updating cost for the Metropolis scheme, C)y,
satifies:
Cm > C(AU) + C(prn) + C(comp) + C(load)

Cum < C(AU) + 2C(prn) + Clezp) + 2C’(comp) + C(load) (17)

For the Heat Bath scheme, steps (i), (ii) and (iv) are identical, and Step (iii) is
deleted. The remaining steps are in this case;

(v) Generate a new uniform pseudo-random number r in the range (0,1 +
exp[—AU,]]

(vi) If r > 1, set f; = g; otherwise, leave f; unchanged.

The updating cost for the Heat Bath scheme, Cyp is then:
Cup = C(AU) + 2C(prn) + C(ezp) +

C(comp) + C(add) + C(load) | (18)

and in general, it will be higher than C),, since
C(ezp) >> C(comp)

For the Gibbs Sampler, we select the new state by generating a pseudo-random
number which takes values on Q;, with probabilities given by the conditional
distribution (equation (1) of chapter 2). To do this efficiently, we rewrite this
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equation as:
exp[—AU,]

Treq, exp[—A Ur

Pfq| f)=
(Note that AUy, = 0).
Let @; = {q1,---,anm}. We now generate an array a, by putting:
ag =0

aj =a;_y +exp[-AU,] , 7=1,...M

The new state f; is now computed by generating a uniform pseudo-random number
r in the range (0, ap], and putting:

fi=aq; ; r€(aj_1,a4]

The computational cost will be:
Cgs = (M —1)[C(AU) + C(ezp) + 2C(add) + 4C(load) + C(comp)| +

+C(prn) (19)

~ note that we are including the overhead cost incurred by the use of the auxiliary

array a.

If N is the size of the lattice, and we perform = iterations to compute our
estimate, the total cost will be:

Cr = N -n - (C(update) + C(select) + C(overhead)) (20)

where Cf(select) is the cost associated with the selection of the next site whose
state is going to be updated. This selection involves the generation of 2 uniform
pseudo-random numbers in the first two cases, whereas for the Gibbs sampler it
requires only a couple of additions, since in this case we can select the next site
using a deterministic rule, such as lexicographic order (see section 6.3 below).
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Since C(update) is the dominant cost, apparently one should conclude that the
Metropolis algorithm is the most efficient. It must be considered, however, that
as the size of the state space (i.e, M = |Q;|) increases, the number of iterations
needed to get an estimate with an equivalent degree of precision will increase much
faster in the Metropolis or Heat Bath cases, than in the Gibbs sampler, since in the
latter case we are using an “"importance sampling” procedure, versus the uniform
sampling of the former (see Hammersley and Handscomb, 1965).

A rigorous analysis of the tradeoffs involved is not easy, and is highly dependent
on the nature of the particular problem, so that an experimental analysis might be
needed to clarify these questions in each case. In the more interesting case of a
parallel implementation, however, the Gibbs sampler becomes the obvious choice.
We will justify this assertion in the following sections.

6.2. Parallel Updating.

A necessary condition for the convergence of the probability measures of the
Markov chains defined by the Metropolis, Heat Bath or Gibbs Sampler algorithms
to the Gibbs measure is that if two sites belong to the same clique, they are never
updated at the same time. As we will show in the next section, this condition is
also sufficient only for the case of the Gibbs sampler. In this case it is possible to
update simultaneously the states of all non-neighboring sites, by implementing the
algorithm in a parallel architecture in which a processor is assigned to each site.
The total execution time will then be reduced by a factor of

N

K

where K is the so called "chromatic number” of the graph that describes the
neighborhood structure, and it is equal to the minimum number of colors needed
to color the sites of the lattice in such a way that no two neighbors are the same).
Note that if the state of every site is allowed to take real (continuous) values, we
may use a numerical simulation of the stochastic differential equation:

df = —gradU(f)dt + V2T dw
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to generate sample configurations from the desired distribution (see section 3.3 of
chapter 2). In this case, all sites can be updated at the same time, so that a parallel
implementation can reduce the complexity by a factor of N.

6.2.1. Convergence of the Gibbs Sampler.

Geman and Geman (1984) established that the measure of the Markov chain
defined by the Gibbs sampler will converge to the Gibbs measure independently of
the initial state, independently of the order in which the sites are updated (provided
only that we keep visiting every site, i.e., that we update its state infinitely often).
The convergence of the parallel implementation, therefore, follows from this general
result for which we present here a simple alternative proof:

First, we note that from the definition of a MRF, it follows that for every site
7, every value q € @;, and every configuration f, the conditional probability,

Pr(fi=gql|f; , 7154 >0

Since by hypothesis every site is visited infinitely often, this implies that any
two states of the chain will be mutually accessible (with positive probability) in a
finite number of steps, which means that the Gibbs sampler defines a regular chain.

On the other hand, the Gibbs measure =(f) is an invariant probability vector
of the chain. To see this, suppose that at time ¢, just before updating site ¢, the .
possible configurations of the field F(t) are distributed according with the Gibbs
measure:

Pr(F(t) = f) = =(f)
After the update we have:
Pr(F(t+1) = f)=Pri(F(t+1)=f; | F;(t)=f; , J§#1)
| Pr(Fi()=f; » §#)=
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=a(filfy » 7F#0)-n(f; , jF#1i)=n(f)

because, by the definition of the algorithm, the new state of the :t* element is
selected randomly according with the conditional Gibbs distribution. The proof is
now completed by remembering a well known theorem for finite Markov chains
(see Kemeny and Snell, 1960) that establishes that every regular Markov chain:
(i) Has a unique invariant probability measure.
(ii) The measure of the chain will converge (with probability 1) to this invariant
measure independently of the initial probability distribution of the states.

Note that, unlike the Metropolis and Heat Bath algorithms, the convergence of )
the Gibbs sampler does not depend on the reversibility of the chain (or equivalently,
on the satisfaction of the "detailed balance" condition given by equation (3) of
chapter 2), although this condition will hold if we use it with a random updating
order. We will now see that the reversibility will not hold in general if we use a
parallel updating scheme, which will make the first two algorithms unsuitable for
parallel implementations.

6.2.2. Breakdown of Reversibility for Parallel Updating.

To show why this condition is violated (by the three algorithms) when a pai'allel
updating scheme is used, we will consider a first order, binary MRF on a lattice L
with Ising potentials, that is,

fi€{o,1} forallieL
-1, if |z'—j|=1andf.-=f,-
Velfi, f;) =11, if |[¢—j|=1and f; # £y
0, otherwise
To implement a parallel updating scheme, we divide the sites of the lattice into
two non-overlapping sets, which we will call B and W (the sets of "black” and
"white" sites, respectively) as illutrated in figure 7.

Let fw, fp denote the state of the elements belonging to W and B, respectively,so
that f = {fw, fp}. The parallel updating scheme consists in updating first, say, all
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Figure 7. Non—overlapping scts for parallel updating (see text)

the white sites, and then all the black ones. Note that the random variables associated
with any two sites of the same color are conditionally independent (given the state
of the elements of the other color), which means that the order in which their state
is updated is immaterial, so that, in fact, they can be updated simultaneously. |

Let Py, Py, denote the transition probabilities corresponding to an update
of all the white and black sites, respectively. Note that both Markov chains with
~ transition probabilities Py and Pjp satisfy the detailed balance condition (although
they are clearly not regular), so that for a fixed fg, we have:

PW({fW’ fB}: {?W! fB}) :E;W, ;B;PW({fW: fB}s {fW: fB})

and similarly, for a fixed fw,

Po({fw, o}, {fw, fa}) = %PB({fW. 78}, {fwis})

where = is the Gibbs measure of the complete configuration f = {fw, fg}.

Now, let Py5(f, ) be the transition probability associated with a complete
"white-black" update (where the white elements are updated first). We have:

Pws(f, F) = Pw{fw> 8}, (Fw F81)Ps({Fw» 3}, {fw: Ta}) =
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ﬂ(?W!fB) .
(fw, fB)

.PB({fw, Tub {w, fu}) =228 :gx: ;ﬁi
_ =9

=(f)

where Pyy is the transition probability of the converse "black-white" update (black

= Pw({fw, fu}, {Iw, fn})

PBW(f:f)

sites visited first).

Now, consider the particular configuration:

G ‘ fi={o, tEW

1, tE€EB
and let
}‘i=1 forallzGL
Clearly,
Pew(f, f) > Pwai(F, f)
and so,

W(f)PWB(f’ }) > ﬂ(})ﬂVB(}y f)

so that the detailed balance condition does not hold.

The above argument can be easily generalized to show that if we use any
prescribed updating order (such as lexicographic order), the Markov chain generated
by any of the three algorithms will also become irreversible. These chains, however,
will remain regular, which means that in each case, the probability distribution of
the configurations generated by the chain will converge towards a unique invariant
distribution. In general, however, it will not be possible to guarantee the coincidence
of this invariant measure with the desired Gibbs distribution, except in the case of
the Gibbs sampler.

An example of a situation in which the invariant distribution is not the
Gibbsian measure, can be obtained by running the Metropolis algorithm, either
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- with lexicographic or "black-white" updating order for the Ising model discussed in
section 2 of chapter 2. If the natural temperature is below the critical temperature
of the infinite lattice, the algorithm will produce equilibrium configurations that
are almost completely uniform, and therefore, inconsistent with the theoretical
predictions (and with the behavior of the same algorithm when random updating
order is used). The Gibbs Sampler (which in this case is equivalent to the Heat
Bath scheme), on the other hand, produces consistent results, as expected.

6.3. Discussion.

The previous results mean that the expected computational cost (execution
time) for the solution of a reconstruction problem on a large parallel machine, using
our general Monte Carlo procedure, will be given by:

Cp=n-K Cgg ' - (21)

where n is the number of (global) iterations; K is the chromatic number of the
graph of the underlying Markov model, and Cgs is the updating cost of the Gibbs
Sampler, given by equation (19).

An example of such a massively parallel architecture is the "Connection
Machine" (Hillis, 1985). This machine was originally designed for the parallel
processing of structured symbolic expressions, such as frames and semantic networks.
It is a "Single Instruction Multiple Data™ (SIMD) array processor consisting of
256,000 processing units (each with a single bit Arithmetic/Logical unit, and about
4K bits of storage) organized in a four-connected lattice that is 512 elements
square. Besides this nearest-neighbor connectivity, it will also be possible (although
computationally more expensive), to connect any two processors in the array using
a "Cross Omega" router network (Knight, in Winston, 1984).

At each cycle of the machine, for which we will assume a duration of
one microsecond, an instruction is executed by each processor, and a single
bit is transmitted to its neighbors. This means that the updating scheme can
be implemented most efficiently if the field is first order Markov, but higher

61




- order processes can also be implemented without using the router by successively
propagating the transmited state (the execution time, therefore, will grow linearly
with the order of the field).

To make these results more concrete, consider, as an example, the problem of
finding the optimal estimate for an M-ary, first order MRF with Ising potentials
(i.e., the segmentation of a piecewise constant image) from noisy observations (we
will analyze this problem in detail in the next chapter). Let us assume that the
estimator is to be implemented in the "Connection Machine”, and suppose that by
the use of appropriate scaling factors, all the numbers can be represented as 16-bit
integers. We will use the following conservative assumptions: We assume that 16
cycles of a single 1-bit processor are needed to perform 16-bit addition, substraction
.or comparison; 162 cycles to perform multiplication or division; 2 X 162 cycles for
generating a pseudo-random number with uniform distribution on a given interval;
16 cycles for memory transfer operations, and 6 X 16 cycles for computing an
exponential,

Assuming that we run 250 iterations of the system, and ignoring the overhead
time we get, from (19) and (21),

Cp =~ 1.4(M — 1) seconds (22)

} Although this execution time may be reasonable in many cases, it is clear that

this approach becomes impractical as M becomes large. In this case, it might be
more convenient to approximate the field by one in which the state at each site takes
continuous values in a compact set and, provided that Up satisfies the appropriate
smoothness conditions, use the stochastic differential equation:

df = —gradUp dt + V2T dw (23)

where w is a Wiener process, to simulate the behavior of the system (see chapter 2,
section 2.2).

This scheme will not work, however, if some of the variables are intrinsically
discrete (e.g., binary variables indicating the presence or absence of a boundary). In
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this case, it might still be possible to use a mixed scheme in which the state of the
discrete variables is updated using the Gibbs Sampler, and that of the continuous
ones using equation (23), but the precise form of such mixed schemes has not been

determined, nor their convergence properties established.

These considerations provide us with a strong motivation for finding alternative
ways of solving these problems. In particular, much more research is needed in the

following directions:

(i) Design of more efficient (possibly deterministic) algorithms for approximat-
ing the optimal estimators for particular classes of problems.

(ii) Design of analog and hybrid networks for implementing these kinds of
algorithms.

We will study these possibilities in detail, in the context of specific problems
in the following chapters.
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Chapter 4

RECONSTRUCTION OF PIECEWISE CONSTANT FUNCTIONS

1. Introduction.

In this chapter we will apply the optimal Bayesian estimators that we have
developed, to the problem of reconstructing piecewise constant functions from noisy
observations. The efficient solution of this problem is relevant for several reasons:

(i) Binary images (or images consisting of only a few grey levels) are directly
useful in many interesting applications (for example, object recognition
and manipulation in restricted (industrial) environments).

(i) Several perceptual problems, such as the segmentation of textured images
(Elliot, et. al. (1983); Hansen and Elliot (1982); Cohen and Cooper (1984)),
or the formation of perceptual clusters (O’Callahan (1974); Marroquin
(1976)), can be reduced to the problem of reconstructing a piecewise
constant surface.

(iif) As we will see in the next chapter, where we treat the reconstruction of
piecewise smooth surfaces, the boundaries between continuous patches can
be adequately modeled by binary fields coupled with continuous valued
processes. These coupled systems are very difficult to analyze in a rigorous
way. We hope to increase our understanding of them by studying first the
estimation of binary fields.

2. Problem Formulation.

Following Geman and Geman (1984), we will model the behavior of piecewise
constant functions using first order MRF models on a finite lattice with generalized
Ising potentials:




_ -1, if f—jl=1and f; = f;
Velfi, f;) =31, if i—j|=1and f;#f; (1)
0, otherwise

fiEQi={QI)°“:QM} for all ¢

We will use a free boundary model, so that the neighborhood size for a given
site will be: 4, if it is in the interior of the lattice; 3, if it lies at a boundary, but not

at a corner, and 2 for the corners.

The Gibbs distribution:
1 1
Pi(f) = 7 exP[—FoUo(f)]

Uo(f) = 22V (i, £5) (2)
%2
defines a one parameter family of models (indexed by Tp) describing piecewise

constant patterns with varying degrees of granularity.

Using the general stochastic model for the observation process presented in
section 2.1 of chapter 3, we get the posterior distribution given by equation (6) of

that chapter:
Pygo(fi9) = 21; exp(—Up(f;9)]
with
Up(f;9) = %—Uo(.f) +Y (f,9) (3)
0 i€S

Of particular interest will be the case of binary fields (M = 2) with the observations
taken as the output of a binary symmetric channel (BSC) with error rate ¢ (Gallager,

1975), so that:
(1—¢), for g; = f;

€ for g; # f;

In this case, the posterior energy reduces to:

P(gilfi)':{

Ur(fi9) = g DV £5) + @ 0 - 8(f — 90) 0
1,9 3
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where f; € {q1,92}; .
1, ife=10

s(a) = { (5

0, otherwise

and

a=ln(1—e) (6)

€
Note that in this case (and also in the case of additive white Gaussian noise), by
modifying the constant Zp, and applying a suitable linear transformation to the
variables {f;}, so that Q; = {—1, 1}, we can write the posterior energy in the form:

Up(fi) =5 3 fili+eX f ™

i,:li—j]=1 B

which corresponds to the Hamiltonian of an Ising ferromagnet coupled with a
spatially varying external magnetic field (whose magnitude is proportional to g).
The importance of this connection is twofold: on the one hand, it means that .the
tools developed for the equilibrium behavior of these systems — which is wﬁat
the estimation process is about — may be relevant for the physicists. On the other
hand, it is conceivable that one could use physical ferromagnets to construct special
purpose "quantum" computers that could solve estimation problems at atomic
speeds.

In the following sections, we will study the relative performance of different
Bayesian estimators, and design efficient algorithms for approximating them in some
important particular cases.

3. Relative Performance of Bayesian Estimators for Binary Fields.

Once the posterior energy has been determined, one can solve the reconstruction
problem by finding the optimal Bayesian estimate of the field f. As we discussed
in chapter 3, however, we have several possible choices for the optimality criterion.
To understand the differences in their performance, we will now analyze in detail
the estimation of binary fields, when the observations are the output of a BSC with
error rate e.
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Since the ficld is binary, the MPM and TPM estimators (defined by equations
(13) and (14) of chapter 3, respectively) coincide. The question is: how do the
performances of the MAP, and say, TPM estimates compare with respect to the

error criterion:
E=E[e,(f,}')]
with N .
es = Y, (1—6(fi - f))
i=1
where N is the size of the lattice, and the expectation is taken over all possible
configurations f and g.

In particular we are interested in the ratio:

€TPM

_ X/ exp[—Up(f; g)les(f, 2’ Mmapr(9))
1.0 exp[=Up(f; 9)les(f, frpam(g))

The numerical evaluation of this expression is feasible only for small values of N.

In figure 8 we show a plot of the ratio » for a 2 X 2 lattice, for different values
of the error rate € and the natural temperature Ty. As expected, r is never less than
1. In the worst case (for e = 0.1 and Ty = 0.2) the error of the MAP estimate
is 1.17 times that of the MPM estimate; if T, is not too small and e is not too
large, both estimates coincide, and as e approaches 0.5 (low signal to noise ratio),
the MPM estimate is consistently better than the MAP. An experimental analysis
of larger lattices reveals a similar qualitative behavior, but the values of » are much

larger in this case (see table 1).
3.1. Example.

We now return to the example presented in figure 6 of chapter 3, and examine
it in more detail. Panel (a) represents a typical realization of a 64 X 64 Ising net
with free boundaries, using a value of To = 1.74 (0.75 times the critical temperature
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Figure 8. Ratio of the average errors of the MAP and MPM ecstimators for a 2 X 2 Ising net.

of the lattice); panel (b), the output of a binary symmetric channel with error
rate e = 0.4; panel (c) the MAP estimate, and panel (d) an approximation to the
MPM estimate (which we will label "MPM (M.C.)") obtained using the Metropolis
algorithm and equation (10) to estimate the posterior density. The corresponding
values of the posterior energy Up (equation (13)) and the relative segmentation
error (e,/642) are shown on table 1.




Table |

f g Fmap Furm(M.C)  Trpm(Det.)
Energy —5594.8 —226.0 —6660.9 —6460.0 —6427.0
Seg. Error - 0.4 0.33 0.128 0.124

4. Exact Algorithms for the MAP Estimator.

From the discussion of the previous section, it is clear that if the signal to
noise ratio is not too low, the MAP criterion may be an appropriate choice, if
one can design efficient algorithms for computing it. As we will now show, in
the case of one-dimensional binary fields, one can in fact construct an algorithm
which computes (exactly) the MAP estimate with computationaI complexity which
is O(N) (the length of the lattice) in a serial machine: at most 22N operations are
needed, and the Storage requirements are also O(N). The algorithm can also be
distributed in a parallel architecture, making its execution time independent of the

lattice length.

To simplify the notation, we will assume that f; € {—1,1} for all 4 (there is no
loss of generality in this asumption, since any binary process can be brought into
this form by a reversible linear transformation). Also, assuming the noise process is
stationary, we introduce the notation:

Vs (9:) = %‘I’i(fi; g)

where Tp is the natural temperature of the field.

From equations (1) and (3), it is clear that the MAP estimation problem is
equivalent to the minimization of:

Up(fy=n+ Z ¥ 1.(9:)
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where n is the number of places where f; 5 f;,; (the number of odd bonds of the
configuration). From this expression, it follows that the MAP estimation process can
be reduced to the problem of finding the optimal value for n, and the best locations
for the odd bonds (- which we will also call "boundaries" between constant-valued
blocks). We will now present a procedure for performing this task.

Description of the Algorithm.

The idea in which this method is based is the following:

We start scémning the sequence {g;}, say, from the left, with some initial
estimate k € {—1,1} for the value of f in the block that starts at /o (a pointer that
is initially set to 1).

Whenever we process a new observation g, we ask if we can get a lower energy
by putting a boundary in j and in the best possible location [ within the interval
[lo, 7], that is, we ask if:

Uh+1 <0,

where .
J
Up == Z ‘I’-Hc(gt')

1=lo

{ J
Up=1+ Y Uip(a)+ D Y_i(g)
t=lo i=I{+1

As we will see below, the optimal boundary location ! (which is initially set equal
to lp) needs to be updated only if the conditions:

Mtk
ML £ ML

j l
D Wikles) — ¥oi(es) < .Z;o U4 k(9:) — U_r(g:)

=l

hold simultaneously, in which case [ is set equal to j — 1. Here, fML denotes the
maximum likelihood estimate; since we are using a white noise model, it is given
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ML _ {1, if ¥41(g;) < ¥-1(g5)
1 —1,  otherwise

If we get a lower energy by putting a boundary at [, we set f; = k for ¢ € [lo, {];
update the value of the pointer ly by setting it equal to I + 1, and set the new
estimate for the value of f, in the block that starts at [y, equal to —k.

Otherwise, we just set f; = k, and continue to process the next observation.

When we reach gy, we take fy as the initial estimate and run the same
process backwards to get the final solution (in fact, one can show that it is possible
to make this backward run as soon as we get the second boundary). This means
that we can implement the algorithm in a distributed fashion, by processing in
parallel overlaping subsequences of {g;}, provided that the length of each of these
subsequences is greater than twice the length of the largest constant-valued block
in f. The final solution is then obtained by pasting together these partial estimates.

Formally, the algorithm is as follows:
Definition of Variables.

¢: Current position.

lo: Pointer to the beginning of the current region.

I: Current optimal location of the boundary in the interval [lg, 1].

k: Current estimate for f([lo,]).

U,: Energy increment associated with the assignment f([lg, 1]) = k.

Unm: Energy increment associated with the assignment f([lg, z]) = —k.

Us: Energy increment associated with the assignment f([lo, []) = k; f((1, 3]) = —k.
si: Best local (maximum likelihood) estimate for f;. |

sim1: Best local (maximum likelihood) estimate for f;_;.
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Up,: Energy increment associated with the assignment £([ly, {]) = k.
Ui Energy increment associated with the assignment f([lo, {]) = —&.
Utemp: Temporary storage register.

M: A very large positive number.

Ky: Switch indicating the method for estimating f;.
Algorithm A1(K,):

1: Initialization.
Setlp=1=1Up =Up = ml =0;Up =1;Upy = M.
Setk=1, if Kp=0 and ¥ +1(g1) < v -1(g1) .
-1, if Kg=0 and ¥ 4y(g1) > ¥ _1(g1) ;
Ko, if Ko 0.
Set sstml =k
2: Main Loop: For i from 1 to N do:
Begin

Set si =1, if ¥ 11(g:) < ¥ —1(gs) ;
—1, otherwise.

2.1: See if the optimal boundary location needs to be updated:
If (si %% kand si % siml and Up — Uy — U + Upyy < 0) do

Update boundary location:

Set :
=1-—1
Upt =Up
Uni =Um
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2.2: Update energy increments:
Set :
Up = Up + ¥ +Ic(9i)
Un=Un+V¥ -k(gi)
Up=Us+ ¥ _k(9:)
2.3: See if a new boundary has to be introduced:
If(Uy+1<Up)do:

Introduce a new boundary:

For j from g to [ do : Set f; =k

Set :
k= -k
lo=1+1
Utemp = Up — Uy
Up=Um— ml
Um=Utemp
Up=M
Uy=Up,+1

2.4: Set siml = s1
End
3: See if the last boundary has to be introduced:
If (U, < Up) do:
3.1: For j from Iy to I set f; = k.
32: Set lp =1+1.
5.3: Set k = —k.
‘4: Fill the last region:
For j from lp to N set f; = k.

End.
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The proof of the fact that this algorithm will in fact find the global minimizer of
(7) is presented in appendix 4.A.

In appendix 4.B we present an alternative approach to this minimization, which
is based on dynamic programming ideas. The resulting algorithm is less efficient than
the one we have Just presented for the case of binary fields, but it has the advantage
of being extensible to handle more general situations. Also in this appendix, we
compute the probability distribution for the number of odd bonds, and discuss the
relationship between the dynamic programming procedure, and the use of linear
filters to produce multi-scale descriptions of piecewise constant signals.

5. Estimation of Two-Dimensional Binary Fields.

The techiques developed in the last section for the exact computation of the
MAP estimate cannot be extended to the two—-dimensional case; the main difficulty
here is that the geometry of the boundaries between uniform regions (which in the
one dimensional case are simply points), causes a combinatorial explosion of the
* number of possible configurations compatible with a given total boundary length.
The question, then, is whether it is possible to find algorithms that approximate
the optimal estimates (with respect to the selected error criterion), that are more
efficient than the general Monte Carlo procedures presented in chapter 3.

5.1. MAP Estimator.

In the case of the MAP estimator, the efficiency of the Simulated Annealing
algorithm for the minimization of Up can be improved by defining large "blocks"
of sites (in a manner that is reminiscent of the "block-spin" strategy used by
Wilson (1975) in connection with the renormalization group approach to the study
of critical phenomena); the optimal estimate for the average value of the field in
each of these blocks is found, and then progressively refined by subdividing the
blocks in successive annealing stages. We will now show that, if we use a maximum
entropy assumption, the structure of the MAP estimation process for Ising models

74



is invariant under the "blocking" transformation; this means that the ground state
(i.e., the MAP estimator) of the aggregated process (with blocks of size L) also
corresponds to that of an Ising model with a coupled external field, in which the
natural temperature is scaled by a factor of 1/L, and the noise (coupling) parameter
by a factor of L2. As a consequence of this scaling, the final temperature for the
simulated annealing of this smaller network will be approximately L times larger

than for the original problem.

Let us consider a binary Ising net f with the observations taken as the output
of a binary symmetric channel with error rate e. From scction 2, we know that the

posterior energy will be:

Up = Tlo 2 V(fir £5) + a3 alfir 95) (8)
4l '
with 0, ifg=7f
’ g =Ji
alfog) = {1, if g; #
and

a=ln(1_€)
€

Notice that equation (8) can also be written in the form:

Up = Ti S Ve(fo £;) + o> ac(fir 9i) (8)
057 i

where Vg, q¢ are continuous functions satisfying:
Ve(z,y) = V(z,y) and

QC(z: y) = Q(zry) for z,y€ {07 1}

We will now derive an expression for the energy in the "block spin” case. Let us
partition the original lattice L into square blocks of side L. The "block observations”
gz, will now be the density of 1’s on each block, i.e.,

L1
aL(z)=ﬁ_§9j
J [
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- where B; is the ¢** block. The "block field" £, is defined in a similar way.

For a given f,, we compute the energy by assuming a maximum entropy
configuration, which occurs when the 1's that correspond to the given density fu(z)
are randomly distributed within the block. The energy will have three terms:

1. Interactions between adjacent blocks:

The interaction between two adjacent blocks ¢ and 7 will be:

Lj = [-1-(Pu + Po) + 1 (Po + Por)] - L

where Py, is the probability of having an element with state & on block ¢ adjacent
to an element with state [ on block j:

Py = fi(3)fu(7)

Por = fr(7)(1 — fi(3))
Pio = fL(2)(1 — f1(5))
Pop = (1 — fr(2))(1 — fu(5))

Substituting these values we get:
Lj = L{2(f1(5) + £ils) — 4fu(d)ful) - 1]

2. Interactions within each block:

This term depends on the relative frequencies of the clique configurations
11,10,01 and 00 (p11,p10, P01 and pgo, respectively) on each block (note that there
are 2L(L — 1) different cliques). Since the 1’s are randomly distributed we get:

pu = fL(2)?

P10 = po1 = fL(2)(1 — fL(3))

poo = (1 — f1(3))?
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so that the internal interaction I; is:
I; = 2L(L — 1)(—4fL(¢)? + 4f1,(5) — 1)

3. Interaction with the observations:

Assuming that the 1's in the observations and in the field are independently
distributed we get:

Lobs(3) = «L?[f1(3)(1 — gu(s)) + (1 — Fr(5))gr(8)] =

= aL2[£u(6) + 9u(i) — 21(5)a:(6)]

Finally, the energy takes the form:
Ur(fL) = Tlo ZI;:,' + E-(Tio[i + Ips(2)) =
1,7 t
= Lz SR + fuls) — 472l i) — 1] +
04y
(L= 1) D4£00 + 4R - 1)+
+aL ) (fu(5) + 91(s) — 2f1(3)9L(3)}

note that the sums are taken over pairs of adjacent blocks, and over all the blocks,
respectively. For L = 1, this expression reduces to (8’) with

Ve(fi, ;) = 2(fi + f;) — 4fifi — 1
gc(a,b) = a +b—2ab

For L > 1, the quadratic terms of Uy, are:

T£o[_4 > £l fuls) - 8(L - 1) X 1))

and since

-2 fu(d)fi5) + 2 3 fu(2)* = 2(fu(0) - fL()? > 0

)
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it follows that
> 2 3 fuiful)
1 %2

and

~4 Y fuld)fuld) - 8(L—1) 2] fllé? <
< —(4+8L—-1)) T fi(@)? <0

which implies that Uy, is negative definite for L > 1, and therefore, its minima,
constrained to the hypercube [0, 1]V (NN, is the total number of blocks) will always
lie in a corner of such hypercube, which means that we can use simulated annealing
to find the global minimum of Uy, constraining the search to {0, 1}". In this case,
the energy to be minimized takes the simpler equivalent form (up to an additive
constant):

Vs = = SVl fuli)) + <L T a(fuli), ()

T To/L g
The minimum energy solutions for each L can be interpreted as “"coarse scale”

representations of the original pattern f. Once a solution is obtained, the next

refinement (for blocks of size L/2) can be efficiently obtained using the previous

solution as a starting point, and initiating the annealing process at a lower temperature

(the MAP estimates presented in this chapter were obtained using this technique).
At present, however, we do not have a good method (other than trial and error) for

determining the optimal values for these initial temperatures.

Also in this connection, the work of Blake (1983, 1985) should be mentioned.
This author proposed the minimization of an energy function similar to Up as a
pragmatic criterion for restoring piecewise constant images. He also proposed an
algorithm, based on the successive approximation of Up by a family of convex
envelopes to find an approximation to the global minimizer.

The relative performance and computational efficiency of these various schemes
should be assessed experimentally.
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5.2. MPM Estimator.

In the case of the MPM estimate, it is possible to construct a fast deterministic
algorithm whose experimental performance (in terms of the average segmentation
error) is equivalent to the Monte Carlo method discussed above. It is based on the
following ideas:

First, we recall that for a binary pattern, the MPM and TPM estimates coincide.
We will approximate the posterior mean of (3) by that of a Gaussian distribution
P with the property:

Po(h) = e Ur(®  forall he {0,1}.
Zp
~ In particular, we use:

Po(h) = ZLG exp[—%)— IPICE ) - o S0 = 6] |

where
Ni={j€L : |i-j|l=1}.

For this distribution, % is the (unique) minimizer of the convex function:
1
Ua(h) = i‘; E Z (h,' - hj)2 +a Z(‘h,‘ — g,-)2
%

i JEN;

which corresponds to the unique fixed point of the system:

k
B+ _ Yjen: h_!,' )+ aTog: o)
¢ IN,l + aTy

We could now approximate our estimate by putting:

Fi = 6(k)
where fo > 1
o —{ 721 (10)
0, otherwise
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There is an additional consistency condition that }" must satisfy, however. It can
be shown that when the posterior distribution has the form given by (3) and (4),
the MPM estimate f, which by definition satisfies:

Pi|g(}.i;g) > ley((l - }:'); g)

also satisfies:
Py (f: 1) > Py((1-1) D) (11)

which means that if we replace the observations by the MPM estimate, and compute
a new MPM estimate for this modified problem, we should get the same result (the
proof is included in appendix 4.C). Translating this condition to the case of f’, we
get that it must satisfy:

-

Ji=ek) (12)

where h° satisfies: ) )
ht _ E]'EN.' hj + aTﬂe(h’i)
T |N;i| + aTp

In practice, we get k" as the fixed point of the system:

' B IM' + aTo

(13)
with

RO =§
Note that the function;

Un(h) = . .ez;v‘(h,' — h._.,')2 + aTy Z(h,‘ - e(h.-))"’

acts as a Lyapunov function for the system (13), which is therefore (locally) stable
(Vidyasagar, 1978).

This algorithm can be visualized as operating in two steps: In the first one,
we extract all the information that we need from the observations and encode it in
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h (which is continuous-valued), and in the second one, we find the closest binary

pattern that satisfies the consistency condition (11).

To illustrate the performance of this approximation, we show ]‘, for the
example discussed above, in panel (e) of figure 1, and its corresponding energy and
segmentation error in the last column of table 1 (labeled "MPM det.").

5.2.1. Parallel Implementation.

The dynamical systems defined by equations (9) and (13) can be implemented
directly in a parallel architecture, such as the "Connection Machine", by assigning
a processor to each site, and updating the state of all sites at the same time.
Fach update will require, for both systems, at most 10 (16-bit) additions and two
multiplications, that is, a total of 672 cycles of a 1-bit processor. We have found
experimentally that in most cases, less than 50 iterations of (9), and 100 of (13) are
needed for convergence, so that, using the figures of chapter 3, we estimate the
total execution time as approximately 0.1 seconds, an improvement of one order of
magnitude over the general Monte Carlo procedure described in that chapter.

5.3. Analog Networks.

Hopfield and Tank (1985) (see also Hopfield, 1982 and 1984) have studied the
behavior of "neural" analog networks of non-linear amplifiers interconnected by
resistors, whose dynamics can be described by the differential equations:

Uq
- = J%jv‘ Tjfi—— +15 | (14)
fi= e(“t)

Here, N; is the neighborhood of node 7; u; and f; denote the input and output
voltage of the ith amplifier; T;; is the conductance of the link between the nodes
i and j; I; is a fixed current injected at node i, and , a constant depending on
the internal resistance and capacitance of each amplifier. The gain function of the
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amplifiers, ©(-) is chosen as a sigmoid function that restricts the output to the
~ interval (0, 1), and has a form similar to the observed response of biological neurons
(hence the term "neural”). In particular, one can put;

O(u)

1
T 1+ exp[—Pu] (15)

where 3 is called the "gain parameter".

These researchers have proved that the system (14) is always stable, provided
we have T;; = Ty; for all ¢, 5, and in the high gain limit (for 8 >> 1), the stable
fixed points will be local minima of the "energy" function:

B(f) = —5 S Tfifi - X £k (16)

1,J
Note that we can write (14) as:

e J-N (18)

They have also pointed out that if one uses the gain function (15), the fixed
points of (18) will satisfy:

1
fi= 1 + exp[—B7H(f)] (19)
with 3B
Hi(f) = ~an > Tiifi+ L (20)
: JEN;

These equations will also be satisfied by the mean field approximation (see Reif,
1965) to the ensemble averages of a binary process f (f; € {0,1}) with respect to
the Gibbs measure generated by the energy (16) at a temperature T = 1 /Br. This
can be shown as follows:

The mean field approximation is obtained by assuming that the local energy at
node <, which is:

E(f)=-fl Y. Tfi + Kl = —f:Hi(f)

JEN;
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can be approximated by:

E;~—~fi| Y Tijf; + L] = —f:H(F)

JEN;

where f; denotes the ensemble average of f;. Since {7;} are constants for a given

temperature, we can compute f; as

7. — Zp=o fiexp[=H{J)/T] _
" Xn=ouexp[—Hi(f)/T)
1
1 + exp[~H,(f)/T]

This means that there is a fixed point of equation (18) that can be interpreted as an
approximation of the ensemble average of a corresponding binary MRF (note that
in general this fixed point will not be unique, and will depend on the selection of
the initial conditions; the lack of an adequate criterion for making this selection in
“the general case represents, at this point, a serious limitation of this approach).

In the case of the posterior energy (4), if we require that f; € {0,1}, we can
write it in the equivalent form (up to an additive constant);

f)———z 2, fifi- Z[— L a(2g; — 1)]f;

i JEN;

so that | |
2| N;

Hy=—-—"F = + of2¢g; — 1
4 af'_ TJEZ.-fJ a( 9i ) 0

In this form, one can construct directly the system (18), and defining the initial state
as ff-o) = u$°’ = 0.5 for all 7, find the stable fixed point that will approximate 7.
Since for a binary system the MPM and TPM estimators are equivalent, we can
approximate the optimal estimate by:

a {0, if ?" < 0-5
fi= .
1, otherwise

We have performed digital simulations of the system (18), and have found very
good performances for relatively high signal to noise ratios. For high error rates,
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the behavior of this approximation is similar to that of the MAP estimator. We will
have to say more about this approach at the end of the next chapter.

6. Simultaneous Estimation of the Field and the Parameters.

To apply the estimation procedures described in the previous sections, the
parameters that characterize, both the prior model of the field (the natural temperature
To), and the noise process, (the error rate e, or the variance o2) have to be known.
In most practical cases, however, we are only given the noisy observations ¢ and
general qualitative information about the structure of the field and the noise, so that
f,a (which stands for either log[(1 — €)/¢] or &) and T, have to be simultaneously
estimated.

In principle, one could use again a Bayesian approach, and assuming prior
independent uniform distributions for o and Tp (in the ranges (a2, «!] and [T, T},
respectively), find those &, 7 and f which jointly maximize the posterior distribution:

exp[—Up(a, Ty, f)]
(a! — 0)(T§ — T3)Z(To)Py(g)

P(f’ayTOIQ)——‘

The main difficulty here is the extraordinary computational complexity of the
partition function:
1
Z(To) = 3 exp[—-Uo(f)]
7 To

which makes this approach impractical, except for very small lattices.

An alternative approach is based on the following considerations (we will study
in detail the case of a BSC; other noise models can be analyzed in a similar way):

Equations (9) and (13), which describe the deterministic approximations to
Faapu depend on the parameters of the system, € and Tp, only through the product:

=aTlp=1Ty log(l : e) (21)

which means that the behaviour of the algorithm is completely characterized by the
single parameter v. In the case of the Monte Carlo approximation, if we fix the
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value of ~, the value of Ty cannot be chosen arbitrarily, since it has to satisfy the

consistency condition:

&3
I
Q|2

with

[=}]
I
—
Qo
0
N
(==Y
|
m>
\—/

™~
Il

2| -

Mz o
)

-
[
—

(22)

where z is the residual process defined as;

o {1. if ; # g 23)
0, otherwise _

This means that, given ~, the correct value of Ty can, in principle, be determined

in an adaptive way, so that in this case too, the behaviour of the approximation

~ depends eﬁ‘ectivcly‘only on 7.

For a given value of 4, we can approximate the corresponding MPM estimate

f using the methods developed in the previous section, and compute the residual

process z and the conditional (on ) Maximum Likelihood Estimate of the error

rate e using equations (22) and (23). The corresponding conditional estimate for Tp
will be:

Ty =

12

(24)

To measure the "likelihood" of the estimate 7, we use the degree of uniformity
(or "whiteness") of the residual process z. This property can be quantified by the
variance of the local noise density, which we estimate as follows:

We cover the lattice with a set {S;} of m non-overlapping squares (say, 8
pixels wide). For each square Sj, the relative variance of the noise density is:

5= (%) ol
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with

EJ' _— L z‘-
ISJI 1ES;
where |S;]| is the area of the jt* square.
The desired likelihood fuinction is:
- m
L(f)=- Zl a; (26)
J=

which is equivalent to a x? criterion (Cramer, 1946) normalized to take into account
the sample size.

Alternatively, one can use directly the likelihood that the residuals come from
a uniform distribution. To compute it, we note that the quantities:

are distributed according to the multinomial law:

P(vy,...vm) = _n'__'(_l_)"

vil...um\m

with

n=Né=vi+...unp

Using the Stirling approximation we get the log-likelihood:

m
L1y ovm) =log P(vy,...,v;m) =~ = Y v;logy; +

=1

+n log (%) + % log ( ) +K (27)

Vie..Vm
where K is a constant. We have found experimentally that both likelihood measures
(26) and (27) have a similar behavior when = is large. When = is relatively small,
or when for some i, v; = 0, however, (26) is preferable, and so, it is the one we

adopt.
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Note that a more conventional likelihood function, such as the conditional
likelihood proposed by Besag (1972), will not work in this case; this function is

defined as: . .
up="2DERD i,
Lk(}') = HC P(}‘,‘ | }‘j:j € N, TO) =
1€Ck .

N exp[—i Sien: V(Fir ;)]
i€Ck exp[—j,lo EjeN.- V(}'i. 3’,‘)] + exl’[“%0 szM V(- ?«i, }})] I

= M +exp[= S VD™, k=12

1€CH TO JEN;

where the "codings" C; and C; are the sets:
Cy={i : (z;isodd and y; is even) or (z; is even and y; is odd)}

C;={¢ : (z;is odd and y;is odd) or (z; is even and y; is even)}

with (z;,y;) denoting the row and column indices of site < (notice that, given the
value of the field at the sites of C,, the random variables associated with any pair
of sites of Cy become independent, and viceversa). In our case, we find that as v
decreases, f becomes more and more uniform, while 7y remains almost constant.
It is not difficult to see that as a result, the conditional likelihood L will decrease
monotonically with ~, which renders it useless for our purpose.

The range of values [yo, 7u] Of the parameter 4 that corresponds to the class
of systems of interest can be determined as follows:

One can show that for v > 8 we will always have s py; = g; for all 4, so that
we can use vy = 8. The value of o can be obtained from an upper bound for e
and a lower bound for Ty. For example, assuming that ¢ < .45 and Tp > .57, we
get vo = .23. (Note that when the natural temperature Ty of a first order, isotropic
MREF is below 0.5 times T (the critical temperature of the lattice; see Kindermann
and Snell, 1980), the patterns become practically uniform (i.e., f; =constant for all
1), while for values of Ty greater than 1.57,, we get patterns that are practically
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indistinguishable from white noise. Therefore, the assumption Ty > .5T, covers
practically all the interesting cases).

The complete estimation procedure is as follows:
~ Maximum Likelihood Estimation Algorithm:
1: Sample the interval [vq, vas] at the points
- 8 (I TR LN Y
2: Foreachy€ Q@ = {y1,... 7} :
-~ 2.1: Find f(v) using (9) and (13).
2.2: Compute z using (23).
2.3: Compute ¢ using (22). If ¢ = 0, set L(f(v)) = —oo and proceed with the
- next value of ~. Otherwise, compute & and go to 2.4.
2.4: Compute T using (24).
2.5: Compute L(f(7)) using (25) and (26).
3: Compute the optimal estimate _'f‘ using;
F=F") : LFQ)=sup L(F(7)) (28)
7€Q
| The corresponding ¢", 75 will be the optimal estimates for ¢ and To, respectively.
. Remarks:
1. This estimation algorithm allows us to reconstruct a binary pattern f from
the noisy observations g without having to adjust any free parameters. The only

prior assumptions correspond to the qualitative structure of the field f (first order,
isotropic MRF) and to the nature of the noise process, but neither the natural
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Figurce 9. (a) Synthctic image. (b) Noisy obscrvations. (¢) Maximum Likelihood Estimate. (d) A
complete scries of cstimates. The optimal estimate (for v = 2.9) is indicated by an arrow.

temperature T, nor the error rate ¢ have to be known in advance. In practice, this
‘means that we can apply it to restore any binary image with uniform granularity,
even if it has not been generated by a Markov random process. We have used this
algorithm to reconstruct a variety of binary images with excellent results. In figure 9
we show such a restoration. The observations (b) were generated from the synthetic
image (a) with an actual error rate of .35 (assumed unknown). The MLE for f is
shown in (c). A complete series of estimates }‘(7), with 4 varying from .5t0 3.5 is

shown in panel (d).

2. This procedure can be easily extended to handle any one-parameter noise
corruption process (such as zero mean, additive white Gaussian noise). The extension
to the case of N-ary fields, ie., to the restoration of piecewise constant images,
is also straightforward (using the general algorithm described in chapter 3 instead
of (9) and (13) in step 2.1). As an example, we present in figure 10 the optimal
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Figure 10. (a) Original tcrnary MRF. (b) Noisy obscrvations (additive Gaussian noise). ()
Optimal (Maximum likelihood) estimate.

restoration of a ternary pattern corrupted by additive white Gaussian noise.

3. We have found that the likelihood function (26) is reasonably well behaved as
a function of ~. This permits us to perform the one-dimensional search for its
supremum in an economical way, by first determining its approximate location using
a coarse sampling pattern, and then refining its position by a fine sampling of a
reduced interval. In practice, it is possible to get very good results using on the
order of 15 samples.

4. The whole procedure is highly distributed, so that it is possible to implement it
in parallel hardware in a very efficient way.

7. Formation of Perceptual Clusters.

At the heart of a general purpose perceptual system, one must have a mechanism
for deciding which parts of an image should be considered to "belong” together
(Marroquin, 1976). A simple instance of this problem is the grouping of dots in an
image into perceptual clusters. Some heuristic schemes have been proposed to model
this phenomenon (see for example, O'Callahan, 1974). We will show, however, how
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‘this problem can be formulated in an elegant way that is also biologically motivated,
as a particular case of the reconstruction of binary patterns from noisy observations.

The conceptual model for this formulation is as follows:

Let us consider the dots that form the original pattern as patches belonging to
some objects of uniform color that are partially hidden, say, by some foliage. In
this way, the formation of clusters is equivalent to the problem of reconstructing
these objects (whose cohesive nature is modeled by a first order MRF with Ising.
potentials) from observations that are formed according with the following model:

Suppose that f; = 1 only if an object overlaps the 3t* site of the lattice. We
assume that the "foliage" will hide this point (i.e., make g; = 0) with probability
¢, and that spurious values of g; = 1 can appear in sites where f; = 0 with a very
small probability p: ‘

, withprob. (1—¢), if ;i =1
,  with prob. ¢, if f; =1
, withprob. (1—p), if f;=0
, with prob. p, if f; =10

g9i =

- O O

with p < < 1. The posterior energy is:

Up(f39) = 7-Uo(f) + & 3 (1—6(1—g) +
0 :fi=1

+M 30 (1-6(s) (29)

©:fi=0
where Up(f) is given by (1) and (2):
~1,  if li—jl=1and fi=f;
Velfi, f;) = 41, if |i—jl=1and f; # f;

0, otherwise
UO(f) = Z V(fs') f)) y
%

6 and o are defined in (5) and (6):

§(a) = {

1, ifa=0
0, otherwise
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and M is a very large number.

The clustering task is now equivalent to the problem of estimating f and the
parameters « and Tp from the noisy observations g. To accomplish this, we can use
the method described in the previous section, except that in this case, only those
sites for which f; = 1 will be useful for the estimation of the residual density and
its local variance. This means that equation (22) has to be modified to:

where

and z; is defined in (23). Also, the sets S; used to compute the relative variance of
the residual density in (25) should now be taken as the intersection of the squares
that cover the lattice with the set A.

~ With these modifications, the Maximum Likelihood algorithm can be used
for clustering. Its performance is illustrated in figure (11) where we show; the
original dot pattern (upper left) and the recontructed objects for decreasing values
of v = aTp. The maximizer of the likelihood is marked with an arrow. We believe
that these preliminary results are encouraging, although, clearly, more numerical
and psychophysical experiments are needed to assess the plausibility of this scheme
to model human perceptual processes.

8. Discussion

In this chapter we have addressed the problem of reconstructing piecewise
constant functions from noisy observations. We showed that the optimal solution
to this problem can be obtained from the observation of the equilibrium behavior
of a generalized Ising net coupled with a spatially varying (but fixed in time)
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Figure 11. Formation of perccptual clusters. We show: the original dot pattern (upper left)
and the rccontructed objects for decrcasing values of y = . The maximum likelihood estimate
(i.e., the optimal clustering) is marked with an arrow.

external field. If we use the minimization of the expected segmentation error as
a criterion, the optimal estimate is the maximizer of the posterior marginals ( the
MPM estimator which was described in chapter 3).

‘We compared the rclative performance of the MAP and MPM estimators, and
found that for moderate signal to noise ratios, they are practically equivalent, but
as the noise level increases, the MPM estimate is (sometimes dramatically) superior.
A consequence of this analysis is that, if the noise level is not too high, the MAP
estimator may be a reasonable choice in those cases where it is computationally
advantageous. This is the case, for example, of the reconstruction of one-dimensional
binary signalé, where we derived a very efficient algorithm for its exact computation.

In the two-dimensional case, however, the situation is different: the general
Monte Carlo procedure for the approximation of the MPM estimator is in fact more
efficient, from a computational viewpoint, than the corresponding one for the MAP
(Simulated Annealing), and in the case of binary fields, we derived a much faster
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deterministic scheme with excellent experimental performance,

We also showed how these estimation procedures can be extended to the more
interesting case where the parameters of the system are not known in advance, In
this case, a maximum likelihood estimation algorithm can be derived, which, using a
likelihood function that is computed from the residuals, allows for the simultaneous
estimation of the field and the parameters.

We point out that although, for the sake of simplicity, we have concentrated
on the case of binary fields sent through binary symmetric channels, the results that
we have presented can be generalized to N-ary fields and other noise models (see
figure 10).

The constructions that we have presented can be applied not only to image
segmentation and restoration, but to other problems as well. As an illustration,
we presented a novel application to the modeling of the process of formation of
perceptual clusters. Another important problem that can be formulated in this way
is the recontruction of surfaces from stereoscopic pairs of images; we will discuss it
in detail in chapter 6.




Appendix 4.A

OPTIMALITY OF ALGORITHM Al

In this appendix we present a proof of the fact that the algorithm presented in
section 4 of chapter 4, effectively computes the MAP estimate for a one-dimensional,
binary MRF.

The optimality of the algorithm follows from the following propositions:

Proposition 1: Let S* = {iy,...l,} be the optimal boundary configuration, and
suppose that I, for k& < n was detected by AL. Then, lx,; will be the next boundary
detected by Al.

Proof:

Suppose I, was detected by Al, and let L be the next boundary detected. We will
assume that L £ l;,; and arrive at a contradiction. We will consider three cases:

Case 1. Suppose Al detects L at 7 < lg44.
Then, we must have that
Up(7) > Up(L) + Unm(5) — Um(L) + 2

and therefore,
U({lyy .oy Ly 5y kg1, - - }) < U(ST)

which is a contradiction.
Case 2: Suppose Al detects L at j € (lg41, lks2)-

This means that at ;7 we had that L was the optimal location for the boundary. In
particular, ‘

Up(lk+l) + Um(j) - Um(lk+1) > Up(L) + Um(j) - Um(L)
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which implies that
Up(L) + Un(lk+2) = Um(L) < Up(lis1) + Um(lk+2) — Unm(lk+1)
and therefore,
U{ly, - ley Ly ligz, ...} < U(SY)
which is a contradiction.
Case 3: Suppose that A1 has not detected any new boundary at j = 5 + 1.

Then, we must have:
Up(lk+2 +1) < Up(lgy2 +1) +1

which means that
U({t, - Ieylays,-- .} < U(S")

which is again a contradiction. g

Proposition 2: If A1 runs from left to right starting at a point Iy, and generates
the boundaries {ly,lz,...}, then, i; € S” (the set of boundaries of the optimal
configuration) for 7 > 2.

Proof:
Let ‘f', fa1 be the optimal configuration, and the one generated by A1, respectively.

Let
Li=suwp{j €S : j<ij}

L=uf{jeS : j>U}

If Ly = lp, we apply proposition 1 and finish the proof: so, let us assume that
Lo 5~ 1y, and that I; was detected at :. We have two cases:;

Case 1: Ly > lp. We claim that in this case, |; € S”, and therefore, by proposition
1€ S” for j > 1. To prove this claim, we consider two subcases:

Case 1-a: £*((lo, Lo)) # f41((lo, Lo)).




In this case, we have:
2 + Up(2) — Um(ly) + Up(l1) < Up(2)
and therefore,
2+ Un(i) = Un(ls) + Up(l1) — Upl(Lo) < Up(s) — Up(Lo)

which implies that [} € S”.
Case 1-b: f((lo, Lo)) = fa((lo, Lo)).
Suppose /; ¢ S*. We have that, at location 1,

Up(l1) + Unm(2) = Um(l1) + 2 < Up(Ly) + Um(3) — Um(Lo) + 2

since otherwise, Ly would have been a better location for the boundary. However,
this implies that

Up(l1) + Um(L) — Um(l1) < Up(Lo) + Um(L) — Um(l1)
which means that we can improve S* by movihg Lg to I1, which is a contradiction.
Case 2: Ly < lo.
Again, we consider two subcases:

Case 2-a: f"((Ly, ko)) = fai((Lo, lo))-

Let U,, U- be the energy increments with respect to Lo:

Ur(2) = i W x(g5)
i=To

U_()= 33 ¥-i(g;)

J=Lo

Note that

Un(i) = U_(5) = U~(lo)
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Since !; was detected at z, we have:

and therefore,
2+ U_(¢) = U-(l1) + U (1) < Us(2)

which means that {, € S”°.

Case 2-b: f*((Lo, o)) # fa1((Lo, lo)).

Using the same definitions for U,,U_, we have that, by the optimality of §*, for
some 7 > L,
U-(7) = U-(L) + Us(L) + 2 < U4 (4)

and therefore,
U_(§) = U-(L) + Us(L) = Uy (ly) + 2 < U4 (L) — Uy (ta)

which means that if A1 detects /;, it must detect L too, unless it detected Iy first,
but in this case we have that, for some p < 7

U-(p) — U-(l2) + Us(l2) = Us(h) + 2 < Uy (p) — Uy (k)

which implies that l; € S*. This completes the proof, g

It should be clear that these results can be easily extended to the case where
Al runs backwards (from right to left). With this extension, we get the following
complete optimal procedure:

Algorithm A2:

1: Run A1 from left to right. Detect {1y, ..., In}.

2: Run A1 backwards (starting from I3). Get either
{[2,...,1,.} or {ll’, lg,...,l,,}
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In either case, this is the optimal solution.

The only thing that remains to be proved is that the determination of the
optimal location for a boundary is in fact performed by step 2.1 of A1. We have
the following:

Proposition 3: Suppose that A1 detected a boundary at (or started from) lo. Then,
the optimal location ! of the next boundary has to be updated only at places where
st = —k and sim1 = k (note that in s: we have stored the value of the maximum
likelihood estimate fML, while sim1 = fM%). Suppose 7 is one such place. The

optimal location will be:

l {z'—l, ifUp(i —1) — Un(: — 1) < Upt — Upny
., (the current value) otherwise

Proof:

First, we note that a necessary and sufficient condition for ! to be the optimal
location of the boundary at the point < is that, for j € [lo,? — 1]:

Up(l) + Um(2) — Um(l) £ Up(5) + Um(2) — Um(5)

or equivalently,
Up(l) — Um(l) < Up(s) — Um(s)

Suppose | was the optimal location at  — 1, and we process observation . We
consider several cases:

Case 1: stml = —k
In this case, we show that [ remains the optimal location:

By construction, we have that:
Up(i — 1) = Up(t — 2) + ¥4i(gi-1)

Un(i — 1) = U(i — 2) + ¥_&(gi-1)
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Since sim1 = — we have that,

Vik(9i-1) = ¥_i(giy) > 0
and therefore,
Up(i = 1) = Un(i — 1) = U, (s — 2) ~ Un(i ~2) + ¥4 (g;y) — Y_i(gi-1) >
> Ut —2)—Un(i-2) > Up(t) ~ Un(l)
so that ! remains thé optimal location,

Case 2: siml = &

In this case we have that

This means that the minima] value for Up(:) — Unm(2) on a block for which s; — k
will be obtained at the extremal point where s = —g and stml = k, and since,
by theorem 1 of appendix 4.B, this is the only point where a boundary might
be placed, it is sufficient to update the optimal location only at these points, So,
SUDPPOse siml = k and st = —g,

If

then,
Upt = Ui < Up(5) — Un(5) for 7 € [lo,i—1]

because ! was the optimal location outside the last block where si — k. By the same
token, it is clear that if

Upt — Uy 2 Up(z — 1) — Un(: — 1),

the new optimal location will bes — 1.4
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Appendix 4.B

DYNAMIC PROGRAMMING FORMULATION OF THE
ONE-DIMENSIONAL MAP ESTIMATION PROBLEM

In this appendix we present an algorithm for finding the global minimum of:
N—1 N-1
Up= ) V(fifis1) +a ) &(g) (1)
~ which, based on dynamic programming principles, reduces the problem to a sequence

of one dimensional optimizations.

As we will see, this algorithm generates, as a byproduct, a family of solutions
which can be considered as descriptions of the field f at different scales, so that the
coarse descriptions, which are computed very fast, are progressively refined until
the optimal (finest scale) configuration is found.

This approach is based on the following idea:

A configuration f is completely characterized by the value of f;, and the set
L, defined by:
La={L : frL# fir1} ; |La|=n. (2)

We will call the n elements of L, the "boundaries” of the configuration f. Since
these boundaries correspond to odd bonds between neighboring cells, we can define
an equivalent energy function as:

U(f) = n+ 50() ; 3)
with 0(f) = E (I)j.-(g,'), i € {kO)kl} (4)

For a fixed n, U depends only on the value of f;, and on the position of the »
boundaries, that is, on n + 1 variables. To make this dependence more explicit, let

101



e

us define the functions

L
G(L) = 3 (Pko(9;) ~ Bk, (95)) (5)

7=l

Let Up and U, denote the energy functions corresponding to the configurations with
f1 = k; and kg, respectively, for a given set of boundaries

Lo={L,...L,}, L1 <...<L, (6)

We have that, for n even,

Ly Iz N
Uo(n, Ln) =n+ %[E Dro(95) + 3 Br(g)+ .-+ X Pilgs) =
=1 Li+1 La+1

=n+ g[c(z,l) —G(Lg) + ...~ G(La) + g:l By, (95)]

Iy L N
Ui(n, Lp) = n + g[z B4, (9)+ Y, Brolgs)+---+ X Pp(gy)] =
=1 Li+1 La+1

n+ %[—G(Ll) +...+G(L,) — G(N) + é D, (95)] (7)

and for » odd,

Uo(, La) = 1+ 5[G(Lx) = G(La) + .. + G(Ln) — G(N) + é B4, (97)]

N
Us(m, Ln) =n + S[~G(L1) +... — G(Ln) + 3 @ul9;) (8)

(Note that 3°; ®,(g;) does not depend on f).

Let Sg’_), 5% be the sets of boundaries that minimize Uy and U,, respectively.
Then, the optimal energy for a given n is:

U; = man[Up(n, Sg,))! Ui(m, Sg))] (9)
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We will define S, to be the corresponding optimal set of boundaries.

The determination of S{¥) is an n—dimensional optimization problem. However,
as we will show below, it is possible to decompose it into a sequence of one
dimensional optimizations using a dynamic programming formulation. With this
approach we also get, as a bonus, the solutions S(lk),...,SS,"ll, k € {0,1}, and
the éorresponding optimal energies. If we set n = N, the solution to the original
problem (3), U*(n",S,+) can then be found by a one dimensional search. This

strategy, however, can be dramatically improved by the use of the following facts:

(i) We can reduce substantially the search space for the location of the optimal
boundaries L; € S,;-.

(ii) The sequences {U},Us, ...} and {U,, Uy, .. .} are unimodal. This, together
with the fact that the dynamic programming algorithm uses S;_; to compute
S; provides us with an efficient stopping criterion for the computation of
the sequence {Si,...,Sp*}. '

(iii) The expected value of »” is usually small.

We will now describe the algorithm, and analyze each one of these facts.
1. Search Space for the Optimal Boundaries.
Let
Py = {M, My,...} =
={j: GGH—-1)<G()>G(+1), withG(j —1) 2 G(7+1)}  (10)
Pm = {m1,ma,...} =

={i: GG-1)2G(H <GH+1), withGj-1)#G(F+1)}  (11)

(Conventionally we include 7 = 1 in Py, if 0 < G(1) > G(2), and include it in Pp,
if 0 > G(1) < G(2)). We define the set P as

P=PulUPm=1{P,...P}

(Note that P corresponds to the set of places where the sequence {®,(g;) — ®x,(95)}
changes sign). :
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In what follows, we will call the elements of Py, P, and P, the "maxima”,
"minima", and "critical points” of G, respectively.

Let S,-, (S,-_) denote the subsets of S,- formed by those boundaries L;
whose correspondidg term G(L;) has positive (negative) coefficient in U ; ie., if

S = SW =(L,,...L,},

then,
Sty = {Lisk Lasks -}
Sn'— = Sn' - Sn'+ (12)

With these definitions, we have:

Theorem 1: Suppose that ®,,(g;) — ®,(g;) 7 0, for all 5 (a situation that will occur
with probability 1 for most observation models). Then, S,,-, C P, and S,-_ C Py

To see why this is true, let fML denote the maximum likelihood estimate for

f obtained by: '
ML _ {"h if @, (g;) > Pu,(95)

g 0, otherwise

~and let f* be the optimal estimate. Suppose that for some 7 we have, say, L; €

Sp+ — Pm. Suppose L; € (Px, Pr4+1), for some Py, Py, € P. Clearly, either P, € Pn,
Or Piy1 € Pm. Suppose, for definiteness that P, € P,,.

If P, ¢ S,., the configuration {Ly,...L;_y, P, L;11,...L,-} has lower energy
than S,. (we decrease I without altering =), which is a contradiction. If P, € Spes
then either

£ ((Pe, L)) # fMY(Py, L))
or f* (L, Pey1)) # FMH(L;, Peyr))

and so, we get a lower energy configuration by deleting L; and either P or Py (we
decrease simultaneously n and U). A similar argument can be used if Lic€[1,P)
or L; € (P, N].x
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This result means that we can use P to constrain the search space for the
boundaries of each subproblem (i.e., for each fixed n), which now becomes:

Forn < |P| fixed, find S, = {Ly,...L,} with

Sp+ C Pnand S,— C Py , (13)
such that U(n, S,) < U(n, L,) forall L, C P.

Note that theorem 1 guarantees that the constrained and unconstrained solutions
will coincide only for n = n”, so that for n 5% n', S, may, in general, be suboptimal.

2. Dynamic Programming (DP) Algorithm.

From equations (7) and (8), it is clear that, for any fixed n, the determination
of the optimal (constrained) configurations .5‘59), sS4 is equivalent to the solution of

the optimization problems:

For SQ):
Minimize [G(L1)— G(L2) +...]

with Ly, L3, ... € Pm, and Ly, Ly, ... € Puy.

For s
Maximize [G(L1)— G(Ls) +...]

with Ly, L3, ... € Py, and Ly, Ly, ... € Pp.

Let us consider the maximization problems. Assume, for definiteness that the
~ first critical point of G is a maximum, i.e., M; < my, and define the sequences:

Dy(k) = sup G(M;)
Lik) = {minL : G(Mp)=Dyk)}, k=1...|Py| (14)

Clearly, Mj,(; is the optimal location of the boundary for n = 1 (ie,
S = {M;,(;)}), and from D,(1) we can casily compute the corresponding energy.
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- We now define, for j > 1:
Dj(k) = sup{Dy;-1(¢ + 1) — G(mi)}

Dojii(k) = ?;I"’{Dzj(i) + G(M;)}

and
Lyj(k) = {min L : Dyj(k) = Dyj_1(L +1) — G(my)}

Layjyi(k) = {min L : Dy; (k) = Doj(L) + G(M)} (15)
for k=1,...,|Py| — 7. One can check that, for » odd,

sY = {Mp, (1), ML (1)) - o MLy (Lo La(1)) } (16)
and the optimal energy is:
Ui(m) = n+ ZE=Dal) + 2 0, (a5)] (17)
For n even, we define:

Dl(k)=§gl;‘{—G(m.-)} , k=1,...,|Pnl

LK) = {minL : Dy(k)=-G(my)}
Dy;(k) = sup{Dy;1(i) + G(Mi)} , k=1,...|Pn| = j+1
Ly;(k) = {minL : Dj;(k) = Dy;_,(L)+G(My)}

Dyjpy ?glz{D'z,-(i +1)=G(m)} , k=1,...|Pu]—j
'—

Lyjyy(k) = {minL : Djjp(k) = Djy; — G(my)} (18)
and get:
S = Mg, 1, mp o))} (19)
Us(n) = n + 5 [=Dy(1) = G(N) + 3 B (s;) (20)
7
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For the minimization problems, that is, for the computation of S, assuming again

- that M; < m,, we have, for n even:
di(k) = jof (~G(m.)}
(k) ={minl : d(k) = —G(m)}
and for 7 > 1,
dyj{k) = Jaf {daj-1(3) + G(My)}
(k) = {minl : dp;(k) = dg;_(}) + G(M)}
daj+1(k) = t.igf,; {d2;(¢ + 1) — G(m,)}
lajr1(k) = {minl : dyj;1(k) = d2j(l +1) — G(my)}
with &k varying in the appropriate range. The solutions are:
SO = {M, (1), . . ta1).) }
Uo(m) =+ 5 [da(1) + 32 (0]
For n odd:
dy(k) = jnf {G(M)}
dyi(k) = jaf {dy;_1(i + 1)~ G(m)}

d’2j+1(k) = iigi{d;j(i) + G(M;)}

with the corresponding definitions for [;(k). The solutions are:
SO = (M5 My (...t (1))-)}
Un(n) = n + Z[du(1) — G(N) + T @y(9;)]
J

The case for which m; < M; is treated in a similar way.

(21)

(22)

(23)

(24)

The recursions (15), (18), (21) and (23), together with equations (9) and (10),
allow us to compute the sequences {Si, Sz,...} and {U},Us,...} using only one
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dimensional optimizations. We now turn to the problem of determining the optimal
value »” for the number of boundaries.

3. Stopping Criterion.
In this section we prove the following:

Theorem 2. Suppose that every (constrained) optimal configuration in the sequence
{S1,Sz,...} is unique (i.e., for every n, if S,, 5% S,, and S, C P, then U(n, S}) >
U,) and that for some n, U, > U,,. Then, U, o, > Us, forall k > 1.

This result will provide us with an efficient stopping criterion for the dynamic
programming recursions described in the previous section; since the first local
minima for the subsequences {Uy, U3, ...} and {U3,Uy,...} are the global ones,
we can terminate the computations once we have found them.

To prove the theorem, we will need the following lemmas:

Lemma 1. Let Sy = {Ly,..., Lt} and Spy = {L,...L;,,} be the optimal
boundaries (with corresponding configurations fi and fi.;) for n = k and n =
k + 2, respectively. Suppose that k + 2 < |P|. Then, Si C Skyz (€., Skiz2 is a
refinement of Si), provided S; is unique.

Proof:

We will assume that for some j, L; € Si — Si2, and arrive at a contradiction.
We consider three cases:

Case 1: Suppose that for some %,

[L:-, L;'+1] ﬂ Sp=0
In this case, we claim that we can find some index p such that

[L;n L;:+1] ﬂ Sk=10
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and .
Fera((Lp) L)) 7 Fi(Lps Ly 1))

Suppose that this is not the case. Then, L;, L;,, are the only elements of Sg4o
in some interval (L;, L;4,) (or in one of the extreme intervals [1, L), (Lg, N]) and

N

fera((Liy Liga]) # fe((Liy Liti))

Suppose v
(L) Lis1] C (L, Ljt1)

By condition (13), we have that L; 5 L;_, (otherwise, L; would be a local maximum
and minimum of G at the same time). But then, since S; is optimal, we can find
a configuration with k + 2 boundaries whose energy is lower than that of Si.s,
by moving L; to L; (or L;,, to L;,;), which contradicts the optimality of Ski2. A
similar argument holds if

[L;, L; 4] C [1,Ly) or (Lg, N]

This proves our claim.

So, suppose that .
[L;n L;:+1] nSk =0

and
Fera((Lys Lyia]) 7 fel(Ly L;:+1])-

Form

S’k = {L,l’ .oy Lp-—l! Lp+2) LY L;:+2}

and let f}, be the corresponding configuration, chosen in such a way that f,(1) =
(1) (and therefore, f((Ly, Lyy1]) = fi([Ly Lpia])-

Let AU be the change in U (see eq. (4)) associated with setting:
f([L;nL;+l]) = fk+2([L;nL;:+l])'
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We have that
U(Skv2) = U(S}) + AT,

Now, we put: |
Skva={L1,-- Ljs Ly Ly, - L}

Since S; is optimal, we have that:
U(Sks2) = U(Sy) + AU > U(Sk) + AU = U(Sp2),

which contradicts the optimality of Sk, 2.

Case 2:

([lr L’ll U[L;:+2: N]) n Sp=20

Suppose that L; € [1, L;). We must have

Fera((1, Ly)) # fe([1, Ly))

Otherwise, if Ly = L,, condition (13) generates a contradiction; if L; > Ly, we
are in case 1, and if Ly < Lj, Sk4p is not optimal, since we get a lower energy
configuration by moving L, to L;.

So,
fera([1, L)) 5% fe([1, Ly)).

By a similar argument, we get that

fk+2([L;c+2! N]) 7% fk([L;c+2: N])

Now, proceeding as in case 1, we form:

S;: = {L,Zs ce L;¢+1}

and let f, be the corresponding configuration, chosen in such a way that f(1) =

fi(1)
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Let AU be the change in U associated with setting:
(L1, Ly]) = fua((Ly, Lp])  and

f((Lier1s Liyal) = Fera([Derr Liral)
so that
U(Sks2) = U(Sy) + AU.

Now, we form:
S;‘+2 = {L’ly Llr SRR Lkl L;¢+2}’

Since S is optimal, we have that:

U(Sks2) = U(S}) + AU > U(Sk) + AU = U(S42),
which again contradicts the optimality of Ss.
Case 3:
' For all 4, [L;, Ly (]() Sk # 9,
and ([, L] UlLk+2: ND ) Sk # 0 *)

To make (*) hold, we must be able to place k boundaries in k& + 3 (ovelapping)
closed intervals, without omitting any interval. Moreover, since condition (13) must
hold, we cannot put L; = L; and L+, = L;,, for any 1, ;. But this is impossible;

so, our proof is finished. §
Lemma 2. Let AU = U(Sy)—U(Sk42). Then, AU, < AU;_s, forall k € [3,|P|-2].

Proof:

Consider the optimal configurations Sk, Sk2, Sk+4, and suppose that AUz ;5 >
AUy. Using lemma 1, let '
Sy = {L1,..., Lk};

Skra = {L1,..., Ly, Ly, ..., Li}.
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By condition (13) and lemma 1, there are only two valid forms for S;,,. We
* consider each case separately:

Case 1. Si44 is of the form:

Sk+4 = {Lt,-- Lp, Ly, Ly, Lpy1.. ., Ly, Ly, ...}

(i.e., the refinements corresponding to Sy, and S, are disjoint).
Then, for
Skra = {Ll, ..., Ly, Lpt1,.. o Ly, Ly, ...},

we have
U(Sks2) = U(St) — Alktz < U(St) — AU = U(Sk42),

which is a contradiction.

Case 2: S,‘+4 is of the form;

Skva = {L1,-. Lj, Ly, Ly, Ly, Ly, ...}

(i.e., Sk+4 is a subrefinement of the refinement introduced by Sy.5).

Let
a = _ﬁ({Lli o Lj, LlrLl! 7+1, - N U(Sk)

b= U({Li,.., Lj,Ly, Ly, Lj11,...} — U(Sk)

¢ =—U({Ly,...,Lj, Ly, Ly, Ljy1,...} + U(S)

We have that,
A(}'k=a+c-—b

AUy =0b.

By assumption,
b>a+c—b
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and therefore,
a—+c

5 < max(a,c).

AU, =a+c—-b<

Now, let Sy, be formed from Sy by the refinement:

L, L, ifa= max(a,c)
Ly, Lo, if ¢ = max(a, c)

Then,
ﬁ(S;c+2) = 0(3},) - ma.x(a, C) < fJ(Sk) - Afjk = 0(3},.,.2),

which is a contradiction.n
Now we prove theorem 2:
Suppose Uy, 5 > Uy. Then,

k+2+ gff(sm) > k+ %(}'(S,,)

now, by lemma 2 we have:
Ukpa =k +4+ ng(S,,H) =k+4+ g(f](sk) — AUjy2) >
>k+2+ g(ﬁ(sk) — Alys) > k+2+ g((‘J(S,,) — Aly) =

=k+2+ %ﬁ(SHz) =Upz 1

4. Expected Value of n".

First, wé compute the (prior) probability density function p(n) for the number
n of odd bonds in the original field f.

Let N, = N — 1 be the total number of bonds. We can rewrite equation (1)
as: |
P(w — f) — %e%(l\h—%z) (25)
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The total number of configurations compatible with a given n is 20, and so,

2CNs exp[L( Ny — 2n))
p(n) = A A 1 =
k=0 Ci "’ exp[4(Np — 2k)]

;Cﬁ~(——°1/a )M_n(—e_lla )n (26)

el/a 4 g—1/a el/a 4 g—1/a

which is a binomial distribution. Therefore,

E[n] = Nb(_eL)

el/la 4 e-1/a
Var[n] = Nb(;) (27)
el/la 4 g—1/a
We note that as o t oo, E[n] 1 N3/2, and as a | 0, E[n] | 0 (and var[n] | 0)
exponentially fast. This means that if the natural temperature of the system is not
too high, we can expect that n", the MAP estimate for =, to be relatively small.

5. Relation to Multiscale Filtering.

An interesting characteristic of the DP formulation is that the solutions to
each of the subproblems (which in fact correspond to a minimization of U (eq.
(4)) are independent of the value of the parameter a. The role of this parameter
is to determine the number of regions (n") that will be present in the optimal
configuration. In this sense, it can be regarded as a "scale" parameter that controls
the aggregation of the subregions into larger units, and the algorithm can be used to
produce multiscale descriptions (in the style of the "fingerprints” treated in Witkin
(1983) and Yuille and Poggio (1983)) of the input signals. (Several other heuristic
solutions to this problem have been proposed. See, for example, Blumenthal et al.,
1977; Prazdny, 1982 and Pavlidis, 1973)

If we interpret the algorithm in this way, it becomes natural to ask whether
a family of linear operators can do the same job in a much efficient way. Let us
formulate this question in more precise form (in what follows, we will consider a
"continuous time" problem obtained from the original one as a limit when N 1 oo
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(provided that the observations are different from 0 only in a finite interval), since
it simplifies the notation. It should be clear that the same arguments apply to the

discrete case).

Consider a family of filters {#,} with the following properties:
(i) Each Fy(z) is a symmetric and non-negative function of z.

(ii) For each L, Fy(z) is a decreasing function of |z|, and Fr(z) | 0 as |z| T oo
fast enough, so that F; can be approximated by a function with finite
support.

(iii) All the filters are normalized:

/ Fy(z)dz =1, forall L.
—00
(iv) The filters become sharper as L | 0:

/(; ' Fr,(z)dz < /0 ' Fp,(z)dz

implies that Ly > I,

Particular examples of acceptable families are:
(i) The family of rectangular boxes By: |

_ [z if]2| <L
Bu(z) = {3L otherwise
(ii) The family of Gaussian Kernels:
l z
Gi(z) = exp[— 575l

vVarL

Suppose we convolve the function g(z) — i (g(z) is a continuous time
approximation to the observations) with a set of filters from the family {Fi}.
If we start with L large enough, the function

) ,
hL=(9"§) * FL
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will be practically constant, and therefore, it will have no zeroes. As we decrease L,
zero crossings of hj, will begin to appear. To each of these zero crossings, we will
associate a boundary, and form the configurations 5y, S, ... with 1, 2, ... boundaries
respectively, that correspond to the first, first two, etc. zero crossings of kj, (we are
ignoring, at this point, the question of the precise localization of these boundaries.
With additional contraints on the family {F} }, it is possible, in principle, to localize
them by decreasing L in a continuous fashion, and. then tracing the position of
each zero crossing to the finest (L = 0) level; see Yuille and Poggio (1983). For
the moment, let us assume that we can identify the zero crossings of ¢ — 1 that
correspond to those of h;, for all L).

The question that we ask is the following:

If S1,S,,... are the optimal boundary configurations produced by the DP
algorithm,is it true that

for all £?
~ As we now show, this is not the case.

Consider the signal g(z) defined by:

forz € [y, + 2q] U[lz,lz + 2b] U[lz + 4b, 1y + ﬁb]U
Ult2 + 85, Iz + 106} |J[la + 12b, I + 148] | [l + 16b, I + 18] ,
and g(z) = 0, otherwise. Here, [y, l2,a and b are some positive numbers chosen in
such a way that, if Lo is the starting L, we take lp — [} —a >> Lg, so that, by

property (ii), there is no interaction between [i1,!; + a] and [ly, I + 18b] (see figure
4.B.1).

Suppose that the zero crossings corresponding to [I1,!; + a] appear first (as a
single double zero) at L = L,, and those corresponding to [lg, Iz + 18b] at L = L.
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oOT—+— 4 va
£ 4,
| Figure 4.B.1. (See text).
Then, |
[ Pz = [ Fi(e)da (28)
] 5b 9b
| Fra(e)dz + [ Fr(a)dz+ [, Fi(e)dz =
3b 7 )
=/b FL,(z)dz+/55 FL,(z)dz+_/;b Fp,(z)dz (29)

Now, for a >> b, we have;
U({l;, 12}) = 106

U({ls, 14}) = 86+ 2a > U({ly, 1a})

and therefore, S; = {l3,l2}.

We claim that we can find some a,b with a > b such that

/o ‘ Fr,(z)dz < _/a " Fi,(z)dz

If this is true, we find, using (28) and conditions (iii) and (iv), that it implies that
Ly > Ly, and therefore, 5 = {I3,14}.
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We now prove our claim:

Let a = b + §, where we choose € so that
b+e/2 5b
/; Fp,(z)dz = /3 , Fy,(z)dz (30)

(property (ii) guarantees that we can find such ¢). From (29),

oo b 5b 9b
/b Fp,(z)dz = /(; Fr,(z)dz + 2/1;6 Fp,(z)dz + 2-/76 Fr,(z)dz

and from (30),

-/aw Fp,(z)dz = /;_: /2 Fp,(z)dz = /b ” Fp,(z)dz — /b el Fr,(z)dz =

b+e/2

b 95 be/2 9b
= [ Fia(@)dz+ L Rzt [ Fu(a)dz = L F(e)dzte [, Fr.()z >

9% a
> I FL,(z)dz=[) Fr,(z)dz n

This result does not mean, of course, that families of linear filters cannot be
used for producing useful multiscale descriptions of signals; it only means that these
descriptions cannot, in general, be considered as MAP estimates of MRF models.

6. Continuous Valued Fields.

In this section we present a related problem which can, in principle, be solved
using the DP approach, although, as we will see, in a less efficient way.

Let us consider the problem of estimating a piecewise constant signal corrupted
by additive white Gaussian noise. We model the signal {f;} as a MRF with potential

-1, if f; = f;
V(fi:fi+l)={ . W= fin (31)

otherwise
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and global states distributed according to:
1 1 N-1

P(F = f)= —exp[—— > V(fir fix1))

@ ;-1
The observations are given by:

g =fi+mn;

where n is a white Gaussian process. The Bayesmn (MAP) estimate for f is again
found by minimizing eq.(4):

U(fy=n+U

NIQ

X N
U=>(fi—a)
it1
where n is the number of places where f; £ f;;1, and y = 23+ Note that in this
case, f; is not restricted to {0, 1}, but can take any real value.

Proceeding as we did in section 2, we consider the sequence of subproblems
obtained by putting n = 0,1, 2,....

For any fixed », U will depend only on the n integer variables that correspond
to the location of the boundaries between regions of constant f, since given these
boundaries L = {L,,...L,}, the optimal estimate for f on any interval (L;, L;},]
(we put Ly =1 and L, = N) is:

Lisy |
B L) = g—p 3 oy
If we define Gy (for k < 1) as:
. 2
Gra=(1-2(~- k))(—k > . !h') (32)
We get that:
O(Ln) = 3 ot + > Ghas (53)
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(‘hote that ¥ g¢? is a constant for a given set of observations). Using dynamic

programming principles, we can now write the recursions;
Fo(k)=G1,.N , k=0,..N—-1

Fyn(h) = ol {Ges + Fi)} , k=0,..N—j—1
Lin())={L : Giz+FL)=Fjn(k)}

The optimal solution, for each given n is:
Sn = {Ln(0), Ln-1(Ln(0)), . . ., Li(La(. . .(Ln(0))...)}
and the corresponding energy,
a N
U('n; Sn) =n-+ E[Z g? + Fn(o)]
i=1
The solution to our problem will be S,.., where:

U(n", S,+) = inf{U(n, S,)}

(34)

(35)

(36)

Unfortunately, in this case we cannot guarantee the unimodality of any subsequence

of {U(Sn)} (although we believe that the sequence will be unimodal in many cases)

and so, (36) has to be computed, in principle, by an exhaustive one dimensional

search. Another unpleasantness is that, unlike the binary case, the search space for

the variables L; cannot be reduced in any obvious way.
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Appendix 4.C

}CONSISTENCY CONDITION FOR THE MPM ESTIMATOR

In this appendix we present a proof for the consistency condition (given
by equation (11) of chapter 4) satisfied by the MPM estimator of a binary,

two—dimensional Ising net:

Theorem: Let P(f,g) be the posterior distribution corresponding to the estimation
of the first order, binary MRF f from the observations g which are obtained as the
ouput of a binary symmetric channel:

P(f,9)= -;— exp[~ > V(fi, £;) =121 - 8(f; — )
t,] s ‘

Let f be the MPM estimator for f. Then, for every site %,

implies that:

Proof®

Let:

>, P(f,9)> 3. Pf,9)
f:fi=1; Ifi#f

Y. P(f,H)> X P
Ifi=F; fifi# S

fi’ ] =
g(_.') _ {gjs JF#
! fs" )=
h(-i) _ {fj, JF#
! 1- }ia ] =




sy

1) We first prove that for all z:
ZI:P(I"". g) > ;P(h(i)’ 9)

implies that:

S P9, g0) > 3= P(a), o)
7 7

Suppose that g £ g0} (otherwise, the above is obviously true). For any fixed f, we
have that:

P(f4,9) — P(h1), g) =
= K {exp[— Z 1462 fi)—1- exp['z V(-7 i}
JEN: JEN;
and :
P(s%, ¢ty - P(r1), g0y =
= K{exp|- 3 V(5 fil—exp 3o V(1 -1, £5) =]}
JEN;

JEN;

- Where K is a constant. Since ¥ > 0, this implies that:

P(f,g) — P(h), g) < P(£1),g9) — P(h1), g(x))

so that
Y. (9, g0 — (R, g()) > 3 P(f1), 9) — P(h),g) > 0
f f

2) Let r; = 1 — f;. We now prove that if:

> P(f,9) > Z "P(f,9)

f:fi=1, fifi=rs
then,
Y. P(f, gm Y. P(f,9%)
f:fi=1 I:fi=ri
for all 3.
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For ¢ = j, part (1) applies, and for ¢¥¥) = ¢, the assertion is obviously true, so
suppose 7 # 5 and gl) £ g. We have:

P(f9,g) - P(h®, g) =

— Ki{expl= > V(i £3)] - exp| 5 V(L —Fo £5) - 1)

JEN; JEN;
P58 - PO, o) = Kifexpl= 5= V(i 1) -
exp Y, V(1= T;, f5) = 2} exp[—v(1 — 2(f; — gy))%] >

JEN;
> e (P(f1),9) — P(hV), g)

for some constant K, so that

> P(f9,41) — P(rE), ) > e=7 37 P(f1), 9) — P(h),g) > 0
7 ]

The theorem is now proved by assuming that

2. P(f,q) > Z‘ P(f,q)
Ifi=f; Iifi# L

and succesively replacing g; by f;, for ¢ = 1,2, ...and using (1) and (2) to show that
the corresponding inequalities hold at each step.
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Chapter 5

RECONSTRUCTION OF PIECEWISE CONTINUOUS FUNCTIONS

1. Introduction.

In this chapter we will illustrate the application of local spatial interaction
models and estimation techniques that we have described to the solution of the
general reconstruction problem that we introduced in chapter 1. To make this
discussion more specific, we will consider a particular instance of this problem: the
reconstruction of piecewise continuous functions from noisy observations taken at
sparse locations. |

In this reconstruction, it will be important not only to interpolate smooth _
patches over uniform regions, but to locate and preserve the discontinuities that
bound these regions, since very often they are the most important parts of the
function. They may represent object boundaries in vision problems (such as image -
segmentation; depth from stereo; shape from shading; structure from motion, etc.);
geological faults in geophysical information processing, etc. |

The most successful approaches to this problem (see Terzopoulos (1984)) consist
of, first, interpolating an everywhere smooth function over the whole domain; then,
applying some kind of discontinuity detector (followed by a thresholding operation)
to try to find the significant boundaries, and finally, to re-interpolate smooth patches
over the continuous subregions. '

The results that have been obtained with this technique, however, are not
completely satisfactory. The main problem is that the task of the discontinuity detector
is hindered by the previous smooth interpolation operation. This becomes critical
when the observations are sparsely located, since in this case, the discontinuities
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may be smeared in the interpolation phase to such a degree that it may become
impossible to recover them in the detection phase.

One way around this difficulty is to perform the boundary detection and
interpolation tasks at the same time. In the method we will present, this is done
by using a Bayesian approach, and including in the posterior distribution our prior
knowledge about the smoothness of the function and about the geometry of the
discontinuities, as well as the information provided by the observations. Before
describing how this is done, let us formulate the problem in a more precise way.

Consider a region 2 of the plane which is formed by a number of subregions
separated by boundaries which are known to be piecewise smooth curves. Suppose
that within each of these subregions, some property f (in what follows, we will refer
to f as "depth") varies in a smooth fashion, presenting, at the same time, abrupt
jumps across most of the boundaries. Suppose also that we have measurements for
the values of f at some discrete set of sites S; these measurements will, in general,
be corrupted by some form of noise.

Our problem is then to estimate the values of f on some finite lattice of points
L C Q, and to find the position of the boundaries, using all the available information
in an optimal way.

2. Posterior Distribution.

To apply the general recontruction algorithms developed in chapter 3 to this
problem, we need to cast it in probabilistic terms. The main issue here is the
representation of the concept of “piecewise continuity"” in the form of a prior Gibbs
distribution in a meaningful way.

This could be done, for example, by modeling the function as a first order,
continuous valued MRF with nearest neighbor potentials given by:
(fi—f)%  if|fi—fil<eand|i—j]=1
V(£ £i) = 1{b, if ;= f;| > aand i — j| =1
0, otherwise
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where a and b are positive constants such that b > «?, and for every pair of
neighboring sites 2, 7, |f; — fj| < e if both ¢ and 7 lie in the same smooth patch,
and |f; — f;] > a, otherwise.

This scheme, however, has the disadvantage of not allowing for the explicit
modeling of prior knowledge about the geometry of the curves that bound the
smooth patches (the fact that they should be piecewise smooth curves, for example).
A more flexible construction involves the use of two coupled MRF models; one to
represent the function (the "surface") itself, and another to model the curves where
the field is discontinuous. A coupled model of this kind was first used by Geman
and Geman (1984) in the context of the restoration of piecewise constant images.
We will now describe their work in detail, and define a related model that can be
used for our problem.

2.1. Coupled Line and Depth Models.

In Geman and Geman’s work, the intensity of the images is modeled using a
first order MRF with generalized Ising potentials (see chapter 4). The boundaries
between constant regions are modeled using a "line process” I, which is a MRF
whose associated random variables are located at the sites of the dual lattice of
lines that connect the sites of the original intensity lattice (see figure 12). These
variables may be binary (indicating the presence or absence of a boundary between
two pixels), or may take more values to indicate the orientation of the boundary as
well. In both cases, their function is to decouple adjacent pixels, reducing the total
energy if the intensities of these pixels are different.

This is done by modifying the prior energy function; the new expression is:

Uo(f, ) =3 X Vilfir Finbig) + 2 Ve (1) (1)

t JEN; Ci

where
1 ]

0, if I;; is "on'

Vilfor firbi) = {V( fofj).  otherwise
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Figure 13. (a) Cliques for the line process used by Geman and Geman. (b) Additional cliques
used to prevent sharp turns.

V is defined in equation (1) of chapter 4:
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R,

-1, if [i-jl=1and f; = f;
V(f,',fj) = {1, if | —Jjl=1and f; £ f;
0, otherwise

l;; is the line element between sites ¢ and 7, and the line potentials V¢, have as
supports cliques of size 4, such as the one shown in Fig. 13-a. Every line element
(except at the boundaries of the lattice) belongs to 2 such cliques. The values of
the potentials associated with each possible configuration of lines within a clique
must be specified. Thus, for example, if straight horizontal and vertical boundaries
are likely to be present, a binary process, with potential values as those of Fig.
14 is used (rotational invariance is assumed). In more general situations (such as
piecewise smooth boundaries), we may use different values for the potentials, or we
may allow more states for the line elements, corresponding to different orientations,
augmenting consequently the table of values for the potentials.

2.2. Models for Piecewise Continuous Functions.

The model we have described can be adapted to our problem by modifying
the choice of the potentials and the neighborhood structure of the coupled MRF’s.
Specifically, the following modifications are needed:

L. Since in our case the observations are sparse, it becomes necessary to expand
the size of the neighborhoods of the line field, to prevent the formation of "thick"
boundaries between the smooth patches (i.e., adjacent, parallel segments of active
lines in these regions). In particular, we propose that the dual lattice be 8-connected,
with non-zero potentials for the cliques of the form illustrated in figure 13 (a)
and (b). The inclusion of the cliques of figure 13-b has the additional advantage
of penalizing the occurance of sharp turns, permitting us to model the formation
of piecewise smooth boundaries (a more general case)A using a binary line process
instead of the 4-valued process proposed by Geman and Geman. The potentials
for these cliques are computed in the following way:

Let V4, V, denote the potentials associated with the cliques C,, C, of figure 13
(a) and (b), respectively, and let Si (k € {q, b}) denote the number of line elements
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Vo =0.0 Vi = 0.25 V2 = 0.8
oo ofo o ©
oo ojo oo
V3 =12 Vi=2.0 Vs = 2.0
Figure 14. Potentials for the different configurations of a line process
belonging to C; that are "on" at a given time, i.e.,
Sk = Z ll' , k =a, b .
tECK
The potentials V. are given by:
Vi = B¢1(Sk) , k=ga,b (2)

where 3 is a constant, and the functions ¢, are defined by the following tables:
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o 0 0 10

It is not difficult to see that this choice of potentials (notice that V, will be
slightly different from the definition of figure 14) will effectively discourage both
the formation of thick boundaries (S, = 2) and the presence of sharp turns (S, = 3
and/or Sy = 2).

2. The potentials of the depth process, which is now continuous-valued, have to be
modified to express the more relaxed condition of piecewise continuity (instead of
piecewise constancy). Specifically, we propose:

{(fi - )1—-1l;), forli—jl=1

0, otherwise

V(f:'; f]: llJ) = (3)

(note that I;; € {0,1})

3. Unlike the case of piecewise constant surfaces, we now have to worry about the .
maximum absolute difference in the values of two adjacent depth sites that we are
willing to consider as a "smooth" gradient (and not a discontinuity). This value,
which in general is problem-dependent, determines the magnitude of the constant
B in equation (2), which can be interpreted as the coupling strength between the
two processes.

2.3. Model for the Observations.

We will adopt the general model described in section 2.1 of chapter 3 to
represent the observation process. In particular, to make the discussion more
specific, we will assume that the observations g correspond to samples of the surface
f taken at aset S C L of sparse locations, corrupted by a zero mean, white, additive
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Gaussian noise process:
gi=fi+n;

so that the conditional distribution is:

exp[—(fi — 9:)* /207

prolei ) =11

€S /270

~our results, however, can be extended to handle other noise models as well.

Using Bayes’ rule, we can finally write the posterior distribution as:

Py(frlig) = Zip exp|=Up(/, ; 9)

with
Up(f,l;9) = 5,1; ZV(fi, Fibij) +
: 43

oy T (- 0 + V) + V) (4
i€S Ca Ch

Va and V; are the potentials corresponding to the "a" and "b" type cliques of the
line process, and are defined by equation (2). It is convenient to introduce a function
g which is equal to 1 only at those sites where there is an observation, and is equal
to zero elsewhere (i.e., ¢ is an indicator function of the set S):

1, ifie S
;= 5
4 {0, otherwise )
Using this function, and the definition of V' from equation (3) we get:
1
Up(f,lig) = 7 3_(fi = [;)*(1 = ) +
04;
1
+t3.2 S (fi— 9%+ D Va) + Vi) (6)
0% €L Ca Cs

131




3. Optimality Criterion.

We can now apply the general principles developed in chapter 3 to derive the
optimal Bayesian estimators for the depth and line fields. As a performance criterion
we will use a mixed cost functional of the form: 5

iEL; JEL o

where Ly, L; denote the depth and line lattices, respectively. This error criterion
means that the reconstructed surface should be as close as possible to the true
(unknown) surface, and that we should commit as few errors as possible in the
assertions about the presence or absence of discontinuities.

Appllying the results of section 5 of chapter 3, we find that the optiméﬂ“
estimators will be the posterior mean for f and the maximizer of the posterior
marginals for /. Note that these estimates must be computed by averaging over all
possible values of both f and {:

f =Zf:;f ,fllg(f! :9)
Pii(q) =2f: Z_ Prig(fi9)

4. Monte Carlo Algorithm.

There is one serious difficulty that prevents us from applying directly the
general Monte Carlo procedure that was derived in chapter 3 to the computation
of these optimal estimates: since the depth variables are continuous-valued, if we
discretize them finely enough to guarantee sufficient precision of the results, the
computational complexity of either the Metropolis ar Gibbs Sampler algorithms
will be very large. One way around this difficulty is to note that for any fixed
configuration of the line field, the posterior energy becomes a non—negative definite
quadratic form:

Uliflbe= 3 (fi—fj)2+a%(fj_9i)2+K - (8

1,7:di;=0
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where a and K are constants (note that the first sum is taken only over those pairs of
sites whose connecting line element is "off”", and the second one over the set S). This
means that the posterior distribution of the depth field is conditionally Gaussian,
so that we can find.the optimal conditional estimator f°(I) as the minimizer of (8)
(for a Gaussian distribution, the posterior mean and the MAP estimate coincide).
If  is identically zero (no lines), this function is strictly convex, and therefore it has
a unique minimum, Let f; be the corresponding global minimizer. For any fixed
configuration [, the gradient of (8) is given by:

oulf1y _, 3 (fi — fiYli; + 20q:(f; — g) -
af. JEN;

where
Ny={; : [i—-jl=1} ;
Ly =1-1y

Setting this gradient equal to 0, we find that any minimizer of U will be a fixed
point of the system: |

(k)
(k+1) _ 2ien; bijfi” + agjg; i ‘
. = E s+ aq, # 0
I Lien; bij + ag; iEN; R ’

and f¥H) = =1 (8. otherwise (10)

We note that the updating scheme (10) will produce a decrease in the value of
U(f | 1), regardless of the sweeping strategy. In a synchronous scheme (where all
the sites are updated at the same time), the energy increment will be:

AU(F | 1) = U(®H) | 1)~ U(f® | 1) =

=-23( Y &+ oa)(fi - £y -

€L jEN;

2
=3 L gt _ gty 0 gty < o
g',j af‘lf]
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because U is non-negative definite. For an asynchronous strategy, where f(¥+1) is
. obtained from ) by updating only the site i, we get:

AU(f [ ) =—4( Y tij+eq)fE) — 2 <o
‘ JEN;

Therefore, if we set
O = 1y (11)
the dynamical system defined by (10) and (11) (with a given sweeping strategy) will

be stable and have a unique fixed point f;.

Note that, since U(f | 1) is always convex, f; will be a global minimizer (see
Luenberger (1973)), but in general it will not be the only one; there may be cases
in which some region @ within which there are no observations is isolated from the
rest of the lattice by the line process. In this case, any solution for which

f; = constant , JEQ

will also minimize U(f | !). However, for a fixed initial state f© the deterministic
dynamical system (10) will always converge to the same solution, so that the
configuration f°(!) is well defined.

Let us define the set F~ as:
F'={(f) + f=n}
It is clear that, if 7,1 are the optimal estimates for our problem, we have that:
(7.)er

which suggests that we can constrain the search for the optimal estimators to this set.
This can be done, in principle, by replacing the posterior energy with the function:

Ut() =U(f,})
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(which depends only on ), and use the standard Monte Carlo procedures to find
the optimal estimator I. To illustrate this idea, let us consider the following physical

model:

It is a well known fact the the steady state of an electrical network that contains
only (current or voltage) sources and linear resistors will be the global minimizer of
a quadratic functional that corresponds to the total power dissipated as heat (Oster
et al, 1971). It is therefore possible to contruct an analog network that will find
the equilibrium state of the depth field for a given, fixed configuration of the line
process, i.e., that will minimize the conditional energy (8) (see Poggio and Koch,
1984). This suggests a hybrid computational scheme in which the line field (whose
state is updated digitally, using, say, the Metropolis or Gibbs Sampler algorithms)
acts as a set of switches on the connections between the nodes of the analog network
whose voltages represent the depth process. In particular, if f; represents the voltage
at node ¢, the hybrid network can be represented as a 4-connected lattice of nodes

(see figure 15) in which:

(i) A resistance (of unit magnitude) and a switch (controlled by the line
element /;;) is present in every link between pairs 7, 5 of adjacent nodes.

(i) If an observation g¢; is present at site z, a current of magnitude equal to
ag; is injected to the corresponding node, which must also be connected
to a common ground via a resistance of magnitude 1/« (see equation 8).

A direct application of Kirchoff current law shows that at each node of this

network we will have:

D (fi— f)A = Lj) + agif; = oqig;

JEN;
which corresponds to a fixed point of the system (16). In practice, there will always
be parasitic capacitances which will prevent the instantaneous establishment of the
equilibrium conditions. However, the time constant of the analog portion of the
network may be made very fast, so that in fact, the probability distribution of the
equilibrium states of this network will be Gibbsian with energy U".

This scheme can be used, in principle, to construct a special purpose hybrid
computer for the fast solution of problems of this type. In a digital machine, however,
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Figure 15. Hybrid network implementing the surface reconstruction algorithm of section 4.
The voltage at every node represents the height of the surface. Inside every rectangular box there
is a resistance of unit magnitude and a switch whose state is controlled by the corresponding line
element. (sce text).

the exact implementation of this strategy will in general be computationally very
expensive, since f; must be computed every time a line site is updated. We will
now present an approximation which has an excellent experimental performance,
and leads to an efficient implementation.

First, let us examine one iteration of the, say, Metropolis algorithm at a given
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temperature T > 0 for the function U". When a line site is visited and its state is
updated, the corresponding increment in energy AU, is computed as follows:

Suppose the line site 75 is visited (the line between depth sites < and j). Let I;;
be its current state, and I;; the candidate state:

i,'j =1- l,'j
Suppose that the current state of the depth process is

f=h

and let f; be the fixed point of (10) obtained when we replace I;; by L-,-. Let us
define:

]’=fz

and
AVii= Y V)-va)+ X Vi) -Va()
Caili;€C, Cy:li;€C,
where C,, C, are the "a" and "b" type cliques defined in figure 13, and V,, V;, the

corresponding potentials.

Since the depth process is at equilibrium, and we are changing only the element

l;;, we may assume that
fomfp forpstiyj (12)

so that
AU} =~ AV;; +

+ X |(Fom f?,.)[kezﬁ; (1 = lem) + @@m] = 2(Fn — fr)[ X fill = lkem) + aqmgml]

m=t,j kENm
(13)

Now, if the absolute difference |f; — f;| is small, f and f will be practically
identical; on the other hand, if | f; — f;| is large, the changes in f at locations ¢ and
7 will be relatively small with respect to this absolute difference. Therefore, we may
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approximate AU, by the simple expression:

AU} = AV + (£ = 1)k = 1) (14)

which depends only on the potentials of the cliques to which the updated line
element belongs, and on the current state of the depth sites adjacent to it. If this
approximation is to remain valid, the equilibrium condition on f must be mantained.
This is done by performing M global deterministic iterations using (10) after every
global stochastic update of the line process. We have found experimentally that the
use of the approximate expression (14), and only three restoring iterations (M = 3)
are sufficient to get a good convergence behavior.

It is also possible to use assumption (12) and the fixed point condition of the
system (10) to compute a more precise approximation to AU (the corresponding
formulae are derived in appendix 5.A). Our experiments indicate, however, that
the simpler approximation (14) gives sufficiently good results, so that the increased
complexity incurred by the use of this, more precise scheme does not seem to be
justified.

An important issue in the practical implementation of this procedure is the
determination of the optimal temperature for observing the equilibrium behavior
of the system. We have found that this can be done effectively in an adaptive way
by starting the simulation at a relatively large temperature (say, T = 5) and slowly
decreasing it until the network shows an adequate level of activity (measured, by the
fraction of sites whose state is modified in one global iteration). We have found that
a level on the order of 0.1 is adequate in most cases. This technique is similar to the
Simulated Annealing method for finding the global minimizer of the energy, but
in that case, the cooling of the system must proceed at a slower rate, and it should
be continued until the level of activity is reduced practically to 0; if we proceed in
this way, the final state of the system will correspond (approximately) to the MAP
estimate. Note that (fasap, imap) € F* too, so that the mixed strategy described
above will also work in this case (see Marroquin, 1984). As we pointed out in the last
chapter, if the signal to noise ratio is not too low, the conﬁguration corresponding
to the MAP estimate will be very similar to the optimal one (fpps, ippar). From
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a computational viewpoint, however, the optimal estimator is preferable, since it
exhibits a faster and more consistent convergence behavior.,

5. Experimental Results.

We will now present some experimental results that illustrate the performance of
the optimal Bayesian estimators for surface reconstruction tasks. In these examples,
we assume that we have the following prior knowledge about the nature of the

surfaces we are trying to reconstruct:

(i) The region under consideration can be segmented into a small number of
subregions.

(ii) Within each subregion the surface is smooth (the gradient is less than 0.5).

(iii) The boundaries between regions are piecewise smooth. There are relatively
few corners,

(iv) The average height of the discontinuities across boundaries is greater than
0.8.

(v) The observations are corrupted by an additive white Gaussian noise process,

and we have some estimate of its intensity.

This knowledge is embodied in the model for the line process, and in the
numerical value of the parameters. For our experiments, we have used a binary
process with potentials given by equation (2).

In the first set of experiments, we generated sparse observation points at 200
random locations of a 30 X 30 rectangular grid. Figures 16, 17, 18 and 19 show
(with height coded by grey level) the observations (a); the configuration obtained
by interpolation with no boundaries (b); the final reconstructed surface (c), and the

boundaries found by the algorithm (d), for:
(i) A square at height 2.0 over a background at constant height = 1.0 (Fig.
16). ‘
(ii) A triangle, with the same characteristics (Fig. 17).
(iii) A tilted square plane (slope = 0.1) over a constant height background
with white Gaussian added noise (¢ = 0.1) (Fig. 13).
(iv) Three rectangles at different (constant) heights over a uniform background

(Fig. 19).
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Figure 16. (2) Observations of a square at height 2.0 over a background at height 1.0 (a white
pixel means that the observation is abscnt at that point). (b) Interpolation with no boundaries.
(c)Reconstructed surface.(d) Boundaries found by the Algorithm.
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Figure 17. (a) Obscrvations of a triangle at height 2.0 over a background at height 1.0. (a
white pixel means that the observation is absent at that point). (b) Interpolation with no boundaries
(c) Reconstructed surface.(d) Boundaries found by the Algorithm. '

In many interesting cases, the observation sites are not randomly distributed,
but rather tend to be clustered along certain curves. This is the case, for example, of
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Figure 18. (a) Obscrvations of a tilted square (slope = 0.1) over a buckgmimd at hcight- 1.0
with added white Gaussian noise (¢ = 0.1) (a white pixcl means that the obscrvation is absent
at that point). (b) Interpolation with no boundarics. (c) Boundarics found by the Algorithm. (d)

Rcconstructed surface.
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Figure 19. (a) Observations of 3 rectangles at heights 2.0, 2.0 and 3.0 over a background at
height 1.0 (a white pixel means that the observation is absent at that point). (b) Interpolation with
no boundaries. (c) Reconstructed surface.(d) Boundarics found by the Algorithm.

the reconstruction of geological structures from seismic data, or of certain algorithms
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Figure 20. (a) Observations of a square at height 2.0 over a background at height 1.0 with
added white Gaussian noisc (¢ = 0.1). White pixels denote missing obscrvations. (b) Interpolation
with no boundarics. (c) Boundarics found by the Algorithm. (d) Rcconstructed surface. (e)
Perspective view of (b). (f) Perspective view of (d).
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for the reconstruction of surfaces from stereoscopic pairs of images, when the stereo
matching is done only at the "edges” (places where the intensity gradient is large)
detected in the images. The synthetic example of figure 20 illustrates this situation
(here we include also a perspective representation of the recontructed surfaces, so
that the difference between the smooth reconstruction and the optimal estimate can
be fully appreciated). In figure 21 we illustrate a real example of this situation. It
represents the interpolation of data obtained along the zero—crossing contours of
the convolution of a stereo pair of aerial photographs (depicting the campus of
the University of British Columbia) with a "Difference of Gaussians" operator, by
Grimson’s implementation of the Marr-Poggio stereo algorithm [G4,M2]. We will
come back to this example when we discuss the stereo matching problem in detail
in the next chapter.‘

We have also used a modified Simulated annealing scheme to get the MAP
estimator for the same examples presented above (see Marroquin, 1984). The final
configurations are very similar to the optimal ones, so we do not reproduce them
here. With respect to the computational efficiency, it took, on the average, around
450 global iterations (in a global iteration the state of the complete line field is
updated, and the equilibrium of the depth field is restored) for the Simulated
Annealing algorithm to converge, while for the (fpys, iIppar) estimator, only 250
were needed. Also, in the latter, the behavior of the algorithm was more consistent
in the sense that the difference in the results from successive runs with the same
data were smaller than in the former case.

6. A Fast Algorithm.

The ergodicity of the "Gibbs chain” (the Markov chain generated by the
Gibbs Sampler or the Metropolis algorithm at a fixed temperature) means that its
time behavior mirrors the ensemble probabilistic structure. Since the probability of
turning "on" a given line element depends on the difference in the values of the
associated depth elements (i.e., on the current value of the gradient of the field f at
that location), the configurations with active lines at points of high gradient will be
generated first. These lines, in turn, will decouple the adjacent depth sites, increasing

144



the gradient even more, generating thus a positive feedback that stabilizes these
configurations (the opposite happens in regions of low gradient, which prevents the
formation of stable clusters of lines at those points).

We can see, therefore, that the behavior of the Gibbs chain can be thought
of, qualitatively, as performing in time a scale separation of the discontinuities
of the image. This suggests the use of a deterministic scheme that performs the
same separation, but compressing the time of the Gibbs chain. A simple way of
implementing this idea, is to introduce a time varying coupling between the depth
and line fields, and to allow only "downhill" moves (i.e., those with negafive AUY)
in the updating rules for the line process. Specifically, we compute the increment
in energy associated with the update of the line element ;; at time ¢ using:

AU = AV,; + K(t)(fi — ;)2 = T5) (15)

instead of equation (14), and accept the candidate state only if AU* < 0. The
coupling strength K (t) is computed using:

K(t)= Ko+ ht

( where K and h are positive constants) until it reaches a given value K, and it is
held constant at this value thereafter. The state of the depth process is updated, as
before, using equation (10). K must be chosen in such a way that with f = f, and
l; = 0 for all ¢, no lines will be turned "on" in the first iteration. This means that
if we use equation (2) (with 8 = 1, and the values of ¢ given in the corresponding
tables) to compute the potentials, we must have:

Ko< %2 (16)

where
a = sup(f; — f;)?

%2
On the other hand, the final value of K (t) (i.e., Kr), must be such that no lines are
introduced in the smooth regions. Let

b= i%f( fi— )}
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¢ = sup(f; — 5)

where D is the set of neighboring pairs of sites such that each site belongs to a
different smooth patch (i.e., pairs that lie across a discontinuity), and Sm is the
complementary set of pairs of adjacent sites such that both sites belong to the same
continuous patch. K7 must satisfy:

% <Kr< ocﬂ

Note that even if we do not know the precise values of a, b and ¢ for a given
problem, usually we can estimate them accurately enough to determine "safe” values
for Ky and K. The value of h controls the number of iterations needed for the
algorithm to reach a fixed point; if 4 is too large and the observations are relatively
sparse, we might get suboptimal solutions where regions with no observations are
completely surrounded by lines, and therefore, adopt spurious constant values. We
have found experimentally that usually 50 iterations, i.e., setting

__ K7 —Kj

h
50

are enough to produce results that are indistinguishable from those produced by
the Monte Carlo approximation. ’

This scheme has an additional advantage: the optimal value of the coupling
between the depth and line fields (the constant 8 in equation (2)) depends on the
height of the discontinuities relative to the gradient in the smooth patches. It is,
therefore, a free parameter of the Monte Carlo algorithm that must be adapted to
each particular problem. Since in the deterministic scheme it is varied dinamically,
its adaptation to each problem is automatic, provided that we choose Kt and Kjp
sufficiently lérge and small, respectively, so that the procedure has practically no
free parameters.
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Figure 22. (a) Coloring of the coupled line-dépth lattice. (b) and (c) Elements whose state
is stored in each of the two types of processors of a 4-connected parallel arc.hltccture

7. Parallel Implementations.

Both the general Monte Carlo procedure of section 5 and the deterministic
algorithm of the last section can be efficiently implemented in a parallel architecture.
To study this implementation, we first note that the chromatic numbers (see section
6.2 of chapter 3) of the graphs associated with the line and depth neighborhood
systems are 4 and 2, respectively, which means that the coupled process has a
chromatic number of 6. In figure 22 (a) we illustrate one possible “coloring”.

The colors of the line process are represented by the numbers 1,2,3,4, and
those of the depth process by white and black circles. The updating process can
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be implemented in a 4-connected architecture such as the "Connection Machine",.
by assigning one processor to cach depth site and its four adjacent line elements,
We will thus have two different populations of processors, whose configurations are
shown in figures 22 (b) and (c), respectively. ' o

(IR AN

thq_‘

Each complete iteration consist on 6 major cycles: in the first two, the state of
the white and black depth variables is respectively updated, and in the nextffour,
the new states of the binary line variables stored in (say) the white processors are
successively computed and transmitted to the corresponding memory locations of the
neighboring black processors. Note that in this scheme we have somé redqu[ancy
in the use of memory (each binary variable is stored twice), but the state of all
the elements needed for each updating operation is always available from adjacent

processors.
7.1. Connection Machine Execution Time.

The update of each depth site requires 2 (16-bit) multiplications; 5 additions
and 10 1-bit corhparisons, that is, about 600 cycles of a 1-bit processor. The
computation of the increment in energy for the line process (equation 14) requires
1 multiplication; 5 additions and 13 1-bit operations, that is 350 cycles. For the
deterministic algorithm, we require 256 additional cycles for the multiplication
by the variable coupling constant, while the exponentiation and random number
generation needed for the Monte Carlo updating use about 2300 additional cycles
(we assume that the updating of the coupling constant is done once every complete
iteration in the host computer, and the new value broadcast to the whole network).

Considering that the Monte Carlo algorithm requires about 200 iterations to
converge, while only 50 are needed in the deterministic case, we get the following
approximate estimates for the total execution time in the "Connection Machine"
(using the same assumptions as in section 6.3 of chapter 3): 2.4 seconds for the
Monte Carlo procedure, and 0.18 seconds for the deterministic algorithm.

7.2. Analog Networks.
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In chapter 4 we discussed the use of the "neural" networks introduced by
Hopfield (1984) (see also Hopfield and Tank, 1985) for constructing analog systems
that approximate the optimal estimators of binary fields. Since for a binary system,
the TPM and MPM estimates are equivalent (see chapter 3), we can, in principle,
replace the digital computation of the [ field in the hybrid scheme discussed above
(see figure 15) by a "neural” network that approximates the optimal estimate coupled
with the analog "f" network (note that the switches must be replaced by analog
devices that implement a multiplication). The time constant of the "neural” network
has to be adjusted so that the "f" network remains in equilibrium and the search
space is effectively restricted to the set F* (see section 4).

To implement this idea, we must define a new energy function that depends
continuously on !, and whose behavior is similar to Up for {; € {0,1} (Hopfield,
1985). One such function is:

E(f,) =K 3 (fi— )’ (1 —lj)+aK Y (fi—g:)* +

i JEN; €S

+clz: Z l,'( Z lk—1)2+c2zli(1_li)+

) Ca :iecc ,Ce Co—{':}

+c3 Z Z Ll (23)
Coii€Cs FECo— {5}

where K, a, c;, ¢, c3 are constants.

Following the construction discussed in section 5 of chapter 4, we can now use
an analog network that implements the dynamical system:

du;  9E
dt ~  al;
l,’=9(‘u,')

Where the function ©, which corresponds to the gain of the non-linear amplifiers
that are at the nodes of the network, is as defined in equation (15) of chapter 4 (note
that in this case the network also contains non-linear elements that act as analog
multipliers).
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We have performed numerical simulations of this mcthod, and the results are
similar to the optimal ones if the parameters of the system are sclected appropriately.
The system can be made practically data-independent by making the coupling K
between the two networks (see equation (23)) time-varying, in the manner that
was described in section 6. We have found that a reasonable set of values for the
remaining parameters is: ¢; = .15; ca = .05; ¢3 = 1.5.

8. Discussion.

In this chapter we have studied the problem of reconstructing piecewise
continuous surfaces from sparse and noisy data. We showed that such surfaces
can be adequately modeled by two coupled MRF's: A depth field with quadratic
potentials and a binary "line” field with sites in the dual lattice, and with potentials
that represent our prior knowledge about the geometry of the curves that bound
the smooth patches.

We pointed out that a straightforward extension of the general estimation
procedures derived in chapter 3 to this problem is computationally unfeasible, due
to the continuous nature of the depth field. Therefore, we proposed a modified
computational strategy that is based on the fact that the search space for the optimal
estimates can be restricted to those configurations in which the depth field minimizes
the (quadratic) conditional posterior energy for each given line configuration. The
plausibility of this scheme was demonstrated by experimental results showing the
reconstruction of both synthetic and "real" surfaces.

We also derived, based on heuristic arguments, a fast deterministic algorithm
with excelent experimental performance, and whose parameters can be made
problem-independent, and discussed the implementation of all these procedures in
parallel digitél machines, and in hybrid and analog networks.

It is interesting to compare the techniques we have presented with other surface
reconstruction methods that handle discontinuities. The most successful of these
(see Terzopoulos, 1984) are based on the idea of interpolating a smooth surface
first and then, detecting the discontinuities by a threshold mechanism. We believe
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that the method that we are proposing has some advantages over this scheme which

justify its use in spite of the increased computational cost:

(i) From a conceptual viewpoint, it is better to perform the interpolation and
boundary detection tasks at the same time, rather than approximating
an everywhere smooth surface first, since this operation hides the
discontinuities that one then tries to find in the second phase.

(i) In our method, the values of the parameters depend only on the average
height of the jumps that one wants to consider as boundaries in the
reconstructed surface, and thus, they are independent of the location of the
observations. If these are sparsely located, even when the discontinuity is
relatively large, the threshold method may fail.

(iii) A priori knowledge about the shape, orientation and position of the
discontinuities can be easily incorporated by choice of the potentials of
the line process. This fact makes our method particularly promising for
integrating information from qualitatively different sources into a single
unified estimation procedure.

(iv) The same algorithm can be used for surface interpolation, noise elimination
(smoothing) and boundary detection.

We will now study a related problem: the reconstruction of surfaces from

stereoscopic images.
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Appendix 5.A

HIGHER ORDER APPROXIMATION TO AU*

In this appendix we describe a higher order approximation to the energy
increment AU (see section 4 of chapter 5). We will compute AU" using;

AU, =~ AV;; +

+ Z (ﬁn - fgn)[ E (1 —lgm) + agm] — 2(}m — fm)[ Z Fe( = lem) + aqmgm]]

m=t,j kENom kENm
(1)

using the assumption:
?pmfp forp;éi)j

the new equilibrium configuration f can be estimated by the follosing formulas,
which correspond to the fixed point of:

(2)

k
ey _ Sien bifi + eajo
J Zien; i + ag;

when fp, p 71,7 is held fixed: |

Let: X
N 1—lgm, fork,m =1,5
bm = .
1—lkm, otherwise

Tm = Z ka + agm
kENm

The new equilibrium configuration will be a fixed point of (10), and therefore, it
will satisfy:
}'m = LI: Z 2l‘:m.?m"'aqmgmjl fOI‘m=’i,j
Ym | keN..
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If7;; = 0 and 77y, # 1, we get

N 1 5 ,
fi=_—— {’YJ'[ > fili + aCIiQi] + 3. fibik + agjg;}
%V 1" “kenZy keN;~{i}

- 1 A

fi= —.[ 2 febie + agﬂ:‘]
Vi | keN;

if ?,-,- = 0 and ~;v; = 1, it means that there are no observations, neither at ¢ nor at

7, and that these two sites are isolated from the rest of the lattice by line elements.

Therefore, we use:

- N «+ I
ﬁ=n=f2h

Finally, if I;; = 1, we put

o= {f;[zkeNm Fnlem + oGQmGm |, if ym #0

f ms if Tm = 0
for m = 1,7.
Besides, if the move from ! to I is accepted by Metropolis criterion, we replace
fm="Fm»  form=i,j

As described in chapter 5, after all [ sites have been updated, M restoring
iterations using equation (10) of that chapter should be applied.
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Chapter 6

SIGNAL MATCHING

1. Introduction,

whose precise form depended on the particular nojse model, were non-decreasing
functions of the distance between fi and g; (see €quation (2) of chapter 3):

®:(7,9:) = —In P,y (g, H(£))
There are some cases, however, when the conditiona] probability distribution
of the observations FByp(g; £) is multimodal (as a function of f) which causes the

functions ®; to be on-monotonic, so that the solution to the problem remaing
ambiguous, even if the observations are dense, and the signal to noise ratio arbitrarily

hi(3) = hp(i + d;)

d;€Q={—m,-m+1,...,—1,0,l,...,m}
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The signal matching problem is to find d given h;,hg. (In a more realistic
situation, we do not observe hj,hp directly, but rather some noise-corrupted
versions gy, gr). Some interesting instances of this problem are the matching of
stereoscopic images along epipolar lines (Marr and Poggio, 1976); the computation
of the dip angle of geological structures from electrical resistivity measurements
taken along a bore hole, and the matching of DNA sequences.

To make the discussion more specific, we will consider a simple example, in
which the sequences hy,, hy are binary Bernoulli sequences; we will assume that the
noise corruption process can be modeled as a binary symmetric channel with known
error rate, and that d is known to be a piecewise constant function. A well known
instance of this problem is the matching of a row of a random dot stereogram with
density p (Julesz (1960)), when the components of the stereo pair are corrupted by
noise.

The stochastic model for the observations is then constructed by assuming that
the right image is a sample function of a Bernoulli process A with parameter p :

gr(7) = A(7)

The left image is assumed to be formed from the right one by shifting it by a
variable amount given by the disparity function d, except at some points where an
error is commited with probability e. Note that some regions that appear in the right
image will be occluded in the left one (see figure 23). The "occlusion indicator” ¢4
can be computed deterministically from d in the following way:

1, ifd;_y > d; + k, for some integer k € (0, m]

4= (2

0, otherwise

The occluded areas are assumed to be "filled in" by an independent Bernoulli
process B. The final model is then:

gr(t + d;), with prob. 1 — ¢, if #4(2) =0
gr(?) = {1 —gr(¢ +d;),  with prob. ¢, if ¢4(z) =0 (3)
By(i), with prob. 1, if ¢4(z) =1
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Lines of Constant
Disparity

Figure 23. Occluded Regions: The horizontal and vertical axis rcpresent points in one row:
of the left and right images, respectively. Matching points are represented by black circles. Any
match in the shaded region will occlude the point i

Note that in the two-dimensional case, the index ¢ denotes a site of a lattice, and
thercfore it can be represented as a two-vector (i1,12) whose components denote
the column and row of the site, respectively. To simplify the notation, we will adopt
the following convention throughout this chapter: when a scalar is added to this
vector index (as in gp(: + d;) and d;.,), it will be implicitly assumed that it is
multiplied by the vector (1, 0) (so that the above expressions should be understood
as gp(i + (d;, 0)) and di4(k,0) Tespectively). Using this convention, the observation
model of equation (3) can be applied either to the one or to the two—dimensional
cases.

Notice that even if the observations are noise-free (¢ = 0) the solution of the
problem remains ambiguous, and it cannot be uniquely determined unless some
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prior knowledge about d (for example, in the form of a MRF model) is introduced.
The use of a MRF model in the stereo matching case, corresponds to a quantification
of the assumption of the existence of "dense solutions™ (this term was introduced
by Julesz (1960), and essentially corresponds to the assumption that the disparity d
varies smoothly in most parts of the image; see also Marr and Poggio (1979)), and
the use of the occlusion indicator corresponds to the "ordering constraint” (i.e., the
requirement that if ¢ > j, then 7+ d; > j + d;, see Baker (1981); we put ¢4 = 1
whenever this constraint is violated).

2. Bayesian Formulation.

To formulate the estimation problem, we will consider the sequence g; as
"observations”, while gp will play the role of a set of parameters. Thus, from (3),
we have (assuming, for simplicity that p = 1)

P(g9r(t) = k | d, gr) = Pyja(k) =

1—e, ifgys)=0and gp(i+d;)=k

= {e, if ¢a(2) = 0 and gp(: + d;) # k
Lo ifgs) =1
The posterior distribution Py, will then be:
P;-P
Pd|g(d) = el =
= 2 exp| - - V(di, ;)| TIHI(L — 5(026) — arli + ) +
F, g To 5,7 i
et = 8(a1) — gnli + (1 - gale)) + 24y
where
1, ifz=0
o(a) — { |
0, otherwise

As a prior model for the disparity field, we may use a first order MRF with
generalized Ising potentials, such as the one presented in chapter 4. Other models
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may also be used, including the coupled depth and line fields that we discussed in

- the previous chapters. For the present, let us assume that the simpler Ising model is

adequate. Note that even when the matching problem is one-dimensional (we are
asuming that there is no vertical disparity between the images, so that the matching
can be done on a row-by-row basis), the two-dimensional nature of the prior MRF
model for the disparity introduces a coupling between matches at adjacent rows.
The posterior energy is:

Un(dig) = 7 S V(dods) = S In{[( — )5(au(6) = guli + o) +
t,7 :

(1 = 8(016) - onls + (1 — 4(5) + 24y

Using the fact that for any a,b # 0

In[aé(z) + b(1 — 6(z)] = 6(z)Ina + (1 — 6(z)) Ind

we can write an equivalent expression for Up (modulo an additive constant):

Un(di o) = - SV () + : > ¢ui)inz +
+5 21— 4(0)é(a1(s) — gri + i) ()

where

°'=]n(1ie)

3. Optimal Estimator.

It is possible to apply the general Monte Carlo algorithms developed in chapter
3 to approximate the optimal estimate d with respect to a given performance measure
(such as the mean squared error). Their use in this case, however, is complicated by
the introduction of the occlusion function ¢4 in the posterior energy: the size of the

'support for this function equals the total number of allowed values for the disparity

(see equation (2)). If this number is large, the computation of the increment in

158



energy, or of the conditional distributions (if the Gibbs Sampler is used) may be
quite expensive. In many cascs, however, the size of the regions of constant disparity
is relatively large compared with the size of the occluded areas. In these cases, one

can approximate the posterior energy by:

Un(d) = 7 32 V{didy) + 5 32 8(026) — ouli + ) (5)

and increase significantly the computational efficiency (we have successfully used
this approach to reconstruct the disparity of random dot stereograms).

In the one-dimensional case, it is also possible to extend the dynamic
programming methods described in appendix 4.B to compute the MAP estimate;
this extension is described in appendix 6.A.

~ An alternative approach to the solution of this problem is to implement the
local constraints, generated by the prior MRF model, directly in a deterministic
"cooperative network" of a given form (a "Winner-Takes-All" network) whose
fixed point will correspond to the optimal solution. This will be done in section
6. First we present, in section 4 the definition of a "Cooperative Algorithm”, and
describe and analyze, in section 5, the previous work that has been done in this

connection.
4. Cooperative Algorithms.

Consider the two-dimensional signal matching problem defined in section 2,
and suppose that to each site z of the lattice 2 we associate a set of binéry variables:
{fia,d € Q} (we will call this set the "s** column” of the network f, and the set:
{fia,7 € Q}, the "disparity layer d" of the same network).

If a particular variable f; 4 = 1, it means that we assign to site ¢ the disparity
d (note that more than one disparity may be assigned to a node at a given time).

A "Cooperative Algorithm" (Marr and Poggio, 1976; it is also known as a
"Cellular automata”; see Wolfram, 1983) is a rule for updating the state of the
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network f. It can be represented formally as:

fi,d(t + 1) = F‘i,d(f(t)) t)

with the additional requirement that the interactions should be local, that is:

Fia(£(t),¢) = Fia({f;+(t):7 € Niy s € @}, )

where N; is the (two-dimensional) neighborhood of site z € 2. The idea is to define
the functions F (i.e., the connections of the cooperative network) in such a way that
the following local constraints are implemented:

(i) Compatibility with the observations: Each element f;, should receive
an "excitatory"” external input proportional to the conditional probability

Pr(gL(s) = gr(i +7) | d; = 7). T
(ii) Smoothness: This corresponds to an implementation of the MRF prior ... -
model for the disparity: the likelihood that an element f; 4 is turned "on"
(i e., is set equal to 1) should increase if the elements {f; 4,7 € N;} are
n" (V; is the neighborhood of  in the Markov model), so that ex<:1tatory
connectlons should exist between these elements.
(iii) Uniqueness: Since in the final configuration f* one and only one element
of each column { f:-‘, 4 d € @} should be equal to 1, each element should

have "inhibitory"” connections with the other elements of the same column.

The operation of the network will be Synchronous if all its elements are updated
in parallel at the same time, and Asynchronous if they are updated sequentially,
one at a time. Note that one synchronous iteration is equivalent to | f| (the number
of elements of the network f) asynchronous ones (we will refer to |f| succesive
iterations as a Global Iteration), and that the evolution of the asynchronous network
will depend, in general, on the order in which its elements are updated.

5. "Linear Threshold" Networks.

The first successful application of this approach (although not formulated in
probabilistic terms) is the algorithm developed by Marr and Poggio (1976) for the
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stereo disparity computation. They proposed a binary network of the form:
f,‘(t + 1) = o(pi)

with p; = [Z fi(t)wi; +n; — 6
J

a(p)={1’ if p>0

0, otherwise
wi; satisfying  w;; = wy;, foral 4,;€0xQ

and f;€{0,1}, forall <

The parameters w;;, n; and 6 must be chosen in such a way that the constraints
to the solution of our problem are implemented locally. In particular, the smoothness
constraint is implemented by defining:

We dyd = 1, for yeN; ; z,y€eN

where IV, is an excitatory neighbourhood of z. The uniqueness constraint, by:

Wedyd = —¢, for (y,d’)€ Myq4

with M, 4 an inhibitory neighbourhood corresponding to multiple matches at = (see
Marr and Poggio (1976) for a precise definition of these neighbourhoods), and

wy4ya =0 elsewhere.

The compatibility with the observations is enforced by putting

1, if gr(z+d) = g1(z)
0, otherwise

(7)

Nz,d = fg,d = {

Although it has not been possible to this date to find a rigorous proof for the
convergence of this algorithm, numerical experiments and a probabilistic analysis
(Marf et. al., 1978) show that the synchronous network defined above will converge to
reasonably good solutions for random dot stereograms portraying piecewise constant
surfaces. However, this scheme has several problems (although some modifications
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to get around them are suggested in Marr and Poggio, 1976 and in Marr et. al.,
1978):

[n the first place, the quality of the results degrades very fast as the density of
the tokens in the stereogram decreases. Besides, it is not clear how to extend this
formulation to the more interesting cases of slowly varying disparities, and different
types of tokens placed in points that do not correspond to a regular lattice.

5.1. Asynchronous Algorithms.

We now consider algorithms of the form (6) that operate asynchronously. In
this case, it has been shown (Hopfield, 1982) that if we choose the parameters in
such a way that p; is never 0 (this can be done, for example, if w;; and n; are
integers, by giving ¢ a non-integer value), the "Energy” function: -

B(f) = 5 Swijfif; — ¥ filni —0) ®)
. 6 1

will decrease monotonically at every global iteration of the asynchronous algorithm
in which the state of every element is updated, unless the network is at a fixed
point.

It is interesting to note that with the parameter definitions given above for the

stereo problem, the term

_%fz,d Z fy,d

UEN:

in (8) will be negative only if all the spatial neighbors of the cell z on the same
disparity layer are “on", and therefore corresponds to a smoothness constraint.The
term

-f. z,df 2,4
corresponds to the compatibility with the obscrvations, and the remaining terms:
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. .
fz,d[o + 5 Z fy,d’]
v, dEM,,d
may be considered as an implementation of the uniqueness constraint, since their
minimization requires that we have as few "on" cells as possible, and it penalizes
explicitly the local non-uniqueness of the solution.

5.2. Experimental Performance.

To study the performance of these algorithms, we implemented a simulator
of both the synchronous and asynchronous networks. The "stimulus” used for the
set of experiments performed, was a random dot stereogram portraying a square of
21 X 21 elements floating at disparity -2 in front of a flat background at disparity 0.
Figure 24 shows this stereogram and the fixed points obtained by the synchronous

and asynchronous algorithms.

In both cases, the behaviour of the algorithm shows two distinct phases: In the
first iteration, most of the elements that are "on" on the wrong layers (and some on
the correct ones) are turned "off” (see figure 24-b). As a result of this, at succeding
iterations, the probability of having a cluster capable of growing is relatively high
for the correct regions, which begin to fill in, and very small for the wrong ones,
for which the remaining "on" cells are turned "off™.

This form of operation causes that the precise shape of the boundaries between
regions will depend on the exact shape and location of the random clusters that are
formed after the first iteration on the correct layers. Also, it is easy to see that the
form of the inhibitory neighbourhood (sce Marr and Poggio (1976)) causes the cells
lying on wrong layers along a narrow band near the edges of the background to be on
the average less inhibited by the "on" elements in the correct layers (which in turn
are less stimulated) than the interior points, making thus more likely the formation
of wrong stable clusters in these regions. This effect is more pronounced in the
asynchronous case, since a wrong cell that is left "on", can increase the excitation
of a neighbouring one on the same global iteration, increasing the likelihood of a
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Figure 24. (a) Random dot stereogram portraying a 21 X 21 square at disparity —2. (b)
State of the nctwork after one iteration of the synchronous algorithm. (c) Fixed point for the
Synchronous Algorithm. (d) Fixed point for the Asynchronous Algorithm.
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stable cluster, whereas on the synchronous case, all the cells of the cluster must be

left "on" at the same time.

For the values used for the paramecters (e = 2,0 = 3.5 ; see Marr and Poggio,
1976) the energy defined in (8) decreases monotonically at each global iteration
of the asynchronous network, and thus, it converges to a configuration that is a
local minimizer of this function. The correct solution will also correspond to a
(different) local minimum; it is interesting to note, however, that in general it wilI
not be the global one. It is easy to show, for example, that if the random dot
stereogram portrays a region that has a ratio of area/perimeter less than a critical
value (for the current value of the parameters this critical ratio is ~ 13), this region
will not be distinguished from the background in the configuration that globally
minimizes the energy. This means that the use of simulated annealing to minimize
(8) will not necessarily improve the solution; however, we have found that after the
deterministic algorithm has converged, a few iterations of Metropolis algorithm at
a moderate temperature (=~ 1) may be very effective for removing the clusters at
wrong layers. This is illustrated in figure 25.

6. Winner-Takes-All (WTA) Networks.

Linear threshold networks are not the only form of local implementation of the
constraints generated by the probabilistic formulation of our problem. A different
possibility is to associate with each column {f, 4, d € @} a binary "Winner-take-all"
syhchronous network: ’

The input u(z, d) to each cell corresponds to the excitatory input in the linear
threshold case, that is, to the local implementation of the smoothness constraints
and the compatibility with the observations.

The inhibitory terms (the uniqueness constraint) are implemented in the form
of a WTA mechanism. The output (the new value of f; 4) is given by:

1, if u(z,d) = maxypeg u(z, d’
fx,d={ (. ) veq u(z, d) (9)
0,  otherwise
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Figure 25. (a) Fixed point at T = 0. (b) State after 4 itcrations at T = 1. (c) Fixed point at
T = 0 with (b) as initial state.

This means that f; 4 will be "on" at time ¢ + 1 only if it is maximally stimulated
with respect to all the other elements in the same column at time ¢, and if it is
"compatible enough” with the observations (see figure 26).
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(WTA Mechanism)

Figure 26. wianer-Takes-All network (sce text).

This design has several advantages :

1. For dense stereograms, we will show that it converges to the correct solution

in a smail number of iterations.

2. For sparse stercograms, the algorithm will give, with high probability, the
correct disparity at every location in which a matching token is present.

3. Tt exhibits a good performance with natural images portraying piecewise
constant surfaces. '

4. Tt is not necessary to ProCess the whole domain €0 at the same time; a
complete representation may be built up by defining local networks corresponding .
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to overlapping subregions that cover Q. This feature enables the algorithm to process
arbitrarily large images. ‘

5. It can be extended in such a way that it can handle more complex situations,

such as transparent and piecewise smooth surfaces.
Qualitatively, this improved performance can be explained as follows:

Unlike the linear threshold design, in the first iteration the WTA algorithm will
only turn "off” cells that do not lie in the correct disparity layers. This will cause
the cells that lie at the boundaries of clusters at the wrong layers to lose, in the
subsequent iterations, against the corresponding strongly stimulated cells that lie in
the interior of the "correct” regions. This will result in a progressive shrinking of

- the wrong clusters, and will end up with their disappearance.

" This results in a faster convergence, since the size of the clusters that have to
be killed is in general smaller than the size of the regions that the linear threshold
algorithm has to fill in. Also, the boundaries between constant disparity regions will
be more accurately localized.

The only situation in which this behavior will not take place, is when there is
a significant overlap (due to accidental correlations in the images) between regions
lying at different depths. In this case, the algorithm will not be able to solve the
ambiguity correctly based only on smoothness considerations, and it will locate the
boundary at a position, within the region of overlap, which will depend on the
detailed shape of this region. Also, the solution will not be so clean in this case; a
few cells, corresponding to different disparities at the same spatial position, may be
left "on" in the final state (limit cycles involving some of these few cells are also

possible).

This type of ambiguity (accidental overlap) is relatively frequent in sparse -
stereograms. However, the regions of overlap are typically "blank” regions (i.e.,
without tokens), and the algorithm will give the correct disparity at all token
locations.

We will now make these considerations more precise. First, we will need some

definitions.
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1. Q will be defined as the set of points lying on a finite square lattice.

2. We will use a second order MRF with Ising potentials as the prior model for the
disparity field. Therefore, for cach z € 1, we define its neighborhood as:

N,=0{y : 0<|z—y| <2} (10)

3. Given a region R C 2, we define the set of its interior points (with respect to
N;) I(R) as the set of points in R such that all its neighbors also belong to R :

I(R) = {z € R:|N, (| R| = | Nz}

In a similar way we define:
I*(R) = I(I(R))

and so on. We call the points in R that are not interior: =z € R — I(R), Boundary,
points of R. We will say that a region R is connected if, given any two sites ,5 € R,
we can find a sequence of sites {¢ = 4g,%1,...,%, = j}, Withixr € Rfork = 1,...,p,
such thatz, € IV;,,, for k=0,...,p—1.

A

4. Given a region R C 1, we define its Diameter D(R) (with respect to N,) as the
smallest integer such that:

ID(R)+1(R) =0 »
Alternatively, if we define an algorithm that deletes all the boundary points of a
region at every step, the diameter of the region is the minimum number of steps

necessary to completely delete the region.

5. The initial state of the network will be given by:

‘ 1! if gr\T + d = gr\z
fra=| al= +d) = orlz) (11)
: 0, otherwise
6. The WTA algorithm for this problem will have the particular form:
1, .f T t == 4 z.d t
f,,d(t+1)={ o "f() maxgeQ Uz, (t)
0, otherwise
’U.:c,d(t) = afg,d + Z fz,d(t) | (]_2)

yEN,
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7. We will assume that the set 2 can be covered by M + 1 non-overlapping regions:

0=rU...URnJO

and that the correct solution (i.e., the way the stereogram was generated) consists in
assigning to every point in R; the depth d;:

frao=1 iff zER

The set O corresponds to the union of all the regions that are occluded in the left
image (see figure 23), and therefore, for every z € O, any depth assignment will be
considered "correct”.

8. Since we are assuming that the observations are perfect, the loading rules
guarantee that |
| fo4 =1 foreveryz€ Ry,

However, in many cases we will also have:

fg,a,- =1 for some z € R; and d; 7 d;

Cubwss

due to accidental correlations in the images. A connected set W; defined as:
Wij={z : fi4 =1andz¢€ R, for some d; # d;}

will be called a wrong cluster on layer ;7 of R;.

9. We will say that a stereogram has well defined boundaries if there are no large
wrong clusters overlapping the boundaries between adjacent regions. This means
that every non—occluded point must have at least as many "on" neighbors at time 0
on the correct layer as in any other layer, i.e., for every region R, and every point
z € Ry,
Y fa = > 0, forallds£dy (13)
yEN: YyEN,
10. A stereogram will be said to be unambiguous if for every region R; and every
wrong cluster W; there is at least one point z € W; N R; which has less "on"
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neighbors at time 0 on the wrong layer d; than in the correct one d; ie.,

2 f4 < X £, (14)

YyEN, YEN,

We can now establish the following result:

Convergence Theorem: Given an unambiguous random dot stereogram with perfect
observations (0 error rate) portraying M non-overlapping regions of constant depth
with well defined boundaries, the WTA algorithm (12) with « > 8 will converge to
the correct solution in K iterations, where K is the diameter of the largest wrong

cluster in 0,
Proof: ' ‘ tile
B S

1) First, we note that condition (13) guarantees that all the cells on the correct laYefﬁ
(which, by (11), are "on" at time 0) will remain "on" at time 1.

2) Condition (14) aﬁd the definition (12) guarantee that for every wrong cluster W;
on every region R; there will be at least one point z that will be turned "off" in the
first iteration. Then, for all points y € N, N W;N R; we will have:

> I < 5 A,

2EN, z2EN,
which implies that fffl,j =0,

A recursive application of this reasoning establishes the theorem, N

Remarks:

1. For occluded regions, there will be no large clusters of "on" cells in any layer of
f9, and since the form of (12) precludes the growth over regions with fo=o,if
there are any isolated points for'which fg,,, = 1, they will remain "on" in [ (the
fixed point of (12)); otherwise, f* = ¢ uniformly over these regions.
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2. If the algorithm has ambiguous boundaries, we can still use this thecorem to
guarantee the convergence of the WTA algorithm 1o the correct solution outside the
overlap regions. It is clear that if we define new non-overlapping regions R|,...R),
with non ambiguous boundaries, and include the overlap areas in the set O, the
theorem will guarantee that we get the correct solution in the new regions. [n the
overlap areas, the stable state of the network may include some leftover ambiguity
(fz,4 = 1 for more than one d), and even limit cycles involving a few cells. However,
these problematic areas will be confined to layers of unit width along the portions
of the (final) boundaries that lie inside the overlap regions.

3. The probability of finding wrong clusters in a binary stereogram is related to the
probability of finding a repeated subsequence on a Bernoulli sequence of length
equal to the total number of disparity layers, and decreases exponentially with the
number of cells belonging to each of these clusters. For dense sterograms (generated
by a Bernoulli process with parameter p = 1), the probability of finding a wrong
cluster that contains a square of m cells per sidé:can be bounded by

Np|Q|
omi+l

Pr(cluster) <

where Np is the number of disparity layers, and || is the total number of cells in
the lattice. On the other hand, a cluster of diameter k must contain at least a square
of side 2k + 1. Thus, if Np = 7 and |Q| = 642, for example, we can guarantee that,
for dense stereograms, the algorithm will converge to the correct solution in less
than 3 iterations with probability > 0.99.

4. For sparse stereograms, wrong clusters involving only "blank" areas will be very
common, but those containing active tokens will be rare. This fact, together with
remark 2, mean that, with high probability, tha WTA algorithm will find the correct
disparity at ail the sites that have active tokens. This has been confirmed by our

experiments.

5. Algorithm (12) will not grow regions into occluded (uncorrelated) areas.
Psychophysical experiments show that these areas should be included with the
adjacent region that is at the greatest depth. It can be verified that an algorithm
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such as the following:

1, if ZyENz fu,d(t) > 2f$,d’(t)[2V€N= fy.d'(t)]: d’ ?é d
0, otherwise

fz,d(t + 1) = {

with £, 4(0) = f;’d (the fixed point of (12)), will converge to a solution in which
these regions are correctly filled in, provided there are no wrong clusters in the
occluded regions, and that each layer of constant d is allowed to converge separately,
starting with d = dmin = min(d € Q).

6. Note that even when (zi, z2) € Q, (z1 + d, z2) may lie outside Q and so, if we load
the network using (11), some cells near the boundaries of 2 may remain undefined,
and (12) may give incorrect results. Therefore, we implicitly assume the existence
of a larger region Q9 D Q such that for all z € Q, ) ; is defined for y € N; U{z}
and d € @. Also, the operation of (12) should be understood in a modified sense,
so that f; a(t) = f2 4 forall z € Qg — Q, all d € @, and all ¢.

A useful corollary establishes that it is not necessary to process all 2 at the same

- time, but that a complete representation can be built up by defining local networks

corresponding to windows S C , provided that there is enough overlap between
them. In particular, we will show that if we load the local network S in such a way
that its initial state coincides with the initial state of the complete network at those
cells, and if the algorithm operates only on the interior points of S, keeping the
state of the boundary points fixed, then the final state of the local network at these
interior points will correspond to the optimal solution:

Let f4(z, d) and f%(z, d) be the state of the (z, d) cell at time ¢ in the complete
and local network respectively. We have:

Corollary 1: Suppose the conditions of the convergence theorem hold in £, and
consider a set S C Q such that the stereogram is not completely ambiguous in
Sy = I(S) (i.e., condition (14) holds for every z € S;). Suppose that we load the
local network fg in such a way that for every z € S, f§(z,d) = f%(z, d), for all

d € Q.
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Then, algorithm (12), modified in such a way that f4(z,d) = f(z,d) for all
t,allz € S-S, and all d € @, will converge to a fixed point f§ for Wthh
fs(z,d) = fq(z, d) for all z belonging to unoccluded regions inside S,.

Proof:

Consider a region R of constant disparity d such that R” = RN S; 5% 0, and let
B, be the intersection of R with the boundary of S;. For every point z € R’ — By,
f%(z,d) = 1, by the same arguments as in the convergence theorem. For z € By,
f5(z,d) = 1 too, since fY(y,d) = fd(v,d) for y € N;, and (13) holds in 0.
Therefore, for every z € R’, fi(z,d) =1 Rt

On the other hand, for any wrong cluster W; C R’ in layer d’ # d, since the
stereogram is not completely ambiguous inside Sy, there will be at least one point
z € W, such that f§(z,d’) = 0. Reasoning as we did before, we have that for all
points y € N, N Wz N R’ we will have:

S fy < 3 ALk

ZEN, zZEN,

which implies that %), = 0.

P
IR WY

Applying this reasoning recursively, we get, for every z € R’, that f5(z,d) = 1, and
fs(z,d’) = 0,d’ £ d, which, together with the convergence theorem, completes the
proof.x

Note that S — S; defines the overlap that should exist among local windows, so that
the complete representation, defined by

n=Jsy
J
is correctly formed.

6.1. Numerical Results.
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To test the performance of algorithm (12) with random dot stereograms, a
simulator was implemented in a Symbolics 3600 computer. Figure 27 shows the
fixed points corresponding to dense and sparse stereograms portraying a pyramid.
As predicted by the theory, the convergence to the correct solution is fast (less than
4 iterations) in both cases. In the case of the sparse stereogram, the boundaries are
slightly misplaced, but, as can be verified by direct inspection of the stereogram,
all the dots are correctly located. The fixed point corresponding to the synchronous
operation of (6) (obtained after 11 iterations) is also presented, for comparison. As
we can see, the WTA algorithm (12) converges much faster to a much more precise

result.
7. Recontruction of Real Images.

To apply this algorithm to the processing of real images, there are some
modifications and extensions that should be made.

7.1. Neighborhood size.

It is possible to increase the robustness of algorithm (12) with respect to the
presence of noise in the images by increasing the size of the excitatory neighborhood

- (i.e., by postulating a more global MRF prior model) and decreasing the value of

the parameter «. This increased robustness is traded off by a decrease in resolution;
small correct regions may be trated as "noise”, and therefore disappear from the
solution. Also, the shape of the piecewise constant regions may be altered (corners
may be rounded and small concavities "filled in").

7.2. Token Selection.

The simple rule (11) is adequate for measuring the compatibility with the
observations in the case of a synthetic image (such as a random dot stereogram).
However, it will not work in the case of continuous-toned images of real objects.
The reasons for this failure are manifold: the distribution of the reflected light
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Figure 27. (a) Dense Stercogram (density

0.4) portraying a pyramid. (b) Fixcd point for

algorithm (12) (c) Sparse stercogram (density = 0.1) portraying a pyramid. (d) Fixcd point for
algorithm (12). (c) Fixed point for the Synchronous algorithm (6).
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varies as the viewpoint is changed (particularly the specular component), and the
two retinas (cameras) may have different point spread functions, and be affected
by independent sources of noise. This means that the model for the observation
process given by equation (3) should be replaced by another that reflects the process
of formation of natural images in a more realistic way. The use of a better model
will cause the term f‘z’,d in equation (12) to be replaced by a different compatibility
measure n, 4 which is obtained by first preprocessing the right and left images using
an operator T whose output should be, ideally, invariant under the changes in
viewpoint, optics, etc., and then computing a suitable defined distance D between

the two processed images:

Nz,d = D(Tgr(z +d), Tgr(z)) (15)

(note that n may be continuous-valued).
The new WTA algorithm will be:

1, if uge(t) = maxgeq us,a(t)
0, otherwise

fz,d(t + 1) = {
g y(t) = amga + Pr(f®), z,d) (16)

The operator Py is generated by the enlarged MRF model, and in general it will
represent a weighted average of the values of the field in the enlarged neighborhood:

Py(fis,d)= 3 clo—uDfea (7)

yEN-

where N, is the extended neighborhood of z and ¢(:) denotes a set of parameters
that depend only on the distance |z — y|, and are related to the prior MRF model
for the disparity. f© may be chosen as: |

f° . {1: if Nz,d = MaXrec@ Nz,r
4= .
o 0, otherwise

The convergence of this modified algorithm to the correct solution can still be
guaranteed if condition (13) is replaced by the requirement that the cell corresponding
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to the correct layer of every non-occluded point should be maximally stimulated at
time 0, with respect to the other cells in the same column, by neighbors belonging
to the same constant disparity region:

anz,d; + Pg’)(for z, di) 2 ang,d + PN(fO: z, d) (18)

for every region R;; every z € R; and every d € Q. P(,f) is the operator Py restricted
to R;.
Pfod)= ¥ clz—y)fya

yE N.z n Rl'

(this modification is necessary to cover the case in which a point near the boundary
of a constant disparity region is partially stimulated by a wrong cluster outside this

region which may disappear in succeeding iterations).

Condition (14), i.e., the requirement that every wrong cluster has less "on"
neighbors at time 0 on the wrong layer than in the correct one, can now be expressed
by requiring that for every region R; and every wrong cluster W; on layer j of R;,
there is at least one point z € RB; N W; such that:

PN(fox z, dJ') < PN(fn! z, d;) (19)

Under these conditions, it is easy to use the same arguments of the proof of
the convergence theorem to verify the convergence of algorithm (16). It should be
remarked that conditions (18) and (19) are sufficient, but by no means necessary;
(16) may converge to the correct solution even if they are violated by a particular
stereogram.

The determination of the optimal operators D and T in equation (15) is a_
difficult — and as yet unsolved problem. One scheme that has often been used is
to define T as a convolution operator whose kernel is the Laplacian of a Gaussian
function , and T as:

T( b) {1, ifab > 0
a, = .
0, otherwise
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(see Marr and Poggio, 1979). The rationale for this choice is that the zero crossings
of the convolution with the Laplacian operator should pick the places where large
intensity changes occur in both images (i.e., it acts as an "edge detector”), while the
Gaussian kernel has the effect of smoothing out the "irrclevant™ cdges and filtering
out the noise. One difficulty, however, is that if the Gaussian mask is large enough
‘to produce the desired effect, it will also introduce errors in the localization of the
zero crossings of the convolved images, which will translate into errors in the depth
of the reconstructed surface (see Clark and Lawrence, 1985).

We have found that the normalized absolute value of the Laplacian of the
difference between left and right images:

—v(z, d) + max,cq v(z,r)

Ned = "
max,cq v(z,7) — min,gq v(z, )

with
v(z,d) = |V2(gr(z + d) — g1(z))| (20)

has rclatively good experimental behavior, but clearly, much more research is
needed in this area.

It is important to note that the definition of  will affect the performance of the
WTA algorithm, since it will determine the extent to which conditions (18) and (19)
hold in the initial state; the structure of the WTA network, however, is independent
of the choice of n, so that the éxperimentation with different definitions can be
done very efficiently.

7.3. Uniqueness Constraint.

The definitions (12) and (16) imply the enforcement of the constraint:

"Each point in the left image should be matched by only one point in the right

image".

That is to say, we are enforcing the uniqueness constraint along the left eye
line of sight. It is also possible to include explicitly the corresponding constraint for
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the right eye (as in Marr and Poggio, 1976). This is done by replacing (16) (or (12))
with:

1, if  ug4(t) = maxpeq uz,o(t)
fra(t+1) = and ug ¢ = maXg.d4kcQ Ys—k,d+k
0, otherwise

For perfect observations, this additional constraint is redundant. If noise or other
distortions are present, however, this scheme will have better performance, since the
disparity of "doubtful” points will be left unassigned (the corresponding values of
the disparity in these locations may be determined after convergence by the robust
surface reconstruction techniques described in chapter 5).

As an example of the application of this technique, the processing of a stereo
pair of aerial photographs is illustrated in figure 28 (this stereo pair is the same that
was used in chapter 5; see figure 19). Although it is difficult to assess objectively
the performance of an algorithm on this type of images, the quality of these results
seems at least equivalent to that obtained by state-of-the-art systems (see Grimson,
1984).

7.4. Piecewise Smooth Surfaces.

The WTA scheme can also be applied to reconstruct disparity surfaces that
are piecewise smooth. To do this, it is only necessary to modify the definition of
the operator Py (equation (16)), so that cells at nearby depths are also taken into
account. Notice that, in order to be consistent with the WTA mechanism, only the
maximum contribution for any given column should be considered. The modified

operator is:
Pn(f,z,d) = 3, max{c(jz —yl,|d —r])fyr} (21)
VENz ' d

where ¢(-, -) is some fixed decreasing function of its arguments, and Ny is a disparity
neighborhood defined as the intersection of a closed interval with the set of allowable
disparities:
' Ny=[d—p,d+p]Q
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Figure 28. (a) Sterco pair of acrial photographs. (b) Final state of the WTA network (disparity
is coded by grey level; white arcas have no assigned disparity). (¢) Reconstructed suface, obtained
using the algorithm described in scction 6 of chapter 5.
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where p is a positive constant.

The sufficient conditions for the convergence of the modified algorithm, né‘uﬁ"ely,
that the stereogram should be unambiguous and have well defined boundaries with
respect to the the modified operator Py, can also be expressed in the form glven
by equations (18) and (19), but now a wrong cluster W; should be defined as a
connected region on the disparity layer d; such that f3 , =1, and d; 5 d’(=) for
all € W}, where d"(z) is the true disparity at point z. The proof of the convergence
theorem is straightforward, but the interpretation of these conditions is not obvious,
and in practice, they are very difficult to verify, so that at this point, the performance
of this algorithm should be assessed experimentally.

Pradzny (1984) (see also Pollard et. al., (1984)) has obtained good results for
the reconstruction of piecewise smooth and "transparent” surfaces (i.e., stereograms
portraying sets of small interspersed patches that belong to two smooth surfaces,
one in front of the other) using an operator of the form:

Pu(fizd)= 3o 3 {ellz =yl [d =)y}

yEN: rENy

We believe that the use of (21) should improve the performance in these cases.
8. Discussion

In this chapter we have studied a class of recontruction problems that arise
when the conditional distribution of the observations is a multimodal function,
which causes the solution to remain ambiguous, even for arbitrarily high signal to
noise ratio. We identified the signal matching problem as one of the most important
instances of this class, and gave a probabilistic formulation for it using a MRF
model to model the disparity surface, so that the optimal estimation algorithms
derived in chapter 3 could be applied.

We then presented a different approach to the solution of the problem in
which the constraints derived both from the prior MRF model for the disparity
field and from the observations are implemented directly as excitatory connections
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on a three-dimensional cooperative network of processors (or "cells") with binary
state space. The stcady state of this network can be unambiguously interpreted as a
disparity surface only if there is exactly one processor in each column whose state
is equal to 1. This imposes a uniqueness constraint which can be enforced either
by introducing inhibitory linear connections, or by a "Winner-take-all” mechanism
that operates within each column. We showed that, for high signal to noise ratio, it
is possible to define precise sufficient conditions (which are usually met in the case
of synthetic images) for the convergence of the state of this "WTA" network to the

correct solution in a small number of iterations.

The experimental performance of this algorithm with random dot stereograms
is excellent; it pro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>