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Abstract

Variational methods that include an explicit representation of edges have been
introduced for image segmentation by Mumford and Shah. We develop a paradigm
that improves on these methods to allow segmentation on different scales while re-
taining the accuracy usually attained only for the finest scale. The paradigm leads to
several algorithms requiring scheduling of the parameters of the variational formula-
tion and feedback from the approximating image into the data. The feedback rates
and the schedule are governed by several limit theorems which have been attained
for the variational model. The limit theorems demonstrate an asymptotic fidelity of
the variational model to a more general piecewise smooth model. An efficient compu-
tational scheme is built on a sequence of approximating problems converging to the

variational problem in the sense of I-convergence.
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Chapter 1

Introduction

1.1 Background

In the past twenty years or so there has arisen a body of work which addresses the
problem of how to build a machine capable of processing visual information with a
sophistication and versatility comparable to a human being. The human visual system
is enormously complex and its equal could not possibly be developed in such a small
span of time. As in all engineering or analytical efforts in order to comprehend the
problem it has been necessary to decompose it into pieces of sufficiently small scope
that quantifiable objects and relations can be identified. In vision a separation was
made between early vision and higher level vision. High level vision problems are those
problems that one would ultimately like to solve. Two examples are recognition of
objects and three dimensional representations of an environment, suitable perhaps for
path planning. A basic problem only slightly less remote than these is the problem
of shape description. It is towards shape description that early vision was expected
to contribute. The primary exponent of this line of thought was David Marr [24].
It is with early vision that this thesis is primarily concerned. Some of the standard
early vision problems have reached a level of mathematical maturity admitting formal
models amenable to quite detailed analysis. Much of the work presented in the thesis,
in particular the limit theorems presented in Chapter 4 for the variational formulation
of the segmentation problem are in this vein.

In the field of early vision there have arisen several basic problems which are

considered fundamental. Below we briefly mention a few.



Shape from Shading: A curved surface which is illuminated from various sources
with approximately uniform reflective properties will usually present to the viewer a
gradually varying light intensity. Shape from shading is the problem of deducing the

shape or three dimensional geometry of the surface from the varying light intensity.

Depth from Stereo: At any instant of time the normal human viewer has essen-
tially two vantage points on a viewed scene, one for each eye. The disparity between
the two views yields information on the distance of various objects from the viewer. A
depth from stereo algorithm performs computations on a pair of images to determine

a depth or distance map.

Motion Tracking: This problem is perhaps one of the most complex early vision
problems. It deals with the question of movement of ob jects and how it is perceived

from sequences of images.

Segmentation: The segmentation problem is essentially the problem of partitioning
the image plane into coherent regions, corresponding to objects, say. What makes
a region coherent is the central modeling question. People are capable of detecting
regions of uniform texture as well as smoothly varying surfaces. This thesis deals

primarily with the segmentation in the latter situation.

Recently there has been a desire to fuse the early vision problems. It is believed
that each early vision problem alone is both too prone to error and too limited in
scope to provide information which could be used for higher level problems such as
recognition. This thesis shares this philosophy somewhat but the synthesis to which it
is directed is more of a vertical one, between the basic low level problem and the issue
of finding representations suitable for recognition. To reiterate, the function of early
vision can be likened to signal processing; a signal is detected and computations are
performed, largely independent of the particular signal or any purpose to which the
information present in the signal might be put. The selection of the relevant informa.
tion, representation for categorization or recognition is left to the domain of higher
level problems. Perhaps this scenario does have an analog in many biological sys-

tems, however, it certainly is true that various regions of the retina perform different
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computational tasks and control of the direction of the eye depends on intentionality
at the highest level.

A question worth consideration is; given the type of information early vision com-
putation can yield, into what forms should the representation of the results be trans-
formed to admit higher level problem solving. This is a very large and difficult prob-
lem and one that we do not intend to answer. Rather, we would like to emphasize
one possible feature such intermediate representations might possess to considerable
advantage, and, in the context of one early vision problem, namely piecewise smooth
segmentation, show how the basic computation for such a representation can be ap-
proached. The primary structural form we envision the intermediate data structures
to possess is that of a hierarchy. A simple example would be a tree or graph like
structure in which nodes represent elements of the image or environment and links
the relations between them. The ongoing development of computer languages has
recently produced the so-called object oriented languages. These structures might
also provide a convenient framework in which to represent a scene, its components,
and the relations between them.

It is not the aim of this thesis to pursue any of these grand schemes. The thesis
addresses in detail one issue, namely that of scale in the context of segmentation,
It is the contention of the author that information such as one gets from scale-wise
segmentation can be naturally represented in the above mentioned data structures.
Furthermore such structures could provide domains for formulating and solving recog-
nition problems. Also, in real time vision systems they could be used as a domain
for performing computations to decide what low level information is likely to be rele-
vant thereby admitting the possibility of resource management for the enormous early
vision computational demands.

As has been entioned, the segmentation problem is that of partitioning the do-
main of an image into coherent regions. In this thesis we examine only the problem
of segmenting based on intensity information. That is we examine the problem of ap-
proximating real valued functions by piecewise smooth functions. The interpretation

of this abstract problem as segmentation of images based on intensity information is
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largely historical. The model can be used for any problem where a piecewise smooth
approximation is desirable. The restriction to real valued as opposed to vector valued
functions is not intrinsic. Much of the work in this thesis could be extended to vector
valued functions. In any case we focus our attention on the problem of segmenting
grey level images. The foundation of the segmentation problem in this context has
been and remains edge detection. Edge detection alone is insufficient for segmenta-
tion because most techniques admit the possibility of finding edge fragments i.e. of
not providing a partition. In this thesis we consider both segmentations by piecewise
smooth and piecewise constant functions. A segmentation by a piecewise constant
functions obviously will provide a true partition of the domain. Nevertheless we will
refer to “segmentations” provided by piecewise smooth functions.

The issue of scale arises naturally in the segmentation problem. A decision must
be made concerning what constitutes a useful segmentation. An important question,
for example, is: into roughly what size blocks should the domain be segmented? All
segmentation and edge detection techniques incorporate parameters which effect this
decision. From the outset of early vision it has been realized that one would like
to have segmentations on different scales [24] (32] [37], i.e. one should be able to
find consistent segmentations on different scales obtaining both spatial and scale-wise
segmentation of the image. One of the weaknesses of many segmentation techniques
of the type examined in this thesis is the scale dependence of errors. The so called
energy-based methods such as the Variational formulation and Markov random feld
formulations (see the next section) introduce ad hoc energy functionals whose min-
imizer represents the proposed segmentation. Generally speaking these functionals
possess three terms. One is a fidelity term, forcing the solution to track the data some-
what. The second is a smoothing term guaranteeing the approximation is smooth,
at least off of the boundaries. The third penalizes the boundaries themselves, con-
trolling the quantity of boundary admitted into the solution. The functionals also
possess parameters to selectively weight each term. In particular these parameters
control the quantity of boundary in the solution and the degree of smoothing i.e.

they control the scale of the segmentation. By the examination of special cases one
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can easily demonstrate the scale dependence of the errors in the localization of the
boundary. The work presented in this thesis is built on a paradigm, which may be
of more general interest, that allows one to overcome some of the weaknesses of such
ad hoc models. The goal of the paradigm is to be able to provide for the segmenting
of large scale features of the image while retaining the accuracy usually reserved only
for much smaller scales.

In the context of our particular problem the paradigm has the following form.
We consider idealized versions of our data, i.e. data for which we can state explic-
itly what we want our solution to be. For the segmentation problem we consider
corrupted versions of an otherwise piecewise smooth image. The desired solution is
the identification of the discontinuity set of the image with the boundaries and the
recovery of underlying smooth image. We show that although the variational (energy
based) solutions do not yield the desired solution for particular values of their param-
eters, these solutions will converge to the desired ones in an appropriate topology as
the parameters tend to the limit of microscopic scale, provided we control the degree
of corruption appropriately. We then develop an algorithm which on a small time
scale resembles the minimizing of the energy functional but on a longer time scale
changes the parameters of the functional in the direction of the microscopic limit. In
order to prevent the resolving of microscopic detail, i.e. in order to retain only large
scale features, as the limit is taken we systematically remove small scale features as
if they were a distortion of the ideal image. The rates and topological structure for
this removal (which is achieved by boundary dependent smoothing) are governed by

the convergence theorem mentioned above.

1.2 Some Segmentation Models and Techniques

In this section we outline some segmentation techniques with which our work is re-
lated. Three techniques for image segmentation and reconstruction based on intensity
information which have recently gained considerable attention are, Markov Random

Fields [17] [26] [14], Variational Formulations (7] (28] [29], and Non-linear Filtering
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[30]. Most researchers in this area have realized that these methods are closely con-
nected (see [15] or [30]); the practical differences lying mostly in the conception of the
computation to be carried out. The essential feature which these models are designed
to capture; simultaneous smoothing and edge enhancement/boundary detection, is
achieved in essentially the same way. Our work is connected with these methods. In
this section we give a sketch of these methods and also one older one, with which we
begin.

One of the earliest ideas in image segmentation was the following. Roughly speak-
ing the edges in an image g, which we think of as a function defined on some two
dimensional domain €, will occur at the maxima of the gradient of the image. In
general real images are noise corrupted and the calculation of the gradient is very
sensitive to noise. The solution proposed by Canny [8] and Marr and Hildreth [25]
was to smooth g by convolving it with a Gaussian kernel G of some width o before
differentiating. Because of the symmetry of the Gaussian kernel the laplacian of the
smoothed image is the same as the convolution of the image with the laplacian of the

kernel, thus the edges were modeled as the zero crossings of,
V3G x g.

Now, as one increase o the degree of smoothing increases and the quantity of edges
decreases. This was interpreted as a variation of scale in the approximation to g
and lead to a concept of a set of approximations to the image on different scales.
This concept was referred to as scale space representations and is due to Witkin
[37]. The locations of the zero crossings of V2G % g vary continuously with ¢ and
one can thereby determine which boundaries found on the fine scale correspond with
boundaries of large scale features. One of the difficulties with this approach is that
the scales would be discretized in a computational scheme making the correspondence
problem, between boundaries on different scales, difficult. The localization of the
boundaries tends to be poor, especially on larger scales, because of the smoothing
across boundaries in the image. Figure 1.1 illustrates the behavior of this approach
for a one dimensional case. The basic idea of scale space is to use the localization

achieved on a fine scale together with coarse scale representations to recover coarse
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I

Figure 1.1: Zero~crossings of V2Q(c) x g

such as the rounding of corners and the distorting of t- Junctions. Qur approach allows
one to find coarse scale features with accurate boundary locations directly, without
first doing the fine scale computation. Thijs has certain advantages. In a complex

visual information Processing task it might often be useful to manage early vision
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Figure 1.2: Markov Random Field Variable Assignments

segmentation was proposed by Geman and Geman [17). The model resembles the
Ising model of ferromagnetism. We associate to each element of a two dimensional
lattice a real valued random variable fi;- This represents the intensity of the image.
Another lattice is defined to represent the boundaries. To each pair of neighboring
sites in the intensity lattice we associate an edge element; a random variable which
takes values in {0,1}. When the edge element takes the value 1 it is interpreted as
the existence of an edge crossing between the two neighboring intensity sites with
which the edge element is associated. When the edge element takes the value 0 the
edge is absent. Figure 1.2 illustrates the construction and our notation. Since there
are twice as many edges as intensity sites we label them lv;; and lh;; according to
whether they represent vertical or horizontal edges.
For each configuration which can be thought of as an assignment to each variable
of some particular value, one defines an energy,
E'(f,0) = (.Z)(fm,j = fid) (U= loi) + (fijer — fi3)2(1 — lhy)

4

+a(lvi; + lh; ;)
and (formally) a probability according to a Gibbs distribution,

—B'(13)

€ T

p(f,1) = 7
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where Z' is the appropriate normalization constant. This then gives a prior model on
the space of images. The parameter « is designed to control the quantity of boundary.
T is a parameter which plays the same role as temperature in statistical mechanical
systems. If we suppose that we observe an image g, i.e. a value g; ; for each site 7, j in
the lattice and that it is equal to fi,; plus some additive Gaussian noise, independent
over the different sites, then we get a posterior conditional distribution on f and [

which has the form,

—B(f!g)

p(f:llg) = ——

where Z is a new normalization constant and,
E(f,1lg) = (Z)(fm,a' — £l (L= i) + (figsr — Fogr)2(1 = Uk )

2,2

to(lvi; + thi;) + B(fis — 9i)°
where 3 is a constant depending on the variance of the observation noise. A maxi-
mum a posteriori (MAP) estimate is a configuration which maximizes p(f,1g). The
MAP estimates are the minimizers of E. This formulation suggests the use of some
Monte-Carlo for the optimization problem i.e. the finding of the MAP estimate. One
simulates the posterior distribution via some Monte-Carlo method while slowly de-
creasing the temperature T to force the distribution to be weighted relatively more
and more on the minimum energy states. This is essentially the simulated annealing
algorithm [17] [22]. The difficulty with simulated annealing in general is that it takes
excessively long to converge.

In a recent paper Geiger and Girosi [14] considered using mean field theory, a
method often applied to statistical mechanical systems in which the interactions be-
tween different variables in the system are approximated by relations between their
mean values. Using this approach the authors obtained deterministic equations for
the variables in the system and they eliminated the line process variables expressing
the solution solely in terms of the intensity variables. The equations they obtain have
the interpretation of (locally) minimizing the following energy functional,

E(flg) = D (firrg — Fii)* + (Foiwr — figrr)? + B(feg — gi5)?
(4,9)
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a~(fig1,;—%i;)? a—(fij41—1i;)?
~Tln[(1 4 e- =0y gy - thiptl

It is possible of course to find the Euler equations for the fi,j- This has been done in
[14]. There appears to be some connection between the result of this approach and
the GNC algorithm of Blake and Zisserman [7] which we discuss a little later.

The Variational formulation deals exclusively with the energy functional such as
E quoted above, and does not involve probability. The problem can now also be given
a continuous domain formulation. The energy functional introduced by Mumford and
Shah, [28] [29], and referred to as the weak membrane by Blake and Zisserman [7] is
the following,

E(f,T) = ﬂ/n(f -9+ L\r [V’ + a length(T")

where a and (3 are positive real scalars, (the parameters of the problem,) f is a
piecewise smooth approximation to g, having discontinuities only on the set I' which
one interprets as the boundaries found in the image. The first term of E penalizes
the fidelity of the approximating image f to the data g. The second term imposes
some smoothness on f. The third term measures the total length of the boundary
(which we think of as the union of curves). The removal of any term results in trivial
solutions yet with all three terms the functional captures in a simple way the desired
properties of a segmentation/approximation by piecewise smooth functions.

The parameters 4 and o have to be chosen. Since we have not fixed them a priori
we have really defined a two dimensional space of functionals. It is of interest to
examine certain limiting versions of the functional.

Consider allowing 3 and a to tend to zero while keeping their ratio fixed. Relative
to the other terms the smoothing term would dominate. Clearly any limit of mini-
mizers would necessarily be a locally constant function on Q\T' (where T' would be the
limiting boundaries.) Mumford and Shah were thus lead to introduce the following

functional,
Eo(f,T) = Z/‘;(fz -9l +a length(T")

where I' = Q\ U; Q; and the f; are constants. This functional, because of its greater

simplicity lends itself to more thorough analysis.
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Other similar functionals have been proposed and are being considered. For ex-
ample, Grimson [20], and Blake and Zisserman [7] proposed the addition of higher

order smoothing terms. Their “weak plate” functionals are the following,

B(f,T)=8 [ G =9V 4 [ Ft 3+ £2, + aslength(I4) + aslength(T;)

B(f,1) =8 | NEEPEYA o |AF1P + anlength(Iy) + azlength(T)

Where I' =T, UT,, Ty being the set of discontinuities of f and T'; being the set of
discontinuities of Vf. We will not pursue these variants further in this thesis.

One of the methods which has been proposed for solving the minimization prob-
lem is the Graduated Non-Convexity (GNC) algorithm of Blake and Zisserman [7].
The method is developed in the discrete setting. We indicate the basic idea in the
one dimensional case. To be consistent with the continuous domain variational for-
mulation we explicitly use the lattice spacing which we denote § to approximate the
continuous formulation by finite elements. The line variables are eliminated to write

the energy in the form,
E(f) =22 G(firr = fi) + B8(f: — g:)?
where G is defined by (see Figure 1.3),

1’61 for |z| < Vaé
G(z) =

a for |z| > Vab
It is not difficult to see the correspondence between minima of this functional and
minima of the original one. Blake and Zisserman’s proposal was to approximate the
problem of minimizing the non-convex functional E by finding a convex approxima-
tion to E. This is accomplished by modifying G. Basically the idea is to lower bound
the second derivative of G in order to lower bound the eigenvalues of the Hessian
of E. The solution they obtained is illustrated in Figure 1.4. The parameter c* is
ideally set as large as possible and controls the eigenvalues mentioned above. In each
dimension there is a strict upper bound on the value of ¢* for which the approximat-

ing functional remains convex. Thus effectively c¢* is a constant. (We refer to [7] for
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Figure 1.3: The Standard (Interaction Function
G(z)!
[
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_ ab
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Figure 1.4: GNC Interaction Function

or anisotropic diffusion approach as described in [30] considers as an approximation

to the data ¢ the solution to a non-linear diffusion process whose initial condition is



segmentation, as we have pointed out earlier, is that it blurs the image uniformly
resulting in poor localization of the edges. The basic idea of Perona and Malik [30] is
to do the diffusion in such a way that edges do not get blurred; the conductance of the
diffusion process should depend on the gradient of the image so that large gradients
become enhanced while smaller ones are smoothed. Thus Perona, and Malik were led

to diffusions of the form,

=V (0 )VF) fo =g (12.)

where c is the conductance and can be written as a function of IV £l,

c(@,y,t) = h(|Vf(z,y,t)]).

In [30] a couple of forms for h were suggested and experimented with,
C
1+ (%)?

h(z) = e (&),

h(z) =

For either of these we see that the effect is to decrease the conductance ¢ when the
gradient Vf is large.

Perona and Malik point out a connection between their approach and energy based
methods such as the Markov random field approach and the variational formulation.
The method can be viewed as a descent on an energy functional having only the

smoothing and length terms. Consider a functional of the form,
E(f) =3 G(firs - fi)

where G represents a function such as the one defined for the GNC algorithm, cap-

turing both the smoothing and the length terms. A descent algorithm would set,
b .
gifi=—c ¥ CUi- 1)
JEN(3)
for some constant c. Since G is an even function ( is odd and G(0) = 0. Thus for

some even positive function & we have,

0
af,- = —c Z h(fi = £)(fi = £5)

JEN(3)

which is essentially a non-linear diffusion equation.
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1.3 Improved Techniques

The energy functional associated with the variational model and the Markov random
field models is ad hoc. It seems necessary for producing models for vision to make ad
hoc choices at some level unless one is specifically interested in reproducing human
vision in which case one can appeal to empirical evidence. Among the attractions
of a particular model will usually be it’s analyzability, since it is this which makes
the model’s behavior predictable. Having an understandable model is almost as im-
portant as having intuitively appealing results especially if one intends to imbed the
model in a much larger problem such as a recognition problem. In the case of the
energy functional associated with the variational approach this predictability takes
form partly in the analysis provided by the calculus of variations. The difficulty with
these results is that they do not support the use of the variational approach as an
image segmenting scheme with respect to the goal of obtaining intuitively appealing
segmentations (whether it is based on intensity information or otherwise.) The re-
strictions on the geometry of the boundaries which arise out of the model are artifacts
of the particular formulation and do not reflect an intrinsic property of the problem
at hand. How then can one improve upon such as hoc models ? One jdea would be to
make the model more complex, trying to produce more desirable behavior. Another
would be to propose different ad hoc models. A third approach is the one taken in
this thesis. Consider the set of all possible minimizers of the functional E, over all
possible values of the parameters. Each of these minimizers possess the properties
which the model imposes. However, if we take the closure of these functions in an
appropriate topology we may widen the class of functions considerably. What we
show in Chapter 4 is that particular meaningful members of such a closure may be
found by taking the parameters associated with the functional to certain limits. In
fact, one can produce essentially any piecewise smooth function such as one might
suppose for a more general model of image. An idea which follows naturally on this
one is to develop an algorithm in which the same limit is taken. Roughly speaking
this is what is done in this thesis.

In all known segmentation/edge detection schemes there exist parameters which
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can be related in some sense to “scale”. There is no generally accepted definition of
“scale” in but often one has notions of size, contrast and geometry in mind. Take for
example the Gaussian smoothing technique. Here the relevant parameter is 0. For
each value of o one obtains a set of edges, the zero crossings of V2@ x g. Ideally one
would hope that as o increases that the set of edges would decrease monotonically.
However, this is not the case, in general the edges drift as the scale varies. Since
on the finest scales it is desirable to know which edges correspond to gross features
in the image there arises the problem of finding within the small scale edges those
corresponding to large scale features. It is true that the edge sets vary continuously
as a function of the parameter ¢ but in general it is computationally too costly to
compute boundaries for sufficiently dense a set of o to make the tracking obvious.
Thus the correspondence problem presents considerable difficulties.

In the energy base formulations there are usually 2 free parameters associated with
the problem. In this sense the use of the word “scale” is misleading. When Blake
an Zisserman (7] speak of varying the scale of the problem they consider varying the
coeflicient on the smoothing term in E (which is set to 1 in our formulation.) This is
equivalent to varying a and 3 while keeping their ratio fixed. While ﬁ can be related
to o which represented the width of the Gaussian kernel used for smoothing in that
approach, keeping the ratio 5 fixed does not correspond with the Gaussian smoothing
conception since this has the effect of keeping the total boundary and the localization
errors roughly constant. In our limit theorems we (usually) keep o fixed and let 3
tend to co. Thus for a fixed a “scale” can be thought of as ﬁ However, in general
there are two parameters and these parameters describe the range of functionals under
consideration.

Blake and Zisserman (7] point out that in the case of the one dimensional vari-
ational problem the location of boundary points will tend to remain fixed as the
parameters are varied (with g held constant.) Although this is not true in general
they have proved the stability of isolated discontinuities. First of all as we pointed
out they use the wrong notion of scale for comparison with the Gaussian smoothing

case. Secondly, this property does not carry over to the two dimensional problem.
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Figure 1.5: Segmentation of a Square

The example in Figure 1.5 shows how the variational solutions round corners. If the
parameters are varied with the ratio of 5 held fixed then the solution may not change
very much but it will change. It is likely in fact that for larger values of a and 3
the segmentation of the square depicted in Figure 1.5 will become fragmented as it
becomes cost effective to smooth over the corners rather than put boundaries there.
For small a and 3 solutions will tend to behave more like the piecewise constant case
in which the boundary must form a closed contour. (These observations have been
suggested by simulation results.) However, as we mentioned this does not correspond
with scale-space in the Gaussian smoothing approach since with that method the
rounding tends to zero as the scale is tends to zero. We have argued that with o fixed
“scale” is best identified with ﬁ In this sense Figure 1.5 illustrates the scale depen-
dence of the errors in the localization of the boundaries. The calculus of variations
results summarized in Chapter 3 further indicate shortcomings of the formulation.
The goal of the work presented in this thesis is to systematically develop a method
for segmentation which has the advantages of the variational formulation but is able
to accurately locate boundaries on all scales.

Our algorithm is developed in the following way. We first prove that asymp-
totically as parameters tend to certain limits (usually 3 — oo) that the solutions
provided by the variational method will converge to the discontinuity set of an im-
age. This implies, in particular, that one can recover t—junctions and corners at

least asymptotically by the variational method. We also characterize the degree of
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corruption of the image which can be allowed before these results break down. The
limit theorems are not enough to fulfill our goals because in effect they require the
“scale” to tend to the microscopic, thus details on a smaller and smaller scale will
be segmented in the limit. In general the errors one obtains vary directly with the
“scale” of the segmentation. Thus the relative errors do not improve as one tends
towards the microscopic scale. Another difficulty with the limit theorem is that as
in traditional scale-space representations more boundaries appear on finer scales so
the correspondence problem is again extant. The goal of the algorithm then is to
take the limit, retaining coarse scale boundaries, letting them tend to limit positions
while preventing the segmenting of smaller scale features. We accomplish this goal
by smoothing out small scale features while retaining the detail needed to accurately
place the boundaries corresponding to the large scale features. The mechanism for
doing this is discussed in detail in Chapter 5. Essentially we feedback information
from a smoothed version of the image to the image in a manner depending on our
current estimate of the boundary locations.

In principal our method for improving on the boundary locations can be applied
to any of the segmentation methods mentioned. We prefer to concentrate on the
variational formulation because mathematically it appears most fundamental and
because the main ideas of this thesis, including the limit theorems, the approximating
functionals and the algorithm can be made mutually coherent in this framework.

Another significant deviation we make from previously mentioned methods is our
representation of the boundary. We propose to represent the boundaries by a function
defined on the same domain as the image. We use the approximation scheme due to
Ambrosio and Tortorelli [5] which is presented in Chapter 3. This approach has
certain general advantages which we will discuss in Chapter 5. In our particular case
it also facilitates the implementation of the smoothing mechanism mentioned earlier.
In this approximation one replaces the set ' C Q with a function v : Q — [0,1]. There
are various representations of the approximating functional. The one we choose is the

following.

)
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The location of boundaries is in general given by (1 —v?)" ~ 0. It was proved in
[5] that the sequence of functional {E"} T'-converges to E. We define this notion
of convergence in Chapter 2. It’s most significant property is that minimizers of E"
converge to minimizers of £ (in an appropriate metric) as n tends to infinity. Also
the minimal value of the E™ converges to the minimal value of E. Our computations
employ a gradient descent to find local minimizers of E™. This approach closely
resembles the non-linear filtering approach. In our case however we have an explicit

representation of the boundary.

1.4 Outline of the Thesis

Since the mathematical results logically precede the algorithm the next three chapters
are devoted to them. In Chapter 2 we provide a brief introduction to some of the
mathematical concepts which are used in later analysis and which by our estimate,
are not widely known. Some of our work uses ideas from Geometric measure theory
for which a monumental reference is Federer [12]. In particular we define various
measures which we later use as generalizations of “length”. We define what is meant
by the essential boundary of a set. This object has many properties which make it
useful from the point of view of the calculus of variations. It is closely related to the
space of functions of bounded variation which have been extensively used in the study
of minimal surface theory [18]. The most recent results on the fundamental questions
associated the variational approach to image segmentation have been found within
a subclass of the functions of bounded variation which have been called the special
functions of bounded variation, SBV. The third section of Chapter 2 provides the
essential properties of this space which are needed for results proved in later chapters.
Finally in the last section of that chapter we outline the concept of I'-convergence.
This idea, due to E. De Giorgi and independently, to H. Attouch provides a rigorous
way to formulate the approximation of one variational problem by another, with
perhaps completely different mathematical variables. For the purposes of this thesis

we intend to use the approximation mentioned in the preceding section in which the
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boundaries, which typically are represented by a one dimensional subset of the domain
of definition of the image, are replaced by a function defined on the entire domain.

In Chapter 3 we have collected together some of the basic results which are rele-
vant to the ideas developed in the thesis. The chapter is divided into three sections.
In the first we review what is known about the fundamental question of existence
of minimizers to the (continuous) variational problem. We state the known results
and include a proof of our own which requires the boundaries to be constrained to
have finitely many components. The second section provides a review of the results
obtained by Mumford and Shah [29] via the calculus of variations for the minimizers
of E which constrain the geometry of the boundaries. These results help to motivate
our work which aims to circumvent those constraints. We view them as undesirable
structural restrictions placed on solutions which result directly from the ad hoc for-
mulation of the energy functional. In the final section we detail the I'-convergent
approximation mentioned above.

Chapter 4 contains our main contributions to the analytical understanding of the
variational formulation of the segmentation problem. The results demonstrate an
asymptotic fidelity of the variational approach. The ideas inherent in these results
also serve as the primary justification and motivation for our algorithm. We sup-
pose that our image is a corrupted version of an underlying piecewise constant or
piecewise smooth function, depending on the particular problem formulation. We
then show that asymptotically as B — oo the boundaries given as a solution to the
variational problem converge (in Hausdorff metric) to the discontinuity set of the un-
derlying image. These results can be thought of as a counterpoint to the results of
the calculus of variations. Those results say that locally the minimizers have a certain
structure which from the image processing point of view may be undesirable. The
limit theorems say that when viewed globally the solutions hehave well and asymp-
totically essentially any structure i.e. any boundary geometry, can be recovered. As
we mentioned earlier these results also play the role of governing our algorithm for
scale-independent segmentation.

In Chapter 5 we develop of the algorithm. In fact we propose several algorithms
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all of which are based on essentially the same idea. The main ideas are introduced in a
paradigm which sketches the algorithm and states the essential insights the algorithms
implement. These insights are derived from the limit theorems. The structure of the
algorithms closely resembles that of the limit theorems. In fact the limit theorems can
be interpreted as consistency results for the algorithms. With the paradigm stated
we detail our particular implementation of it. This includes the choosing of the var-
lous parameters of the algorithm and a stability analysis. Following this we develop
a computational model based on the I'-convergent approximation to the variational
formulation of the segmentation problem. Next, we consider potential discrete ver-
sions of the problem and develop a particular one based on our computational model.
This chapter also contains our simulation results.

The closing chapter summarizes the main contributions of the thesis and points

out some directions for further research.
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Chapter 2

Mathematical Preliminaries

This chapter provides an introduction to and fixes our notation for what we consider
to be some of the less familiar mathematical concepts which have been applied by
the author and others to the variational formulation of the segmentation problem.
In the first section we define the the Hausdorff and Minkowski measures. These will
provide us with generalizations, to irregular sets, of the length term in the segmen-
tation functional. We also introduce the Hausdorff metric which will provide us with
a topology for boundaries or edges in images and which we will use to measure ac-
curacy of boundary localization. The second section serves to define the notion of
essential boundary. This construct, due to Federer [12], is for analytical purposes
a very useful and tractable notion of boundary. It is closely related to the space
of functions of bounded variation, BV. In the third section we define and present
some basic properties of the space BV and a subspace SBV, the special functions of
bounded variation. The space SBV(f) plays an important role in the study of the
fundamental mathematical questions associated with the variational formulation. It
is in the SBV setting that the most general existence results have been proved for the
variational problem. Also, our asymptotic theorems for minimizers of E (see chapter
4) is proved in the SBV setting. Finally in the fourth section we present a notion
of variational convergence called epi—convergence or I'-convergence. This concept
is used in the development of approximations to and computational models for the

variational problem.
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2.1 Metrics and Measures

In this section we introduce a variety of ideas useful in dealing with the ‘boundaries’
or ‘edges’ of an image. The ‘image’ will usually be a real valued function defined on
a bounded open set @ C R2, often ) will be a rectangle. A boundary generally refers
to a closed subset of 2. However, sometimes the boundary may be restricted to have
certain additional properties such as having a finite number of connected components.

The following concepts can be applied to such objects.

The Hausdorff Metric

For A C R, the e-neighborhood of A will be denoted by [A]. and is defined by
[Ale={z € R" : inf ||z — y|| < €}
yeA

where || . || denotes the Euclidean norm. In the terminology of mathematical mor-
phology [34], [A]c is the dilation of A with the open ball of radius €. A notjon
of distance between boundaries which we will often use is known as the Hausdorff

metric. Denoted dg(-,-), it is evaluated by
du (A1, Az) = inf{e: A; C [A)c and 4, C [44].}.

Elementary considerations show that dg(-, +) is in fact a metric on the space of all
non-empty compact subsets of R". An important property of this metric is that it

induces a topology which makes the space of boundaries compact.

Theorem 2.1 For any infinite collection, C, of non-empty closed subsets of any
bounded closed set {¥ there exists a sequence {Tn} of distinct sets from C and a

non-empty closed set I' C Q such that I', — T in the Hausdorff metric.

Proof See [11], Theorem 3.16. O
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Hausdorff Measure

The variational problems treated in this thesis generally penalize the total length of
the boundary which ideally would be the union of a set of somewhat smooth curves.
A curve I' C R is the image of a continuous injection g:[0,1] —» R". The length of
a curve I' is defined as
L(T) = sup{3" lg(t:) — g(tin)]| ¢ 0= to <ty <. < by, = 1}
i=1
and I' is said to be rectifiable if L(T') < oo.

Unfortunately some fundamental mathematical questions such as whether there
exist minimizers of E have not been resolved with the boundary defined as a set of
curves. Instead, for such results, potential boundaries are drawn from a wider class
of sets and more general measures are applied to them. A measure on the space
of boundaries which generalizes the usual notion of length is required. A variety of
such measures for subsets of ™ have been investigated (see [12] for many examples).
Perhaps the most widely used and studied are the Hausdorff measures [11, 12, 31].

For a non-empty subset A of R", the diameter of A is defined by diam(A) =

sup{|lz — y|| : z,y € A}. Let 1
_ G
IG+D)
where I'(-) is the usual Gamma function. For integer values of s, w, is the volume of

the unit ball in R°. For s > 0 and § > 0 define

L)

H5(A) = 27%w, inf{} diam(U;)* : A C U Ui, diam(U;) < 6},

i=1 =1

The Hausdorff s-dimensional measure of A is then given by
H*(A) = lim H3(A) = sup Hi(A)
5§—0 §>0

Note that the factor 2=°w, in the definition of H*(-) is included for proper normaliza-
tion. For integer values of s Hausdorff measure gives the desired value on sets where
the usual notions of length, area, and volume apply.

Many properties of Hausdorff measure can be found in (11,12, 31]. The following

theorem states that 7! is a generalization of length, as required.
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Theorem 2.2 If I' C R" is a curve, then H!(T') = L(T).
Proof See [11] Lemma 3.2. a

The following theorem is a structure theorem for closed sets of finite 1 measure.
The one following it states an important lower-semicontinuity property. We refer to

a compact connected set as continuum.

Theorem 2.3 If T is a continuum with H'(T') < oo, then T consists of a countable

unjon of rectifiable curves together with a set of {!-measure zero.

Proof See [11], Theorem 3.14. O

Theorem 2.4 If {T',} is a sequence of continuua in R" that converges (in Hausdorff

metric) to a compact set T, then I is a continuum and HY(T) < liminf, . H\(T,).
Proof See [11], Theorem 3.18. O

In section 3.1.2 we extend this lower-semicontinuity result to sets with a finite

number of connected components.

Minkowski Content

Another measure which can effectively replace the length is Minkowski content [12].
Let | . | denote Lebesgue measure in R*. For any A C 8,0 < s <n,and e > 0,

define,
[A]|

mi(a) =
Minkowski content is thus a neighborhood based definition. The algorithm developed
in this thesis uses neighborhoods of sets of boundaries. Minkowski content will help
use to characterize these neighborhoods. As in the definition of Hausdorff measure,

the term w,_, is included for proper normalization. In general, lim._,o M:(A) may not

32



exist (for an example see [12], section 3.2.40). However, lower and upper Minkowski

contents can be defined by
M(A) = lim inf M;(A)

and
M*(A) = limsup M?(A)
€—0

respectively. If these two values agree then one refers to the common value as the
s-dimensional Minkowski content of A and it is denoted simply as M?*(A).

The following theorem relates Minkowski content to Hausdorff measure. A subset
I' of R™ is called m-recifiable if there exists a Lipshitzian function mapping a bounded
subset of R™ onto I'.

Theorem 2.5 [12, Theorem 3.2.39] If T is a closed m-rectifiable subset of R™ then
M™(A) = H™(T).

Another important estimate on Minkowski content for our purposes is the follow-

ing,

Proposition 2.6 If I' C ®? is a recifiable curve then [[T]e] < 2¢H'T + 7e? and so
M(T) < HYT) + ine.

Proof Since I' is rectifiable, I' = {7(t) : 0 <t < 1} where 7 : [0,1] — R2 is
rectifiable and H'(T') = sup{7, ||v(t) —yti): 0=ty <t; <--- < t, = 1}. For
E =1,2,...let {t;;} be a sequence of dissections such that max;{||ti; — ti_1;]|} — 0
and HY(T) = Lm0 T2F) |l9(ti;) — v(tisy)||. Let C; = UTDS; where S, is the
straight line joining (t;_1,;) and y(t;;). Then |[S;;).| = 2¢el|y(ti;) — Y(ti1 ;)| + me2,
and

k-1
|UEs (Sl = [UESE [S5)e] + ([Sksle] — |[Skjle N U [Sijlel

=1

= U [Sislel + 2€llv(tes) — (ks )|

< U [Silel + [[Sksle] — me?
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By induction on i, we get

m(J)

[Cilel < 32 2ellv(tis) — A(tia, )| + we?
i=1

In (23, Theorem 6] it was shown that if T, — I' in Hausdorff metric then |[[',].| —

[T]e]. Since C; — I in Hausdorff metric we obtain,

[T)e = lim [[C}l] < 26X (T) + nel.
Jj— oo

2.2 Essential Boundaries

The problem of defining the perimeter of a set proved difficult from the point of view
of the calculus of variations. The topological boundary does not in general possess
sufficient mathematical properties to fulfill the usual requirements of the calculus.
Federer [12] introduced a notion based on the idea of density. The essential boundary
of a set is those points where the set has density other than zero or one. To be more

precise, for a borel set A C ) we set,

_ . i BN By(z)] —

where w,, = |B1|. A, is the set where A has density t. Federer defined the essential
boundary 8*4 as
B'A = Q\(Ao U Al)

The essential boundary possesses the following property,
9"AD A; and H”‘I(O*A\A%) =0 (2.2.1)
Also, the set 3" A is countably rectifiable in the sense of Federer ([12], chapter 3),

AC |JT.UN

n=1

where the T',, are C'! hypersurfaces and H1(N) = 0.
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A result which characterizes the essential boundary very nicely is the following,.

For bounded measurable sets A, if H"~1(8*A) < co then,

H QN 6"A) = inf { liminf H*~(Q N 84,,) : (2.2.2)

A, — Alocally in measure, 4, polyhedral.}

A measurable set A C R satisfying H" (K U 8*A) < oo for all compact K C R™ is
referred to as a Cacciopol; set.

This concept of boundary will be helpful in the formulation of the piecewise con-
stant version of limit theorem proved in chapter 4. Also it was used by Mumford and

Shah in their proof of the existence of minimizers for E,.

2.3 SBYV Functions

Let J be an open interval in R then u : J — R is a function of bounded variation in
Jif
k-1
Vi(u) = sup{d_ |u(tiy1) —u(t;)| 1inf J < t; < ... < te <supJ} < 4oo. (2.3.1)
i=1

V(u) is called the total variation of u in J. The space BV(J) is the space of Borel

functions w : J — R such that
ess-Vy(u) = inf{V;(v) : v = u almost everywhere } < 4o0.

In higher dimensions this definition can be generalized by slicing arguments [4]. Slicing
arguments involve considering all lines which are perpendicular to an n—1 dimensional
hyperplane. Membership in BV(Q) can be characterized by the trace of a function
on such one dimensional slices. The space BV(2) can be characterized in other ways.
In particular the functions in BV(Q) are those functions w € L'(9) such that Du,
the distributional derivative of u is representable as a bounded Radon measure on §
with values in R2 [12] [18].

For each = € Q) we can define the approzimate upper (and lower) limit of u at z.

The upper limit is the greatest lower bound of all ¢ € [—o0, 00] such that {z € Q :

35



u(z) > t} has 0 density at z, i.e.,

u*(z) = inf{t € [—00, 0] : pli_351+ [{u > ti? B, (=) = 0}. (2.3.2)
Similarly the approximate lower limit is,
t
u™(z) = sup{t € [—o00,00] : lim I{u < }? By(=)] = 0}. (2.3.3)

p—0+ P
Points where u* = u~ are points of approximate continuity for u. The remainder,
which we denote S,, where v~ < u*t is the Jump set of w. If u € L™(Q) then the

points of approximate continuity are precisely the Lebesgue points of u, i.e.,

{z:3z: plir(1)1+ p" /B,(.—n) lu — z|dz = 0}
By the Lebesgue derivation theorem we conclude |S.| = 0.

It turns out that for H"~!-almost all z € S, one can define an approximate tangent
to Sy while u* and u~ provide one sided limits. Given v a unit vectorin ", z ¢ R
we say that z = u't(z,v) if

e L € Bo(@) v — 2,0) > 0,ufy) — 2| > e}
p—0+ pn -

0

for every € > 0. Similary one defines u™(z,v) = ut(z,—v). For H"'-almost all z €
Sy there is a unique v such that v~ (z) = w(z,v) and u*(z) = ut(z,v). v represents
a normal to S,.

For any function u € BV() the measure Du can be decomposed as
Du = Vudz + Ju + Cu.

Vudz is the part of Du which is absolutely continuous with respect to Lebesgue
measure (which we denote by dz) and Vu € L'(Q,R?) is thus the corresponding
Radon_Nikodym derivative. Ju + Cu is singular with respect to Lebesgue measure.
Ju is defined on any Borel set B € 0 by,
Ju(B)= [ (u* —u)y, dnr?
u(B) anu(u u )y

where vy(z) is the approximate normal to S, at = € S,,. Cu(B) is a bounded Radon

measure on {} with values in R2. It is a fact that, H"!1(B) < +o00 = Cu(B) =0 [4].

36



It is clear that Ju captures the jump of discontinuity set of » and Vu dz the smooth
part. Thus a reasonable formulation of the variational problem in this setting is find
minimizers of,

E(u) = /n (u—g)? + /n |Vul? + H™1(S,) (2.3.4)
for v € BV(R) (where Q is n dimensional.) The difficulty which arises is that the
functional E gives no control over Cu. In fact the Cantor-Vitelli function in one
dimension satisfies Du = Cu. A consequence of this is that F is not coercive in
BV(f2), that is E bounded sets are not compact.

We say u € SBV(Q) if w € BV(Q) and Cu = 0. SBV possesses some very useful
properties. For example, as with BV(Q?), membership in SBV can be determined by
examining one-dimensional sections, and SBV is closed under L! limits. Furthermore
the functional E is lower-semicontinuous in SBV with the I topology. This issue
will be discussed further in the chapter on existence results. As we have mentioned,
some of our work is developed in the SBV setting and for this development we require
some basic results. We collect a few of them here. We focus on the case O CC R2.

Let D be a relatively compact open subset of 2 with Lipshitz boundary such that
$.N8D has only a finite number of points. From the trace theorems for BV functions
(see [18] Theorem 2.10) it follows that for u € BV(Q),

/DqSDu = —/Dudivqﬂd:c +/8D ugpr dH!

for every bounded Borel vector field ¢ € C (D, R?), where v is the outward normal
to D. Thus it is also true that if u € SBV(12) then,

_ . 1_ + - 1
/D udive dz + /a _ugv dH fD $Vudz + /D Gt —uT)gn . (235)

Finally we present some rather deep results due to De Giorgi-Carriero-Leaci [10]

which characterizes S, in terms of the decay of functionals around points in Q.

Theorem 2.7 [10, Theorem 3.6] Let z € Q and u € SBV(Q). If,

o
o™ |/

“ [Vul*dy + HY(S, N B,,(:c))] =0

r

then z ¢ S,,.
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The proof of this theorem is based on a generalization to SBV of the Poincaré-
Wirtinger inequality. To state the next theorem we need to introduce some more

notation. Let u € SBV(Q2). For every compact set K C  we set,
F(u,K) = /K Vul? + H(S, N K)

and

®(u,K) =inf {F(v,K):v € SBV(Q),v =u € Q\K}.
Obviously ® < F and we define the deviation from minimality as
¥(u,K) = F(u,K) - ®(u, K).
We are now ready to state the advertised theorem.

Theorem 2.8 [10, Theorem 4.13] There exist universal constants &,7 > 0 such that
ifu € SBV(R), B,(z) CC € for some p > 0, and each of the following three conditions
hold;

F(u,Fp(:l))) < o,

. -1 = _
tl_l'rgh t7 ¥(u,Bi(z)) = 0,
Y, Bile)) < At V< p,
then lim, o p=! F(u, B,(z)) = 0.
Proof See [10] or [4]. |

The proof of this theorem is based on the theorem quoted below. To state this theorem

it is convenient to reintroduce o into the notation. Thus temporarily we set,
F(u,0,K) = / V|2 + o HY(S, N K)
K

and

P(u,a,K) =inf {F(v,a,K):v € SBV(Q),v =uv e Q\K}.
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Theorem 2.9 For any § € (0,1) there exist two universal constants ¢ and 6 such
that if p > 0, B,(z) € 2,u € SBV(Q) with,
F(u,a,By(z)) < ¢p,
V(u,0,F,(2) < 6F(u,a,Fy(x))
then,
F(u,0,By(2)) < (37 F(u,0,Bs(x))
The theorem is proved by contradiction. Assuming the theorem is false it is possible

to find § € (0,1), an a > 0, and sequences €nsOn,y Pny Tnyu, such that &, | 0, 6 l
0, B,.(z,) C Q,

IN

F(un0,Byo(20) < bup,

¥(tn, 0, Bpu(2n)) < 0.F(u, 0, B, (zn))
and,

F(tn, 0, Bap(2n)) > (5 Ftn, 0, By (2).

By rescaling and translating one obtains a sequence v, of functions in SBV(B,) such

that F(v,, ﬁ,Fl) =1, ¥(v,, Z%’Fl) <4, and

a 1
had > (= 2-6
F(on 7 By) 2 (3)

Since & | oo and the deviation from minimality in B; tends to 0, in the limit the

functions v,, should behave like harmonic functions. But if v is an harmonic function

then,
1
Vol? 142 Vol?
-/B*I ”'d"’s(z) /Bl' vf*de

and it is by this that a contradiction is found. Although we have sketched the proof

in the two dimensional setting the theorem has been proved in R™.

2.4 TI'-Convergence

Another concept which plays an important role in our study of the segmentation
problem is the notion of I'-convergence due to De Giorgi. The same concept was de-

veloped independently in France under the name epi-convergence by H. Attouch [6].
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This concept concerns variational convergence, i.e. the approximation of one varia-
tional problem by another. In this section we provide a definition of I'-convergence
and state some of its basic properties.

Let (S, d) be a separable metric space and let F,, : § — [0, +00] be functions. We
say F, I'(S) — converges to F': § — [0, +00] if the following two conditions hold for
all z € S,

Ve, — T li'lll_l_.iol.}f Fo(zn) > F(=)

and Jz, —» 2 liminf Fo(z,) < F(z)

The limit F when it exists is unique and lower—semicontinuous. The following propo-

sition characterizes the main properties of I'-convergence.

Proposition 2.10 (see [5] for example) Assume that F, TI'(S)-converges to F.
Then, the following statements hold.
(i) Fn + G T(S)-converges to F + @ for every continuous function G : § — R.

(ii) Let ¢, | 0. Then, every cluster point of the sequence of sets
{z € 8:Fp(z) < i%f F.+t.}

minimizes F'.
(ili) Assume that the functions F, are lower semicontinuous and for every ¢ € [0, 00)

there exists a compact set Ky C S with
{z€S:F(z) <t} C K, VneR

Then, the functions F,, have minimizers in .S, and any sequence z, of minimizers of

F,, admits subsequences converging to some minimizer F.

Ambrosio and Tortorelli [5] found a sequence of functionals which I'-converge (in
an appropriate setting) to the variational segmentation functional. In this approx-
imation the boundaries are replaced by a function. This formulation then admits
a finite element discrete approximation. Our proposed segmentation algorithm uses
these approximate formulations in an essential way. Greater detail concerning them is
provided in subsequent chapters. Other applications of I'-convergence are discussed
in [4].
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Chapter 3

Some Analytical Results

A considerable amount of work has been done to analyze the variational problem.
The fact that the variational problem is amenable to analysis, particularly in the
continuous formulation was one of the reasons for considering it as a means to image
segmentation. In this chapter we review the present state of knowledge on some of
the basic analytical problems associated with the variational formulation. In the first
section we consider the most fundamental of these problems, namely the existence
of solutions. First we provide a statement of an existence result in a class of regular
I' which has been proven for the functional E,. Following this we introduce a weak
version of the variational problem in which I' is required to be closed and fewn3(q).
A proof is given for a slightly modified version of the problem in which the number of
connected components of the boundary is required to be finite. The proof is givenin a
form general enough to include the “weak plate” (see the introduction) formulations
of the segmentation problem. Finally we present a different and technically much
harder formulation of the problem. Cast in the SBV setting, this formulation has been
studied by Ambrosio [2, 3, 4], and De Giorgi-Carriero-Leaci [10]. With a remarkable
result on the SBV minimizers to the variational formulation of the segmentation
problem, De Giorgi and coworkers [10] were able to show the existence of minimizers
of E for the weak formulation referred to above. The second section reviews the
results of the calculus of variations which constrain the form of minimizers of F.
These results were given in [29]. Finally in the last section we present a parametrized
sequence of approximations which converge to the variational formulation in the sense

of I'-convergence. This result is due to L. Ambrosio and V. Tortorelli [5].
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3.1 Existence Results

3.1.1 Piecewise Constant Case

As we have mentioned it is still an open problem to show existence of minima for
the functional E with sufficient regularity of the boundary to allow the analysis of

Mumford and Shah [29] to go through. However for the functional,
Ey=BY [ (fi-9)* +length(T)

(where the §2; are the connected components of Q\T' and the f; are constants,) the

following has been proved.

Theorem 3.1 [27] Let Q be an open rectangle and let ¢ € L*(Q). For all one-
dimensional sets I' C 0 such that T' U89 is made up of a finite number of CV! - arcs,
meeting each other only at their end-points, and, for all locally constant functions f

on O\, there exists an f and a I' which minimize E,.

Mumford and Shah [29] proved a similar theorem with the restriction that g be
continuous of {. In this case they showed that I is composed of a finite number
of C? curves. The proof relied heavily on results from geometric measure theory.
The theorem quoted above was proved by Morel and Solimini in [27] using direct,
constructive methods. Finally, another proof using I' restricted to be unions of line
segments and then taking limits as the segment lengths tend to zero was achieved by
Y. Wang [36].

Existence results for minimizers of E have now been found for various weak ver-

sions of the problem. The natural formulation of a weak version of the problem is to

define,

E(f,T) = - f)? V£? r 1.1
(B =8 [l 7+ [ IVF +7(r) (3.0.1)
with I' being a relatively closed subset of 0 and f € WL Q\T') where W12 is the

Sobolev space as defined in [1]. An existence result now exists for this formulation

but the first result obtained is presented in the next section. It requires the addition
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of another term to E which forces the number of connected components to be finite,

so it is a slight modification of this formulation.

3.1.2 Finite Component Existence Theorem

In this section we prove the existence result mentioned above. The cost functional

we will be considering has as a special case one of the following form,

E(AT) = [ =17 + [ IVFI +u(D) (3.0.2)

g, as usual, we interpret as a gray-level image which has been observed and lies in
L&(82). The domain of our problem, {1}, is a nonempty bounded open set in R?. For
convenience we require ! to be convex (see proof of theorem 3.3) but this constraint
is not essential. “Boundaries”, which we will denote by I' are nonempty closed sets in
R? such that I' C ©. For 3.1.2 the function f belongs to the Sobolev space WL3(Q\T),
this will be generalized later. The functional “u” assigns some cost to I'. We will
define v to be one dimensional Hausdorff measure plus some term to control the
number of connected components of I'. We provide an appropriate topology for the
solution space and obtain compactness and lower-semicontinuity results yielding the

existence of minimizing solutions for E.

Boundaries

In this section we formally define and show relevant properties of the cost associated
with boundaries. We require only that the boundary T be a closed subset of I and
that H'(I') < co. We recall £hat du(++) is a (complete) metric on the space of
boundaries as defined here. When we speak of convergence of boundaries we mean
with respect to the topology induced by this metric.

The cost associated with the boundaries has the following form.
v(T') = HY(T) + F(#(I)) (3.1.3)

F' is any nondecreasing function defined on the nonnegative integers which satisfies

lim,_,o F(n) = co. One acceptable version of F would be a function which is zero

43



for n < K and oo otherwise; this would simply bound the number of connected

components of T'.

The following results establish the lower-semicontinuity properties required to
demonstrate the existence of minimizers of E. For convenience we introduce the
notation,

r(4,B) = sup inf [|z —y|
and note (A, B) < dg(4, B).

Lemma 3.2 The functional #(-) is a lower-semicontinuous function on the space of

boundaries.

Proof: Suppose I, — I' and #(I') = ¢ < 0o. Then there exists an open cover of I
consisting of ¢ disjoint open sets Gy, G, . .. G such that TNG; # 0, V5. Tis closed so
36 > 0 such that Vi, 1(I'N G, R\G;) > 6. Since (T, T,,) — 0, for n sufficiently large
I'n C U;G; and for each 4, ', N G # 0. Thus liminf,_ #(Tp) > c If #(T) =

then we can repeat this argument for any c and the result follows.

Theorem 3.3 The functional v is lower-semicontinuous on the space of boundaries
i.e.

v(T') < li1{r_1'i£f v(Ty) (3.1.4)

whenever I',, — T.

Proof: Assume (without loss of generality) that for all n (T,) < K. It follows
that #(T's) is uniformly bounded and by Lemma 3.2, #(I') £ M < 0. Since the
connected components of I are thus separated pairwise by some finite distance the
result follows once we show it for connected T'.

Assume T is connected. Let 6, = dg(T,,T). Suppose T',, has more than one
connected component and let C be one connected component of I',. If for some ¢ > 0,
dist(C,T',\C) = 2(6, + €), then {z : dist(z,C') < 6, + €} and {z : dist(z,T',\C) <
bn + €} are two disjoint open sets both containing points of I' and whose union covers
I'. This contradicts the connectedness of I'. Thus we can find z € C and y € T,\C

such that ||z — y|| < 26,. Consider the straight line segment from  to y. It connects
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C to some other connected component of I',,. Since C was an arbitrary connected
component of I',, we can find a similar straight line segment from each connected
component of I', joining it to some other component. Now if we add all the line
segments to I',, (we can do this because we have assumed the domain is convex,) the
number of connected components is reduced to M /2 or fewer, the Hausdorff measure
will increase by at most 2 6, and we will have d a(Tn,T) < 26,. Let p be the smallest
integer such that 2° > M, then by repeating the above argument p times we get a
modified, connected I', such that its Hausdorff measure is at most (2pM)é,, larger
than before and dg(T'n,T) < 276,. Thus the modified [y, still converge to I' and since

they are connected we can apply theorem 2.4 to get, in terms of the original sequence

HY(T) < liminf }'(T,) + 2pM$, = liminf }!(T,). (3.1.5)

n—co

Lemma 3.2 implies lower semicontinuity of F and together with the above result

we get lower semicontinuity of v.

Existence Proof

In this section we will treat the question of the existence of a minimizing pair (f,T)
for E. We have already developed some results for the cost associated strictly with
the boundary so in this section we will be focusing on the function f. Since it
may be desirable to introduce other costs associated with the boundary, we will
state assumptions required on the boundaries in order to treat the remainder of the
problem rather than quote results from the last section. We mention here however
that these assumptions are satisfied by the definitions given in the preceding section;
Al is satisfied by definition and A2 follows from theorem 2.1 and theorem 3.3. Also,
we will generalize the functional E. We will use the following set of assumptions on

the space of boundaries.
Al The space of boundaries is contained in the set of nonempty closed sets in RZ.

A2 With respect to the topology induced by the Hausdorff metric on the space of
boundaries v(-) is a nonnegative lower semicontinuous, coercive functional. (Le.

the sets {T': v(T') < t} are o-compact for all ¢ > 0.)
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We now generalize the functional E somewhat, in anticipation of other applica-
tions. Henceforth F is defined by,

B(fim) = [ #(a,f,D™f,D=,..., D% f) + u(T)

As before g € Lo (), s is a positive integer. Each o; is a fixed multi-index, us-
ing the notation of [33]. f belongs to the subspace of functions in L,,(2\T') whose
distributional derivative D f exists as an L, (Q\I') function, where each p; satisfies
1 < pi <ooforall 1 <i<s. Wewill denote this space of functions by D(Q\T'). The

following describes the assumptions on ®.

A3 @ is a nonnegative real function on R2+* such that for any fixed domain Q' C 0
and fixed g € Lo(Q) the functional Jor ®(9, f,v1,va,...,v,) is a lower semicon-
tinuous, coercive functional on L, (') x L, () x...x L, (9') with respect to

the weak (product) topology. Furthermore Ja 2(9,0,0,...,0) < .

We note that (g — f)? 4 v? + v2 is such a function with Po = p1 = p2 = 2. The
formulation presented in the introduction satisfies these conditions with D(Q\T') =
WLA(Q\T).

We are now ready to introduce a notion of convergence on sequences of pairs
{(f2,T5)}. The convergence of a sequence {(fn,T0)} to (f,T) will imply I',, — T in the
topology induced by the Hausdorff metric. Now, given any function w,, € L,(Q\T,)
let W, € L,(Q\I') be defined by extending w, to 1, setting it to zero on I', and then
restricting it to Q\I'. By (f.,T,) — (f,T') we mean I',, — T in the topology induced
by the Hausdorff metric, 7, — f weakly in L, (Q\T) and D, — D= f weakly in
Ly (Q\T') for each 1 <7 < s.

Lemma 3.4 Under assumptions A1, A2 and A3, for any F bounded sequence {(fas o)},
Wwe can extract a subsequence (also denoted {(f,,T,)}) such that for some boundary

I' and some f € D(Q\T'), we have (frsTh) — (£,T).

Proof:

Assume the conditions of the Lemma and suppose we are given an £ bounded

sequence. We can assume there is some I' such that I, — T since otherwise by
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assumption A2 we can first extract a subsequence and find a boundary with this
property. Since the sequence is £ bounded we can conclude from A3 that the sequence
{forr ®(g, fu, D1 f,, ... ,D"T'Tfn)} is bounded. Hence, by A3, we can find functions
f € Ly (Q\T),v, € L, (A\D),...,v, € L,,(\I') and a subsequence (which we still
denote the same way) such that, fn — f weakly in L, (2\T') and D f, — v, weakly
in L, (Q\T) for each 1 < ¢ < 5. We claim that fE€Dand D% f = v,

Let g be any test function in Q\T, i.e. g € CP(\T). For convenience we
also define ¢ = 0 on @ NI. Consider the subsequence extracted above. Since
dist(supp(g),T) > 0 (using A1) it follows that for all n sufficiently large g|a\r, €
CP(O\I',) and fn|Supp(g) = fnlsupp(g)- Thus along the subsequence we have,

g = li n—oo D—a'\n = l D n
/Q — Moo Joyr D% frg A o, D Fng
= —lim, . ZD¥g = _ i faD
Mmoo fovr, faD™g A o faD%g
= —Jaxr fD™g

We conclude from this that D% f = v; and hence f € D(Q\).

Lemma 3.5 Let {(f,,T,)} be any E bounded sequence such that (f,,T,) — (f,T),

then under assumptions A1 and A2,
E(f,T) < Hﬂg}f E(f.,T,) (3.1.6)

Proof: Let I'* be a closed e neighborhood of T, i.e. a closed neighborhood of T' such
that 7(I'*,T') < € and define,

E(f,1") =/ (g, £, D f,..., D% f) + u(I") (3.1.7)

Q\Teur
For n sufficiently large (> N say), I', C I'¢ and since I' C T'¢ we get D;‘i\fnln\(pcupn) =
D% fu|a\re. Hence the sequence { D falav(reura)}nsn converges weakly to D Flavre
in L, (2\I') and similarly {falav(reura)ns>n converges weakly to Flavre in L, (Q\T*).

We can now write

liminf E.(f,,T,) > liminf rer (g, fr, D*' fr, ..., D** f,) + lim inf v(T'y)
n—oo n— oo €y n n—oo
> /mre (g, f, D' f,..., D% f) + u(T) (3.1.8)
= Ee(f’ F)

47



where the second inequality follows from Az and lower semicontinuity of J ® in the
weak topology on D(Q\I¢). From the nonnegativity of ® and the closedness of T we
conclude sup,, E.(-) = E(-) and hence

liminf E(f,, ) > B(f,T) (3.0.9)

Theorem 3.8 Under assumptions Al and A2 (and in particular letting v be defined

as in the preceding section), there exists a minimizing pair, (f,I') for the functional

E.

Proof: Apply Lemma 3.4 to a minimizing sequence, then apply Lemma 3.5.

It may be possible to show for some functionals that the number of connected
components is necessarily finite for optimality even when the term F(#T) is absent
from the definition of v. If this is the case then the main results can be proved with
this term removed.

The various proofs can be modified to allow the space of boundaries to be closed
in {) rather than R? once it is shown that HY(T'NOKY) = 0 for the present formulation.
This can be accomplished for special domains (such as rectangles) be a reflection

argument.

3.1.3 Existence in SBV

The class of admissible f,T' pairs can be enlarged beyond that required by the “weak
formulation” by formulating the problem in SBV(R2). In this case the functional

appears as below,

B(f) =8 [ (a— PP+ [19517 +7:(s,)

where Vf dz is the part of D f which is absolutely continuous with respect to Lebesgue
measure and Sy is the jump set of f (see chapter 2 for an introduction to SBV).
L. Ambrosio proved a compactness theorem and a lower-semicontinuity theorem for
the space SBV(Q) which allows the assertion of existence of minimizers to this for-

mulation of the variational segmentation problem. We will be using these theorems
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in the proofs of our asymptotic results in chapter 4. Thus for later reference we

paraphrase these theorems here.

Theorem 3.7 [4, Theorem 3.1] Let {u,} C SBV(2) N L*=(R) be a sequence such
that

lim sup {||u,,||°° + [ 19l de + H"‘I(Sun)} < oo

Then, there exists a subsequence u,,, converging in Li .(2) tou € SBV(2). Moreover,

Ju, — Jg  weakly as radon measures

Vu, - Vu  weakly in L1(Q; R).

We mention in passing that if it can be shown that u, — v in Li,.(9) by other
means then the weak convergence results apply to the original sequence.
To complete the proof existence of SBV(Q) minimizers of E the following has been

proved.

Theorem 3.8 [4, Theorem 4.2] If u,, — u in L, (2) with |[un]|eo < €' < 0o then,

E(u) < liminf E(u,)

To make the connection between the “weak” formulation mentioned earlier and
the SBV formulation the first step is to note that the SBV formulation is more general.

The following proposition makes this assertion.

Proposition 3.9 [4, Proposition 3.3] Let T' C  be a closed set such that H}T) <
0o, and let u € WH(Q\T') N L*(Q). Then, u € SBV(£2) and SBV(2) C I'U N with
H*Y(N) =0.

A consequence of this proposition is that the minimum achieved under the SBV
formulation is less than or equal to the infimum of the “weak” formulation. However,
De Giorgi and coworkers in [10] proved an equivalence between this formulation and
the weak formulation. This was achieved through a regularity theorem for SBV
minimizers. We state the theorem here not only to complete this overview of the

existence results but also because we intend to use the result later.
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Theorem 3.10 [4, Theorem 5.1] Let u € SBV({2) be a minimizer of E. Then,

(i) u € L2(Q), [[ufleo < [I9loos

(ii) u € W2P(Q\S,)Vp € [1,00) and Au=f(u— g)in NS.,;
(iii) the function () = u*(z) = u~(z) belongs to C1(2\3.,);
(iv) HY (RN T,\S.) = 0.

The most difficult and interesting part of this theorem is the last statement. The
proof uses the two theorems quoted in section 2.3. The most important result which
is needed for the proof beyond what has already been mentioned in section 2.3 is that

for SBV minimizers of E the set

Qo ={z€Q:limsupp? [\/B - |Vu|?dy + HY(S, N B,(z))| = 0}

p—0
is open. This is established by showing that is € 2y then the conditions of theorem
2.8 as satisfied at = and in some neighborhood of . But all points where these
conditions are satisfied are in €y by theorem 2.8. Thus 2o is open. To see why (iv)
follows let T' = Q\Qy:

I' = Ussols

where
s ={z € Q:limsupp! [/B - [Vul?dy + H'(S, N B,(z))| > 6}
p—0 ol
I's has zero Lebesgue measure since,
I's C {x € Q:limsup p"2/ [Vul’dy = oo}
p—0 By(z)
A general result for Hausdorff measures [10] implies,
/ |Vul*dy + H'(S, N B) > §H(Ts N B)
B
for all § > 0 and Borel sets B. Thus by setting B = I';\S, we obtain,

HY (Ts\S.) =0
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and since § is arbitrary HY(I'\S.) = 0. Finally since T is relatively closed in Q we get
2N8\S., CT\S, and (iv) is proved. (We point out that the theorem was originally

proved in R and not just in R2.)

3.2 Variational Results

The calculus of variations has been applied primarily in [29] to characterize solutions
to the variational problem. We summarize a few of the results here since our work
is partially motivated be the desire to circumvent some of these constraints. We
consider first the function f. In theorem 3.10 it is already stated that (in the weak

sense) minimal f satisfy,
Af=B(f-g)in Q\T

If in addition some regularity assumptions are made on the domain i.e. on I' and 9
then f must satisfy Neumann boundary conditions. Thus once the boundaries are
determined we have an explicit way to calculate f. Most of the difficulties both in
analysis and computation lie with the boundary term. Carrying out the analysis of the
calculus of variations generally requires making certain assumptions on the regularity
of minimizing T but once the assumptions are made many interesting results can be
derived. The following constraints on I'’s which minimize E were proved by Mumford

and Shah in [29]. They are illustrated in Figure 3.1.

o If I' is composed of C¥! arcs then at most three arcs can meet at a single point

and they do so at 120°.
o If T' is composed of C''! arcs then they meet 9 only at an angle of 90°.

e IfI' is composed of C'™! arcs then it never occurs that two arcs meet at an angle

other than 180°.

e If z € T and in a neighborhood of z, I' is the graph of a C? function then
BfF =) +IVFID)r = (B(f—9)2+ [VF1?)~+a curv(T') = 0 where the superscripts
+ and — denote the upper and lower trace of the associated function on T at «

and curv(T') denotes the curvature of T' at .

51



N/
p

N

/

Boundary of Domain

/

Boundary of Domain

.

Non-minimal Edge Geometries Minimal Edge Geometries

Figure 3.1: Calculus of Variations Results
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These results help to characterize what minimizers of E (or Eo) should look like
but they do so only on a local fashion. That is, they only say something about
solutions on the level of microscopic detail. One of the contributions of our work is
a set of theorems which show at least in some asymptotic sense that the solutions
found by minimizing E and E, may be quite reasonable at the global level. The
results show that as 3 or o tend to appropriate limits the minimizers of E and E,
return solutions “close to” what is “appropriate” where appropriate is defined as the

discontinuity set of the image.

3.3 A I'-Convergent Approximation

In chapter 2 we sketched the concept of I'-convergence. In this section we present such
an approximation to the variational problem. It was proved in [5] that the sequence
of functionals {E"}, defined below, [-converges to E. We describe some of the ideas
in the proof which can be found in [5].

In this approximation one replaces the set I' C  with a function v : @ — [0, 1].
There are various representations of the approximating functional. The one we choose

is the following.
niv?
() =B [[(F =)'+ [ =097+ a( [ (1 - o9+ ) (5.8

It is evident from the form of the functional that the discontinuity set of f is modeled
by the set (1 — v?)" ~ 0. The smoothing term, (1 — v?)"|Vf|? allows f to have large
gradients wherever (1 — v?)™ is near zero with low cost. The last integral in 3.3.1
prevents this from happening over a significant area, and in fact forces it in the limit
to be confined to a one-dimensional set with the integral converging to the length
(Minkowski content) of that set.

The definition of I'-convergence requires the functionals be defined on a metric
space. For this problem the appropriate space is (f,v) € B(Q) x B(Q) with the
(metrizable) topology of convergence in measure. The functionals E™ can not be

shown to have minimizers on this space so a sub-domain is defined in which the
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requisite compactness and lower-semicontinuity results can be shown. This domain

can be defined via a change of variables. We set,

o(t)= [(1- )2 ds

and

P(s,t) = s(1 —t2)F+1 4,

Now, [Vpou|? = [(n+2)v(1—v?2)F V|2 < (n+2)%v?+|(1-v2)¥ V|2 by the chain rule
and the Schwartz inequality. Also, V4 (f,v) = (1 —’v"’)"—'zE Vi+(n+2)fv(1-v%)% V.

Thus a natural domain of definition for functional E™ turns out to be,

D, = {(f,v)eBQ)xB(Q):pove wh3(9),
and (N AuV —N,v) € W"3(Q) VN ¢ R}

The definition of E" is extended to all of B(2) x B(2) by setting it equal to infinity
outside of D,,. The importance of this construction is that the existence of minimizers
of E" can now be shown. The definition of E must be modified to include the
function v. It is defined by setting E(f,v) = E(f) where v = 0 and setting it equal
to infinity otherwise. With these definitions the existence of minimizers to E™ and
I'-convergence of E" to E was shown in [5].

The essential insight into how the length term is approximated can be realized by
considering the function,

cn=(1- v;‘:)%“

The following inequality is fundamental,

%/ﬂ |Ven| = (g + 1)/01;,1(1 —v2)3|Vu,|dz
< / Mvz + (1 = v2)"| Vo, |? de (3.3.2)
n 16
Consider the one-dimensional case. If h(z) is any absolutely continuous function that
isequaltolatz =0andz = b > 0,is equal to 0 at a with 0 < a < b, is monotonically

decreasing on (0, a) and monotonically increasing on (a,b) then L [*|VhA(z)|dz = 1. If

the function c, is 0 at the break points of f, increasing as a function of distance from
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the break points, and the inequality 3.3.2 can be made into an equality by suitable
choice of v, then we see that the term Ja BV 4+ (1 - v2)"|Vv,|? dz should closely
approximate the number of break points.

For notational convenience we define for each measurable A C 2 the functional,

n2 2
F"(f,v,A) — ‘/;4(1 _ vZ)nIVfIZ +a (/;)(]_ — vz)"IVv|2 + 1:; )

All of the difficulty with respect to the proof of the convergence lies with the two
terms in F™. The missing fidelity term represents an easily handled perturbation of

the problem restricted to these terms. Note that F™ also has a set variable. Similarly

we define,
F(f,4) = [ (1= o) |9f7 + ot (AN 5,)
for each f in SBV(Q).

The proof of I'-convergence is not restricted to the two dimensional case. However,
again for simplicity of notation we will restrict ourselves to this case. We first describe
how for every sequence {(fa,v=)} C D, which converges to (f,0) in measure the
inequality,

h,{E,g.}f Fn(fn"vn) Z F(f)

is established. It is a somewhat surprising fact that the problem can be reduced to

the one-dimensional case. The central fact used to prove this reduction is,

F(f,9) = sup {i [Nt witde [ (g dHl}

where {4,} is any sequence of pairwise disjoint open subsets of Q and v; € S! for
each i € N. For each A; we can evaluate, Ja, (V)2 dx + Js,na, {vs,vi)|2 dHY by
considering slices in the direction v; through A;.

The proof for the one-dimensional case has two steps. If f € WY%(B,(z)) for

some p > 0 then it can be shown that,
n—00

liminf F(fn, v, B,(z)) > /B ( )|Vfl2dw (3.3.3)

The functions c, converge to 1 almost everywhere but not necessarily uniformly. The

trick used to circumvent this difficulty is to get a uniform bound on the number of

55



connected components of the set Af = {y ¢ B,(z) : cn(y) > t} for some suitable
t satislying § < ¢t < o, for any 0 < § < ¢ < 1. This ¢ is found using the co-area
formula. The Kuratowski limit (i.e. the limit with respect to the Hausdorff metric)
of these sets (or a suitable subsequence) is then found to be a finite number of points

which we denote P. It then follows that,

liminf/ (1 — v2)"|Vfo2 de > a/K |VF)? de
K

for every K CC B,(z)\P. Letting K — B,(z)\P and § — 1 one obtains 3.3.3.
The second half of the I'-convergence conditions requires finding for each f ¢

SBV(Q2) a sequence {(f,.,v,) € D.} such that v, — 0, f, — f and,

limsup E™(fn,vn) < E(f)

n—oo

This is accomplished under the assumption,
HY(Sy) = MY(Sy). (3.3.4)

Now it turns out that minimizers of E actually satisfy this condition (see [27] [5]), so
for our purposes there is no loss of generality under this assumption. The sequence
constructed for the proof sets f, = f so we concentrate solely on v,,. The construction
of v, is achieved by defining v,, = 9,07 where T(z) = dist(z, Sy) where 9, is a function
of a single real variable.

To allow for the discontinuities in f, v, is set equal to 1 in [S;),, where the
positive sequence b,, is chosen to satisfy lim,,_, n2b, = 0 so that lim,_, f[.s Jon n’v?

0. In other words o,(t) = 1 for ¢t € [0, ba]. Outside of this neighborhood v, will

decay quickly to some small positive constant M = %\/fo 1 — s2)nds, which satisfies
lim, o 7?72 = 0 and (hence) lim, (1 — #%)* = 1. This decay will occur over some
finite range a, such that lim,, o a, = 0. These conditions imply that lim,_ . Jo(1 -
VMVE2 = [oIVFI2 =0 and, lim,_, ., Jis 1 YO [Stlanto, (1= 02)" Vo, |2 4 225 = g,
Thus the only remaining concern is the convergence of f[Sf]u,,+an\[8f]b,. (1—v2)"|Vov,|2+
2% which depends on the behavior of 9n(t) for the range t € (b, b + @] Using the

co-area formula this remaining contribution can be written in the form,
bntan
LTIV P 50 + LSOy s () = 1) at (3.3.5)

56



If H'({y : 7(y) = t}) were constant then the optimal solution could be calculated
explicitly. Since this is not the case the exact solution is not available. However, it
turns out that using the solution given under the assumption that H!({y : r(y) = ¢})
is constant is sufficient to prove the bound. To this end we define the function 6 as

the solution to the differential equation,

né
Vo= —""___ 40)=n,

The scalar a,, is now defined as the maximal existence interval of the solution. Since

6 is monotonically increasing on (0, a,) we obtain,

1 (1 —_ 32)% 4. 1 2\ 1 \/ 1 n
n = < - 7 = — 8?2 ? d
a 4% — ds_nnn-/o(l s%) 2/(;(1 32)% ds
Finally we define U(t) = On(bp + an — t) for t € [b,,b, + a,]. With this definition

equation 3.3.5 reduces to,

f,,:ﬁan[%zf’n(t)lﬂl({y i7(y) = t})dt (3.3.6)

If we define A(t) = |[Sy];| then VA = H'({y : 7(y) = t}) almost everywhere. Also
by assumption 3.3.4 we have A(t) < 26(H(Sy) + wy) for all ¢ ¢ [bry b + @] with
lim,, o w, = 0. These facts allow one to integrate by parts the expression 3.3.6 two
times, finally obtaining the desired result.

The manipulations above capture the essential form of minimal v. We wish to
determine the (local) width of the regions {(1 — v2)" < t}. Let z, be the solution
to O(z;) = /1 — t%, we wish to determine w; = a, — z,; since this is approximately
one half of the width of the region {(1 —v2)" < t}. Tt is clearly true that 6 is a

monotonically increasing function on [0, a,), thus,
1 ! do
We = /‘V 1- tn W

4(1 — 32)2
= dé
/\/1 tx né

Now, if we make the change of variables r — 20? we obtain,

_ _/ (1 i) LIS (3.3.7)

57



Thus we obtain,

r2

[ TR e 2 g T </ Z2 T dr 428 (3.3.8)
Z(1-tw) r n 2(1- tn) r

It is a fact that lim,,_, . (1~ t%) = —In+/f and thus we get,

lim ﬂ:/m exp_rdr
e 2 Ly 7

Actually, as indicated by 3.3.8 the rate of convergence of nw; is quite fast since =2P—7
decays quickly. Simulations indicate that truly optimal v may not tend to 1 at the
jump set of f as n tends to co. In fact one can have v — 0 and (1-v%)" — 0. However,
the estimate of the width of neighborhoods of the boundaries is still good since most
of the contribution to the integral 3.3.7 lies in range of small §. These results allow
us to conveniently find neighborhoods of minimal I'. These neighborhoods play an
important role in our segmentation algorithm.

' We close this section by mentioning that an alternative I'-convergence sequence
of functionals can be defined by replacing (1 — v?)" with e, We claim that with
this substitution the sequence of functions F™ stjll I'-converge to F. The proof of
this fact requires a reworking of the proof we have sketched above. This alternative

form may be useful for computational purposes which we discuss in Chapters 5 and
6.
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Chapter 4

On The Recovery of Discontinuities

4.1 Introduction

In this chapter we present the proofs of the limit theorems to which we refer through-
out the rest of the thesis. The theorems are concerned with what happens to solutions
of the variational formulation of the segmentation problem as 8 — co. We prove that
if the image is ideal i.e. a piecewise smooth or picewise constant function then the
optimal boundaries T converge to the discontinuity set of image with respect to the
Hausdorff metric. Furthermore we show that the results still hold if the image is
corrupted by smearing and additive noise provided the smearing effect and the mag-
nitude of the noise decay sufficiently quickly as 8 tends to infinity. We treat the
Piecewise constant case (i.e. minimizing E,) and piecewise smooth case (i.e. mini-
mizing E) separately. We also consider a hybrid case in which we study piecewise
smooth segmentations where the image is essentially a piecewise constant function.
The piecewise constant case admits a much more constructive proof using relatively
elementary methods. These techniques may have applications in more explicit sit-
uations than those for which the theorems are proved. The proof for the piecewise
smooth case on the other hand relies explicitly on the theorem 2.8 and since the uni-
versal constants used in the theorem are unknown we cannot quantify the convergence
as explicitly as in the piecewise constant case.

There are two somewhat distinct motives for proving these theorems. The first
is to prove an asymptotic fidelity result for the variational formulation which pro-

vides a counterpoint to the calculus of variations results quoted in chapter 3. The
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calculus of variations results constrain the boundary portion of solutions of the varia-
tional problem into certain geometries which do not conform with our expectations of
“boundaries of objects”. In particular they exclude the possibility of several desirable
structures such as t—junctions. The second purpose is to yield information on how to
govern the algorithms developed in chapters 5 which ideally find accurate boundaries

even when looking only for large scale objects.

4.2 The Piecewise Constant Case

The presentation of the proof proceeds as follows. In the first section we state our
assumptions and explicitly recall the particular variational problem we are considering
concluding with a statement of the theorem to be proved. In the subsequent section
we present some basic results which are then used in the proof of the main result,

which occurs in the last section.

4.2.1 Problem Formulation

The Variational Problem

Let £ C R? be an open rectangle. We will be examining minimizers of
Ea(£,0) =83 [ (9 7 + (D)
k=1 k

where 8 > 0 is a real parameter, the {2 €  are disjoint open connected sets with
I' = Q\UxQy, and f is a function constant on each . It is easy to see that minimality
of Ey requires f = Iﬂl_kl Ja, 9 in Q4 so minimizing solutions are determined by I' and
we will often refer to the solution I' meaning the pair f,T'. Also, we will be varying
the parameter 3 and will use I's to indicate an optimal solution for a particular value

of 3. For given g and 3 we define

Eg(9,8) = inf{Eo(f,T)}

The goal of this section is to show that for g which are approximately piece-

wise constant the minimizers of Ey return boundaries which approximate the “true”
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boundaries of g. The result is asymptotic in nature stating that for B sufficiently
large and g sufficiently close to a piecewise constant function the Hausdorff distance
(defined below) between the “true” boundaries of g and T is arbitrarily small. The
techniques used here are elementary, admitting constructive analysis useful perhaps
for computation and extension to non-asymptotic results. The assumptions are not
the most general possible but to weaken them requires the introduction of more so-
phisticated techniques into the proof; also, they are certainly general enough for vision
applications. In the proof of the piecewise smooth case which can be found later in
this chapter, techniques suitable for proving a slightly more general theorem are used.

In chapter 3 we stated a theorem concerning the existence of minimizers of E,
when ) is an open rectangle (theorem 3.1). The theorem can be proved for more
general domains but we do not wish to address this issue here and we will therefore
simply assume that our domain is a rectangle. When we refer to a minimizer of Ey we
mean a set such as defined in theorem 3.1i.e. I' C Q is composed of a finite number

of CY! curves joined only at their end points.

4.2.2 Assumptions on the Domain

The assumptions we require on the domain do not go beyond those needed for the-
orem 3.1, the existence theorem. For convenience we will therefore assume that our
domain is an open rectangle. For the results of this section we will need the following
isoperimetric inequality: there is a constant ¢(>0suchthatif Ac Qisa Cacciopoli
set then,

H'(y N Q) > Cmin{lAl%, IQ\AI%}

We remark that it is enough that this inequality be satisfied when 4 is a polygon for
it to hold for all Cacciopoli sets.

Suppose v is a connected component of some minimizer I' of E, which is some
positive distance from 89. Let O be the connected component of R?\y containing
R\Q. By the set bounded by 7 we mean F' = R2\0 = Q\O. If v is not separated
from the boundary of Q by a positive distance then 7N 99 is some finite set of points

P1;-.,Pm- Since the boundary of © is a Jordon curve we can assume the points are
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Figure 4.1: Sets Bounded by a Curve

ordered along the boundary. Thus OO\{p1,...,Pm} consists of m segments of the
boundary which we denote s,,...,s,,. For any i € {1,...,m} we define the set O,
as the connected component of £7\{y U (0Q\s;)} containing R2\T. Set F, = M\O;.
We can now define the set bounded by v, F, to be an F; of minimal area. (We
choose it arbitrarily if it is not unique.) These definitions are illustrated in Figure
4.1. If HY(y) < C\/T%—I then we can conclude from the isoperimetric inequality that it

is unique. In either case we have the isoperimetric inequality implies that,
H'(y) > (|F[3. (4.2.1)

Assumptions on the Image

The demands of the proof of the limit theorem requires that we make certain as-
sumptions on the data g. The case we are interested in is one in which the image is a
corrupted version of a piecewise constant L function gc- We will define a set which
we interpret as the natural candidate for a set of boundaries in the image.

We assume that © can be decomposed into a countable number of disjoint Cac-
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ciopoli sets A;, such that on each 4;, g. is constant. We define the boundary B, to
be 2N UY; 8% A;. We assume H'(B,) < co. Without loss of generality we may assume
that if H'(9*A;N8"A;) > 0 for i # j then 9c(A;) # g.(A;) (if this fails replace Aj and
A; with their union.) The set {9:(A;)} is countable and bounded; we denote it {a;}
and define R; = U{s:0c(4;)=a;} Aj- R is thus essentially the portion of the domain on

which the image takes the value a;.
Assumption 4.1 H!(B,) < co and HY(B,\B,) = 0.

The first part of this assumption we stated earlier. The second part of the assumption
is a mild regularity constraint and is actually used for a only small portion of the
results. Furthermore, all of the results still hold without this assumption but with
it the proofs become more elementary. Without loss of generality we assume each
connected component of Q\B, is contained in some single A;, or that (4;), C A;.
((A;)1 we recall is the set of points where A; has density 1.) This is just a technical
convenience to avoid having to make ‘almost everywhere’ statements throughout the
proof of the limit theorem.

The observed image g which appears in E,, will be a corrupted version of Je-
We are allowing for some smearing of the image and additive noise. To simplify the

problem of controlling the effect of the smearing we make the following assumption;
Assumption 4.2 There is a constant ¢ < oo such that |[By]. N Q| < ¢yr.

This assumption can be dropped if we do not need to allow for smearing. Alternatively
the decay in r can be weakened. The main reason for allowing for smearing is not to
require the image to have actual jumps. The assumption is automatically satisfied
for a large class of sets containing all closed sets having finite ! measure and finitely
many connected components. This is a consequence of the following result from the
theory of Minkowski content, which follows from theorem 2.5 and the fact that a

continuum I' € R? satisfying H!(T') < oo is 1-rectifiable (see [12] or [11].)
Proposition 4.1 [12] Let T be a continuum in R? with HY(T) < oo then

lim ey = H'(T)

e—0+ 2¢
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The Noise Model

Let S, be the class of maps taking L=(Q) to L*(Q) having the property that the
value of the image function at a point z € (2 lies within the range of essential values
that the argument function takes in a ball of radius r around z. This models in a
quite general way smearing of the image and hence distortion of the boundaries. More

formally ® € S, iff ® has the property
®(g)(z) € [ess inf {g(z) : z € B,}, ess sup {g(z): z € B,}].

An example of such a & would be a smoothing operator defined using a mollifier
with support lying inside the ball of radius 7, but nonlinear perturbations are also
allowed. Rather than prove results for a single image our results will hold for all
images belonging to some class which we will now define. We assume that any image

g has a representation of the form,
9= ®(g.) + dw (4.2.2)

for some ® € S, and w € L* with [w]leo < 1and ¥ a real scalar. We will be allowing
B to tend to infinity and we will need to make corresponding assumptions on r and
J. To this end we suppose that we are given any two functions, &, : (0, o) — [0, 00)

and hy : (0,00) — [0, 00), and positive constants Cry €9 < 00 such that,

h.(B) < B!
hs(B) < cs87%
ﬂlim Bh.(B) = 0
Jim Bihe(B) = 0
We say g € T(8) if and only if g satisfies 4.2.2 for some ®,,w and ¥ with r < h,(8)
and ¥ < hy(B). We will assume in general that we always have g € T(F). Actually
only the last two of the conditions on h, and h; stated above are needed for the limit
theorem but the first two help to make the analysis more general in some instances.

Further, for convenience we assume that o < 1 and define K = 2 + ess sup ge —

ess inf g.. (K bounds the gap between the maximum and minimum of g.)
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We can now state the limit theorem which is to be proved for the piecewise constant

formulation.

Theorem 4.2 Under our stated assumptions 4.1 and 4.2, as § — oo {T's} converges
to B, with respect to the Hausdorff metric, and H'(T's) — H!(B,). We mean by this
that for any € > 0 there exists B' > oo such that if # > B’ and I's is a minimizer of
Eq for some g € Y(3), then dy (T4, B,) < ¢ and |H'(T3) — HY(B,)| < e. Furthermore
VB(f — g.) converges to 0 in L*(9).

4.2.3 Preliminary Results

In this section we prove some inequalities which will be of importance for the devel-

opment of the main results, which occurs in the next section.

Lemma 4.3 Let {C,} be a sequence of closed subsets of ¥ such that each is composed
of at most N < oo (N is arbitrary) connected components of a minimizer of E, for

some g and some 3, then there exists a subsequence (which we denote the same way)

and a closed set C' € § such that dg(C,, C) — 0 and H!(C) < liminf,_,, HY(C,).

Proof Because of the conditions on minimizers of E, we have HY(Ch) = HA(C,)
(where the closure is taken in f?). The number of connected components of C, is
bounded above by the number of connected components of C,,. By applying theorem
2.1 we first extract a convergent subsequence of C, with the limit C. In lemma 3.2 and
theorem 3.3 it was shown under these conditions that H'(C) < liminf,_, ., ! (Ch).
Noting dg(Ch, C) = dg(C,,C) we get the desired result. O

This lemma allows us to capture limits of minimizers of Eq. The following proposition

will be used later to get bounds on f — g..

Proposition 4.4 Given a countable set fai:i=10,1,..} CR,a nonnegative I,

sequence {r; : i = 1,2,.. .} and constants ¢1,¢c2 > 0, there exists a nondecreasing

function % : (0,00) — [0,00) satisfying lim,_,q+ %) = 0 such that for any sequence

{pi:i=0,1,...} satisfying,
Po > ¢ andr,—ZpizOfori>0;

65



o0
Zp,' =1 and

=0
o0 o0
Zp,-(ai - &)2 < ¢yt where 4 = Zp,-a,-,
=0 =0

we have (& — ao| < h(t)

Proof We define the constant b = 221 7i. We assume b > 0 (the result is trivial
otherwise). Define % : (0, 0] — [0, 8] by,

hl(t) = Z ;.

1:0<|a;—aqg|<t

Clearly hy(t) is nondecreasing in {. We that claim hi is continuous from the left
and lim; o+ h1(¢t) = 0. For any ¢ > 0, IN < oo such that YZnTi < €. For
t < min{|a; — ao| : 0 < i < N} we have hi(t) < € proving the second part of the
claim. Givent > 0 let § = min{t — |a; — a|: 0<i< Nandt—|ag — ao| > 0}; for
t' € (t — é,t) we have hy(t) — hi(t') < €, proving the first part of the claim.

Define A : (0,00) — [677,00) by

ha(t) = sup{c: hy(zVvt) < %, Ve < c}

Since h; is nondecreasing and bounded above by b, h; is nonincreasing and bounded
below by b=%. h, is finite for finite ¢ since limg o h1(z) = b. For any N < co, dp >0
such that € < 7 = hy(e) < 77 Thus Nvi<n = hi(NVt) < 7z and since h; is
nondecreasing while % is decreasing we have ¢ < (#)? = ha(t) > N. We conclude
lim, o+ h3(t) = oo. Also since A; is continuous from the left we have 0 < z < ha(t) =
hi(zv/t) < xglfa

Define hg : (0,00) — [b-%,00), by

Consider the case @ > ay. We have

Z pi(d@ —a;) = Z pi(a; —d) + E pi(a; — a)

{i:a;<a} {i:0<a;—a<hy (t)v/2} {i:h3(t)Vi<a;-a}
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IA

> pila; —al + (t)\/' sz(az -

{i:0<|a;—ao|<ha (t)vE} i=0

< ha(ha(8)VE)ha(t)VE + hs( )\/'
1

< (57 mo R (t) —= )Vt (4.2.3)

For the first inequality we used the obvious bound; |& — ao| < \/2t. Define h(t) =
c1, (2—(5 + m)\/- That £ is nondecreasing follows from the fact that ha (and hence

hs) is nonincreasing. Also since lim;_,04 k(%) = 0o, and hence lim; o4 h3(t) = oo, it

follows lim,_, o+ % =0. Now, po(é—aq) <% > {irai<a} Pi(@ —a;) and from 4.2.3 we get
lao — @| < h(t). The case & < @ao can be treated similarly yielding the same result.

This completes the proof of the proposition. O

The set {a;} will represent the set of values of the image g.. If {a;} has finite

cardinality then slightly stronger results can be obtained using the same line of proof.

Lemma 4.5 There is a constant cg, < oo and a function U : (0,00) — [0, 00)
satisfying U(B) < cg, and limg_,o, U(8) = H'(B,) such that sup, ey (s £4(9,8)} <
U(g).

Proof For any measurable set A C Q we have the following,

— 2 _ _ 2 _ 2
/A (9—9:) /A X(8,-(9 — 9¢)% + /A (1 - xq8,1,)(dw)
< chbr+192|A|

where we invoke assumption 4.2. Thus for g € T(B) we now obtain,
Ei(9,8) < Eo(ge,B,) < B (Kcsh,(8) + R3(8)I9) + HA(B,)
The result now follows from our assumptions on f, and hy. O

For each () in a segmentation we define the following constants,

o a %N Ry
' |2

Note that -2, p* = 1.

67



Lemma 4.6 Given ¢ > 0 and 7 > 0 there exists a function H - (0,00) — [0,00)
satisfying limp_,o /AH(S) = 0 such that if [ is a minimizer of E; for some g € T(3)
and Q,, is a connected component of 2\I's satisfying |Q) U R;| > ¢, then

|f(Q) — a:] < H(B)
Proof For convenience of notation we set ¢ = 0 and re-enumerate the other a;
starting from 1. Let & = Y52 pFa; = ]T?}H Ja, 9c- We have,
1F(Q) — aol < [f(Q) — &| + |& — aof

We can bound the first term as follows,

¥ 1
Q —a = T | + — (}r c — Ye
£ 7 o * g (B = 90

1
< ho(B) +ig [ (B0 - g.)

< fw(ﬂ)+@h ).

since || > £. To bound the second term we first note,
Yorta—a) = [ (a-g).
=0 L

and since a = l_ﬂlﬂ Ja, 9 we obtain,

%nk(&—gc)z < %/m(f—gc)2
%nk(fl—gc)2 < f(f—9)2+/ (9 —g.)?

< BTIU(B) + Kok, (B) + [ h2(8)

where U is the function from lemma 4.5. Applying our assumptions and lemma 4.5

we see that there is a constant ¢ > 0 such that
0
ZPZ‘(& —a;)? < B!

Define r; = min{1, J-—l} Clearly p¥ < r; and we have 22,1 < oo. Note also
that p& > '3‘,;—] We can now apply proposition 4.4 to conclude there exists a function
h : (0,00) — [0,00) satisfying limg_, e VBR(B) = 0 such that |a — ao| < h(B). Set
H="h+hy+ K—;hhr and the result follows. O
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Corollary Under the conditions of lemma 4.6 we have

/n,,(“" —9) — /nk(f — 9)® < |%|H?(8)

Proof
(ai = 9)" = (f = 9)* = (ai ~ £)? + 2(as — F)(f — g)

Since a; — f is constant in @ and f() = m] Ja, 9 we get,

Joles= 0 = [ (5= = NGRS

Now apply lemma 4.6. O

4.2.4 Main Results

The goal of this section is to prove theorem 4.2. The proof of this theorem is quite

long so we have broken it up into several steps. We assume throughout that r < h, (B)

and J < hy(0).

Lemma 4.7 For any ¢, > 0, there exists a constant B' < co such that if 3 > 4’ and
'3 is a minimizer of Fy for some g € T(8), then T5 C [B,]. where [s is the union of

all the connected components of I's having H! measure greater than y.

Proof Without loss of generality we assume v < 5+ Assume the lemma is false.
Then, we can find a sequence s, with 8, T oo such that L5, ¢ [B,]e for each n.
In general H!(Ts) < E3(9,8) < cg,, by lemma 4.5. Thus the number of connected
components of fﬁn is bounded above by c—f"- Applying lemma 4.3 we can assume
that the I's, converge with respect to the Hausdorff metric to a closed set ' I
satisfying H(T') < co. It follows that there is an = € I such that dist(z, By) > .
By translation we can assume z = 0 and we henceforth drop it from the notation.
Since all connected components of f‘ﬁn have H! measure greater than or equal to v
and since the ! measure of a continuua is bounded below by the diameter of the

continuua we obtain, liminf,,_,, H!(Ts, N B,) > v and hence
liminf H'(Tg, N B.;4) > 7 (4.2.4)
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D

Figure 4.2: Illustration for Lemma 4.7

In the remainder of the proof of the lemma we show that by removing some I' from
B. that we can reduce the energy, thus obtaining a contradiction.

We can choose §, 0 < § < ¢/2 sufficiently small so that

= €
[T]s N Beyo| <

% (4.2.5)

It is necessarily the case that 0 = z ¢ A; for some A;. A;\T is the union
countable number of disjoint connected open sets. Only finitely many of these sets
are not contained in [I']s. Let m be the number of these sets that have nonempty

intersection with Be/;. We can find points y;,. .. y,, such that y; lies in the interior of
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the ith component and min;ey,. a dist(y;, f‘) > 6. See Figure 4.2 A for an illustration.
For n sufficiently large T, C [[]; and we can then define Q7 to be the connected
component of Q\I';, which contains Y- ( They may be identical for different i J)
Each O may contain conneéted components of I's, having H! measure less than or
equal to 4. Let F, be the union of the sets bounded by these components (see the
section entitled Assumptions on the Domain for an explanation of this terminology
and Figure 4.2 B for an illustration). It follows that Op\F, is some Qk(n) which
we denote 7.. By reordering the Q7. with respect to ¢ and choosing an appropriate

subsequence (which we still index by n) we can find m’' < m and € > 0 such that;
Jm QR NR|=0 for se€1,...,m'
liminf [QF N Ri| > ¢ for iem' + 1,...,m
where /is given by g.(4;) = a;, (and A; € Ry). (Note that we can not have IQrNRy| —

0 so | N Ryl — 0 can only occur if QL", is filled up with small sets bound by

components of I' having H! measure smaller than 7.) Define S, and T, by,
Sn = Ui='1‘-?.~

Tﬂ = U;m’+lﬂ;:.'
Note that [QF | = IQZ.| so

lim |S,. N R =0 (4.2.6)
These definitions are illustrated in Figure 4.2 C. Let H be the function whose existence

is asserted in lemma 4.6 with ¢ as above and 7 = /. There exists NV such that if n > NV

then the following are all satisfied;

|(Bej2\Bea) N ([F]5 U S,)| < 7234 (4.2.7)
H'(Tp, N Bea) > g‘r (4.2.8)

Ts, C [T (4.2.9)

f =97~ (a-gy < |mims) (4.2.10)
he(Bn) < i (4.2.11)
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Equation 4.2.7 follows from 4.2.5 and 4.2.6. The inequality 4.2.8 follows from 4.2.4
and 4.2.9 follows by definition of T Finally 4.2.10 follows from the corollary to lemma
4.6.

Consider any n > N. Since HY(Ts, NOB,) > 0 for at most countably many
P € [€/4,€/2] we can conclude from 4.2.7 that for some Pn € [€/4,€/2]

H'(8B,, N ([F]sU S, UTs,)) < % (4.2.12)

Note by 4.2.9 that any connected component of I's, which has nonempty intersection
with 8B,,\[I']s; has H' measure and hence diameter less than or equal to v which
itself is bounded by €/4 and since Pn < €/2 such a connected component must lie
entirely within Q) ﬂ—B:TE, which in turn lies in A;. Let W, = U{Q%(n) : Qu(n) C By }.
This definition is depicted in Figure 4.2 C. We have

B,, CT,US.UW,UT,, UT,

Now, define
s, = (Ts,\B,,) U(8B,, N ([T]s U S, UT},))

The construction of I" is illustrated in Figure 4.2 D. Let

a; iEETnUWnUBn
fi(z) = ’

frn elsewhere

It follows that f is constant on each connected component of Q\I' .

From 4.2.12 and 4.2.8 we have
H!(Tp,) — H(I) 2 ]
and from 4.2.10 and 4.2.11 and the fact N Bs, C R; we get
J =97 = [(h=a)® = /nuWnUE (fa=9)* = (fa—g)?
< J@-9—(fi-g2+ /B%ﬁm(ai — 9
< T IHHB,) + m(Coha(s)
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where in the last step we have used equation 4.2.10. We can now write,

Bo(farT0) = BulTa) < =3 + . (1.6 + n(Sephian))

which is negative for n sufficiently large (and hence 3, sufficiently large) contradicting

the optimality of I's,. We conclude Is, N Q\[B,]c = 0 for all n sufficiently large. [

Theorem 4.8 For any € > 0 there exists a constant B' < oo such that if 8 > B then
I's C [By]. for any T'y which minimizes E, with g € T(09).

Proof Assume the theorem is false. There exists some € > ( and a sequence of
minimizing s, with £, T co such that s, Z [Bgle # 0 for each n. Since only finitely
many A; can satisfy 4; ¢ [B,]. there exists some single A; and a subsequence (which
we denote the same way) such that s, N A;\[By]e # 0 for each n. Let G represent
an arbitrary connected component of A;\[Bgle. Tt follows that @ is a subset of some
connected component of A;\[B,]./; which we denote (. It follows that |G| > =< < and
hence there are only finitely many distinct G. (Note that for G containing pomts at
distance greater than ¢ from 99 we have G| > " , we potentially loose a factor of 4
when G is essentially a corner of the rectangle Q) We can assume therefore that there
is some single (@ such that L5, NG # 0 for all n. Let {Cr} be the set of connected
components of I'g, satisfying C}* N @ # @ and let Tg, = T4\ U CP. We will denote
by Q" the connected component of Q\l"ﬂ which is a superset of 7. Some subset of
the QF lying in Q » whose union we denote by O,., are the sets bounded by the Cr.
It follows from the isoperimetric inequality that |0n] < &(max; HY(CP)) ¥ HY(Cr).

From lemma 4.7 we conclude
Jim max(H'(C)) = 0. (4.2.13)

and now, since the sum is bounded we can conclude that for n large enough |0,,| < “z

Hence there is some QF ¢ Qr satisfying |Qp N A, > "‘ . Let H be the function from

lemma 4.6 with ¢ = % and ¢ defined by A; C R,. Assummg n is large enough so

that h,(8,) < € — max; H'(CF) we have,

Bo(To.) = Bo(T) < BalOnl(1fa(e) — af? +9%) - S HI(C)
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< (Fmar (B8, - W3 - 1) Sren)

Since the term in square brackets is negative for n sufficiently large while the sum is
positive we get a contradiction of the optimality of I'. This completes the proof of

the theorem.

Lemma 4.9 For all € > 0, 38’ < oo such that if 3> (' then B, C [T]..

Proof Suppose the lemma is false. There then exists a sequence of T, 8, 1 0o,
an z € By and a p > 0 such that B,(z) NI, = 0 for all n. We can find at least two

values 7,7, such that for some §>0,
min | B,(z) N Ryl = € > 0

Let éa = |a;, — a;,|. Clearly £, is constant in B,(z) and for at least one of the 3, we

have f(z) — a;, > £ But from this we conclude

Eo(Ts,) > B. (/Bp(m)(yc - fn)2 - /;,(m)(g - 9:)2)
> (45 - Ke(0) - 8,230

which contradicts the bound Eo(T',) < U(B.) < cg, given in lemma 4.5, when 3, is
sufficiently large.

Lemma 4.10 For any € > 0, 38’ < oo such that if 8 > 3’ then
H (Tg) > HY(B,) — e.

Proof The symmetric difference between B, and U,.,;0* A;n06* A; is an H?! negligible
because of our assumptions and the property of essential boundaries stated in equation
2.2.1. Each W can be written as a countable union of rectifiable curves
meeting only at their end points together with a H! negligible set by theorem 2.3.
Thus in general we can write B,=NuU UZ: E; where N has negligible H! measure

and the E;’s are rectifiable curves Joined only at their end points such that for each
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we can find A;,, A;, such that §a; = l9(Aj,) — 9(A;,)| > 0 and E; C A, NO*4,,.
Define h(E;) = min(|4;,],|A,,]).

Suppose the lemma is false. Then there exists a sequence of minimizers I'g,
such that H!(Ts,) < H!(B,) — e. We can find an M < oo so that X, HY(E;) >
H'(Bg)—€/2. Let 2¢ = min;e,,..,m h(E;) and let Ty, = L, \U;CF where the C are the
connected components of T's, satisfying H(CP) < £¢2 /2cg where cg is the constant
from lemma 4.5. By theorem 2.1 we can find a subsequence of the f‘ﬁn (still indexed by
n) which converges in the Hausdorff metric to some I';; we claim UM,E; C Ty. Assume
this is not the case. Then 3z € E; for some 1 < M such that dist(w,f‘l) > 0. We can
find compact connected sets K, K, such that Ky C A;,, K3 C Aj, and | K|, |ICo| > €.
From the isoperimetric inequality we conclude that the total area of the sets bounded
by the C7 is less than or equal to #r(max; HY(CP)) T, HY(CF) < €/2, since the sum
is bounded by cg. It follows that for n sufficiently large there is a single £(n) such
that

um) K| > S, i = 1,2

and hence
- 2 LE 2 2
ETo) 2 60 [ (o 17> 6, (z(7> ~ Kesh, (8,) - ho(ﬂn)lﬂk(n)l)

which, for n large enough, contradicts the optimality of T's,. Thus UM, E; C T, and

by lemma 4.3 we have along the subsequence,

liminf H'(Ty,) > H(B,) — €/2

— 00

and hence

lim inf H'(Tp,) > HY(B,) — ¢/2

which gives us a contradiction. QED.
Lemma 4.11 For any ¢ > 0, 38’ < oo such that if 3 > g’ then,

'Hl(l",;) < HI(BQ) +e€
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Proof This lemma is a simple consequence of lemma 4.5 which yields HY(Tp) <
BEg(9,8) < BU(B) < HY(B,) + € for all B sufficiently large.

Proof of Theorem 4.2: Theorem 4.8 and lemma 4.9 establish dg(T's,B,) < €
while lemmas 4.10 and 4.11 prove [H'(Ts) — HY(By)| < € for all 8 < B’ for some
B' < oo.

We remark that in the course of the proof we have shown that |E5(9,8)—HY(B,)| <
e as well as |H'(T5) — H'(B,)| < ¢; we conclude from this that Bla(f —9) < 2e
Since [o(9 — g.)? < U(B) < € (see lemma 4.5) we also have 3 [ (f — g.)? < 6e.

4.2.5 Weakening the Noise Constraints

An obviously relevant question concerning the limit theorem is: how tight are the
estimates on the noise and smearing decay rates? In this section we show that our
additive noise estimates are tight. The smearing decay rate is a little more unclear,
we can relax this rate and still retain convergence of the boundaries in Hausdorff

metric. What is lost is the convergence of the cost.

A Counter—example

In this section we show that our decay requirements on the additive noise are tight
in the sense for any ¢ > 0 and arbitrary rectangular domain we can find a piece-wise
constant function g. such that if we allow additive I,* noise with a norm bounded
above by ¢8~! rather than some he¢(B), as in the limit theorem, then the optimal
boundaries T's need not converge to the discontinuity set of g, in hausdorff metric as
B tends to infinity. Consider the function gc as illustrated in Figure 4.3. There is
some constant @ > 0 such that the area of the region over which g. = 1 is greater
than a for all § > 0. We choose § > 0 small enough to satisfy 26 < c2a.

Now we let the observed image be as in Figure 4.3 where n = cf-3. Suppose
we have a sequence of solutions to the piecewise constant variational problem, {T'5_ }

converging to the discontinuity set of gc in Hausdorff metric with Brn — oo. Let f, be
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the associated minimizing function for the given I'g,. It follows that

lim ,Bn/n(fn -9)? > ca

n—oo

and
liﬂi{gf 'HI(I‘n) > 'HI(BQ)

Let v be the dashed line of length é in Figure 4.3. Now consider I' — B, U4, it
satisfies Eo(I") = H!(B,) + ¢ for all n. Since we have § < ¢?q by construction, we get
a contradiction. Thus for this example the sequence {I's. } cannot be a sequence of
minimizers of E,.

The constraint on the smearing is more than required for convergence of the
boundaries in Hausdorff metric. The particular rate we have given is really only
essential to make the cost converge. For convergence of the boundaries in Hausdorff
metric it is sufficient that there exist a constant ¢ such that » < ¢8-!. With such
a constraint it is not true in general that H'(I's) — M2 (Bg). If we allow fr — oo
with » — 0 and 8 — oo then it may still be true that I's — B, in Hausdorff metric.

However in this case the cost can blow up so the analysis does not go through.

4.3 The Piecewise Smooth Case

The goal of this section is to prove an asymptotic fidelity result for the piecewise
smooth variational formulation of the segmentation problem much as was shown in
the previous section for the piecewise constant case. The plan is much the same as in
the piecewise constant case although the nature of the proof is entirely different. We
first state our assumptions and the theorem to be proved. Since the proof includes
several detailed technical arguments we provide a sketch of the proof before actually
presenting it. The proof itself is divided into two sections consisting of preliminary

and main results.
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The Function g,

)

The Function g

Figure 4.3: The Counter Example
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4.3.1 Problem Formulation

The Variational Problem

For the purposes of this section we assume that we have posed the variational problem

in the SBV setting. Thus the functional whose minimizers we will be considering is,

E(£,8)=8 [(a— £7+ [ [VfI? + 1(S)).

Theorem 3.10 provides a regularity result for minimizers of £ which will play an
essential in the proof of the limit theorem. In particular we recall H(QANSN\Sy) =0
and f € C'(Q\S;). We have written B as an explicit parameter since we intend to

vary it. Without loss of generality, we have set the parameter o — 1.

Assumptions on the Domain

We will be assuming that our domain is a rectangle. We do this primarily to allow
a reflection argument to be used to show that the boundary of the domain does not

cause the introduction of spurious boundaries (see theorem 4.24.)

Assumptions on the Image

We will need some mild assumptions on the regularity of the image in order to achieve

the desired result. We summarize them below.
Assumption 1 g, € L>(Q) N SBV(R), fa|Vau|® + H'(S,.) < oo and Sg. has no
isolated points i.e. if z € S, then Vp >0, H'(S,, N B,(z)) > 0.

Assumption 2 If A C Q is an open set satisfying dist(A4,S,,) > 0 then there exists
an L < oo such that if z and y are the end points of a line segment lying in A
then then |g,(z) — gu(y)| < L|x — y|. We refer to L as the Lipschitz constant

associated with A.

Essentially we have assumed that g, € Co(Q\[S,, ) for any € > 0.
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The Noise Model

In the piecewise smooth case we define our nojse a little less explicitly then what
was done in the piecewise constant case and consequently the results are a little more
general. We show below how under some additional assumptions we can replace these
assumptions with those used for the piecewise constant case. As before we denote the

class of images we allow by Y(4). The following are our assumptions.

lim sup ﬂ/(g - gu)2 =0, (431)
Ao ger(s) Ja
and,
Ve>0, im sup ||(g - gu)(1 - x5, )le0 = O (4.3.2)
Ao gex(g)

We can make essentially the same noise assumptions that were made in the piecewise
constant case if we assume that the Lipschitz constants referred to above can be
uniformly bounded on Q\S,, and that the Minkowskj content of S, is finite.
Suppose ¢;r > [S,,], for all » > 0 and the uniform Lipschitz constant for g, on
O\S,, is L. Suppose also, as in the piecewise constant case, that g has a representation

of the form,

9= 9(g9.) + dw (4.3.3)

for some @ € S, and w € L* with lwllo < 1 and ¥ a real scalar. Further, assume

that there are functions A, : (0,00) — [0,00) and hy : (0,00) — [0, 00) satisfying
ﬂlirn Bh.(B) = 0
Jim B2he(B) = 0.

Define T() to be those functions g which can be written in the form 4.3.3 for some
®,,w and ¢ with r < h,(8) and ¥ < hs(B). It now follows that with this definition
of T(5) the assumptions 4.3.1 and 4.3.2 are satisfied since

8 [0~ 92" < BUIS,I1lg — gulle + B(LA(5) + 9)7J0.

We can now state the limit theorem to be proved. It is essentially the same as in

the piecewise constant case.
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Theorem 4.12 Under our stated assumptions, as § — oo {S¢(8)} converges to Sq.
with respect to the Hausdorff metric, and HY(S¢(B)) — H*(S,.). We mean by this
that for any € > 0 there exists B' < oo such that if 8 > 3" and f is a minimizer of E
for some g € T(f), then a1 (S, S,.) < € and |HY(S;) — H'(S,.)| < €. Furthermore
VB(f — gu) converges to 0 in L*(Q).

The proof of the theorem is quite involved so before presenting the technical
arguments we provide a sketch of the main ideas. The first few results establish
convergence of minimizers of E to g, in various senses somewhat weaker than that
stated by the theorem. The lemmas 4.13, 4.14 and 4.15 establish that if fnis a
sequence of minimizers of E with g = g, € T(B,) then f, converges to g, in L'(Q),
Jfn — Jg. weakly as radon measures and Vf. — Vg, weakly in L'(Q;N?) and
strongly in L?(Q;R?). It is also shown that HY(Ss,) — HY(S,,) and that for any
set A C Q2 which is positively separated from Sou> limp oo HY(Sy, N A) = 0. These
results alone are enough to assure that for P large enough S, C [S fa)e but we defer
the statement of this fact until the end of the proof. The opposite containment i.e.
[S.]e C S,. does not follow directly and it is the proving of this statement which
constitutes most of the difficulty of the proof.

The results of De Giorgi, Carriero, Leaci [10] which were quoted in section 2.3
provide conditions under which one can assert for a givenz € Q and f € SBV() that
x ¢ S¢. Our goal is to show that for B sufficiently large we can for each z € O[S, e
find a p such that the following three conditions,

F(u, B,(z)) < ¢p,
t!il&t‘l‘y(u,ﬁt(w)) = 0,
¥(u,Buz) < o, Ve < p,

are satisfied.

We recall some notation,

F(LBo@) = [ 1V + 1S, 0 By(a)).
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and,
¥(f,By(z)) = /B - | V0! + HY(S,e N Bi(z)) — /B “ IVF2 + H(S; N B.(z))

where v* is an extension of f into B, (z) which minimizes IBy(z) |V [P+ H (S,:NBy()).
Since f minimizes E we know that,

g B,(z)("t — 9+ F(v', By(z)) > B B,(z)(f — 0)? 1 F(§,Bi(2))

thus a uniform bound on v* — f, h say, can provide a bound on ¥(u, By(z)) of the
form @rht?. Since ¢ is bounded above by p if we can choose p as a function of 8
and show that hp decays faster than %3 then the third condition can be met. The
second condition is met rather easily and the first condition also presents not great
difficulties.

The remainder of this sketch is devoted to describing how we can achieve the
desired estimates on v* — f. v can be bounded by its boundary conditions i.e. by
a bound on f restricted to 9B;(z). Thus our goal now becomes to achieve estimates
on f restricted to B,(z) sufficient to meet the demands of the conditions on vt. As
was mentioned we intend to let p tend to zero as B tends to infinity. To get strong
bounds on the range of f on 0B,(z) it is extremely helpful to have §;NOB, = 0.
We accomplish this essentially through lemma 4.21.

In lemma 4.21 we consider small balls of radius p around a point z € K C MNS,.
for some compact K. We let p be a function of 8 of the form p = B~ for some
positive constant 4. We use the notation J(u,0,p,) = B f5,(x) 4" + F(u, B,(z)) and
establish the result,

sup J(f —g,,ﬂ,ﬂ‘”,m) S cﬂ—z‘y
zeK

where g, is a smoothed version of gu. There are two key observations we wish to make
concerning the proof of this lemma. The first is that the proof involves redefining
f in a ball B,(z) where p ~ 37 and then using the fact that f itself minimizes E
to obtain estimates. In order to redefine f in a useful way we use two ideas. At
points disjoint from S¢, f satisfies A f=8(f—-g). Very roughly speaking solutions

to equations of this form look like smoothed versions of g where the smoothing is
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done over a ball of radius B~%. Now we have assumed that g tracks g, reasonably
closely so a reasonable candidate for f might be a smoothed version of gu found by
convolving g, with a mollifier with support in a ball of radius #-%. This is precisely
how we define g,. Lemma 4.20 provides some estimates on a gs which provide us
with the tools to estimate f. The redefined f is formed by continuously transforming
f into g, inside the ball B,. To get good estimates on the energy associated with
the new f we need to estimate f on 0B,(z). Since we eventually want to compare
the energy contribution in the ball of the original f with the redefined f it is clear
that what is needed is some way of bounding the ratio of the contribution to the
energy occurring from the boundary of the ball to that occurring from the interior
of the ball. Proposition 4.18 provides us with a means of choosing the radius of the
ball to guarantee that this ratio is somewhat controlled. Following this proposition
we present the particular form of the redined f we have in mind and lemma 4.19
then states the relationship between the contribution to the energy incurred from the
interior of the ball for the redefined f to the corresponding contribution incurred from
the boundary of the ball.

The second key idea in the proof of lemma 4.21 concerns how we obtain strong
estimates on Vw = V(f—g,). We achieve this partly through noting Vuw = Dw—~ Jw.
Bounds on Dw are relatively easy to obtain using integration by parts. Thus having
bounds on Jw can yield bounds on Vw. We know that the H! measure of the support
set of Jw in B, is tending to zero as B tends to infinity. This is insufficient because
we intend to compare Jw with this measure (the details are in the proof.) The extra
information which gives us a strong estimate is the result in lemma 4.17 which states
that for any compact K C Q disjoint from &, U 89 if Gns fny Bn are sequences such
that 8, T 400 and E(fn,Bn) = E*(B,) with g = g, € T(5,) then,

lim sup |£¢(2) — f; (z)| = 0.

n—+oo ek
The final stage of the proof is essentially carried out in lemma 4.23 i.e. in this
lemma desired bounds on vt are established. The remaining results tie up some loose
ends such as extending the results by a reflection argument to include points & which

may lie arbitrarily close to 99,

83



4.3.2 Preliminary Results

The first few results in this section are largely consequences of the compactness and
lower-semicontinuity theorem for SBV(§2) functions due to L. Ambrosio which we
quoted section 3.1.3.

Let E*(8) denote the minimal value of E(f,3). By simply substituting g, for f
we get the following bound,

B*(B) <8 [ (g- 9"+ [ Vol + H(S0n): (43.4)

Lemma 4.13 If g, fn, 8. are sequences such that 8, T +oo and E(fs,5,) = E*(Bs)
with ¢ = g. € T(0,), then,

o= 9u in LI(Q)
Jfn — Jg.  weakly as radon measures

Vf. — Vg, weakly in L}(£2;R?).

Proof From the triangle inequality and equation 4.3.4 we obtain, 8, fo(fa —gu)® <
B J(9n — 02)7 + E*(Ba) < 26 fo(gn — 6)? + Jo |V0ul? + HI(S,,)- Since B, — oo it
follows from assumption 4.3.1 that f, converges to g, in L*(2). Noting [©] < oo
we conclude f, converges to g, in L'(£). The other statements are now an obvious
consequence of the SBV(f2) compactness theorem due to L. Ambrosio, which we

paraphrased in theorem 3.7. |

Lemma 4.14 If g, fn, 3, are sequences such that 8, 1 +oo0 and E(fs,5.) = E*(Bn)
with g = g, € T(B.), then,

: 2 _ 2
Jim [ 1952 = [ Ve
]'im Hl (an ) = Hl (Sgu )

n—-+4o0

Proof By 4.3.4 and assumption 4.3.1 we have

limsup [ [Vl + H(S5,) < /n|vgu|2+ul(su). (4.3.5)

n—oo
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A lower-semicontinuity result due to L. Ambrosio, which we paraphrased in the pre-

ceding chapter as theorem 3.8 yields,
[ Vo + #(S,.) < limint [V +7(S,,) (4.3.6)

An examination of the proof reveals that each term is lower-semicontinuous separately,
ie. Jol|Vou|® <liminfn_, o [ [VF.|? and M2 (Sg.) < liminf,_, o H! (8¢,). (This can
also easily be seen by rescaling f, and g, and noting that 4.3.5 and 4.3.6 still hold.)

O

Corollary If A C Q is any borel set such that dist(4,S,, UdN) > 0 then,
liI_'l_rloo HY(Ss, N A) = 0.

Proof For some ¢ > 0, AN [Se.]e = 0. From lemma 4.13 we conclude fa — g
in L*([S,,]c). We can now apply essentially the same argument as in lemma 4.14 to
conclude, H'(S,,) < liminf,_, ., H(S£,)N[Sg.)e). But the result of lemma 4.14 states
HY(S,, =lim,_ . H! (84,) so it follows that lim, o H}(Sy, N A)=0. O

This result apparently takes us quite close to the desired containment Sy € [S,,].
for B sufficiently large. However, closing the gap, i.e. actually achieving this result
is quite difficult and represents the primary accomplishment of the remainder of this
section.

We append the additional notation e — f— gu.

Lemma 4.15 If g,, f,, 3, are sequences such that 8, T +oo and E(fn,8n) = E*(8,)
with g = g, € Y(8,), then,

lim ﬂn/ne:Jr/n[ve,,v ~0.

n—+4oco

Proof From lemma 4.14 and inequality 4.3.4 we conclude lim, . E(fn,Bn) =
Ja 1Vgul? + H'(S,,) and hence lim,_o, 3, Ja(f — 9,)? = 0. Now,

ﬂn/r;(en)z < 2(ﬁn /‘;(fn - gn)2 +:Bn/n(gn - gu)z)
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Since im,_,o0 B, fo(gn — gx)? = 0 according to assumption 4.3.1 we obtain,

lim 8, /n (en)? = 0.

n—oo

Now,

Jo¥e = 196 = [ 952 Vou+ [ 190,

and since by lemma 4.14 we have lim,,_, Jo IVl = [o|Vgu|?, the desired result
follows if we can show lim,_, Ja Vi - Vg, = [ |Vgu|?>. We have by assumption
Jo IVgu|? < oo so if we define yy = {IVgu|* < N} then by the monotone convergence
theorem we have limy_, ., Jo IVgu*(1 —~ xn) = 0. Thus for any € > 0 we can choose

N sufficiently large so that 2( [, IVau )2 (f, IVgul*(1 — xn))? < e. Now,
n* u u 2 < / n’ Vi u - / u 2 n
|, ¥ Vo= [ V01 < | [ 9t Vo [ 1 xal

+H [ Ve VoL =)l + [ 90,1 - xv)

Since Vf, — Vg, weakly in L'(Q,R?) we have lim,,_, , Joa Via-Vauxn = fo [Vau|?xn-

Using the Schwartz inequality we obtain,
. . _ < 2 i. 2 _ l.
fimsup | J, Vin- Voull = xw)| < (] 1954 [ 196u2(1 = x))?
Again we use lemma 4.14 which states that imn oo fo [VFnl? = fq|Vgu|? thus,
limoup | f, Vhe- Vou = [ 196"l < (f 190l 19020~ xa)? +

n—+oo
uzl'
/l;gl( XN)

<2 [ 199PDH [ 190,21 — )}
< €
Since ¢ is arbitrary the proof is complete. O

At several points in the results to follow it will be necessary to obtain a uniform
bound on the trace of an SBV function on some circle ' C Q. In all cases the circle
will be disjoint from the closure of the Jump set of the function and the function under
consideration will be at least Lipschitz continuous on (. The following proposition
is essentially a Sobolev inequality and will provide us with such a bound. It’s proof

is elementary so we include it for sake of completeness.
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Proposition 4.16 If w € C%}(8B,), 4mp > -1 and B fop, v dH + [5p5, 4 dH! < p
then

max [u(y)| < /2pB7 (4.3.7)

Proof Let @ = maxyesp,(v) |w|. Since B fop, v dH' < p it follows that F(Z)? .
HY{y € 0B,(z) : |w| > E} < p. If [u(z)| > Z for all = € OB, then we get B(%)*2mp <
p. Assuming 47p > B-% we obtain 4.3.7. Now, if there is an z € 8B, such that
lu(z)| < ¥ then it follows that [yp (o)W > 4(5)'Bp" and again 4.3.7 is fulfilled. O

The next lemma will give us some control over the measure J f. We show that the
jump height of f at points of Sy positively separated from S,, (assuming they exist)

must tend to zero as 3 tends to infinity.

Lemma 4.17 Let K € § be any compact set disjoint from §,, UR and let g,, f., 5,
be sequences such that 3, 1 +oco and E(f,,8,) = E*(G,) with g = g, € T(6n). It
then follows that

lim sup Iff(z) - fr(z) = 0.

n——o+oo

Proof Let § = 1dist(K,(S,, UdQ)) and let L be the Lipschitz constant associated
with g, on [K]s. Given € > 0let p = min(3L~'¢,§). Define n,, = sup,cx (S JB,(z) €5+
fB,,(m) |Ve,|*) where as before e = f — ¢g,. Lemma 4.15 asserts that im0 7, = 0.
This and the corollary to lemma 4.14 imply 3N such that if n > N then the following

are all satisfied,

sup H(B,(z) N S;,) < g (4.3.8)
zcK
ﬁn‘(&'" < 5 (4.3.9)
€
supll(g—gu)x:a,,(,)llm < 3 (4.3.10)
z€K

Since f, satisfies H'(S,\Sy,) = 0 (according to theorem 3.10,) we conclude that for
each z € K and n > N there exists pn(z) € (£,p) such that Sy, N B, (x)(z) =0
and G, faapn(,)(m) e + 38,0 () |Ven|? < %7711- Now, since f, € C}(Q\S;,) and g, is a

Lipschitz function on [K]s we conclude e, is a Lipschitz function on 0B, (z)(z). We
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can now apply proposition 4.16 (assuming n is large enough so that 27p > 3,72 ) to

obtain,

8Mn \ 1
su max €n < Bn H
melgyeww()l W< B6n ( —)z

and from 4.3.9 we get,

€
su max e < —
sup yeaﬂm(z)l n(y)] < 1

Let

t, = max su m n .
(yGB‘,n(I:)(z)g(y),yeaBﬁn(z (= )f ®)

Suppose now that for some y € B,.(2)(2)\Sf, we have f,(y) > t,.. Define,

f _ fn T C Q\Bpn(-‘t)(m)
faVit, ze€ Fpn(z)(m)

It follows that |V £,| < |V f.| almost everywhere and H!(S; ) < H!(Sy,). However
since f, € C'(Q\&y, ) it is also true that Jo(fa—gn)? < Ja(fr— 9.)? which contradicts

f» being a minimizer of E. Thus it is necessarily the case that,

sup  fa(y) < max( sup g(y), fa(y))
vEB,. (z)(z) ¥€B,,(2)() yef’Bmm(*)

< sup yu(y)+z
yeBPn(:)(z)

and similarly,

fa(y) = min( (y), fa())

yGBpn(z)(m) vEB»n(z) (=) eaBPn(')( )

v

nf » —_—
yGBPn(z)(z)g (y)

From this we obtain,

sup (fF(¥) = fr(y) < sup  gu(y)— 9u(y) + 5
YEB,,(z)(2) YEB,(z)(2) yeB,,,,(,)(m)
€
< 2[ -
< T+ 3
< e
The lemma now follows from the arbitrariness of e. O
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We now introduce some further notation. For By(z) € R and v € SBV(92) we
define,

J(u,ﬂ,p,w)=ﬂf3

and, wherever it exists,

u2+/ Vul? + HY(S, N B.(z
ot IV E0 B)

' _ 2 1 2 1 0/C
J(u,ﬂ,p,w)—ﬂLBp(w)u dH +faa,,(,)lv'“' dH" + H°(S. N OB, (z))

The proposition to follow provides us with a means of determining a p for a given
z € ( at which the ratio j’%ﬁ%‘%‘:‘%} can be bounded in some sense. This will be
important when we redefine minimizers of E in the interior of a ball by extending the

boundary values into the interior.

Proposition 4.18 Suppose we are given u SBV(B,,(z)). Let 0 < p, < p, and
assume J(u,3,p1,z) > 0. Then there exists p € (p1,p2) such that

J(U,ﬂapz,‘v)

J,(uaﬂvpvw) < 2(P2 o pl)_l ln(J(u ,8 P1 m)

)J(u’ﬂ, P’m)

Proof Define
f= in J'("’,ﬂsp,:c)
PE(p1,02) J(u,ﬂ,l’l’ ‘B)
and

Ho) = 3w, Byp,2) 4 8 [, Byr, ) dr ().

J(p) is a nondecreasing absolutely continuous function of p and a%j(p) = J'(u,f,p,z)
for almost all p € (p1,p;). Thus for almost all P € (p1,p2) we have a%j(p) >
tJ(u,B,p,z). Now, we will establish the relation

J(u,8,p,2) > J(p) (4.3.11)

but first we show how this implies the desired result. For almost all p € (p1,p2) we

have,

a 2 a A a
—(p—p1)t = e—(p—p)t Y — e (p—p1)t
ap(e J(p)) e apJ(") (e J(p))

< 0
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by the definition of . Thus we obtain J(p2) > J(p1) exp(p; — p1)t. We note J(p,) =
J(u,0,p1,z) and using 4.3.11 we have J(p2) < J(u,8,p2,z). The lemma now follows

by choosing p such that %ﬁ% < 2t.
To prove 4.3.11 we first note that,
P
B u? +/ |[Vul? = / [ﬂ/ u? dH? +/ |Vul? d'Hl] dH!
Bp(z) Bp(z) 2 8B,(x) 8B,(z)

+ u? + Vul?
ﬂ By, (=) ‘/}:791(‘”)| |
by the Tonelli-Fubini theorem. Thus all we need establish is,
H (3. N (B,(2)\B,, (z))) < / " H3. N 0B, (z))dr (4.3.12)
P1

To simplify the notation we will assume z is the origin, and denote S, N (B,\B,,)
by T. For any ¢,6§ > 0 we can find collection of sets {U;} such that ' C U; U;,
diam(U;) < 6 and H}(T) + € > T, diam(U;). Let x;, be the indicator function of the
condition U; N 8B, # 0. It follows by definition that HY(T' N 0B,) < Yixi,. Now
Jo: Xir dr < diam(U;) hence,

[ HrnoB) < Y diam(vy)
P1L :

< Hi(D)+ e
< HYT) +e
Since ¢ is arbitrary we have in fact,

p
[ 1y naB.) < ()
P1

Now, consider any sequence §,, 1 0. For each r the sequence, H3_ (' N 8B,) is mono-

tonically increasing to H°(T' N 0B,) thus by the monotone convergence theorem we

have,
im M (PNOB,)dr = /”H*’(r NOB,)dr
neJpy P1
which completes the proof. O

In order to get some bounds on the contribution to E occurring in certain subsets
of @ we will redefine f in various balls in . To facilitate this we will introduce some

more notation.
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Suppose u € SBV(Q) and B B,(z) C 9. We will introduce polar coordinates r,§
centered at z. For 0 < p' < p we define,

®(p,p',7,0) = 1A _VU
(0;0',7,6) (p -0

u(r,8) (r,0) € Q\B,
i(p,r,0) =
u(p,0) otherwise

a(p,p',7,0) = ®(p,p,r, 0)i(p,r,8) (4.3.13)
Figure 4.4 illustrates this definition.

Lemma 4.19 Let B,(z) cC Q and let v € SBV(Q) satisfy w € C%1(Q\S,). Then

with @ defined as above we have,
J(ﬁ',ﬁ’/’v :13) S ([:B(p_'PI)]-I + (P_p’)) J’(u,ﬁ,P, w)
Proof The following inequality is easily derived,

1
2l
»/;,,(a:) at - 2( P)/
Note that Vi . V® = 0 so,

V(& 2=f
fB,,(m)' @)f =/

P

V& |24
By(z)

Some straightforward algebra now verifies,

‘/Bp(-‘”)

Finally, because of the regularity assumption on u it follows that if uy is the restriction
of u to 8B,(z) then as a member of SBV(0B,(z)) the function u; satisfies Sy, C 8.

Thus we obtain,

|Vu|7‘d'H1 + L u? dH?
p— P 9B,(=)

H(8a N By(z)) < (p—p'YH*(9B,(z) NS,

Together these inequalities constitute the proof the lemma. O

We will construct smoothed versions of gu- Wherever ¢ ¢ S; we have Af =

B(f — g) thus, roughly speaking, f is a smoothed version of g where the support of
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the smoothing occurs over a region of radius 3-%. We will compare the optimal f to
such a smoothed version of g,. However, it is more convenient to use a mollifier to do
the smoothing than to consider the solution to a p.de. Letp € C5°(B1) be a positive,
symmetric function satisfying fp 7 = 1. If z € Q and 0 < B~7 < dist(x, 0N) then we

can define,
9@ = [ BuHe -y b
Bﬁ_*(w)
By definition 7 is uniformly continuous. We will denote the modulus of continuity of
N by en; ie. () —n(y)| < eylz — y| for all z,y € R2.

Lemma 4.20 Let g, € SBV(Q2) satisfy our assumptions (assumption 2 in particular, )
and K C  be a compact set such that KNS,, = 0. Now define § = 3dist (K, S,, UdN)
and denote by L the Lipschitz constant associated with [K]s. If -7 < § then the

following estimates hold;

L3
sup [Vg,(y)] < L
yeEK

sup |Ag,(y)] < \/iwanﬁ%
yeK

IA

sup [g,(y) — gu(y)|
yeK

A

Proof Let z € K then,

9:(2) — 9u(2)) < B /B o 10} @ = )0u(v)dy — gu(z)

< 4l / M8 (2 ~ 9))(0u(w) - 9u(2))dy|
< 8l / ICEERRN
sl

proving the first statement.

Since g, is Lipschitz in [K];, Vg, exists almost everywhere (in the strong sense)

on [K]s and satisfies |Vg.| < L. Now,

Vgi(z) = / Van(B2(z — y)) gu(y)dy
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=8/ 0" =) Vi)

and the second statement follows.

Let ey, e, be the standard basis for R2.

d d
la—wlga(“«‘ + eeq) — 6—wlya($)|

: He—y)) 2
=8/ o 1O+ e =) = 0(8}e —4) 5= au(w)dy

-
0
< Bice —agu(y)d
< Brc, /B_*(z)ayly (y)dy
]
Thus we get
0 a
A ] < % . Ju . Gu d
Ag@) < ple, fBﬁ_%(z)l r 9 + |50 (w)ldy
< ﬁﬂﬂ%an
This completes the proof of the lemma. O

4.3.3 Main Results

We are now ready to establish the most important estimate in the proof. One impor-
tant consequence of the following lemma is that it shows that if there remains small

pieces of the boundary Sy disjoint from [S,,]. then they are sparsely placed.

Lemma 4.21 Let g, € SBV(Q2) satisfy our assumptions and K C  be a compact
set such that KNS, = 0. Define § = 3dist(K, S,;, U 89), denote by L the Lipschitz
constant associated with [K]s and set ¢ = m(8(1 + L(1 + v/27¢,)))?. Now, given
0<y< % there exists a constant 8’ < co such that if B > ' and f minimizes E(B)
for some g € T(3) then,

sup J(f _guﬂ,ﬂ_‘y’m) S C/B_z’y
zc K
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Proof Assume the lemma is false. There exist a K and v satisfying the conditions
of the lemma and a sequence of quadruples {(g,, f,, Bnyn)} such that 3, 1 + o0,
E(fn,Bn) = E*(B,) with g = g, € Y(B.), zn € K and,

J(Wny B, 87, 20) > B (4.3.14)

for each n, where we have used the notation Wn = fn—g,. Note that since 8 depends
on n so does g,.
1
Without loss of generality we can assume that Bn > 1and 2877 + 6,7 < 6, so

that the following estimates,

sup  |go(y) — gu(y)| < LBa? (4.3.15)
ye[K]zﬁ;‘y
sup  [Vg,(y)] < L (4.3.16)
28,7
1
sup  |Ag,(y)] < V2Zrc,LB: (4.3.17)
yE[ ]251—;7

hold by lemma 4.20. Defining e = f — g, as before and applying the estimates given

above along with the triangle inequality we obtain,

J(wn7ﬂm2ﬂ:yaw") < {'B/ () €n / IVenlz
za“' Tn

35;7 (z")

+ / - 93)2 + /
zﬁ—‘Y(zn B

+HM (81, N Byyon(zn))
2(8 24 Ven|?) + 24Lx 372
8 o Lo o I¥eal)

zp“’

+H! (S N Bzﬁ;“’(:cn))

) 'V(gu - gs)lz}

2677 (@n

IA

By lemma 4.15 and the corollary to lemma 4.14 we can assert that for n sufficiently

large

I (Wny B, 2877, 2) < 1. (4.3.18)
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In this case we can conclude from proposition 4.18 that for each n we can choose

Pn € (B877,26;7) such that,
2y
J'(wn,ﬂn, Pny wn) S 2ﬂ;{ In %J(wnn@n, Pny wn)

Let N; be such that if n > N; then 4.3.18 holds and also B In ’{:i < E’%— We now
have that for n > Ny,

11
J’(wn:ﬂnapn,wn) S ,B"% EJ(wn,ﬂn,pn, mn) (4-3.19)

_1
Let us define w,, as in 4.3.13 with Prn = Pn— PBn? and the balls centered at T,;i.e. we

introduce polar coordinates r,# centered at T, and set,

T — Pn
@(Pn,l’;""va) = 1A( p,

. wn(r, 8) (r, 8) € Q\Ppn("”n)
wn(Pn’ Ty 0) =
Wn(pn,0) otherwise

wﬂ(PmP;’r’e) = Q(Pmpinraa)'i’n()on;"'ao)-
From lemma 4.19 we obtain,

-1
J("-bnaﬁny Pn, mn) < 216" 2Jl(wn7ﬂnapnaxn)

Now applying 4.3.19 we derive,

- 1
J(w‘fﬂﬂn’pn) wn) S §J(wn’,6n’ P‘n.a mn) (4.3.20)

Let f, = g,4+,. Note that in \B,,(z,) we have f, = f,. Since fr 1s a minimizer
of E(f,B,) we have, E(fa,0,) < E(f,,,ﬂn). We can express this in terms of w, as,

J(0n, B, pryzn) < J(Wny Bry pry Tn) + 2ﬂn/ )(ti’n — wn)(g, — g)

o Tn

+2/ (Vibn — Vaw,) - Vg,
Bo,(zn)

Substituting from 4.3.20 we get,

7
_ < 0, — — I,
67 (o) < f (G -w) gt (@3a1)

+/ Vid, — Viw,) - Vg,
BPn(m")( ) g
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Note that 4.3.19 and 4.3.18 imply that Swnirn N OB, (z,) has at most finitely many
points. Thus we can apply the general result for SBV functions, equation 2.3.5, to

get,
Vw, — Vii,) - Vg, = / D(w, — @,) - Vg,
/Bp,,(mn)( ) Bon(za) ( )- Vo
— Jw, — w,) - Vg,
"/Bpn(zﬂ) ( ) g
- W, — n)Ag, 4.3.22
fs,,,, ol ) (4.3.22)

- J(wn — w,,) - Vg,.

Bﬂn (zﬂ-)

where have used the notation,

/ Ju-$= (wF — u”) gy dHL.
B, BoNS.

It is clear that SUP.ep, (2n)(W(2) — W (2)) < SUPeeB,, (2n)(fF () — f7(2)). From
lemma 4.17 we conclude that there exists N, sufficiently large so that if n > N, then

SUPyep, (o) (f¥(2) — fr(2)) < ar- We recall that |Vg,| < L for all z € [K],, so we

now have,

1
. < 1
| fB oo Vel < HU(S, N B (=2))

%J(wn,ﬂn,pmmn) (4.3.23)

IA

and

| Jin - Vgl < H (84,0 Byu(2a)

BPn(m")

1.
S gJ(wn)ﬂn’ pn,, mn) (4.3-24)

Let N = max (N, N,) and assume henceforth that n > N. Summing 4.3.24 with
4.3.23 and substituting from 4.3.20 we obtain,
- Wn s < =J ny Mny yn
| Bp,,(mn)J( Wy,) - Vg’—64 (wn, B B, z.).
Substituting this into 4.3.22 and in turn substituting the result into 4.3.21 we obtain,

7
1428 (wmﬁmpn’wn) < /p,.(z'n) - n)(ﬂn( g)+Ag.,) (4325)
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Since,

lim 8 sup |9.(%) — 9(y)| =0

noee V(K] oy
we can assume that IV is sufficiently large so that for n >N SUPye(k], - lgu(y) —

9(y)| < ,Bn From this and the estimates 4.3.15 and 4.3.17 we now have,

11 f[¢
sup  |Bn(g, — g) + Ag,| < 32 5\/; (4.3.26)

meBPn(z")

Using the Schwartz inequality we can derive,

wal < BFfaor(on [ wit
foy ol < BE s, [ )
< Br VT pa(J (Wny By Py 20 )) (4.3.27)

Similarly,

IA

1
W, On? / W, | dH?
‘/Bﬁn(m") l l aBPn(zﬂ-) | I
B4 /27 po( B /a ( )w: dH)}
pr\Zn

< B2 pn(J (Way By Py ) ) 7
-3 1 1
< "? n{ T2 ny Pny PryTn))? 0.
< Brity2mp (16J(w Bry Py n)) (4.3.28)

where in the last step we have used 4.3.19. Combining 4.3.26, 4.3.27 and 4.3.28 and

I

substituting into equation 4.3.25 we obtain,

7 4
1428 (w"’ﬁ"’/’mwn) <z \/_pn(l + fl\g/—)(J(wmﬂummn))z

-1
Now, since p, > 87, v < 1 and Brn > 1 we have (1 4+ Y2821y 47 . 1 hence we
no Y < 3 1 Jon 32

obtain,
1 1 L
Z'](wmﬂna Py Tn) < §\/Epn(J(wn, Brs P, ‘En));
Noting p, < 28:7 we conclude,
J(wn7ﬂn’pn7mn) < cﬂ':z’y

which contradicts 4.3.14. Q.E.D. O
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We are now ready to demonstrate that the conditions required to prove z € Sy
can be met simultaneously for each z € K N\S,. when G is sufficiently large. We
first recall some notation and some important results on SBV functions quoted in

chapter 2. Let u € SBV(Q). For every compact set K C Q we set,
F(u,K) = /K Vul? + H (S, N K)

and

(v, K) =inf {F(v,K):v € SBV(2),v =u € Q\K}.
The deviation from minimality is defined as
Y(u,K) = F(u,K) — &(u, K).

Lemma 4.22 There exist universal constants £,m > 0 such that if u ¢ SBV(Q),
B,(z) CC 9 for some p > 0, and each of the following three conditions hold;

F(u,B,(z)) < ¢p, (4.3.29)
.gli%l+ t7'9(u, By(z)) = 0, (4.3.30)
Yu,Bifw) < nt, VE<p, (43.31)
then z ¢ S,,.
Proof This is just a combination of theorems 2.7 and 2.8 O

Lemma 4.23 Let g, € SBV(Q) satisfy our assumptions and K C Q be a compact
set such that K NS, = (. There exists a constant B' < oo such that if 3 > ' and f
is a minimizer of E(-, ) with ¢ € T(B) then,

SfﬂK:@

Proof Assume the lemma is false. Then there exists a K satisfying the conditions
of the lemma and a sequence of quadruples {(9ns fnsBn,xn)} such that Brn T +oo,
E(fn,B,) = E*(B,) with g = g, € T(B) and z,, € K NSy,. Define § = 3dist(K, S,, U
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9Q), denote by L the Lipschitz constant associated with (K]s and define c as in lemma

4.21. Fix any real v satisfying % <7< -;- By lemma 4.21 we can assume,
J(Wny B, B ) < By (4.3.32)

for each n, where we have again used the notation w, = f, — 9s. Furthermore, for
convenience we make the assumption ¢B;" < %. From 4.3.32 we have HY Sy, NG <
B, Thus [{p € [3877,8:7] : 5¢ N 0B,(z,) = 0}] > 3837 — eB7* > 1377 by our
assumption. We can thereby choose a p, € (38:7,8:7] such that SN 0B, (z,) =0

and,
3 / w? dH + |Vaw, |2 dH? < 4¢77. (4.3.33)

8B,,(en) 9By, (zn)

Define,
Toz= sup  |un(a)]
z€9Bp,(zn)
and,
9-9,= sup |g(z)— g,(z)|
=‘ea'BPﬂ.(w")

From the existence and regularity results for minimizers of E(.,-) we deduce w, is C*

on 9B, (z,) so from proposition 4.16 and 4.3.33 we conclude

max |w,(z)| < \/S_Cﬂ;%—%.

EGBBP" (“"")

Our goal in the remainder of the proof is to show that the three conditions of
lemma 4.22 are satisfied for n sufficiently large with v = f, P = pn and T = x,, thus

obtaining a contradiction with «,, € St.. Now,

F(fnBm(en)) = [ (VP + H (500 By (e0)

S [, Vw4 Vaf) + H(S, 01 By ()
< 2c+4anL?)pI

where we have used the facts |Vg,| < L and pn < B77. Condition 4.3.29 is thus
satisfied as long as 2(c + 47 L?)B77 < ¢ which is clearly true for n sufficiently large.
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Consider a fixed n, let 0 < ¢ < pr and let vt € SBV(2) realize @(fn,Ft(:z:n)), ie.
v (z) = fu(z) for all z € 2\ B(z,) and F(vt, By(z,)) = ®(fn, Be(z,)). Since f, is a
minimizer of E(-,(,) we have,
n n 2 F ny_ n < n\/% t— ? F t,— n
Bn fg o, \F = 9 + Ffu Bilwn)) < ¥ =9+ P Bi(en))
Let g be the infimum and F the supremum of g in B, (z.). By a simple truncation

argument as was used in the proof of lemma 4.17 it is easy to establish,

Ve € B, (2n), f(2) € (g~ Wn —g=3,,5+ B + 5= 9.)
and essentially the same argument shows,

Vo € B,,(z,), v'(z) €[ _inf  fu(z), sup  fo(z)]

z€D 5, (xn) mEBp,,(-‘Bn)
Thus we obtain,
sup o'—g| < g-g+ 2(W+g9—g,)
mGBz(zn)
1z 1
< 2pnL +V8cBa T 4 LB 7Y + 4|(g — 9u )X, (ol

By assumption 4.3.2 and since Y < 3 and p, < B," there exists an IV such that if
n > N then,
sup v —g| < (1+3L)8;”
2€L, (20)

and hence,

V(fny Bi(z)) < (1+3L)°31-27pe2,

Thus condition 4.3.30 of lemma 4.22 is clearly satisfied. Also, U(fn, Be(z)) < 7t as
long as (1 + 3L)?B1-2'rt? < ~t ie. for all ¢ < m’;’;ﬂ:ﬁ Now since ¥ < F
and F(f,, B,(z,)) < F(f,,B,, (zn)) we have ¥(f,, By(z,)) < 2(c+7L?)B:% and for

t > M we have U(f,, By(x)) < yt. Thus condition 4.3.31 of lemma 4.22 is
satisfied if 2ctrl?)a™

(1+3L)Z1rﬁljr‘7' Since v > % this inequality is satisfied for n
sufficiently large and the proof is now complete. Note that had we set v > 3 then

the first bound would have been sufficient since for n large enough we would have

- ¥
Pnﬁzﬂn75m:ﬁ O
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Finally we are ready to state the theorem to which the previous effort has been
directed. Lemma 4.23 almost gives the theorem directly, the only problem is that as
stated the lemma requires K be disjoint from the boundary of Q. Fortunately the

result can be extended to the boundary by a reflection argument.

Theorem 4.24 Let g, € SBV(Q) satisfy our assumptions and assume {) is a rect-
angle. Given ¢ > 0 there exists a constant 3’ < oo such that if 3 > ' and f is a
minimizer of E(.,3) with g € T(f3) then,

S.f C [Sgu]e'

Proof Let §; be a rectangle with the same center and proportions as {2 but 3 times
the length. Similarly define 2; with twice the length of 2. We can define g, and f3
on Q3 by reflection of g and f respectively. We note that gs satisfies our assumptions

on 3. Clearly f; minimizes,

B(w,f) =B [ (g0 —w?+ [ [Vuf +H(5.)

over all © € SBV((Q23). Define A = QN[S,]c and let A3 be the reflection of A onto (.
0,\As is a compact set in Q3 disjoint from S;,. Thus, by lemma 4.23 there exists
B' < oo such that if 3 > §' then Sy, N\ A3 = 0 and hence Sy C [S,,].. a

The next lemma establishes that the opposite containment also holds.

Lemma 4.25 Let g, € SBV(Q) satisfy our assumptions and assume {2 is a rectangle.
Given € > 0 there exists a constant 3’ < oo such that if 3 > (' and f is a minimizer
of E(-,8) with g € T(3) then,

Sq. C [Stle.

Proof Assume that the lemma is false. Then there exists a € > 0, a sequence of
minimizers {f,} with 8, — co and g(n) € Y(B,) such that there is a corresponding
sequence of points z, € S,, such that dist(z.,Sf,) > €. Let y be a cluster point

of the sequence {z,}. We can find z € S, satisfying |z — y| < Thus there

1L

exists a subsequence {f,,} such that dist(z, Sy, ) > 5. This then contradicts weak

convergence of J f,, to Jg, which was proved in lemma 4.13. O
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We are now ready to conclude the proof the theorem 4.12.

Proof Of theorem 4.12 That limg_, o Sup cr(p) de(S¢(8),S,.) = 0 follows from
theorem 4.24 and lemma 4.25. The result of limp o0 sUp,cy(g) [HY(Sy) — HY (S| =0
was established in lemma 4.14. This lemma together with the basic bound on E given

in 4.3.4 implies that limg_, o, SuP,er(5) B Jo(f — 9)? = 0. This concludes the proof. [

4.4 A Hybrid Case

As a final addition we wish to consider a mixed case in which the underlying image
is piecewise constant but the functional we minimize is that associated with the
piecewise smooth case. The reason for doing this will be made clear in chapter 5
where we propose various segmentation algorithms. Essentially all of the results
carry over from the piecewise smooth case. Since Vg. = 0 in this case things are

greatly simplified.

4.4.1 Problem Formulation

As in the piecewise smooth case we treat the variational problem in the SBV setting.

The difference here is that we weigh the smoothing term.

(80 =8 [[(a= 1)1+ [ [VFP 4 74(S)).

We will see that the only assumption we need make on ) is that it be bounded below
by some constant A\* > 0. Without loss of generality we set \* = 1. This greatly
simplifies the statements of the results to follow. Our assumptions on the domain are
as before i.e. 0 is a rectangle. The underlying image which we denote g, is piecewise

constant. The assumptions on it can be stated as follows,

Assumption 1 g. € L*(Q) N SBV(R), Vg, = 0, H'(S,.) < oco.
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The Noise Model

As before the class of observed images is denoted by T(G). For this mixed case we

assume the same noise model as in the piecewise smooth case i.e.

lim sup ,3/(9 -g.)? =0, (4.4.1)
Ao=ger(p) Ja
and,
Ve > 0, lim sup ”(.9 - gc)(]' - X[Syc]s)”W =0 (442)
B gex(s)

We can now state the limit theorem for this case. It is essentially the same as in the

piecewise smooth case.

Theorem 4.26 Under our stated assumptions, as § — oo {S¢(8)} converges to S,.
with respect to the Hausdorff metric, and HY(S¢(B)) — MY(S,.). We mean by this
that for any € > 0 there exists B' < oo such that if 8 > B’ and f is a minimizer of
E with X > 1 for some g € T(8), then du(Ss,S,.) < € and [H(Sy) — HY (S, )| < e.
Furthermore +/B(f — g.) converges to 0 in L3(Q).

4.4.2 Preliminary Results

The results of this section are essentially the same as in the piecewise smooth case.
The only thing we need check is the dependence on ), and the effect of setting Vg, = 0.

Let E*(3,) denote the minimal value of E(f,8,)). By substituting g. for f we
get the following bound,

B'(8,2) <8 [ (9 - 0. + H(S,.). (4.4.3)

Lemma 4.27 If ¢, frnsBn,y An are sequences such that Bn T +00, A, > 1 for all n, and
E(fn,Bn, ) = E*(Bn, An) with g = g,, € T(B.) then,

fo—g.  in L}Q)
Jfn — Jg. weakly as radon measures

Vfi.—0  weakly in L'(Q; R?).
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Proof The proof is the same as in lemma 4.27. We need the uniform lower bound

on A so that L. Ambrosio’s compactness theorem for SBV(R) can be applied. O

Lemma 4.28 If 9ny fny B, An are sequences such that 3, 1 400, A, > 1 for all n, and
E(fn,Bn,An) = E*(Bny An) with g =g, € Y(B,) then,

lim ,\n/annl’ =0

n—+co

hm Hl(an) = Hl(Sgc)

n—+4+oo
Proof We can argue exactly as in lemma 4.14 with 9u teplace by g. ( which satisfies

Vg. = 0) to get the second statement, after noting A, > 1. We also have,
limsup A [ Vo[ + HI(Sp,) < HI(S, )
from the bound 4.4.3. This establishes the first statement. d
Corollary If A C Q is any borel set such that dist(4,S,, U Q) > 0 then,
nETm H(Ss, N A) = 0.
Proof The proof is the same as for the Corollary to lemma 4.14. a

Lemma 4.29 Let K € Q be any compact set disjoint from §,, U and 9ns Fry Bny An
be sequences such that 8, 1 +00, A 2 1 and E(fn,Br, M) = E*(Bn, As) with g =
gn € Y(Br). It then follows that

n—+0o

lim sup |f¥(z)— fa(z)] = 0.
z€K

Proof The proof is the same as in lemma 4.17 with g, replaced by g.. The constant
L can be set to 0 and e, is here defined as fn — g which satisfies lim, o (fy €2 +
Jo|Venl?) = 0. O

We need to make a slight change of notation from what was used earlier. For
B,(z)€Nand uc SBV(Q) we define,

J(u, B\, p,z) = 240 Vaul> + HY(S, N B
(B Apz) = B W[ VUl (S, By(e)
and

' _ 2 1 2 gq,1 0
J'(u,8,0,2) = g MR +A/33p(m)|vu| dH' + HO(S, N 9B,(z))
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We note that proposition 4.18 holds for J and J' with the new definition as well

as with the previous one.

4.4.3 Main Results

Lemma 4.30 Let g. € SBV(Q) satisfy our assumptions and K C § be a compact
set such that K N8, = 0. Define § = 3dist(K,(S,, U 09)). Let 0 < v < 2. For
any sequences 83, T 0o, A, > 1 and £, such that fn is a minimizer for E(B,,A,) with
g9 € T(B,) the following holds,

n—oco

lim sup ﬂ,zl‘yJ(fn - gc,ﬂna/\na 1:1’17) =0
z€EK

Proof Assume the lemma is false. There exists a, K and v satisfying the conditions
of the lemma, a constant n > 0 and a sequence of quintuples, {(9ns frs By Ay zn)}
such that 8, 1 +o00, A, > 1, E(fnyBnyAn) = E*(Bn,\n) with g = g, € T(Bn), 2, € K

and,
J(wna /Bn, An,ﬂ;‘y, il?n) > ﬂﬂ,:27 (444)

for each n, where we have used the notation w,, = f,, — g..
Since limp,_, o By fq w2 + A, Jo [Vwn|? = 0 the corollary to lemma 4.28 yields for
n sufficiently large,
J(Wny By Any 2877, 2,) < 1. (4.4.5)

Thus there exists an N; such that if n > IV; then 4.4.5 holds and also BY In g2y < %'g—

n
We now conclude from 4.4.4 and proposition 4.18 that for each n > Ny we can choose

pr € (8B77,26;7) such that,

J'(‘UJn,, ,Bn, An, Pny zn) S ﬂé%.](‘wn, ﬁn, An, Pny lfn) (4.4.6)

_1
Let us define w,, as in 4.3.13 with Prn = Pn — P ? and the balls centered at Z,. From

lemma 4.19 and 4.4.6 we derive,

J('lz’n, ﬂn) An, Pn, wn) S %J(wn)ﬂn) )\n,Pn, mn) (447)
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Let fn = gc + Wn in B, (x,) and f, elsewhere. Since fr is a minimizer of E(f,B.,, An)
we have, E( f,, B0, \,) < E(fu,Bn, An). We can express this in terms of wy, as,
J(wn’ﬂm Ampm zn) = J(d’mﬂna ’\m Pny wn) + zﬂn/ (l‘.’n - wn)(gc - g)

n(Tn

Substituting from 4.4.7 we get,

7 -

767 (Wns By Ay oy 21) < B /B ey (B = w5~ 9) (4.4.8)
As in lemma 4.21 we obtain,
-1
for oo 1l < B (T 10, s Ay ) (4.4.9)
and
-3 — 1

/; ( ) Iwﬂl S ﬂn ‘ Zﬂpn(EJ(wn)ﬂn, An) pn, mn))% (4410)

Let 4, = ﬂ;% SuPye[K]m-, 19:(y) — g(y)(n)|- Combining 4.4.9 and 4.4.10 and substi-

tuting into equation 4.4.8 we obtain,

1
7 Vgt
_J(wmﬂm /\napn,wn) < "’n\/7_an(1 + *IB

1
16 4 \/P_n)(J(wn,ﬂn, A1'1,7[)7‘17 mn))

Now, since p, > 877, v < 2 and 8, > 1 we have (1+ 3?%) < I and hence we

obtain,
1
ZJ(wnaﬂn) /\n’ Pn, il!n) < 19n\/;pn('](wﬂ7ﬂ’” ’\'” Py :lfn))%
Since,

lim B3  sup |g.(y) — g(y)| =0

n—oo
ye[Klzﬂ;7

and p, < 2677 we conclude,

lim ﬂﬁ"J(wn,ﬂn,)\n,pn,mn) =0

n—oo

which contradicts 4.4.4. Q.E.D. O

Lemma 4.31 Let g, ¢ SBV(Q) satisfy our assumptions and K C ) be a compact
set such that K NS, = (). There exists a constant B' < oo such that if 3 > B’ and f
is a minimizer of E(-,3,)) with XA > 1 then,

SfﬂKZ@
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Proof Assume the lemma is false. There exists a K satisfying the conditions of
the lemma and a sequence of quintuples {(g,,,fn,ﬂ,,,/\,,,wn)} such that 8, 1T +oo,
An > 1y E(fn,BnyAn) = E*(Bn,An) with g = g, € T(B,) and z,, € K N S¢. Define
§ = 3dist(K,S, U 0%). Fix any real satisfying 1 < v < 3. By lemma 4.30 we can
assume,

I(Wny Bn, 77, 20) < B2 (4.4.11)
for each n, where we have again used the notation w, = fa — ge. Furthermore, for
convenience we make the assumption B;7 < 3. From 4.4.11 we have HY (S NG <
B*". Thus {p € [38:%,8:7) : 35 N 0By(z,) = 0} > 627 = B > 1677 by
the assumption just made . We can thereby choose a p, ¢ (38:7,877] such that
St NOB, (z,) =10 and,

ﬂn/ w2 dH! + /\n/ [Viw,|? dH < 4¢877. (4.4.12)
8By, (zn) 9B, (zn)
Define,
Tn = max [wn(z)|
and,

9-9.=  max  l9(e) - gc(2)]
From the existence and regularity results for minimizers of E(-,-) we know w,, is (!
on 9B, (z,) so from proposition 4.16 and 4.4.12 we conclude

-1_z %

max |w,(z)| < \/8_1;ﬂn R WL

2€0Bp, (2n)
Our goal in the remainder of the proof is to show that the three conditions of
lemma 4.22 are satisfied for n sufficiently large with v = VS, p = pn and z = g,

thus obtaining a contradiction with =z, € S¢,. Now,

F(\\fuBonlen)) = A, /. o |Vl + 184,101 B, ()

— 2, /B e |Vewal? + HY(Sy, N B, (z,))

< B

Condition 4.3.29 is thus satisfied as long as 877 < ¢ which is clearly true for n
sufficiently large.
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Consider a fixed n, let 0 < t < p, and let /A0 € SBV(Q) be any func-
tion that realizes ®(v/X,fn, Bi(zn)), i-e. vi(z) = fa(z) for all z € Q\B(z,) and
F(vV/Avt, Bi(z,) = ®(v/Aafn, Bi(zn)). Since fn is a minimizer of E(:,Ba,As) we

have,

O &t(mn)(fn h 9)2 * F(\/)Tnfmﬁt(mn)) < Pn ‘%e(zn)(vt - 9)2 + F(\/I':vta—gt(mn))

By a simple truncation argument it is easy to establish,
Vz € B,.(zs), f(z) € [~Bn — 9 — §»@n + 9 — 9
and essentially the same argument shows,
Ve € B,o(za), v'(z) €[ inf  fa(z), sup fu(e)]
z€ By (xn) zeB,, (zn)
Thus we obtain,
sup vt —g| < 2(Wn+9—9.)
mGBe(mn)
i L
S 2(\/_8_C-ﬂn ¢ 2 An f 2”(9 - gC)X?ﬂn(mn)Hw

By assumption 4.4.2 and since v < % and p, < B77 there exists an N such that if
n > N then,

sup o' —g| <77
zEBﬂn(Tn)

and hence,
| ¥(fn Bil@) < BLE

Thus condition 4.3.30 of lemma 4.22 is clearly satisfied. Also, ¥(f,, Bi(z)) < 7t as
long as B1-27#2 < 4t i.e. for all t < 7B27~1. Now since ¥ < F and F(fn, Be(zn)) <
F(fn, Bp(zn)) we have ¥(fn, Bi(z,)) < B;27 and as long as t > y71G,?7 we have
U(fn, Be(z)) < 7t. Thus condition 4.3.31 of lemma 4.22 is satisfied if Y1877 <
4B21-1. Since v >  this inequality is satisfied for n sufficiently large and the proof

is now complete. O

We are now ready to conclude the proof the theorem 4.26.
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Proof Of theorem 4.26 To show limg_, SUP,ex(g) AH(S5(3), S,.) = 0 we need
to show S, C [Sy]. and also S¢ C [Sg)e. Both of these statements follow from
arguments exactly paralleling those use in theorem 4.24 and lemma 4.25. The result
of limg_, o, SuPyey(g) M (S5)—H(S,y.| = 0 was established in lemma, 4.28. This lemma
together with the basic bound on E, 4.4.3 implies that limg_, SUPser(py B Jo(f—9)? =
0. This concludes the proof. g

110



Chapter 5

Scale Independent Segmentation

In this chapter we propose an algorithm for segmenting images which attempts to
locate boundaries accurately independently of the “scale” of the features being sought.
We will develop the algorithm beginning with a conceptual sketch and concluding
with simulation results. In the first section we present a paradigm, of which our
method is but one possible implementation, which contains within it the key ideas
and most of the intuition behind our approach. The following section contains a more
formal description of the algorithm. Each step of the paradigm is expanded into a
mathematical formalism, which indicates, without explicitly representing, the main
computational steps of the algorithm. It is at that point that we relate the algorithm
to the limit theorems. An analogy between the form of the limit theorems and the
structure of the algorithm will be drawn.

We also address the issue of computation in this chapter. The questions we ask
are: how can one actually determine a segmentation and what are the differences
between the mathematical formalism that has been the center of attention thus far
in the thesis and a truly computational model? The second section of this chapter
contains a model on which we build our computations. This model is based on the
I'-convergent approximation to the variational problem. The next step we take to-
wards a computational algorithm is the consideration of the issue of discretization.
There are some some fundamental difficulties associated with faithfully discretizing
the variational formulation and we point out some of them in Section 5.3. With
these difficulties in view we propose a particular discrete model on which our simula.

tions are based. Finally in the last section we consider some of the remaining issues
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concerned with the computation. There are several options one has in performing
the computation which are not resolved by the formal mathematical model. We dis-
cuss how selecting among these options changes the performance of the algorithm.
This last section also contains our simulation results which illustrate and support the

discussion.

5.1 A Paradigm

It was pointed out in Chapter 1 that in general there is a trade off between the
accuracy of localization of boundaries found by the variational method and the total
quantity of boundary admitted into the solution. (This appears to be true for most
other segmentation techniques as well.) Consider for example the image of square
such as in Figure 1.5. The I' which minimizes Eq will be the empty set whenever
5 < 3 is satisfied. Now suppose the goal of the segmentation was to recover ob Jjects
only above a certain scale. Consider Figure 5.1 for example. If one were trying to
find objects on the scale of the larger square and not those on the scale of the smaller
square then it is necessary to incur an error at the corners of at least (/2 — 1)b as
illustrated in Figure 5.1.

Now, the limit theorems proved in the preceding chapter state that as the param-
eters tend to appropriate limits (3 — oo for example) the boundaries which are found
by solving the variational problem converge to the correct ones (i.e. the discontinuity
set of the image) with respect to the Hausdorff metric. As such, these theorems do
not provide us with any means of circumventing the scale/ accuracy trade—off because
they state that the limit of the minimizing I' includes all of the discontinuity set of the
image. We ask whether it is possible to take the limits required by the limit theorem
while avoiding the attendant problem of introducing more and more boundary into
the solution. Our response to this question is affirmative and takes the form of the
algorithm outlined below.

Recall that in the limit theorems we have quantified the amount of noise which

can be allowed while retaining convergence of the boundaries. For example, in the
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error > (/2 — 1)b

Figure 5.1: Segmentation of Two Squares with ¢ > 3>0

piecewise constant and the piecewise smooth cases we considered sequences A3,, g, such
that {g,} converges to the ideal image go, according to lim,_,., G, Ja(9n — 90 ) = 0,
where (0 is the domain of the image, and limn_, e v/F,||(1 - X[Sge0]e ) (9 = Goo)|oo = 0
for any € > 0 (where S, is the support set of the discontinuities of g,). Now, let
®, represent an arbitrary smearing operator such that the value of the result at a
point z € 2 lies within the range taken by argument in B,(z) and let w represent an
arbitrary function in the unit ball of Lo(2) . We argued in Chapter 4, under some
mild regularity assumptions on 9goo, that the convergence conditions were satisfied if

we could represent the g, by,

gn = an(gco) + 0nwn

with r, being a sequence of constants satisfying

lim B, = 0 (5.1.1)

n—oo

and ¥, being a sequence of constants satisfying

Hm /8.9, = 0. (5.1.2)

n—oo
Suppose our goal now is to obtain a coarse scale segmentation of the image. We
can think of the data as the ideal coarse scale approximation corrupted by “noise”

which will consist of small scale features as well as what is normally considered as

noise, measurement noise for example. Now we envision an algorithm which attempts
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to recover the coarse scale segmentation by taking the same limit as in the limit
theorems. The algorithm must not only minimize the variational problem while the
parameters are varied, it must also remove the noise in accordance with the parameter
variations as dictated by the limit theorems.

The fallacy with this project as we have described it is that we do not have a
definition of the ideal coarse scale approximation. We will propose our algorithm and
its result will constitute the coarse scale approximation. Nevertheless the algorithm
we will propose will proceed in a manner consistent with the scenario just described
and it is within this scenario that it can be best understood. The central questions
concerning the implementation are how the “noise” is to be removed and how we will
assure that the coarse scale approximation found is a “good” one. The idea we suggest
is to use the solutions of the variational problem as a rough approximation to our
“ideal” coarse scale image. Given a solution to the variational problem we will smooth
the data outside of some neighborhood of the boundaries belonging to the solution
which are tacitly assumed to be close to the ideal ones. Within the same neighborhood
we will leave the image essentially unchanged. In this way the information required
for good localization of large scale boundaries found by the variational approach is
retained in its original form while smaller scale features and noise disjoint from these
regions, where detailed information is not required, are smoothed out. The rates
which govern this procedure are naturally derived from the limit theorems. It is the
smoothing which attempts to provide for the circumventing of the scale/accuracy
trade-off.

We outline the paradigm below in a schematic fashion. We emphasize however that
the paradigm is conceptual and does not directly indicate our intended computational
procedure. A proposal for a method of computation will be detailed later. The

paradigm requires within it two key operations or procedures:

P1 The Minimization E (or Ey) to produce f and T' with the parameters a and 3
as input variables
P2 The updating or altering of the image by smoothing outside some neighborhood

of ' and updating the parameters which provide the data for P1 for resolution
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l Initial g,8,a

end P1: Minimize E

f P,g,,@ a Updated (64
and neighborhood size P &b,

P2: Update Image

and parameters

Figure 5.2: A Schematic for Scale Independent Segmentation
at smaller scale.

The interaction between these two procedures is illustrated in Figure 5.2. The algo-
rithm begins by minimizing E with the function g set to the original data and the
parameters a and 3 chosen to provide a segmentation of the desired scale. Once the
minimizing f and I' have been determined they are used to alter the function g. The
new g is formed by “smoothing” the original g outside of some neighborhood of T
while leaving it unchanged inside the neighborhood. Since f is a smooth approxima-
tion to g which respects the boundaries I a simple smoothing technique might be to
take a convex combination of f and g (this is what we have done in our simulations).
Simultaneously, we replace our parameters 3 and a as if to find segmentations on a
smaller scale. We then re-solve the problem of minimizing E, the difference being
that we use the updated image and parameter values. The hope is that we should
detect essentially the same boundaries as before only now with finer resolution. This
procedure can then be iterated on until sufficient accuracy is attained.

Within this paradigm there still exists considerable flexibility. How one does the
~smoothing or chooses neighborhoods is somewhat free. Also, we have not stated
how we will find a minimizer of the variational problem. Of course, in order for
the procedure to work the various parameters and operations must be coordinated

properly. It is at this point that the limit theorems become useful. If we remove the
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update of the image than the paradigm would simply be a taking of the same limit
as taken in the limit theorems. The deficiency with the limit theorems with regard to
their direct application in doing the segmentation, as we have mentioned, is the fact
that the limits predict the convergence of the solution I' to the entire discontinuity
set of the image. If the image was noisy this could effectively result in boundaries
being put almost everywhere. The update of the image plays a role similar to the
rescaling of the noise as required by the limit theorems i.e. it is the smoothing step
which we use in P2 which provides the cure for the deficiency in the limit theorem
as applied to segmentation. Small features and noise are smoothed out, but at the
same time the detail needed for accurate localization of the large scale boundaries is
retained.

With small scale features thus interpreted as noise the limit theorems then tell
us how quickly this noise must decay as the parameters tend to their limits i.e. the
conditions 5.1.1 and 5.1.2 should be satisfied for the sequence of images produced.
The minimal amount of smoothing which must be performed and the rate of decay
of the size of the neighborhood of the conjectured boundaries in which smoothing is

not done is thus determined.

5.1.1 The Piecewise Constant Case

In this section we present a more detailed implementation of the paradigm discussed
in the previous section for the case in which we are seeking a piecewise constant
approximation and we do so by minimizing Eo. According to the paradigm the algo-
rithm produces sequences JrnsTny Gny Wn,y B such that f,, T, are found by minimizing
Eo(Bnygn). The procedure is initialized by setting go = g where g is the original
data and by choosing we which denotes the initjal neighborhood size within which we
suppress the smoothing. The remaining quantities, g,, 3, and the neighborhood sizes

W, are defined according to the following schedule,

Gnt1 = gn+ hn(w)ae(fn - gn)
,Bn+1 = (1 - 6)_2)611
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Wnp1 = (1 — be)w,

where a and b are constants and h. is a function. The constants a ~ 1 and b ~ 1 will
satisfy 1 < a,b. The function hn(z) controls the spatial dependence of the smoothing
which is effected by partially replacing g,, with f,. For simplicity, and to be consistent
with our simulations we consider setting h, equal to 1 — X[Cnlu, - The parameter wy, as
we mentioned, is a predefined constant and represents the initial estimate of the error
in the boundary locations. The formalism we have just presented is a discrete one
i.e. we produce a discrete sequence of images and parameters. We could just as well
have made the parameter n continuous and represented the process with differential
equations. In this sense we can say that ¢ represents the step size of the algorithm.

We mention in passing that an alternative formula for the update of g, is,

Int1 = (1 = ho(z))go + hn(z)(1 — a€)g, + ho(z)aef,.

This formulation keeps some of the original data in a neighborhood of the set I'n, and
may be preferable depending on how one performs step P1 of the paradigm.

We claim that for a,b > 1 these rates are consistent with the limit theorems proved
in Chapter 4. Assume that the sequence {I',} produced by the algorithm converges
in the Hausdorff metric to some I, and hence that gn converges to some piecewise
constant go,. If we identify r,, with w, and 9,, with the value of (1 =X(T o). ) (9r— Goo ) || oo
(where ¢ > 0 is arbitrary), then r, satisfies 5.1.1 and ¥, satisfies 5.1.2 as long as
b,a > 1. In fact we obtain f,r, = O( 1=be)on) and /Bod, = O((32)m) .

By completely different means we can show that if b>1and @ > 1 then the
value of E} remains bounded above so the algorithm which has been described is
apparently well behaved in the sense that the quantity of boundary admitted into the
solution is bounded. To justify this claim we mention the fact that the boundary I

which represents a minimizer of Ey is a finite number of rectifiable curves all joined

either at their end points or to 89 and that this implies the following inequality,
Ve> 0, [[T].NQ| < 2¢HY(T) (5.1.3)

This result is a simple generalization of proposition 2.6. Now consider a single update

of the algorithm. We have minimized Eo and found f and I'. We define the new
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image, which we denote with the superscript /, by,

(1 —-ae)g+aef forze O[Ty

!

g =
g for z € [I],,

where w is the width of the neighborhood in which we keep g unchanged. The

parameter update is 8’ = (1 — €)~24, and & = a. We denote the new cost function

by Ej. To bound E! we consider setting I = I' and f' = f.

E(£T) = B [ (f- ) +am(T)

(T8 [ =P+t + @ -3 [ (-
S BUD+E-p) [ (f-g7

< Bo(£,1) + ceB|n [Tl

where ¢ = ({1 + €) ~ 1. Now from equation 5.1.3 we obtain,

E(’)(fa F) < Eo(fa P) + ceB 2wH1(F)”g”Z°
< (L +ceB2wlg[lZ ) Eo(£,T)

At each successive stage we reduce w by a factor of (1 — be)?. Thus if Eg* denotes

the cost after the nth stage we can iterate on the argument given above to establish,

1 —be .,
Eg* < Eg*IT (1 + 2c¢( ) BowollgllZ,).
Now for > 0, In(1 + z) < z so,
1 —_ be . n ]_ —_ be .
o1+ 2ee(y 0 Pounlal) < exp 3 2ee 22 gz
i=0
2 2
< exp ‘——ceﬁouio_l!,f”;
1—- (%)
< oo.

This shows that the total boundary remains bounded. As ¢ tends to zero the bound
converges to exp M“;f_-'—f—”-;. Thus as b tends to 1 this bound blows up. The parameter

b thus has some control over the stability of the algorithm. A larger value b promotes
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the stabilization of the boundaries which is obiously a dersirable property. On the
other hand it is not clear whether an a priori bound in the length of the boundary
is desirable. In the continuous domain setting, which is what we are considering
here, a boundary can have arbitrarily large length since it can be highly irregular.
Why then should we bound the length of our solution? Thus it appears there may
be a trade off between the predictable stability of the algorithm and the level of
detail it can be expected to resolve. For b — 1 we do not have a finite bound on
the length of the limit boundary. This then is a borderline case perhaps admitting
convergence to the ‘true’ boundaries. However, the limit theorems do not provide a
clear interpretation of this case. Fortunately in all practical situations there is a lower
bound on what constitutes meaningful resolution and a bound on the length of the
boundaries becomes inconsequential once large enough. It is worth noting however
that by making b larger we can guarantee greater stability of the algorithm but the
cost is a reduction in attainable resolution.

In more general terms we can argue why we expect the set of boundaries found
to remain essentially unchanged throughout the iterations of the algorithm. For
simplicity, consider what would happen if we set h,(z) = 1 for all 7 i.e. wo = 0 and
also @ = 1. It is not very difficult to check that the solution f5, 'y would be a local
minimum for the functional E(g1,81) i.e. if we consider small local variations in the
boundary we find that the original locations are optimal. We conjecture that f; is in
fact a global minimum and this can easily be seen for certain special cases such as
when the image is a square as in Figure 1.5. Because the original solution is in some
sense being reinforced by the feedback we expect that it becomes a ‘deeper’ minima
then previously. This then lends a certain robustness to the algorithm. Also it is
reasonable to expect that the boundaries found by solving the updated problem will
lie inside the set X[Cs]w, and that for n large it should be approximately true that
X[Cnlwn € X[[nlw,_,- When this expectation is fulfilled there is effectively no difference
between the two possible update formulas for gn. For actual computation the first
version of the update makes the algorithm more predictable and hence more easily

stabilized. The second formula offers the possibility of better localization and the
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growth of boundaries. In our simulations we have used the second form of the update

equation.

5.1.2 The Piecewise Smooth Case

The piecewise smooth case admits a discussion very much like that provided for the
piecewise constant case. There is a slight complication here in that we cannot assert
the inequality 5.1.3 due to the possible existence of cracked tips i.e. boundaries which
terminate at an interior point of Q. If D is the number of connected components in

' then we have the following,
Ve>0, |[I1.N Q| < 2¢H(T) 4 Dré? (5.1.4)

We can see that without some regularity assumptions on the minimizing I' we have
no control over the area of an e neighborhood. Our proposed computational scheme
differs from that given above in that we do not actually determine I' but rather we
minimize the I'-convergent approximation to the variational problem discussed in
Section 3.3. This approximation bears a close tie to Minkowski content so we can
gain control over the size of the neighborhood this way. We will discuss this further
in Section 5.4. If we proceed under the assumption that D remains bounded then
by following essentially the same line as in the plecewise constant case we can reach
basically the same conclusion although we obtain a slightly weaker bound.

cef Drw? ) x 2cefowo]|g||%,

() TP T (e

En* < (Eo(f,P)+

5.1.3 The Hybrid Case

The hybrid case in which we consider producing piecewise constant approximations
to an image by minimizing E presents difficulties that at present we do not know
how to surmount except in the one-dimensional version of the problem. We can
make some progress if we make further regularity assumptions on minimizing I'. For
example if we require that each subdomain satisfy the restricted cone property [1] then

we can assert the existence of a complete orthonormal set of eigenvectors satisfying
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Neumann boundary conditions for the operator A, on L, of that domain. If we then
consider a single step of the algorithm we can see that the difficulty arises from the
spectral dependence of the feedback. For example let T' be a minimizer of E. We will
concentrate on a fixed subdomain of Q\I' which we denote 4. Assume there exists
a complete set of orthonormal eigenvectors satisfying Neumann boundary conditions
associated with the elliptic operator A on L3(A). We will denote a generic real
(nonpositive) eigenvalue of this operator by A; and it’s associated eigenvector by h;.

We then have the following unique representations of f and g in L,(A),

f = f:cfhi
=1

o ]
g = D cih

=1

where as a consequence of the Euler-Lagrange equations we have,

cf =—Lc5-’.

B = A
It is unclear at this point what the schedule for the parameters @ and a should
be. The limit theorem for this case does not dictate the relation between o and 3
except that the ratio g should tend to infinity to obtain accurate localization of the
boundaries. Any algorithm based on this idea should be designed to encourage a
piecewise constant limit and therefore it might be suggested that one should let Ie}

tend to zero. Consider updating the image as in the other cases;

(1 —ae)g+acf forz € O\[T),

/

g =
g for z € [T,

For the sake of explicitness, consider updating the parameters according to the sched-

ule,
= (1-¢€Pa
B = (1-9p.

As before in order to get a bound on the change in cost we consider leaving T' un-

changed. The difficulty in this case arises because we are effectively increasing the
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contribution of the smoothing term to the functional so we need to explicitly deter-
mine the reduction in the smoothing term after the update and not just consider
the fidelity term, which was sufficient to handle the piecewise constant and piecewise
smooth cases.

Define,
g=(1-ae)g+acf
and consider as a candidate f’ the solution to
Af'=0'(f —g)

with the Neumann boundary conditions. Now we have =2, cfh; and,

i=1
d = (1+ea -2 )cf

Bg-A

and we thus get,

' ’ n2 _ o~ —A:f Ai g\2
g [ (s —g)2+/A|Vf|2—gﬂ,*,\i(1+afﬁ_/\i)2(ci)-

From this expression we see how the reduction in cost can depend on the spectral
gap associated with the operator A in relation to the size of B'. In one dimension
stability of the algorithm (in the sense that the number of break points remains
bounded) follows from the fact that this spectral analysis is rigorous and that the
spectral gap for an interval of length [ is bounded below by 7. In two dimensions
we do not know a-priori that a spectral gap of sufficient size exists for this method
of proof to go through. We fail to get sufficient reduction in the cost for a step-
wise argument like this one to work when most of the cost in the integral terms is
associated with small values of |);| or equivalently, with the smoothing term. If we
make some assumptions about the partition of the energy between the fidelity and the
smoothing term then we can use the stepwise arguments we used earlier. Consider for
example the situation when the two terms are equal. Leaving f unchanged we obtain
a new cost of approximately (1 — L‘zﬂ)e times the earlier one. Thus for a > % we
would predict stability of the algorithm in the sense that the cost remains bounded.

It appears that for the hybrid case more study is required to determine what the
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form of the update equations should be. A more sophisticated smoothing mechanism

might be warranted.

5.2 A Computational Model

In this section we propose a more explicit realization of the paradigm. This realization
is well suited only for the piecewise smooth case and perhaps also for the hybrid case.
Our proposal is to use the I'~convergent approximation to the variational formulation
mentioned in the introduction as a means to generate both the boundary locations and
their neighborhoods. Within this format we re-examine the stability issue addressed
earlier.

The function v appearing in the I'-convergent approximation is such that 1 —
(1 — v?)" has the appearance of a smoothed neighborhood of the boundaries. The
boundaries themselves can be identified with those locations where (1 =2 ~ 0.
A neighborhood of the boundaries can be defined simply as {z:1—(1-2?)" >t}
with ¢ ~ 1 for example. In Chapter 2 we reviewed some calculations presented in
[5] to capture the essential form of minimal v. These calculations were necessary in
order to prove the second condition required for the I'-convergence which in our case

is essentially,
3(farva) = (£,0) limind B"(fo,v,) < E(f)

The nearly optimal v, was constructed by setting it equal to 1 in a tiny neighborhood
of ¢ and then letting it decay as a function of distance from that neighborhood. In
Chapter 2 we showed that by thresholding the nearly optimal (1 — v?)" at a level ¢
we obtain a set which we can interpret as a neighborhood of an optimal I' of size w,

where,

nw; ©  exp-—r
— :/ dr
2 ~Invi T

This means that we can define a neighborhood of T' to be {z : (1 —v*)" > t} and
that this should approximate [I'],, where w, ~ 2 = vi 22="dr. The parameter w
discussed in the previous section which represents the width of the regions in which

we leave our data unchanged can now be replaced by n and £. For our simulations
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we set t = 1 and we then have the relation w, ~ L8, Keeping t fixed also allows us

to relate the neighborhood size directly to the cost of the boundary.

Earlier, within the formal description of the algorithm in the piecewise smooth
case we used the expression 5.1.4 to relate the area of the neighborhood in which the
image is not smoothed to the length of the boundary. The term Drme? was included
because of the possibility of cracked tips. In the model we are now considering we
can relate |{z : (1 — v?)" > 1}| directly to the cost associated with the boundary.
Since (1 — v?)* > 1 = n?v? > n2(1 — (%)%) >~ nln2 we get (approximately),

1 1 n2v?
t(1=2v?)" > 2 —_—
Ho: (=0 > S} < = | —

This result now allows us to treat the piecewise smooth case much as in the piecewise
constant case. Assuming w o 2 and b > 1 we have 8/n — 0 and because of this the
stability analysis for the piecewise smooth case can proceed much as it did for the
piecewise constant case. However, there is a different problem with this model; it is
difficult to bound the change in the cost associated with the smoothing term and the
boundary term when n is increased.

The procedure P1I of our paradigm has now been reduced to the minimization of
the following functional,

n2y?

16)

B(f,0,9,8,0m) = 8 [[(f = 0+ [(1 =) [VF7 + o [ (1 - v (Vo +

One can write down the Euler-Lagrange equations for v and f associated with
this functional and then the parabolic equations which would be associated with a

descent algorithm. For E as above we obtain,

% = V(=) -l - g)
ov Hn 2 =, |2 2\n—1 an?
¢ = @V ((1=2%)"Vo) + n(|Vf[* + a|Vo[2)(1 - v?)*~ 1y — W”)

with Neumann boundary conditions. The parameters cs and ¢, are arbitrary positive
constants which control the rate of descent. These equations resemble the non-linear
filtering scheme of Perona and Malik [30] which was reviewed in Chapter 1. The

differences are worth noting. The equations presented here have a term dependent
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on g; unlike Perona and Malik we do not necessarily converge to a piecewise constant
function. Also the control of the conductivity associated with the diffusion of the
image f is effected by the function v rather than by an explicit function of the
magnitude of gradient of f. The function v is governed by another partial differential
equation whose driving term is related to the gradient of f-

Since the functional is not convex in v we do not expect to always reach a global
minimum by a descent method. Also as we shall see in Section 5.4 the dependence
of the solution on the initial conditions, and the relative rate constant cs and ¢, is
significant. For example if ¢; is of much smaller than ¢, and we initialize f by setting
it equal to g then the system of equations behaves very much like the non-linear
filtering scheme of Perona and Malik [30]. The evolution of v is initially governed
essentially by [Vg|? and thus will tend to place boundaries at edges in the image
largely ignoring the size of the feature of which the edge is a boundary. Conversely
if ¢, is much smaller than ¢; or if f is initialized by a smoothed version of g then
the geometry of the features will play an important role since a smaller features will
produce a smaller gradients in f even for the same height of the discontinuity. Thus
boundaries will be more likely to appear at the edges of larger objects, everything else
being equal. Consider for example the image of the two squares Figure 5.1. Suppose
we initialize the descent equations with f set to the solution of A f=0(f—g)and B
satisfies 713 2 b. The smaller square (with sides of length b) will have a smaller effect
on the initial f. That is, the gradient of the initial f will be smaller near the edges of
the smaller square than near those of the larger square. Consequently if a is chosen
appropriately the equations above will have a greater tendency to increase v i.e. to
place an edge near the edges of the larger square than near those of the smaller.

Whatever choice is made concerning the selection of the various parameters asso-
ciated with the computation it is important that they be kept consistent throughout
the iterations of the algorithm. The intent of the algorithm is to refine the boundaries
found in the early stages not to radically change them. To achieve this a consistent
computational approach is necessary. We mentioned in section 5.1.1 that the feed-

back will have the effect of reinforcing the solution found during the earlier stages of
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the algorithm, tending to make that solution a ‘deeper’ minima than initially. The
same argument holds for the local minima which will be found by a computational
procedure such as we have described. As long as the computation remains consistent
from iteration to iteration then the feedback should make the algorithm more robust

in the sense that it encourages the finding of essentially the same solution.

5.3 Discretization

In this section we consider the problem of discretizing the functional associated with
the variational formulation of the segmentation problem. We also present a particular
discretization based on the model presented in the previous section and which was
used to produce our simulation results.

Under what conditions can one say that a discrete formulation of a problem faith-
fully approximates the original continuous one? Clearly one should require that as
the discretization becomes finer and finer the discrete problem should converge, in
some sense to the continuous one. A reasonable formulation of the convergence issue
in our case could be made in the framework of I'-convergence for example. Many dis-
crete versions of energy minimizing formulations of the segmentation problem have
been proposed (see [7, 17, 26, 29]). However, it seems that these discrete versions
do not properly approximate the continuous problem as the lattice spacing tends to
zero. Thus these discrete formulations in the limit fail to capture properties of the
continuous formulation (such as rotational invariance.)

Besides this convergence property there are other desirable properties discrete
versions of the variational problem should have. In most situations we would like to
represent both the boundaries and the approximating function on grids of the same
scale. Also one would hope that all calculations can made locally, i.e. that the energy
functional can be written as the sum of terms each of which depends only a finite set of
values of the discretized problem which are localized in the two dimensional array. For
the original variational problem it appears that both of these goals i.e. convergence of

the discrete functional to the continuous one and a local computation model cannot
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be met for the length term with the usual representation of the boundary.

Consider for example a tiling of the plane with squares whose sides have length §.
Each square is identified by its center which we assume lies on §Z2. We consider as
an approximation of a curve in the plane the set squares it intersects. Thus as § — 0
the approximation converges to the curve in Hausdorff metric. For every § we have a
map,

Ty : 2%, 97°

where (i,5) € Ts(A) <= AN {(z,y) : |z — &| < 26,|y — 85| < 26} # 0. To
calculate an approximation to ‘length’ we consider translation invariant local functions
on Z2 x 27° of radius K. By this we mean functions, F : Z2 x 22 — R such that
F(z,B)= F(z—y,B—y)forall z,y € Z% and B € 22° (where we have interpreted B
as a subset of Z?). We are interested in computational models which are local of radius
K. We express this be requiring F(z, B) = F(z, A) whenever BN {y : ly—z||lo < K}
= AN{y : [[y—z|l < K}. The estimate of the length of A is defined by the functional,
I(4) =8 Y F(z,T(4))
z€ 22
We claim that such functions can never asymptotically recover length. We will demon-
strate this for ' = 1 i.e. a nearest neighbor model. However, the proof technique
will work for any K. Figure 5.3 illustrates the idea and for simplicity we will refer to

it while sketching the proof. Define,

A = {meﬂzz—lnggl,m:(l}
B = {zeR: -1<z,<1,2; = 8z,}

C = {zeR’: 1<z, <1z, =4z;}

Now it is not too difficult to see that if lims o L(A) = 2 then the sum of the
F(z,T5(A)) over the z in a row like ‘b’ in Figure 5.3 must equal 1. If it is also
true that lims_o L°(B) = 2/1 + & then the sum of the F(z,Ts(A)) over the « in
three rows such as ‘a’ indicated in Figure 5.3 must equal v/82 & 1 — 5 since almost all
of the other rows must contribute the same as row ‘b’. (The only remaining significant

rows are those near the end of the line but it can be easily seen that asymptotically
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b

A B C
If lims_,o L°(A) = 2 then each row ‘b’ contributes §

If lims_o L*(B) = 2,/1 + g5 also converges the rows ‘a’ must contribute 6(v/82+1-5)
If L’(A) and L%(B) converge then L*(C) converges to 2(VBT+1-14)

Figure 5.3: Estimates of Length

the contribution from these rows must be negligible.) These two results imply that
lims_o L%(C) = %(m— — 4) which is not the length of C. It is obvious that this
argument can be applied for any K. Thus there does not exist a local functional of the
form we have considered which can asymptotically recover length, even for straight
lines.

In [23] it was shown that a [~convergent discrete approximation of the length term
is possible by using a discrete approximation of Minkowski content. For a fixed lattice
spacing of § one can approximate M! of a curve v by counting the number of lattice
sites within distance ¢ of the discrete approximation to 4. Now for this approximation
to be accurate it is necessary that € > §. If the quantity 3 is kept fixed while §
decreases to zero then the result discussed above implies this approximation cannot
converge to length even for straight lines. It was shown in [23] that if § — oo while
€ — 0 then the discrete approximation to Minkowski content mentioned above will
actually I'-converge to Minkowski content on the space of closed sets having finitely

many connected components.
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We propose to discretize by finite elements the function v in the I'-convergent
approximation mentioned in Section 3.3. Because, roughly speaking, the boundaries
are spread out over a region whose width is proportional to % we conjecture that if
6 is the lattice spacing it is necessary and sufficient that as n — oo that § — 0 such
that né — 0 for faithful recovery of the length term.

We return now to the consideration of a more realistic situation, a fixed lattice.
Consider the behavior of v in the I'-convergent approximation for large n. For each
point 7 in the array there is a term in the cost proportional to n2v?. Now, as n
becomes large it is necessary for the cost to remain bounded that v; decrease like 1.
However lim,_,oo(1 — %)* = 1 for any K, i.e. as n tends to infinity all boundaries
will be removed. There is a secondary positive feedback effect which aggravates this
problem. An increase in (1 — v2)" results in an increase in the smoothness of f i.e. a
reduction in |Vf|. This causes yet a further increase in (1 — v2)*. Thus we see that
the discretized version of this approximation becomes unreliable for large n.

For the simulations presented in this thesis we discretized by finite elements fg
and v in a manner described below. We define the discrete version of f and g on a
single lattice while the discrete version of v is defined on one twice as dense. This is
not necessary but it facilitates the implementation of the discrete problem. Figure
5.4 indicates the assignment of variables to lattice values. For convenience we label
the variables as in a matrix. Thus f;; denotes the variable associated with f at the
lattice location row i, column j. To keep the notation for the function v consistent
with the lattice used for f and g we partition the variables associated with v into two
sets, vh and vv, corresponding in some sense to horizontal and vertical edge elements.
The assignments are as in Figure 5.4. A suitable discrete version of E in terms of

these variables is the following,
E = 83 (fij—9:.) +
2%
D_(fus = Firrd) (L= w0l )" + (fig — figar)*(1 — vh2,)"

4

1
+a§52 d(1- vvl )" > (vvij — vhiy)?

%) (3" €N (4,5)
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1 n
+a§ 2(1 — ‘Uhij) Z ('Uh,',_.,' — vvil'jl)z
2%

(3" ENR(3,5)

+a > (- vvf’j)"(vv,-,j — vhy ;1)
(23" )ENL(5,d)

+a ) (1- vhl )M (vvs; — vhin )
(i".3' )N (i4)

16‘2 2
a3 > (vv?; + vhi))

where Ny (i, j) is the set of indices for the nearest vertical edge element neighbors of

vh; ; and similarly N,(¢, 7) is the set of indices for the nearest horizontal edge element
neighbors of vv, ;.
We can derive the discrete form of the Euler-Lagrange equations for this system by

differentiating the expression above with respect to the various elements. In particular

we get,
OB = 28(f; - gs)
afi,j vJ %)
+2(fii — firr)(1 — o0}
+2(fiq — fimrg)(1 —wvly )"
+2(fi; — figer)(1 — vk )"
+2(fij = fij-1)(L = vhi; )"
and
9 E = —2nvv;(1—vol)"  (fi; — firr,;)?
Ovv; ; 7 I 7 "
—anwvv;; (1 —vol,)"! S (vvig — vhi )
(i"3")ENo(5,)
+a Z (1 — vviz‘j ”(vv,-_j — vhi:,j:)
(i",3") €N (3,9)
+a Y (1- vhy ) (vv; — vha )
(i”j’)eﬂh(iv-j)
§n?
+a?vvm~
and similarly,
0 e
avhi,jE = —2nvhii(1—vhi)" (fij — fin)?
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Figure 5.4: Lattice Variables and Finite Elements

—anvh;;(1—vh? )" Y. (vhiy - Vv jr)?
(i'aj')eNh(i'j)

ta Y (1 vkl (vhs; — vvny)
(i',j')GNh(i,j)

to Y (1= vk ) (vhij — voiy)
(l’vJ’)EN‘“("'YJ)
§2n?

16

+a

vhi,j.

Normally the domain © will be rectangular in shape. For those elements on the
boundary of the domain we can evaluate the expressions above by assuming that

Neumann boundary conditions are satisfied.

5.4 Computation and Simulations

In the preceding section we have set up a discrete model for the ['-convergent ap-
proximation to the variational formulation of the segmentation problem. A discrete
computation based on the parabolic equations associated with this formulation takes

the following form,

0
Ofi;

t+1 t _
e

E (5.4.1)
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vt —wvf, = —¢, 9 E (5.4.2)

1,3 tJ
t41 _ gt 0
vh; —vhi; = —c, E

(5.4.3)

where the variables ¢; and ¢, control the stepsizes of the algorithm and ¢ denotes
‘time’ or steps in the algorithm. For our simulations we updated f by using the

assignment,

c; = 2 (62ﬂ +(1- vvzj "4+ (1- v'viz_l,j)"+
(L—wh?)" +(1- vh?,j—-l)n)

in keeping with standard relaxation algorithms.

An important consideration concerning the choice of ¢, is the dependence it should
have on n. As was pointed out in the preceding section the relative rates of the
evolution of f and v can effect the solution. Also in our algorithm we vary n both
to sharpen the boundaries and to reduce the size of the neighborhood which controls
the smoothing of the image. Thus as much as possible we would like to be able to
produce an n invariant version of the equations in the sense that the only variations
in n we observe should be those predicted by the mathematical model and not merely
artifacts of the way we perform the computation. For notational convenience in the
examination of this issue we will dispense With the distinguishing between vh and vv
and will denote a generic edge element simply by U

The function (1 — v?)™ indicates the presence or absence of edges. This function
makes a transition from approximately 1 to approximately 0 in the neighborhood of
an edge. Thus it is reasonable to expect that most of the computation relevant to
the decision of where to place boundaries will occur with (1 — v2) taking values in a
range of (0,1) which will be largely independent of n. Consider the first two terms
of %E. Each term has as a factor the function nv; ;(1 — v2,)"~1. As (1 — v} )"
tends to either 0 or 1 this factor tends to 0. The maximum of this factor occurs at
approximately (1 —v?,)™ = e~%. The the other factor in the first term is proportional

to ||[Vf||2. Clearly this term, being always negative, is promoting the appearance
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of edges. The second term, also negative, has a factor proportional to | Vv||2. Now
[[Vo||? will be large in the neighborhood of the edges. This term therefore has a
positive feedback effect favoring the creation of edges. Consider initializing the descent
with (1 —v?)" = 0.5. A locally large value of ||V f||? will, as a consequence of the first
term tend to increase || Vv||? locally. The second term will then promote even further
the local increase in v. The third and fourth terms of E?,-TE are smoothing terms, i.e.
they tend to smooth v. The fifth term tends to reduce v in proportion to its value and
hence also has a smoothing effect. Thus the last three terms favor the elimination of
edges while the first two promote their creation. Thus we see that our expectation
was correct; the value of (1 —v?)™ at which the descent equations is most sensitive to
the potential creation of boundaries occurs in the environ of (1 —v2,)" = e"2. Thus
to determine how ¢, should be scaled with n we consider (1-v7)" 1.

If we consider (1 — v?,)" o 1 it follows that v;; o :}: Thus the fourth term in

33 -F i.e.,
]
45277,2
X———V;
16

varies in proportion to n!®. Now consider the second term which has the form,
—anv;; (L—27)"t > (v;;— vir i)
(13" eN(5,5)
We know that the width of the boundaries decays like 1. This means that if z
and y are neighboring sites on one side of and near a boundary (i.e. at these sites
(1 — v?)" is bounded away from 0 and 1), that (1 — V)" — (1 - v2)™ o n. To a first
order approximation this implies vZ — v} « 1 as n varies. Since v, + vy, will vary in
proportion to % it follows that v, — v, o 4/n. Thus the term quoted above also
varies in proportion to n!*. We expect that the third and fourth terms i.e.,
a« > (=0l (vig—va)
(#,3")eN(i,5)

+oa > (L=vk ) (vij — ving)
(#,3")eEN(4,5)

which is the discrete representation of (1 — v?)"Av, will also vary in proportion to

n!'® in the neighborhood of the edges. In any case we have clearly seen that in the
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most volatile part of the descent, when boundaries are being placed, the magnitude
of E?.-_,-E will be proportional to n'®*. For our simulations we have therefore let the
stepsize ¢, vary like n=15.

)

Of course the first term in 3.~ E namely,
7

nvig (1= v2)" " (fis — o)

will vary like \/n. In general then the early stages of the descent which should be
dominated by this term become gradually slower if we scale ¢, like n=15, In our
simulations we have found it useful to do presmoothing by iterating on the update
equations for f before initiating those for v. This provides for the smoothing out of
tiny objects in g. The alternative, i.e. no presmoothing tends to make the descent
more sensitive to the height of discontinuities and less sensitive to the geometry of
the object to which they are associated. In other words presmoothing, i.e. using a
different initial condition on f, can effect which local minima of E™ will be found.
Presmoothing will suppress the placing of boundaries at edges of objects having rel-
atively small support. Now, in our algorithm 3 increases with n. Because of this the
presmoothing becomes less and less severe. True discontinuities in g get smoothed
out over a range approximately in proportion to lﬂ. Thus the initial relevant val-
ues of ||V £||? will be proportional to 4 and hence proportional to n. Thus with our

rescaling of 3 with n we can obtain a descent in which all the important terms of

a
v

E important to the early, decisive stages of the computation vary like n'-%. In
Figure 5.5 we show the results of a simulation on the image of a square carried in the
same manner as the ‘Lenna’ simulations (see Figure 5.7) for various values of n. We
see that increasing n tends slightly to reduce the sensitivity to an edge. In Figure 5.6
we have repeated the same simulation except that in this case we have increased B in
proportion to n. We see that the increase in 3 dominates the effect of increasing n
and we recover more and more of the boundary with increasing n and f.

We have argued that near edges v;; — vy ;s varies as \/n. Obviously, however, in
the discrete problem there is a strict upper bound of 1 on this difference. Again we

see that the discrete formulation becomes unreliable for large n.
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5.4.1 Simulation Results

We have simulated the algorithin developed in this chapter on the image shown in
Figure 5.8. The size of the image is 230 x 216 pixels. The image was taken from
a bitmap of 920 x 864 bits and each 4 x 4 block was mapped onto a single pixel.
The value of the image g at a given pixel is proportional to the number of 1’s in
the associated 4 x 4 block is scaled so that the range of g lies within [0,2]. Our
displays are also bitmaps where we have reversed this procedure. Thus our resolution
is essentially 4 bits per pixel although the computations were done using 64 bit floating
arithmetic. This image is a rather difficult one because many of the edges are blurred
and there are regions of texture. The flow chart in Figure 5.7 shows the details of
the computations. We have performed the simulation for several scales. For one scale
which we denoted ‘Scale 3’ we have sampled the functions, f, g and (1 — v?)" at
various stages of the algorithm. What is worth noticing is how the fine detail such
as sharp corners and ¢ — junctions are recovered in the final stages. This can be
seen particularly in the details of the eyes. Also, as predicted the global properties
of the solution remain essentially unchanged. Even though f is increased by a factor
of almost 200 the particular boundaries which are found do not change except in the
fine detail of the localization. We also present the final results of the algorithin for
different scales. In figure 5.11 we display solutions obtained for several scales. N otice
that the set of boundaries found is essentially monotonic in scale.

In Figure 5.12 we have plotted the evolution of the first and second terms of E
as a function of J for Scale 3. We note that the first term (i.e. the term S [,(f —
9)?) decreases while the second (B f,(1 — v2)"[V f|2) increases with B. This effect is
controlled somewhat by the constants a and b in the feedback equations. Smaller
values of these constants should result in relatively less variation in these terms. We
can report that the simulation of ‘Scale 3’ was repeated with @ and b both set to 1
and that we observed the same trends in the two terms as before although the rates
of change as a function of 3 were smaller, as one would expect.

The second set of simulation results were made on the synthetic image of one

square occluded by another. The algorithm used was of the hybrid type. The al-
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l Initial g,4, @

Set (1 — )" =10.9

Relax f x 30

|

Relax v x 1

Relax f x 5

x 50

end ~—

Update g,3,n

Figure 5.7: ‘Lenna’ Simulation Flowchart
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§
Range of ¢
Stepsize c,
€

Gain a

Gain b

0.05
[0.0,2.0]
ani®
0.3

1.2

1.3

Table 5.1: General Parameters for ‘Lenna’ Simulations

‘Scale’ a Initial # Final # Initial n  Final n
1 0.01 4.0 84.1 3.0 117.3
2 0.0075 7.0 147.2 4.0 156.6
3 0.005 10.0 210.3 5.0 195.6
4 0.005 40.0 841.2 10.0 391.1

Table 5.2: Parameters for Simulation ‘Lenna: All Scales’

Sample Number a I¢) n
1 0.005 10.0 5.0
2 0.005 184 10.4
3 0.005 62.2 45.1
4 0.005 210.3 195.6

Table 5.3: Parameters for Simulation ‘Lenna: Scale 3’
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Figure 5.9: Lenna Scale 3: Samples of f
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Sample 4

143

Sample 1
Figure 5.10: Lenna Scale 3: Samples of Updated g




Sample 1 Sample 2

Sample 3 Sample 4

Figure 5.11: Lenna Scale 3: Samples of 1 — (1 — v?)"
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Figure 5.12: Evolution of Energy Terms for ‘Lenna’, Scale 3

) 0.12
Range of ¢ [0.0,2.0]

Stepsize ¢, 0.1
€ 0.02
Gain a 1.0
Gain b 1.0

Table 5.4: General Data for Occluded Square Simulations
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Scale 1

Scale 3 Scale 4

Figure 5.13: The Approximation f on Various Scales
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Scale 1

Scale 3
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Figure 5.14: ‘Lenna’ Boundaries Various Scales
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Sample Number | « Jé; n
1 3 1.0 2.5
2 1.45 0.78 4.0
3 0.20 0.40 154
4 0.03 0.22 51.8

Table 5.5: Parameters for Simulation Occluded Square
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Sample 4: Updated ¢

Figure 5.18: Occlude Simulations 4
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Chapter 6

Conclusions

6.1 Contributions

The topic of this thesis is the approximation of images, which we have considered to
be real valued functions defined on a two dimensional domain, by piecewise smooth
and piecewise constant functions. A basic goal pervading almost all of the results is to
improve upon other techniques such as the Variational Approach, the Markov Random
Field Approach and Non-linear Filtering Approach in the sense that the location of the
boundaries or edges is provided on all scales with the same accuracy which is usually
reserved only for the finest scales. It is in this sense that the segmentations we provide
are “scale independent”. Each of the methods mentioned above have parameters
which under suitable conditions can be related to the ‘scale’ of the segmentation
obtained. In each case there are certain ad hoc choices in the model which introduce
‘errors’ into the solutions i.e. the edges found will not track discontinuities in the
data. Generally speaking these errors vary with the ‘scale’. That is, as the scale for
which the parameters are set tends to the microscopic the errors one observes in the
location of the edges decreases. It is considered desirable to be able to obtain coarse
scale approximations so that prominent features can be identified. Thus there is a
trade off; larger scale implies larger errors. Our basic idea in this regard is to improve
on these techniques by letting the ‘scale’ for which the parameters are set tend to
the microscopic, forcing locally accurate boundary locations, while simultaneously

altering the data presented to the technique to force the solution to remain on a
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coarse scale when viewed on a global level.

In the work presented in the thesis we have focussed on the variational method for
basically two reasons. First, it is fundamental in the sense that the other techniques
can be interpreted as effectively solving a problem similar to it. Second, because
within the framework afforded us by the many rich mathematical results which are
available for the variational approach we were able to develop a coherent basis for the
algorithm which implements the scale independent segmentation.

The variational method consists in minimizing functionals of the form,

B(,T) =8 [[(f =0 + [, IVF"+ a lengih(1)

where g represents the image, f a piecewise smooth approximation and I' the set of
edges found in the image. For a fixed « ‘scale’ can be equated to 7‘; The central
idea of the algorithm is to gradually increase B while smoothing the data ¢ outside
of some neighborhood of the boundaries which are found by minimizing E. This
smoothing is effected by replacing g with some pointwise convex combination of f
and g. In effect we introduce feedback from f into g in the variational formulation
along with a parameter schedule.

To motivate and govern the algorithm mentioned above we have proved a theorem
which characterizes what relation the solutions f, T will bear to the data g asymptot-
ically as # — oo. Essentially we have shown that is g is a piecewise smooth function
(piecewise C*') then as # — oo the optimal boundaries I's will converge with respect
to the Hausdorfl metric to the support set of the discontinuities in g, and \/A(f — g)
will converge to zero in L?(f2). Furthermore we have characterized the quantity of
noise and smearing which can be permitted to corrupt the image yet still have the
limit theorem hold. That is, we rescale the admissible noise and smearing as a func-
tion of 3 in such a way that the limit theorems still hold true, and the scaling we use
appears to be optimal (i.e. the least conservative possible). The limit theorems have
also been established for the piecewise constant version of the variational formulation
of the segmentation problem. In deciding the amount of smoothing we must do and
how fast the neighborhood size must decrease we have drawn an analogy with the

limit theorem. The smoothing has the same role in the algorithm as the rescaling of
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the noise did in the limit theorems. We treat the lack of smoothing in the neighbor-
hood of the boundaries as a smearing effect. The limit theorems then dictate how
much smoothing is required and how fast the neighborhood size should decay in order
to effect convergence of the boundaries to the ‘correct’ location without introducing
spurious (i.e. finer scale) boundaries. The proofs of the limit theorems can be found
in Chapter 4. The algorithm is developed in Chapter 5.

An actual implementation of the algorithm requires the minimization of E. Most
practical computational methods will not be able to find global minimizers of E, but
they will try to find “good” local minima. The algorithm can still be developed in
such a framework as long as the computational procedure is kept consistent so that
as the parameters are changed essentially the same local minima is found. Since we
have implemented the smoothing by taking a convex combination of g and f we tend
to make the data ‘favor’ even more the minima f. This helps to make the procedure
more robust.

There is a basic principle which can be gleaned from this work. The original
model which was conceived for segmenting images was the class of piecewise smooth
functions. The variational formulation provides an ad hoc model for selecting such
a function to approximate a given function. In Chapter 3 we reviewed some results
in [29] attained using the calculus of variations which describe constraints on the
structure of the solutions to the variational problem. In particular the geometry of
the boundaries of minimal solutions is restricted to have only certain structures. For
example, curves never exhibit sharp corners; at most three curves meet at a point
and they will do so only such that their tangents make angles of 120° with each
other. Thus certain desirable structures such as t—junctions and corners tend to be
distorted. Now, the calculus of variations results are obtained by considering local
changes in a potential solution. It is believed that when viewed globally the solutions
will be “good”. The limit theorems provide a means of making this assertion formally.
The fact the boundaries converge to the discontinuity set of the image means that
asymptotically essentially any boundary geometry can be recovered (excluding fractal

sets, i.e. sets of infinite length). The particular topology i.e. that induced by the
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Hausdorff metric, in which this convergence occurs is important. The algorithm tries
to exploit the fact that the distortions in the boundaries are local effects with respect
to this topology and that the Hausdorfl distance between the “true” boundaries and
those provided by solving the variational problem decays to zero in the limit # — co.
Thus the algorithm tries to circumvent the artifacts of the ad hoc model used to
produce piecewise smooth approximations by taking the path pointed out by the
limit theorems.

In this thesis we have also addressed the issue of computation. To (locally) min-
imize F we propose using a slightly different model. In [5] it was shown that there
exists a sequence of functionals which converge to E in the sense of I'-convergence.
We have implemented the algorithm by employing a sequence of functionals In this
approximation the usual representation of the boundaries as a one dimensional subset
of the domain of definition of the image is replace by a function defined on the entire
domain of definition. In our simulations we have locally minimized the approximating
functional using local coordinate relaxation on both the function which approximates
the image and that which approximates the boundaries. The approximations are
parametrized by a real number n. The function 1 — (1 — v?)" has the appearance of
a smoothed characteristic function of a neighborhood of the boundaries, which can
be identified with the set where (1 — v2) ~ 0. We have shown that the neighborhood
size varies in proportion to % By using the approximating functional we thus auto-
malically determine a neighborhood of the boundaries simply by looking at a level
set of (1 — v?)". Furthermore this computational model has the advantage that the
boundaries are represented as a function and can be computed by a finite element
approximation. The details concerning our implementation of this scheme and some
simulation results are presented in Chapter 5. Imbedding the algorithm in the se-
quence of approximations provides an elegant and natural computational framework
for doing scale independent segmentation.

Some of the fundamental questions associated with the variational formulation of
the segmentation problem are still open. The most important of these concerns the

existence of minimizers to £ with boundaries consisting of a finite set of regular (e.g.
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Cb1) curves. The question of existence of minimizers to “weak” formulations of the
problem have been essentially settled. Our contribution is an existence result which
can also be applied to other variational problems such as the “weak plate” version of
the segmentation problem. This result depends however, on the number of connected
components of the boundary being finite. The proof of the existence theorem is
given in Chapter 3. In the same chapter we have reviewed some existence results
which appeared subsequently due to De Giorgi-Carriero-Leaci [10] which employed
the SBV framework, which had been developed largely by Ambrosio [4]. Tt is within

this framework that the piecewise smooth verion of the limit theorem was proved.

6.2 Further Work

Further work suggested by this thesis can be categorized according to how distant
from the contents of the thesis the suggestions are. There are ideas at both extremes
of this spectrum. We will organize them by starting closer to home and lifting our
sights gradually further.

It is clear that the computational scheme developed here has considerable poten-
tial. It is quite versatile in the sense that varying initial conditions and the relative
rates of evolution of the function f and the function v can effect quite different so-
lutions and hence extract quite different information. There has been considerable
interest in the non-linear filtering approach to segmentation. We have pointed out
the connections between the non-linear filtering approach and the solving of the -
convergent approximation by local relaxation. This connection could be exploited to
the further understanding of both. Perhaps variations in the form of the equations
for v, for example, could produce decision variables of another typei.e. a detector for
things other than the existence or non—existence of an edge. Another possibility is the
detection of regions of texture. When a textured region is smoothed out the detail is
lost. However a textured regions possesses many edges on a small scale. If we imple-
ment our algorithm with pre-smoothing as was done in most of the simulations then

we would not detect the small objects which comprise a texture until we operated on
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a very small scale. However with no presmoothing we might expect that a textured
region would produce a large amount of boundary at a somewhat larger scale. If the
boundaries were ‘spread out’ sufficiently i.e. if 2+ were large enough compared to the
size of the objects in the textured region, then over the textured region we would
have (1 — v?)™ ~ 0. This region could then be detected by segmenting the function
(1—-v?)" as if it were an image itself. In any case a thorough investigation of the type
of system of coupled differential (or difference) equations such as studied and used
here might prove very fruitful. It may be that the splitting of the filtering problem
into the evolution of v and the evolution of f might make this formulation a more
revealing object of study than the ‘usual’ non-linear filtering equations.

Other possible developments include the formulating of a stochastic version of the
evolution equations for the functions v and f leading to a Random Field interpre-
tation of the approximating functionals and eventually perhaps to a Random Field
interpretation of the the original (continuous domain) variational problem.

A more practical domain in which some of the ideas developed in this thesis might
be applied is in the development of hardware for early vision computations. The form
of the equations for solving for v are relatively simple and may admit efficient analog
VLSI implementation such as discussed in [21].

It would be of great interest to develop the ideas which have grown up in the
context of the segmentation problem in other early vision problems. The depth from
stereo problem and motion tracking problem seem particularly suited to piecewise
smooth or piecewise constant models. An extension of the ideas in this thesis would

require the consideration of vector valued functions.
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