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Abstract

The multiple hypothesie tracking (MHT) formulation has been extended to include
target breakup detection. Target breakup detection entails finding the time of breakup
of a target and tracking its breakup pieces. Incorporating this into the MHT formula-
tion requires modifying the score function used for ranking hypotheses, This problem
eventually turns into one of identifying th statistical model generating the data in
each scan, and Akaike's criterion was found to be relevant to solving this problem.
Thus, the application of Alaike’s criterion to target breakup detection in a multiple
hypothesis tracker is formulated.

Applications of a target breakup incorporated MHT formulation lie in ballistic
missile defense where the offense may intentionally break up a reentry vehicle (RV)
or where the defense intercepts RV's.
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Chapter 1

Introduction

Multiple target tracking is an interesting problem theoretically due to the inherent
data association problem not found in single target tracking. However, research for
the sake of interest alone cannot justify a theory's value because it is the theory’s
utility to practical applications that gives it value. Multiple target tracking has many
applications in both military and civilian areas. Regarding military applications, mul-
tiple target trackers are used in ballistic missile defense to track potentially dangerous
reentry vehicles and in air defense to track enemy aircraft, One important civilian
application is air traffic control.

The major contribution of this thesis is the incorporation of target breakup detec-
tion into the multiple hypothesis tracking formulation. The usefulness of detecting
target breakups is limited by its applications. The applications to which the work
of this thesis applies lie in ballistic missile defense. All targets that are tracked are
assumed to be of the ballistic type which are constrained to follow the dynamic equa-
tions of motion due to gravity and which do not exhibit any maneuvers. Thus, all
targets are assumed to be passive without actuators, such as rockets, etc. With these

assumptions, target breakup comes in two scenarios:

1. Offensive Breakup The offense (i.e. the party that launched the missile
or, generically, the reentry vehicle (RV)) intentionally breaks up the RV into

several pieces to complicate the defense’s task in executing a counterattack as
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Figure 1-1: Offensive Breakup

in Figure 1-1. The defense is interested in tracking each of these breakup pieces
because one or several of them may contain warheads. Furthermore, if the
defense knew that only one out of several RV’s was a threat before any breakup
occurred, the ability to identify from which target the breakup pieces originated

would help the defense’s counterattack.

. Defensive Interception The defense has intercepted the offense’s RV, and

assuming that the RV was hit, the RV should be blown into hundreds of pieces,
Tracking these pieces seems superfluous since they are no longer a threat; how-
ever, it is not always the case that a hit to the RV is a successful interception
because the tail of the RV may have been hit, and the warhead, which is com-
monly found in the nose of the RV, is still a threat (See Figure 1-2). Tracking

the breakup pieces of the RV then becomes important.

Target breakup detection is essentially the identification of the origin of a track
or, in other words, the determination of whether or not a track originated from the
breakup of some existing track. Therefore, a good understanding of multiple target
tracking is essential. Chapter 2 describes the problem of multiple target tracking and
several approaches to solving the problem and defines much of terminology used in
proceeding chapters. In particular, this chapter will focus on describing and discussing

the multiple hypothesis tracking (MHT) approach.
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Chapter 3 defines the problem of target breakup detection more rigorously and
proposes a solution which uses Akaike’s criterion. Discussions of why the multiple
hypothesis tracking formulation was utilized rather than other tracking approaches are
given, along with pros and cons of the proposed solution to target breakup detection.
This chapter is organized in a methodological manner, steadily building up to the
solution for target breakup detection. Discussion is inserted wherever appropriate,
and thus, a chrcnological 1eading is recommended.

The theory for target breakup detection is presented in Chapter 3. Chapter 4, on
the other hand, discusses the implementation of the proposed target breakup detec-
tion solution. Implementation issues are discussed, especially the tradeoffs between
speed, accuracy, and memory requirements, since the applications of target breakup
detection necessitate real-time execution.

Execution results on simulated data are given in Chapter 5 along with discussion
on them, and Chapter 6 proposes some possible additional work for the future.

Appendix A presents the derivation of Akaike’s criterion, taken from [1].

Appendix B prints a listing of the FORTRAN code which implements the multiple

hypothesis tracker with target breakup detection.

11



Chapter 2

Background

Before tackling multiple target tracking, single target tracking will be discussed first
to lay down some fundamental ideas of the kinds of estimation occuring in tracking.
Then, multiple target tracking will be presented followed by a detailed presentation

of the multiple hypothesis tracking approach to multiple target tracking.

2.1 Single Target Tracking

The purpose of tracking is to discriminate which measurements originate from which
targets in a given volume of space, known as the scan volume. Targets are the actual
objects moving through the scan volume whose positions can be measured at several
instants of time. These instants of time are called scans and contain several measure-
ments depending on the number of targets present in the scan volume. Figure 2-1a
shows three scans each with two measurements, which are represented by the shaded
dots. Dots of the same shade represent measurements obtained in the same scan.
Darker dots represent measurements obtained earlier than measurements represented
by lighter dots, which are the more recently obtained measurements. The tracker will
collect measurements from different scans into tracks as in Figure 2-1b; thus, each
track represents a possible target. It is then the tracker’s job to determine which
tracks are more credible than others.

To simplify this problem, first consider the case where only one measurement is

12
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Figure 2-1: Pictorial representation of tracks.
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obtained at each scan and that measurement actually originated from the target. This
simplified problem of tracking is essentially the estimation of the state variables of the
moving target through the scan volume. The state variables, which in tracking are the
position and velocity components of the target, follow a certain transition function as
time progresses dependent on the dynamics of the moving target. Estimation of the
state variables is based on the measurements, or observations, of the position of the
target taken at different scans. These measurements may be corrupted by noise from
disturbances in the environment or from limitations of the sensors, Thus, putting

this description into mathematical equations,

i(t) = f(2(t),t) + w(t) (2.1)
2(t) = h(z(t), 1) + u(t) (2.2)
where

e the underscore represents vectors,

e z(t) is the vector of state variables of the target,

® z(t) is the vector of measurements at time ¢,

e the function f(z(t),t) describes the dynamics of the target,

e the function h(z(t),t) converts the state vector into a measurement vector,

e w(t) is the process noise in the model to account for any model errors, and

® y(t) is any noise that corrupts the measurements,

Thus, the sought estimate is the estimate of z(t) based on the measurements 2(t).
Note that the dynamics of the target and the measurements received are continuous;
however, in any real implementation of a tracker, measurements are received in scans,
which are discrete snapshots of the continuous measurements, z(t). The times for

these scans will be denoted by subscripting the time variable ¢ with an integer which
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represents the scan that the time represents. Therefore, t, represents the time for
the initial scan of measurements, and t,,¢,, ... represent subsequent scan times,! In
terms of radar tracking of targets with no drag effect and no maneuverability which
is the scope of this thesis, the variables and functions of Eqn. 2.1 and Eqn. 2.2 are

defined as below.

e z(t) is a six component vector. The first three components are of position; the
last three are of velocity. All coordinates are in terms of the earth-centered

inertial (ECI) coordinate system. [6] describes coordinate systems in detail.

e 2(t) is a three component vector. Since this is the return from a radar, the

components are range, azimuth, and elevation (RAE) measurements of position.

e f(z(t),t) describes the dynamics of a target above the earth’s surface without

drag effect. This is the model of the moving target.

o h(z(t),t) converts the position part of z(t) from ECI to RAE coordinates. This

function implicitly takes as input the position of the radar to compute this

conversion,
e w(t) is the process noise that accounts for model errors.

e u(t) is the noise caused by the environment and radar imperfections.

With such a state-space realization of the dynamics and measurements of the target
as shown in Eqn. 2.1 and Eqn. 2.2, estimation by the extended Kalman filter, as
described in [5], is a natural choice. This single target tracking is not much more
than a nonlinear estimation problem, and its solution has been studied extensively in

classic estimation and detection theory.

to does not necessarily represent the first scan of measurements, It could represent the time
for the beginning of a track, as in the maximum likelihood derivations of Chapter 3. Look in the
context to see exactly what tp represents.

15



2.2 Multiple Target Tracking (MTT)

The above described simplified problem of tracking masks the real problem of track-
ing. If several targets are allowed to be in the scan volume, not only must estimation
be performed for each track, the origin of the measurements must be determined. In
the single target tracking case, the measurement was known to have come from the
one target in the scan volume; however, orce more than one target exists in the scan
volume, it is no longer certain which target generated which measurement. Thus, the
fundamental problem of multiple target tracking is data association of measurements

to tracks.

2.2.1 Difficulties in MTT

Assume that there are exactly S measurements in each scan that correspond to exactly
S targets that exist in the scan volume. Even with the assumptions that the number
of targets is known and each target present in the scan volume generates exactly one
measurement and nothing else generates a measurement, the data association problem
is a difficult one. Relaxing these assumptions, the following three eztra difficulties

can occur:

e false reports,
e missing reports, and

e unknown targets.

Background clutter could generate a measurement located randomly in the scan vol-
ume; this is a false alarm, or false report. These measurements need to be identified
so that they do not cause misassociations. Figure 2-2 shows that a miscorrelation
to a false alarm (dotted line) could mislead the tracker to stray from the real target
(solid line).

If the probability of detection of the sensor is less than unity, then it is possible

that a target may not generate a measurement for some scans. In this case, data

16



Figure 2-2: False Reports

association must be able to ignore the scan and continue association afterwards to
account for these missing reports (See Figure 2-3), Missing reports may arise for a
variety of reasons. Noise in the background could have disturbed the signal to the

sensor, or the sensor may have malfunctioned briefly.

Figure 2-3: Missing Reports

Targets may enter or leave the scan volume during the tracking period. Thus, the
number of targets and their initial states are unknown a priori which necessitates the
tracker’s ability to initiate and drop tracks at any time, These unknown targets seem
to be the most difficult problem in multiple target tracking. Figure 2-4 shows a target

that was initiated at time t, and a target that terminated at time t3. The number

17
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Times t1-t5 refer to the scan that measurements appeared in the scan volume.

Figure 2-4: Unknown Targets

of targets can change during the course of tracking. At times t,, t4, and ts, only one
target is present in the scan volume while at times t, and ¢3, two targets are present,
Since the number of targets can change at any time, all existing tracks could terminate
at any time, and every new measurement could be the beginning of a new track. Thus,
the number of data association possibilities from not knowing the number of targets
a priori is tremendous. Regarding target breakup, since breakup initiates breakup
pieces in the scan volume which is similar to track initiation, detecting target breakup
will necessitate the tracker’s ability to handle this unknown target difficulty.

A good solution approach should be able to handle these three difficulties. To
aid in dealing with these difficulties, the concepts of gating and clustering will be

presented in the next section.

2.2.2 Gating and Clustering

Since a track’s state vector includes a velocity part, the position of the target at the
next scan can be estimated. A region is defined around this next predicted position
called a gate as shown by circles around the x’s in Figure 2-5.

The exact shape of the gate can be rectangular or ellipsoidal depending on the
particular tracking application, The size can either be set to an a priori value or deter-

mined by the covariance of the position estimate. In particular to the implementation

18



X Next predicted position of track

New measurement

Figure 2-5: Gating

used in this thesis, the gate is an ellipsoidal one set to an a priori size.

The purpose of gating is to separate those measurements that are candidates for
track continuation from those that are not. In this way, any measurements that do
not lie in an existing track’s gate could either be false alarms or the stait of a new
track but cannot continue an existing track, such as measurements 1, 2, and 7 in
Figure 2-5. Only those measurements that do lie in a track’s gate can continue the
track, but they are not limited to only continue the track since those measurements
can also be false alarms or the start of a new track (measurements 3, 4, 5, 6). It is
possible for more than one measurement to lie in a track’s gate. This is the case of
an ambiguous correlation, and more information would be useful in determining the
correct measurement to continue this track. Also, notice that it is possible for two
different tracks’ gates to overlap. If a measurement falls in this overlapped region
(measurement 5), it is uncertain as to which track this measurement should corre-
late, if any. Several approaches have been proposed to deal with these ambiguous
correlations, three of which are briefly described in Section 2.2.4.

Taking the basic premise of gating, separating measurements into different groups,

19



to a macro level results in clustering, which divides the scan volume into several
regions where tracking is done independently of each other. The greatest advantage of
clustering is reducing the computation required for data correlation. Thus, clustering

is an optimizing technique for tracking solutions.

2.2.3 Orientations for solution approaches

Three general approaches to tracking which mainly differ in how they go about ana-

lyzing a scan of data are:

Target-oriented Approach This approach is the simplest of the three general ap-
proaches. The number of targets and the initial velocities of the targets are
known a priori, and it is assumed that the number of tracks never changes.
Thus, the number of tracks and their initial state vectors are given. For each
track, the best measurement or some combination of the measurements in the

current scan is selected to continue the track.

Track-oriented Approach Like the target-oriented approach above, the number of
targets and their initial velocities are known beforehand in the track-oriented
approach, along with the assumption that the number of targets never changes.
For each track, rather than selecting the best measurement or some combination
of the measurements tc continue the track immediately, a new track is created
for each measurement that lies in the original track's gate; this is called track-
splitting. Only a certain number of the best tracks is kept after each scan. In
general, the number of tracks kept after each scan is greater than the number of
targets assumed to exist in each scan, This allows delaying some decisions about
ambiguous correlations until more scans of measurements are obtained. Note
that the track-oriented approach is the same as the target-oriented approach if
the number of tracks kept after each scan is the same as the number of targets

assumed to be in the scan.

Measurement-oriented Approach For each new scan of measurements, each mea-

surement is hypothesized to either be the continuation of an existing track if

20



it lies in an existing track’s gate, a false alarm, or the start of a new track.
Therefore, this approach makes no assumptions on the number of targets or

their initial velocities beforehand.

The target-oriented and track-oriented approaches inherently look only for track
continuation because they consider only those measurements that lie in existing
tracks’ gates. Measurements that do not lie in a track’s gate are not analyzed which is
not necessarily faulty since those measurements are most likely false alarms. However,
by ignoring these measurements, these two approaches cannot handle track initiation.

The measurement-oriented approach analyzes each measurement for every possible
kind of association. It explicitly considers each measurement to be continuation of
an existing track, a false alarm, or a new track. Since this approach does look at all
possibilities, it can enumerate all possible data associations, and thus, theoretically,
it is an optimal approach. On the other hand, practically, computation is the most

complex for the measurement-oriented approach.

2.2.4 Some MTT Schemes

In considering the difficulties of multiple target tracking, several schemes have been

devised in the literature.

Nearest-Neighbor (NN) Tracking The measurement closest to the predicted po-
sition of the track is considered to be the measurement generated by the target.
This approach is the most prone to incorrect data association since recovery
from one misassociation is virtually impossible. Furthermore, nearest-neighbor

tracking fails when there is a lot of clutter or when tracks cross.

Joint Probabilistic Data Association (JPDA) This method was developed by
Bar-Shalom in [2] which is a multiple-target extension to his probabilistic data
association filter developed in [3]. Data association is performed by calculating
the probability that each measurement was generated by each track. Then,

each track is updated by combining all the measurements in proportion to the

21



probability that the measurement was generated by the track. This scheme ac-
counts for clutter and crossing tracks well; however, since it is a target-oriented

approach, there is no natural way to handle track initiation.

Multiple Hypothesis Tracking (MHT) The fundamental idea that lies in mul-
tiple hypothesis tracking is to delay determining ambiguous correlations when
more information is obtained. This amounts to keeping several hypotheses of
data associations, and as more scans are obtained, the less likely hypotheses
are dropped. This approach handles clutter and crossing tracks much better
than the JPDA or the NN approach; furthermore, since this is a measurement-
oriented approach, track-initiation is handled automatically. How to go about
enumerating all of these hypotheses was a problem until Reid suggested an

algorithm in [8].

There is a tradeoff between performance and computational complexity in the
three algorithms described above. The NN approach is minimal in terms of computa-
tion, but it fails too easily for most practical uses. The JPDA approach yields better
tracking at the cost of computational complexity since it must calculate probabilities
to perform data association; however, without the ability to initiate tracks, this ap-
proach must be accompanied by a seperate track initiator, The MHT approach can
handle cases where the NN and JPDA approaches fail as well as initiate tracks; how-
ever, this approach requires a tremendous memory capacity, and it is computationally
the most complex of the three approaches.

It is the MHT’s ability to initiate tracks that has led it to being chosen for incor-

porating target breakup detection. Chapter 3 discusses these reasons in more detail.

2.3 Multiple Hypothesis Tracking

In order to handle the difficulties of multiple target tracking, multiple hypothesis
tracking keeps several hypotheses between scans so that later scans can help deter-

mine any ambiguous correlations between tracks and measurements, By delaying the
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correlations of the tracks with the measurements, the information from future scans
can aid in past correlations. This capability to use later measurements to aid in prior
correlations, called multiple-scan correlation, makes the handling of false reports,
missing reports, and unknown targets easier.

A hypotbhesis, in terms of MHT, is one possible data association of all the measure-
ments ever encountered up to that scan. Thus, in more concrete terms, a hypothesis
is defined as a collection of tracks such that all measurements ever encountered are a
part of some track of the hypothesis. In this way, the set of hypotheses span all pos-
sible data associations.? Furthermore, the assumption will be made that any target
in the scan volume will produce at most one unique measurement in any scan. Thus,
a target will never generate multiple measurements in the same scan. Considering
this uniqueness of measurements, no two tracks in the same hypothesis can have any
measurements in common.

It then becomes apparent what the MHT formulation must do. It must:

e generate all possible hypotheses of all the measurements encountered thus far.

e rank the hypotheses based on the likelihood of each hypothesis, which is based

on the quality of the tracks contained in the hypothesis.

The generation of all hypotheses was an unsolved problem until Reid proposed an
algorithm in (8]. Reid’s method and a slightly modified version of it, which is more in
the likeness of Blackman’s implementation method proposed in [4], will be presented

first. Then, the ranking of the hypotheses will be discussed.

2.3.1 Hypothesis Generation

As mentioned before, each measurement represents one of the following three possi-

bilities:

e continuation of an existing track,

2Note that false alarms are the special case of a one point track.
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e false alarm, or

e start of a new track.

Generating hypotheses using a measurement-oriented approach seems more appropri-
ate than using the other general approaches because of the track initiation require-
ment. The method presented by Reid in [8] basically creates a tree where each level
of the tree pertains to a measurement (See Figure 2-6). The nodes at a particular
level describe that measurement’s origin, either as the continuation of some track that
existed before, a false alarm, or the start of a new track. Measurements that are in
the same scan cannot originate from the same target since a target generates up to
one unique measurement. After creating all the branches of the tree, the hypotheses
are each leaf of the tree where the origin of all of the measurements can be found by
traversing up the tree from that leaf. Some problems with this method of hypothe-
sis generation is that tracks are never hypothesized to terminate and tracks are not
allowed to have any missing measurements in them. Thus, the possibility of track
termination or missing reports is not hypothesized.

The method proposed by Blackman in [4] does handle track termination and miss-
ing reports. However, it is difficult to represent the hypotheses in a tree, so hypotheses
are represented as a list of tracks and all possible tracks are stored in a track list.
Figure 2-7 shows the flow diagram for this algorithm. This algorithm basically creates
all the possible tracks that can be formed from each measurement in the scan, in-
cluding tracks that have missing observations or have terminated. Then, hypotheses
are formed by making as many combinations as possible with the tracks available so

that the definition of a hypothesis is fulfilled.

2.3.2 Hypothesis Ranking

A score is assigned to every hypothesis generated so that the best hypothesis can

be determined after each scan. Furthermore, since all the hypotheses are kept after
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Scan 2
KEY
. Measurement is considered a false alarm,
@ %easurcmcnl is considered the continuation of a track,
e number refers to the track that this measurement continues.
. Measurement is cor’lsi_dereq the start of a new track. The
number is the track’s identifying number,
Hypotheses Description
H1 Meas. 1,2,3 false alarms
H2 Meas. 1,2 false alarms; Meas. 3 start of track &
H3 Meas. 1,3 false alarms; Meas. 2 start of track 2
H4 Meas. 1 false alarm; Track 2 consists of Meas. 2,3
H5 Meas. 1 false alarm; Meas. 2 start of track 2; Meas. 3 start of track 3
H6 Meas. 1 start of track 1; Meas. 2,3 false alarms
H7 Meas. 2 false alarm; Track 1 consists of Meas. 1,3
HS Meas. 1 start of track 1; Meas. 2 false alarm; Meas. G start of track 3
H9 Meas. 1 start of track 1; Meas. 2 start of track 2; Meas. 3 false alarm
H10 Track 1 consists of Meas. 1,3; Meas. 2 start of track 2
H1l1l Meas. 1 start of track 1; Track 2 consists of Meas. 2,3
H12 Meas. 1,2,3 start tracks 1,2,3 respectively

Note: Measurement 3 is assumed to gate with both tracks 1 and 2.

Figure 2-6: Hypothesis Tree
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Figure 2-7: MHT Flow Diagram
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every scan®, the highest ranking hypothesis is indeed the best hypothesis up to that
scan. Thus, the MHT approach is an optimal solution.

The score of a hypothesis is dependent on the quality of its tracks and the kinds
of data associations made by the hypothesis. Determining the quality of a track is
straightforward since a model of the target is known and the target’s locations at
different scans can be estimated. x? statistics then determine the track’s quality.

The quality of a track cannot be the only measure for the hypothesis score because
some kinds of associations inherently yield a better fit. Consider two hypotheses when
there are four scans with one measurement in each, placed such that the measurements

seem to fall into a possible target trajectory:

H, : All measurements come from one track.

H, : All measurements are false alarms.

Clearly, Hj is the better hypothesis, but since there is noise in the measurements and
track states are estimated, there must be some error involved. H, on the other hand,
has no error since no estimation is involved. Thus, the kind of association must also be
considered for the hypothesis score. Assuming various probabilities for false alarms,
noise in the measurements, and detectability by the sensor, the probability of the
data association, which include false alarms, missing measurements, and terminated
tracks, can be calculated. In [4, Section 14.3], the probabilities of the different kinds
of tracks are given. Tracks are given a status based on the number of measurements
in them and how well those measurements fit the tracks, and consequently, the status

determines the data association probability.

2.3.3 Hypothesis Pruning

The number of hypotheses generated increases exponentially. Since memory is not

infinite in a real implementation, the number of hypotheses stored after every scan

3Theoretically, hypotheses are never deleted, or pruned, although in any real implernentation, the
number of hypotheses kept after every scan is limited by memory requirements.
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must be limited. Thus, hypothesis pruning becomes an important implementation
issue. Limiting the number of hypotheses runs the risk of pruning the “correct”
hypothesis; however, keeping too many hypotheses wastes too much computation

time on unlikely hypotheses. Two methods of pruning immediately come to mind:

Method 1 Keep all hypotheses that have a score higher than some preset threshold

value.

Method 2 Keep the best, say Ny, hypotheses after each scan.

Method 1 is a fairly good way of pruning except in the case where no hypothesis
score is higher than the threshold value in which case tracking cannot continue. Fur-
thermore, the number of hypotheses kept varies from scan to scan, and there may be
times where very few hypotheses are kept. When very few hypotheses are kept, the
basic premise of multiple hypothesis tracking is lost.

Method 2, since it always keeps the same number of hypotheses from scan to scan,
always has the flavor of a multiple hypothesis tracking algorithm and the case of no
hypothesis kept never arises. However, one problem with this method of pruning is
that if there are more than Ny hypotheses with virtually the same score, then some
“good” hypotheses will be pruned.

A more complex method of pruning will be presented in Chapter 4 to deal with

accidentally pruning “good” hypotheses in Method 2.
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Chapter 3

Target Breakup Detection

Breakup piece

Breakup piece
.-—‘"’O

Breakup piece
Original target

Figure 3-1: Target Breakup Parameters

The aim of target breakup detection is to determine whether a target has broken up

and, if it has, track the breakup pieces. This entails finding (See Figure 3-1):

e tp, the time of breakup for the target, and
e AV, the change of velocity that breakup causes to each of the breakup pieces.
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In this chapter, “breakup track” refers to the original track and its breakup pieces
collectively. So, all the measurements of Figure 3-1 are the measurements of a single

“breakup track”. Chapter 4 uses “breakup track” differently.

Figure 3-2: Breakup Tracks as Tracks with Perturbation

There are several ways to approach this problem. One could be to consider
breakup tracks as those tracks whose trajectory had been perturbed by a AV. Fig-
ure 3-2 shows three tracks with a AV in each. Note that these tracks are the breakup
piece tracks of Figure 3-1 extended to include the original target track. This approach
would estimate the most likely time that AV occurred, tg, and then estimate AV

itself. In [10]), Willsky proposes a generalized likelihood ratio approach which can
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detect whether the track has a significant AV perturbation in its trajectory. How-
ever, a problem with this approach is that any choice of the threshold value, which
represents the significance of the AV, is a dubious one since breakup causes a AV in
any direction with any magnitude, large or small.

Rather than look for target breakup on a track-by-track basis, target breakup can
instead be detected on a measurement-by-measurement basis. Since measurements
are obtained one scan at a time, each new measurement could have been generated by
a newly created breakup piece of some existing track. By approaching the problem
this way, the breakup time, tp, is gotten automatically, AV can be estimated since
the breakup piece is hypothesized to have broken off from some existing track whose
state vector is known, and the significance of the breakup is determined by how well
the breakup track correlates with future measurements. Thus, incorporation into the
MHT formulation seems to be the best choice, not only because it is measurement-

oriented but also because it handles track initiation.

3.1 Problems with Direct Incorporation

Incorporating target breakup detection into the multiple hypothesis tracking formu-
lation seems straightforward. In addition to the standard hypotheses of being a new
track, the continuation of an existing track, or a false alarm, each measurement can
now be hypothesized to be the start of a breakup piece of an existing track. A closer
look at this straightforward solution reveals several inconsistencies,

Consider the case of N scans of measurements from scan times, {t,,...,ty}, when
there is one target traversing across the scanning volume (assume no false alarms),

The following are possible hypotheses:

Hp : All measurements come from one track. No breakup AV in this hypothesis.

H, : Breakup has occured at some time tg € (t1,...,ty). A breakup AV is incorpo-

rated.

H; : There are two independent tracks: one starting from time ¢, and ending at time
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tg; the other, starting from time g, and ending at time ¢y .

H; : All measurements are false alarms.

o ® ® Scan Time:
® . ... O 9 - N
(¢ .
® N Shading of measurements correspond
() ) to the scan time they appeared,
z(t
2 e abreakup track
0.
1 === anindependent track

set of all measurements { z(t |) R 1{ ,) }

Q"' ®MO~.,,~
ty O
H ,: one independent track H ,: independent track with one breakup
o 0o®®,
ty [ O
o
@
{ L
H,: two independent tracks H ,: false alarms

Figure 3-3: Possible Hypotheses when Target Breakup is Allowed

Figure 3-3 shows a pictorial representation of the above hypotheses. Looking carefully

at these three hypotheses, it can be seen that

p(z | Ho) < p(z | Hi) < p(z | Hz) < p(z | H3)
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where

z(tn)

and z(t;) is the measurement at scan time ¢;. H, and Hj always fit the measurements
better than Hpy; however, since H; and H; use more complex models to fit the data,
these two models may be fitting noise rather than filtering out noise. In this case,
the interpretation of the data by H, and H, is more complex than necessary. H, will
always fit the data better than H, because breakup allows only for a change of velocity
whereas two independent tracks could be thought of as a breakup where the change
of state is on both position and velocity. Hj has perfect fit to the measurements, but
this is a degenerate solution.

Thus, the question arises: what is a suitable loss function for the different models
used to fit the data? In particular to this problem, what is a suitable penalty for the
different hypotheses so that the fit to the data becomes statistically significant?

Note that the MHT formulation can already handle discriminating among Hy,
H,, and Hj by calculating a score based on the status and quality of its constituent
tracks. Allowing H; would entail calculating the probability of data association for
breakup, which would require specifying some a priori densities, such as the likelihood
a target will break up. Furthermore, this data association probability needs to be
more likely than the data association probability for all independent tracks but less
likely than for a single independent track. These probability calculations based on
subjective densities, with a lot of tweaking, may result in a solution that can detect
target breakups; however, a more fundamentally rooted solution is desirable so that
subjective densities are not required.

The different data associations, Hy, H,, H,, and Hj, mentioned above differ in
their complexity. The higher numbered hypotheses fit the measurements better be-
cause the niodel used to fit the data is more complex. This intuitive notion of “com-

plexity” is perhaps the fundamental idea that will lead to a non-subjective solution.

33



3.2 Complexity vs. Likelihood

The intuitive notion of complexity is that a more complex model inherently has a
better fit to the data so complexity should be a penalizing factor. To describe this
mathematically, let © be the set of all possible data associations of the measurements,

and let § be an element of ©. Define some cost quantity:

Cost(9) = —a Likelihood(z | 6) + 8 Complexity(6) . (3.1)

The first term determines how well the data fits the model, 8!, The second term,
the complexity function, is the loss function which penalizes more complex models
since the more complex model will invariably fit the data better than a simpler one,
The constants, a and 3, appropriately balance these two terms. Then, the @ that
minimizes the cost will be the best model, which is the model with the least complexity
that fits the data adequately.

The standard multiple hypothesis tracking formulation has compensated for cases
such as Hj by assigning scores to tracks and, ultimately, to hypotheses; the scores pe-
nalize false alarms. Thus, the cost function defined above can be adopted as the score
for tracks and hypotheses. The balance between complexity and fit to data is cru-
cial for target breakup detection, and for that matter, the entire multiple hypothesis
tracking formulation to work properly.

This identification of the statistical model for a given data set has been studied
in the previous literature. Standard estimation and detection techniques have been
shown to be inadequate in identifying the underlying model generating the data, Al-
though a loss function can be created using subjective arguments, Akaike [1] and
Rissanen [9] have defined their loss function using basic principles. Akaike’s crite-
rion uses the minimization of the Kullback-Leibler mean information to determine
the correct model. Essentially, the complexity of the model is the number of free

parameters necessary to describe the model. Rissanen’s minimum description length

'The different data associations are the different models, which in MHT are the different hy-
potheses for the data. Thus, model, data association, and hypothesis will be used interchangeably,
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(MDL) is based on a more fundamental idea, the minimum number of bits necessary
to describe a data set. Although the MDL is based on a more fundamental principle
than Akaike’s criterion, because of the simplicity of Akaike’s criterion and the ease
with which it fits into the MHT formulation, Akaike’s criterion is utilized to come up
with an appropriate cost function. A derivation of Akaike’s criterion is presented in
Appendix A. The next section describes and justifies its application to target breakup

detection.

3.3 Akaike’s Criterion

Akaike’s criterion is defined as:

AIC(0) = —2log(mazimum likelihood of 8) + 2k(0) (3.2)

where k() is the number of independent free parameters in the model, 8, and the

maximum likelihood is of the data conditioned on . Thus, the estimate of 6 is:

~

6 = argymin AIC(0) . (3.3)

Note that Eqn. 3.2 is of the same form as Eqn. 3.1, which matches the intuitive notion
of complexity and hints at the adoption of Eqn. 3.2 as the score function. The first
order of business is to see if the complexity function, 2k, matches the intuitive notion
of the complexity function in Eqn. 3.1. The second step is to derive the maximum
likelihood functions. The third step is to determine how to go about detecting target
breakup and estimating parameters for target breakup pieces. And finally, the effect

of adding target breakup detection into the MHT formulation is discussed.

3.3.1 Complexity Function Discussion

Since complexity under Akaike’s criterion involves counting the number of free param-
eters used in the model, the first thing to do is to count the number of free parameters

for the different kinds of tracks. Then, the total complexity for a hypothesis is the
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sum of the complexities of each track in the hypothesis. Table 3.1 shows the number

of free parameters for each type of track.

Table 3.1: Free Parameters in Tracks

Type of Track Free Parameter Description | Total
Independent Track (3) initial position 7
(3) initial velocity
(1) start. time
Lost Track (3) initial position 8
(3) initial velocity
(1) start time
(1) end time
False Alarm (3) initial position 4
(1) occurrence time
Track that Breaks Up | (3) initial position 3Np + 8
Into Np Pieces (3) initial velocity
(1) start time
(1) breakup time
(3Np) velocity difference
Track with Ny Missing | (Nys) time for each missing add Ny
Measurements measurement

A discussion of the number of parameters and how it matches the intuitive notion

of a complexity function follows.

1. An independent track is a track that is still a candidate for continuation. It
should be the least complex of all the different types of tracks. At first glance,
false alarms seem to be less less complex. However, suppose that an independent
track consists of Ny measurements. The number of free parameters of the
independent track is 7, while the number of free parameters to describe all the
measurements as false alarms is 4 Np. So for Ny > 1, describing the data as
an independent track is less complex. Notice that a lost track has the same
number of free parameters as two false alarms. There should be no difference in
describing two measurements as a two-measurement lost track or as two false

alarms, and indeed, there is not.
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2. There should be a penalty if there are missing measurements in a track. Ta-
ble 3.1 shows that there is a penalty of one free parameter for every missing

measurement.

3. Describing the measurements as a breakup track with several breakup pieces
should be less complex than describing the measurements as several indepen-
dent tracks, where each breakup piece is considered an independent track, since
breakup pieces are constrained to originate from the same position at the same
time and indpendent tracks are not. A track with Np breakup pieces requires
3Np + 8 free parameters; describing the same measurements as Ng + 1 indepen-
dent tracks requires 7Npg free parameters for the Ng breakup particles plus 8
free parameters for the original target before breakup since that original target
is assumed to be lost after breakup, leaving a total of 7Ng + 8 free parame-
ters. Notice that the independent track description is always greater than the
breakup description except when Ng = 0, in which case there are no breakup

pieces.

Adopting the number of free parameters as the complexity function seems to
coincide very well with the intuitive notion of the complexity function. The next step
in applying Akaike’s criterion is to derive the maximum likelihood expression for a

hypothesis.

3.3.2 Maximum Likelihood Derivations

The maximum likelihood in Akaike’s criterion is conditioned on the model, 8. The
different models in the tracking problem are the different data associations that can
be made of the measurements, which are the hypotheses generated by the multiple
hypothesis tracking formulation. Measurements in one track can be assumed to be
generated independently of measurements in another track. Therefore, the likelihood
of a hypothesis, 8, consisting of N, tracks is the product of the likelihood of each of

its tracks.
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No Np
16x16) = [0 10) = [ pte 1 .0) (3.4)

where
2
z = :
ZNa
and
X1
X =
XNo

z is a 3M-dimensional vector of the M measurements encountered thus far, each
measurement having three components, range, azimuth, and elevation. Each z; is
the set of measurements for track 7 and has dimension, 3Nr,, where Nr, is the total

number of measurements in track :. So, for a non-breakup track 7,2

z(to)

&;(tN'r' _l)

For the case of a breakup track 7 that has broken up into Np, breakup pieces after

time tp,, without loss of generality the measurements of the original track before

2Note that to refers to the scantime when the first measurement of track i appears, not the initial
scan time of the tracker. Thus, ¢¢ is the start time of the respective track and is different for different
tracks.,
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breakup and all the breakup pieces of the breakup track are

[ zi,(to) W

-z-l'o(tBi)

2 (tBi+l)

i = | 3.6
’ Zi, (tend.-) ( )

EiNB,- (tBH'l)

\_ ‘;'iNB,- (tend,-) ]

where z; () represents the measurements in the original track before breakup and
;,-j(t) for j # O represents the measurements in breakup piece j of track i. end; + 1

is the number of time samples in breakup track i and since
NT'- = (B. + 1) + (end,' - Bi)NBi

where end; and B; are the subscripts of t.,4, and tp, respectively,

Nr, - Bi—1
N,

end; = + B; . (37)

Nr. is the sum of the number of measurements in the original track before breakup
plus the sum of the number of measurements in each of the Np, breakup pieces. Since

each track of a hypothesis, 8, contains Ny, measurements, it follows that

Ne
M=Y Nr,.

i=1

x is the vector of all free parameters necessary to describe the hypothesis, 8, and has

dimension k. x; is the vector of free parameters necessary to describe track ¢,
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To derive an expression for the likelihood (Eqn. 3.4) of a hypothesis, it remains
to derive the likelihood for each track in the hypothesis. The likelihood for breakup
tracks will be discussed in Section 3.3.3. The rest of the discussion in this section will
focus on non-breakup tracks. Let [;(x; | ) be the likelihood of track . The model

for an independent track, based on Eqn. 2.1 and Eqn 2.2, is:

;(t) = f(z:(t), 1) (3.8)
zi(t) = h(z:(2),8) + (t) (3.9)

where v;(t) is a zero mean, white Guassian noise process with spectral density, R,
The process noise, w(t) has been left out of Eqn. 3.8 because it is assumed that the
dynamics are known perfectly. The initial condition, z;(tp) for track i is determined
by x;, the free parameters of the track, which is what needs to be estimated to fit the
measurements, Therefore, x; contains the position and velocity components of z;(to),
the initial time ¢y, and any other information necessary to describe the track, such as
missing measurements, track termination, and breakup. The measurements z;(t) are

related to z; as shown in Eqn. 3.5.

Before tackling the likelihood function, define the following function:

@i(to), 1) = B £(at), Ot + t0), ) (3.10)

to

Then, Eqn. 3.9 can be reduced to
zi(t) = g(zi(to), t) + ui(2) - (3.11)

If z;(to) is treated as a parameter, estimating it is just the problem of estimating

a paramecter in additive white Guassian noise. Thus, the likelihood function becomes

L(xi |0) = Li(zi(to) | 6)

= p(z | Zilto), 6)
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Np. -1

Li(xi | 6) =C-exp[—% Y (zi(te) — glzilto), te))T R (zi(tk) — glzi(to), t))] (3.12)

k=0
where
Ci

1
No.
)7

(21rl R '

Maximizing [;(x; | §) is the same as minimizing the quadratic function

Nr,-1

J = /:YB (2i(te) — g(zi(to), te)) "R (2a(th) — g(zi(to), 1)) - (3.13)

Thus, for the case of additive white Guassian noise, the maximum likelihood
estimate is the estimate which minimizes the “cost” function, J?. This is the weighted
least squares problem. Furthermore since all the weights, R~!, are equal and noise is
Guassian, this problem becomes the minimum mean square estimate. The extended
Kalman filter can recursively approximate the minimum mean square estimate of the

state vector. The function g(z;(to), t) is the smoothed estimate
2,(t) = h(Zi(t | :),) .

False alarms can be treated as one point tracks. Obviously, the maximum like-
lihood value will be unity. The same goes for two-point tracks. Only when tracks
become longer does estimation become necessary.

Returning back to the maximum likelihood expression for a hypothesis, taking the
logarithm of both sides of Eqn. 3.4, since in Eqn. 3.2 the logarithm of the maximum

likelihood is of interest,

log I(x |6) = %log Li(xi | 6) (3.14)

Combining Eqn. 3.12, Eqn. 3.13, and Eqn. 3.14,
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No 1
log I(x|0) = Z(log Ci— —Jf)
1= No
= log([[C:) - = ZJ”
i=1
= log(C) - 5 Z Jf'
i=1
where

1
R

C,' =
(2w

1]
iz

)

and M, being the total number of measurements ever encountered, is, as was shown

previously,

Ng
M=Y Nr.

i=1
Since C is the same for every 6, it can be taken out of the criterion. So, the modified

Akaike criterion, which is essentially, the original Akaike criterion minus log(C) is

Cost(6) = f J? +2k(0) . (3.15)

i=1

So, the best estimate of 8 is

a Ne
9 = argymin (3 J? + 2k(6)) . (3.16)

i=1
False alarms fit the data perfectly, and thus J{ is zero. For a track with a missing

measurement at time ¢,s, assume that

2(tm) = h(Z;(tamr | 2:),tm) -

Thus, that component of J? will be zero, and the added free parameter necessary

to describe the missing measurement will balance the cost. Breakup tracks require
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more work since the time that breakup has occurred and the change of velocity need
to be estimated before J? can be computed. The next section will describe the

estimation of these parameters and computing J¢ for breakup targets in more detail.

3.3.3 Target Breakup Detection and Parameter Estimation

To calculate the maximum likelihood of a track that breaks up into Vg breakup pieces,
first consider the simpler problem where a track breaks up into one breakup piece.
In this simpler scenario, there is a breakup time, ¢g, and one AV which represents
the change of state from the original track to the breakup piece’s state as shown in
Figure 3-4a. The x in the figure represents the next predicted position of the target
if no AV were present. The casual definition of ¢tz being the breakup time needs to
be more rigorously defined. The ezact time of breakup, call it Tyeakup, does not have
to fall into the exact time of the scan, which is what tp represents; Tireakup could

happen between scans. So, define tg in the following way:

tg < Tbreakup < tB+l .

Thus, breakup occurs either right at tg or in that intermediary time between ¢t and
the next scan, tg,;. Looking again at Figure 3-4a reveals that this track assumed that
Tireakup = tp so that propagating the state gives the track file shown. Figure 3-4b
shows what happens when Threakup = %(ta + tp4+1). The breakup piece’s trajectory
is different, and since the interval between the time when the target’s trajectory gets
changed by a AV, Tirearup, to the next scan time, g4y, is only half as long as that
of Figure 3-4a, the magnitude of AV is approximately twice as large; the direction,
however, remains the same. Thus, the trajectories of the breakup piece in Figure 3-4a
and Figure 3-4b are different even though the measurements, {z(t),...,2(ts+1)}, are
the same.

Since Threakup lies in the range, tg < Tireakup < tB41, €stimating AV requires
estimating Ti,eqkup also. Although estimating both parameters is possible, estimating

the best Threarup along with AV is more precise than necessary for the purposes of
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a) Track with single breakup with breakup parameters shown,

b) Track with breakup occuring in between scans with its
Pro_|cctcd breakup piece measurements. Breakup piece
rom a) shown for comparison,

Figure 3-4: Target with Single Breakup
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target breakup detection. It suffices to determine at which scan breakup occurred
rather than determining the exact time that breakup occurred. Thus, for the rest of

this section, it will be assumed that

Tbreakup =tp .

If the time between tp and tg., is small, the change in the maximum likelihood of the
breakup track from approximating Tbreakup to be tp will be small. The magnitude of
AV is smallest when Tirearup equals tp, so the assumption on Tyreqryp, does not yield
an excessively large magnitude of AV,

To derive an expression for the maximum likelihood of a breakup track with one
breakup piece, start with its dynamics and measurements. The dynamics of a breakup
track differ from the dynamics of an independent track only in that there is a sudden
change of state, AV, at time tg. Then, based on Eqn. 3.8 and Eqn. 3.9, the model

for a breakup track is

(3.17)

z(t) = h(z(t),t) + u(t) (3.18)

where 4(-) is the unit area impulse function, which is zero everywhere except when
the argument is zero, and the subscript ¢ has been left out for notational convenience.
Again, u(t) is a zero mean, white Guassian noise process with spectral density R,

As before, define a function like g(z(to),t) so that Eqn. 3.18 reduces to
z(t) = b(z(to), AV, ta,t) + u(t) . (3.19)

The function b(z(tp), AV, tg,t) is the state transformed to the measurement space at
time ¢ for a track with initial condition z(ty) and which undergoes breakup at time
tp with change of state AV. With these parameters set, it is obvious that prior to

tp, AV does not affect the track’s state. One way of looking at the effect of AV is
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that it imparts a new initial condition at time {p after which the track follows the
dynamics of Eqn. 3.8. Thus, the state, given an initial condition z(ty), a breakup

time tg, and a change of velocity AV for the breakup piece, is

x() — { L f(z(t), t)dt + z(to),  to<t<ts., 520

fia, £(z(8),t)dt + 2(t,), t2ts,

where tp_ refers to the time right before AV has perturbed the state and tp, refers

to the time right after AV has perturbed the state. So,

z(ts,) = z(tp_) +

AV

Thus,
b(z(to), AV, tp,t) = h(z(t),t) (3.21)

where x(t) is shown in Eqn. 3.20.

Referring back to Eqn. 3.19, if z(ty) and AV are treated as parameters given
the breakup time tpg, estimating the parameters is just the problem of estimating
parameters in additive white Guassian noise. Thus, the likelihood function of this
breakup track becomes, putting the subscript ¢ back in,

N'r'-—l

(x: 10) = Ciexpl— > wlt) R te) (3.22)

where

vi(tx) = zi(tk) — bi(zi(to), AVis s, t) ,

which is the residual between measured and predicted values of the measurement,

and
1

R

C,' =
(27

Np.

)+

and Nr; is the number of measurements in this breakup track.
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Maximizing I;(x; | 0) is the same as minimizing the quadratic function

Nr;-1
J! = g vi(te) "R (1) (3.23)

So, the best estimate of the parameters is
£:(t0), AV = AT Yz (t0), Ay MIN J,-”(gi(t(,), AV) (3.24)

given a breakup time tp and where the dependence of J? on the parameters are
shown explicitly, Although estimating z;(t,) is not independent of estimating AV in
general as shown in Eqn. 3.24, it is expected that the initial conditjon of the original
track should not depend on whether a breakup occurs some time later in the track’s

trajectory. So, the following assumption is made;

® The estimate of the initial condition, z;(t,), depends only on those measure-

ments of the track which have not been generated by a breakup piece since those

pieces have been perturbed by a AV. These measurements are z(t),...,2(tg).3
Then, it necessarily follows that:

® The estimate of AV is the same as the estimate of AV conditioned on the

estimate of z;(y). Thus, the effect of this assumption is that z;(tg_) is given

when estimating z; (¢ L)

Thus, making these assumptions, the estimate of z;(to) is based on those measure-

ments from the original track before breakup. So,

B
Z,(to) = Zi(to) | z(to),. .., 2(ts) = argy (1o)min Y v;(t) TRy, (t)
k=0

32(tp) = z(tp_) = 2(ts, ) since the effect of the AV is not apparent in the position part of the
State at time tg, which is the only part the measurement reveals,
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where the dependence on the measurements are shown explicitly. Thus,

£(t) = Jo F(E(2),t)dt + £(to), o<t <ts_, | (3.25)

Jis, £(&(),t)dt + E(tp,), t2ta,

Note that for tg < t < tp_, &(t) is completely determined by Z(to). However, finding

£(t) for t > tp, requires estimating AV since

0
E(ts,)=2Z(ts_ )+ | . | - (3.26)
AV
So, estimating AV,
) i Nr; -1
AV = AV | &(to) = argaymin( Y wi(te) R wi(ts) | &(t0)) -
k=0
Separating the sum at tp,
NT—I
AV | fE(to) = argm,mm(z tk TR Y; tk + Z tk TR v; (tk) l i(to)) ,
k=0 k=B+1

Since minimization over measurements z(to),...,2(ts) is already captured in £(to),
the first sum on the right-hand side is constant and does not contribute to finding
the minimum, Thus,

Nt -1

AV = argaymin( Y wi(te) R ui(ts) | £(to))
k=B+1

The estimate of AV depends only on the measurements particular to the breakup
piece, z(ts41), .. - » Z(tend;), and the initial condition, Z(2o). Because of this, extending
the above calculation to several breakup pieces is natural. The initial condition
estimate is still the same as before, but rather than having only one AV to estimate,
there is a AV to estimate for each breakup piece.

Represent the measurements and states of the track in the following way, Let

z,,(t) represent those measurements from the original track before breakup; therefore,
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these measurements exist for times {ty,...,tg}. The state associated with these
measurements are z; (t) which are similarly restricted to time {to,...,t5}.

Let z;,(t) represent those measurements from breakup piece j of track i after
breakup; therefore, these measurements exist for times {tg41,...,tenq;} Where end;
has been defined in Eqn. 3.7. The associated state for these measurements are Z;; (t),

also restricted for times {tg41,...,tenq,}. Thus,

2io(t) = [} fzi(t), )dt + 245 (o), to St <tp (3.27)
Eij(t) = fttB+ i(_a_:'ij(t),t)dt +£i,- (t3+), t > tB+ (328)
where
0
Li; (ts,) = Zi(ts_) + (3.29)
AV

and where AV refers to the AV for the ji breakup piece. Furthermore,

biy(Zi(t0),t) = h(2io(t),2), to <t <tp (3.30)

by (2 (t0), AVy, ta, 1) = h(zi,(0),0), > ta, (3.31)

where by(-) is the track’s state before breakup transformed to the measurement space
and b;(-) is the track’s j*& breakup piece’s state transformed to the measurement
space.

Thus, if track 7 breaks up into Np, pieces at time g, begins at time ¢y, and ends

at time tendl-,

B Np; end,
I =3 v () TR g () + D0 3 vy (t) "R (t4) (3.32)
k=0 j=Lk=B+l

where v;,(t) is the residual of the original track before breakup and y; (t) is the

residual of the j breakup piece of track i and equal to

Viy (1) = 24y () — biy (24, (t0), t)
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v, (8) = 2i,(8) — by (2, (to), AV}, ts, 1)

Thus,
£;,(to) = argy, (zo)mmz_,., te)T R g ()
k=0
end;
AV =argay,min . v TRy, () -
k=B+1

With these parameters estimated, the maximum likelihood expression is

N B; end;

B
22 tk)TR-l.,o tk + Z Z vy tk R—l 2 (tk) (3.33)
k=0 Jj=1k=B+1

where

Qio (t) = éio(t) - bio (iio (to), t)
Qij (t) =z (t) - l—’i,- (ii,- (to)l A.VJ" i, t)

This J? for a breakup track can now be plugged into the cost function, Eqn. 3.15,

to get the cost of a hypothesis, 6, that consists of breakup tracks.

3.3.4 Effect on MHT Formulation

Akaike’s criterion has replaced the score function for hypotheses and tracks in the
MHT formulation so that subjective a priori probability densities are no longer nec-
essary in determining the better hypotheses and tracks. Only with a criterion based
on some theoretical foundation is target breakup detection able to be handled con-
vincingly since a target breakup detection algorithm that requires lots of tweaking
of various parameters would not be theoretically justified. Furthermore, since the
target breakup detection algorithm is a sort of intermediary model in terms of com-
plexity between the continuation of a single track model and the several independent
tracks model, what parameters to tweak and how to tweak them is unclear. Akaike's
criterion gives the theoretical justification for the scores given to various tracks and
hypotheses, and simulations of its use in the MHT formulation are shown in Chap-

ter 5.
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Extending the MHT formulation to include target breakup will undoubtedly ne-
cessitate more computation. The question is how much more computation is required
over the original MHT formulation’s computation requirement. First, consider com-
putation time. Hypothesizing each measurement to be the breakup piece of some
target requires looping over the existing tracks. Since hypothesizing a measurement
to be the continuation of an existing track already loops over the existing tracks,
hypothesizing a measurement to be the breakup piece of an existing track can be
included in this loop. However, since breakup requires tracking the breakup pieces, a
process similar to the computationally expensive track initiation procedure, the cost
in computation time is significant.

Now, considering computation memory, since each measurement can be hypothe-
sized to be one of four possibilities rather than one of three, the hypothesis tree is even
larger than before and pruning becomes a more crucial factor in the correct operation
of this tracker. Taking a closer look at each possibility for a measurement, namely
false alarm, start of a new track, continuation of an existing track, and start of a
breakup piece, reveals that the last two possibilities, track continuation and breakup,
are actually a composite of several possibilities since continuation and breakup stem
from some previously existing track. Thus, the expansion of the hypothesis tree is a
significant one.

Track initiation is the most computationally complex possibility in the original
MHT formulation because a new track can be continued by just about every measure-
ment in the next scan. Gating does not really help discriminate which measurements
are more likely to have originated from the new track because the velocity part of
the track’s state vector is unknown, which makes the gate of this new independent
track necessarily large. Fortunately, the start of a new track is not a composite of
several possibilities like continuation and breakup, so the number of times track ini-
tiation is considered a possibility is equal to the total number of measurements ever
encountered. In the target breakup detection incorporated MHT formulation, a mea-
surement being hypothesized to be the start of a breakup piece is similar to initiating

a track that is only slightly more constrained than the start of an independent track.
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The measurement is essentially being hypothesized to be the second point of a new
track, where the first point is the last point of some existing track. On the other hand,
in track initiation, the measurement is hypothesized to be the first point of an inde-
pendent track. Thus, the computational complexity for breakup and track initiation
is similar. However, unlike track initiation, the number of breakup possibilities for a
measurement is dependent on the number of tracks that existed in the previous scan.
Thus, computation complexity has increased considerably by adding target breakup

detection in terms of both time and memory.
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Chapter 4

Implementation of a MHT with
Target Breakup Detection

Incorporating target breakup detection into the MHT formulation requires modifica-
tion to the basic flow of the algorithm and the scores for hypotheses. The next two
sections describe these modifications in detail. The last section describes a modified
pruning algorithm along with reasons why such an algorithm is both necessary and
appropriate.

The use of the word breakup track refers to a different entity in this chapter than
it did in the previous chapter. There, a breakup track is the entire collection of
the original independent track that broke up at some time, tg, and the tracks of
its several constituent breakup pieces. Theoretically, it is easier to consider breakup
tracks in this way so that calculating the maximum likelihood and free parameters is
simpler. However, implementationally speaking, it is easier to consider the breakup
pieces of the breakup track as the breakup tracks themselves. Using this definition
of a breakup track, the original track which began as an independent track remains
an independent track. Breakup tracks are similar to independent tracks in that
once they have been initiated, they can be continued and possibly spawn breakup
tracks themselves. The difference between breakup tracks and independent tracks lie

primarily in the initiation procedure:
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e Independent tracks are initiated by allowing the first measurement to corre-
late with any measurement in the next scan, so long as the predicted velocity

of such a correlation is not beyond credible speeds.

e Breakup tracks are assumed to have originated from a previously existing
track, where the initial state of the breakup track is determined by the state of

the previously existing track plus some change of velocity, AV.

The initiation of a breakup track is more constraining than that of an independent
track because starting from the very first measurement, the velocity part of the state
can be estimated due to the knowledge that a breakup track spawned from a previ-
ously existing track. The initial state of an independent track has no constraints on
its velocity components because it is not until the second measurement is obtained
that the velocity can be estimated. Section 4.2.2 describes and justifies the initiation

procedure in more detail.

4.1 Flow Modification

Since target breakup detection attributes an additional possibility, the start of the
breakup of a track, to each measurement, the basic flow is augmented to include
this possibility. Figure 4-1 shows the flow diagram of Figure 2-7 modified to include
the possibility of target breakup. The modified part of the flow is denoted by the
thick-lined boxes. Incorporating target breakup detection into the MHT formulation
only requires adding two more modules into the original flow diagram. The basic flow
of the rest of the algorithm can be kept as is with only slight modifications within
certain modules to take into account the new scoring function and pruning algorithm.

The possibility of a measurement being the breakup of an existing track has been
added within the condition that the measurement lies in the gate of the existing
track. This may seem like an unnecessary constraint for the start of a breakup track.
However, the purpose of gating is to separate those measurements that could have

originated from the track with those that could not. A breakup piece can initially
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Figure 4-1: MHT Flow Diagram modified to include Target Breakup Detection
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only go so far away from the track it originated, and thus, the first measurement
from this breakup piece would be expected to appear close to the original track’s
trajectory and in the original track’s gate. This constraint is consistent with how
a breakup track behaves, and furthermore, by considering only those measurements

within a track’s gate for breakup, the algorithm is more efficient.

4.2 Score Function Modification

In determining the score for tracks and, ultimately, for hypotheses, two separate
calculations are necessary: the number of free parameters for that particular kind
of track and the maximum likelihood of the data to the prediction. Since the score
for a hypothesis is the sum of the scores of its constituent tracks, how to go about
calculating the score for a track is presented with the understanding that calculating

the score for a hypothesis is then straightforward.

4.2.1 Free Parameter Calculation

The number of free parameters for each kind of track was given in Table 3.1. So, the
ultimate goal of the free parameter calculatici is to give tracks the correct number of
free parameters while following the flow diagram of Figure 4-1. Thus, each module
will be described in terms of its effect on the free parameters of a track.

The first module where free parameters are computed is the “Make new track
beginning with new measurement” module. This module initiates new independent
tracks. So, any tracks created in this module should be given seven free parameters
for the independent track complexity.

The “Make new track with new measurement added” module, which is where
tracks are continued, does not change any free parameters of any tracks because
continuing a track does not change the complexity of that track. An independent
track that is continued remains an independent track. Likewise, a breakup track that
is continued also remains a breakup track.

The next module where free parameters of tracks are changed is the “Make
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breakup track ...” module. A breakup track is given three free parameters. Fur-
thermore, for each group of breakup tracks that originated from the same previously
existing track, an extra free parameter is necessary to account for the breakup time,
Although this requires some extra effort, like searching over the breakup tracks and
looking at their origins, it is a simple operation. From Table 3.1, it may seem that
the original track’s free parameters needs to be changed; however, it is not always
necessary that the original track terminates. Anyhow, the next module will take care
of modifying the number of free parameters for tracks that terminate.

The “Check for misses, false alarms, track termination” module will modify the
number of free parameters for tracks that have misses, are false alarms, or terminate.
Any track that is given a miss for this scan gets an additional free parameter to
denote the time of this miss. A one-point track that has enough misses to consider
it a false alarm is given a total of three free parameters regardless of how many free
parameters it may have had before. Tracks that terminate are given an additional
free parameter to what it may have had before. This not only includes termination
of independent tracks but also termination of breakup tracks which is correct since
the termination of a breakup track also requires one additional free parameter.

By modifying the modules in the flow diagram in this way, the number of free

parameters associated with the different types of tracks matches the number shown

in Table 3.1.

4.2.2 Maximum Likelihood Calculation

The extended Kalman filter was used in the original MHT formulation to calculate
the next predicted position of a track and to determine how well the data fit the track.
The major difference between the original MHT formulation and the target breakup
detection incorporated MHT formulation in terms of likelihood, is that the original
MHT formulation based the fit to the data on filtered values of the track position
whereas the target breakup detection incorporated MHT formulation bases its fit to
the data on smoothed values of the track position.

The smoothed values of the track position is the result of finding the nonlinear least
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squares estimate of the track position. Several algorithms have been presented in the
literature, including those that calculate J? recursively for every new measurement to
be included in the track, as in [7]. The problem with using smoothed estimates is that
there is considerably more computation necessary to calculate smoothed estimates
than filtered estimates. Since it is desirable to make these calculations as simple
as possible, if filtered estimates do not deviate too far from smoothed estimates,
approximating the maximum likelihood by using filtered estimates may be suitable,

The extended Kalman filter returns these filtered estimates at every scan, but it
must be initialized with some initial value of the state; thus, this is the track initiation
problem. For an independent track, the estimate of the initial condition, Z;(to), is
the estimate that minimized the cost function, J¢, in Eqn. 3.13. For the aims of
reducing computation but making the most accurate estimate of the initial state as
possible, initialize the filter with the minimal number of measurements necessary to
estimate an initial condition. For this case, this requires two measurements since the
state includes a velocity part. So, looking at just the first two measurements, the cost

function is

B = (zi(to) — g(zi(to), to))"R™"(2i(to) — g(zi(to), o))

+ (2i(t1) — gzilto), 1)) R (z:(t1) — g(zi(to), 1)) -

Upon close inspection, the cost function can be made to equal zero for any two
measurements, 2,(to) and z;(¢;). The initial state that makes J,-" go to zero satisfies

the following two conditions;

h(zi(to), to) = 2i(to)
B[ Fa0,0de+ mlto),t) = 2(t)

Il

where Eqn. 3.10 was substituted in for g(-). Thus, the position part of z;(t) when
transformed to the measurement space is equal to z;(¢9) and the velocity part of z;(to)

moves the track’s position so that at time £;, the track’s position when transformed to
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the measurement space is equal to z;(¢;). The resulting z;(ty) can be used to initialize
the extended Kalman filter for this track.

For initiation of a breakup track, or in Chapter 3 lingo, a breakup piece, the
estimate that requires the least computation but is fairly accurate needs the state of
the original track before breakup, z; (ts_), and the first measurement of the breakup
track, z;;(¢p+1). Thus, the sought estimate is £; (tp+1) given £;,(tp_) and z; (t5+1).
The notation above is taken from the latter half of Section 3.3.3. From Eqn. 3.29,
choose AV; so that integrating Z; (tp,) to time tp11 gives the £, (¢p41) such that,
when converted to the measurement space, is z; (tp+1). Then, the initial state for
the breakup track is Z;, (tp+1). Notice that the initial state of a breakup track is
more constrained than an independent track because it only takes one measurement
to initiate a breakup track and two measurements to initiate an independent track,
Of course, this constraint originates from the fact that breakup tracks originate from
some prevlously existing track. “

After initiating the independent or breakup track, the maximum likelihood part
of the score function is then the sum of the x? values of the filtered residual for every
measurement in the track. This is what has been done in the implementation of this

algorithm and results of the simulations are shown in Chapter 5.

4.3 Hypothesis Pruning Modification

Section 2.3.3 described two methods to hypothesis pruning. Method 2 was chosen as
the better pruning method since it always kept multiple hypotheses after each scan.
However, if more than the set number of hypotheses to be kept, Ny, have similar
scores, then hypotheses with comparable scores are pruned inadvertantly. In the
original MHT formulation, this situation arises only when several tracks are initiated
in the same scan. New tracks’ scores are not different until they contain three or
more points since the maximum likelihood of a one-point track (false alarm) and a
two-point track is equal to unity. Likewise, when targets break up, the scan suddenly

requires initiating many breakup tracks. Thus, in the scenario where targets may

59



break up, this situation is ezpected to arise and must be dealt with by a suitable
pruning method.

A possible solution to this problem is to keep more than Ny hypotheses if the
scores of the hypotheses are “close”. It is difficult to determine quantitatively what
“close” is, so a more careful examination is required to determine which parts of the
scores are more important,

The situation when several competing hypotheses arise comes from the fact that
not enough measurements have been obtained to give differences in the maximum
likelihood part of the score function. Furthermore, when a breakup has occurred,
suddenly there are several hypotheses with the same complexity, and likewise when
several independent tracks have appeared in the scan volume. Thus, the complexity
part of the score seems to be the most relevant part of the score to key off of when
deciding how many hypotheses to keep.

Thus, the proposed solution to pruning, which will be called Method 3, is as

follows:

1. Rank all the hypotheses, lowest score first since the lowest score is the best

hypothesis.

2. Keep the first Ny hypotheses, unless there isn’t Ny hypotheses to keep, in

which case pruning is finished.,

3. Keep the next hypothesis if its complexity is less than or equal to the best

hypothesis’s complexity.
4. Repeat step 3 if an extra hypothesis was kept. Otherwise, end.

Comparing hypothesis complexity with the best hypothesis makes sense because in
the case when the Ny hypothesis is much worse than the best hypothesis, comparing
with the Ng™ hypothesis makes no sense since extra hypotheses are not necessary.
Results of simulations comparing the pruning algorithms, Method 2 and Method 3,

are given in Chapter 5.
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Chapter 5

Simulation Results and Discussion

To demonstrate the performance of the target breakup incorporated multiple hypoth-
esis tracker, several simulations have been run with various scenarios of targets and
breakups. The data for all simulations presented in this section have been generated

with the following attributes:
e target dynamics do not include drag effects;
e measurements have not been corrupted by noise;
e false alarms have a uniform density throughout the scan volume; and

e target breakup pieces’ magnitude of AV is a uniform density from 0 up to
some maximum assumed speed; the direction is uniformly distributed around a

sphere.

Six sets of simulations have been performed to exhibit various scenarios that could
occur. Five of the simulations focus on testing if target breakup is detected correctly;
the last one focuses on comparing pruning algorithms. Figures 5-1 - 5-5 show an
approximate picture of what the output graph of these simulations should look like,

The simulations testing correctness of target breakup are:

e A. Base Case One track breaks up into ten pieces (See Figure 5-1). This is to

test target breakup isolated from other “distractions” in the scan volume. The
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rest of the simulations will add certain ‘“distractions” to see how they affect

target breakup detection.

B. Crossing Tracks Two tracks initially in the scan volume cross in the second

scan (See Figure 5-2). One of the tracks breaks up into ten pieces.

C. Continuing vs. Breakup Tracks Nine tracks are initially in the scan volume
moving generally parallel with each other. One of the tracks breaks up into five
pieces (See Figure 5-3). The tracker is tested for handling several continuing

tracks, in the midst of breakup pieces.

D. Independent vs. Breakup Tracks Two tracks initially in the scan volume move
in parallel, and one breaks up into five pieces. Around the time of breakup,
specifically tg and tg;1, independent tracks also form (See Figure 5-4). Thus,

the tracker is tested to distinguish independent tracks from breakup tracks.

E. False Alarms There are four simulations in this group. The data is the same
as in the base case, A, up above, but starting with the third scan, five, ten,
fifteen, or twenty false alarms are present in the every scan (See Figure 5-5).
Here, the tracker is tested to see how many false alarms it can handle before

making errors.

All the above simulations were run with the pruning algorithm, Method 3, presented

in Section 4.3. For comparison, an implementation with pruning algorithm, Method

2, from Section 2.3.3 was also run to get the last set of simulations:

e F. Pruning Comparison Two simulations with pruning algorithm, Method 2,
running on the data from case B and case C. The number of hypotheses kept

after each scan, Ny, is 500.

Pruning occurs, ideally, only at the end of a completed scan. However, since the max-

imum number of hypotheses ever kept is limited by the available memory, where in

this implementation that maximum number is 1000, hypotheses must he pruned dur-

ing the analysis of a scan because each scan generates over thousands of hypotheses,
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many of which never survive to the end of the scan. Thus, the pruning algorithms,
Method 2 and Method 3 referred to above, prunes those 1000 hypotheses that survive

to the end of a scan.

5.1 Breakup Track Detection Simulations

Tracker Output Description
Output of the tracker comes in two forms:

e a tabular summary which is a list of hypotheses ranked by score where each
hypothesis is a list of tracks, along with a track list showing the measurements

that compose the track (See Figures 5-12 - 5-16).

e a graph of Elevation vs. Azimuth and/or Elevation vs. Time showing measure-
ments as squares and predicted position as x’s (See Figures 5-6 - 5-11). Tracks
are denoted by lines from x's to x’s.! All measurements ever encountered are
shown in these graphs. The time of a measurement is not shown explicitly in
the Elevation vs. Azimuth graph; however, the time can usually be inferred

from the the tracks.

In the track summary part of the tabular summary, —1's refer to missing mea-
surements in the track. The “Status” column refers to the kind of track which aids
in determining the number of free parameters associated with that track. The codes

are;
e C - confirmed, an independent track with two or more measurements;
e B - breakup, a breakup piece track;
e U - unassigned, a one-point track whose initial velocity has not been estimated;

e F - false alarm, a false alarm;

'Note that since measurements are unperturbed by noise the x's match exactly the boxes of the
next measurement if the next measurement exists.
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e T - tentative, a one-point or two-point track with initial velocity estimated;
e L - lost track, an independent track that has terminated; and
e D - lost breakup track, a breakup piece track that has terminated.

The number following “orig:” for breakup tracks refers to the measurement from
which the breakup track has spawned.

The hypothesis summary lists hypotheses by rank and lists its constituent tracks.
The cost and coimnplexity of each hypothesis is also shown.

One important note about the graph is that the best hypothesis at each scan
is drawn based on the best hypothesis from the previous scan, and thus, the graph
shows a sort of “filtered” picture of the tracker’s analysis as opposed to a “smoothed”
picture. So, for example, if at scan S|, there are two measurements, M, and M, and
at scan S, there are two measurements, M3 and M,. Four possible tracks at scan S

are:

e T) with measurements M, and M3,

e T, with measurements My and M,,

e T, with measurements M, and M,, and

e T, with measurements M, and M3,
and two possible hypotheses are:

e H, with tracks T3 and T}, and

e H, with tracks T, and T5.

H, and H, will have the same score because the tracks only have two measurements
in them, so assuming that H, was ranked first, the graph will draw a line from M, to
M, and a line from Mj to M3. Now, suppose at scan Sj, there are two measurements,

Ms and M. Four possible tracks at scan Sy are?:

2The tracks listed here are, by no means, the only tracks possible. They are just four of many.
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e T, with measurements M, M5, Mj
e T, with measurements My, My, Mg
e T; with measurements M,, My, M5, and

e T, with measurements My, M3, Mg,
and two possible hypotheses are:

e H, with tracks T3 and T}, and

e H, with tracks T and Ts.

At this scan, the tracks contain three measurements, and the hypotheses will have
different scores. If Hj is now the best hypothesis, a line will be drawn from Mj to
My and another line from M, to Mg. Thus, the resulting graph will have a line from
M, to M, to Mg and a line from M, to M3 to Ms even though the best hypothesis
after scan Sj says there should be a line from M, to M3 to My and a line from M, to
M, to M.

Therefore, the graph does not show the tracks of the best hypothesis at the end of
the simulation; it shows a steady progression of the tracks from the best hypothesis

at each scan.

A. Base Case

Figure 5-6 shows ten breakup pieces fanning out after the fifth scan. With no noise
corrupting the measurements, the track initiation and breakup track initiation proce-
dure as described in Section 4.2.2 suffices to give the exact AV for each breakup piece.
Thus, the predicted positions of the breakup pieces fall on top of the measurements.

Looking at the best hypothesis at the end of this tracking period in Figure 5-12, the
breakup pieces have indeed been identified as breakup tracks rather than independent
tracks. The number labelled as “orig:” next to each breakup track refers to the last
measurement of the original track from which the breakup piece spawned. This case
demonstrates that the target breakup scenario in its simplest form can be handled

by this tracker.
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B. Crossing Tracks

The two tracks which cross in the second scan have been identified as two independent,
tracks that cross. Adding target breakup detection has not messed up the tracking
of independent tracks. Figure 5-7 shows these two tracks crossing near the bottom of
the graph with one track breaking up at a later time.

In the best hypothesis of Figure 5-13, track 1 contains all the odd numbered
measurements up until the breakup time, and track 4 all the even numbered mea-
surements up until the breakup time. This is how the data was generated, so this

scenario has been tracked correctly.

C. Continuing vs. Breakup Tracks

The breakup pieces in this simulation are not far away from the independent tracks
as in case B as can be seen in Figure 5-8. At no scan during the simulation does the
breakup affect the tracking of the independent tracks. The latter half of the indepen-
dent tracks were not mistaken for breakup tracks because of the strong correlation
those measurements had with the established independent tracks.

The final best hypothesis of this simulation, as shown in Figure 5-14, is indeed a

collection of nine continuing tracks and five breakup tracks.

D. Independent vs. Breakup Tracks

An independent track has more degrees of freedom than a breakup track hecause an
independent track is not constrained to originate from some already existing track.
The independent tracks that begin at tg and tg,, are not identified as breakup
tracks by the tracker since no AV from the original track would allow these tracks to
propogate upwards as they do in Figure 5-9 (the two trajectories on the left). It is
difficult to discriminate the tracks from one another and to tell the time of when the
tracks have formed in Figure 5-9, so Figure 5-10 plots the same tracks on different
axes, elevation vs. time.

The independent tracks that start at time g and tpg., are not considered breakup
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tracks as the hypothesis listing, Figure 5-15, shows.

E. False Alarms

There are four simulations run in this set.
e F1. 5 FA’s Base case with five false alarms,
e E2. 10 FA’s Base case with ten false alarms,
e E3. 15 FA’s Base case with fifteen false alarms.
e F4. 20 FA’s Base case with twenty false alarms.

Figure 5-11 shows the result of case E1, and as can be seen, it is too messy to tell
much about what is happening; however, the breakup tracks along the upper right of
the graph seem to be identified correctly.

The list of hypotheses and tracks of Figurz 5-16 do indeed show that breakup
tracks have been identified. Track 31, the original track in the scan, contains the
measurements that were generated for it, as do the breakup tracks that spawn from
it. Notice that some of the false alarms have been hypothesized to be two-point lost
tracks. As mentioned previously in Section 3.3.1, describing two measurements as a
two-point lost track is indistinguishable from describing it as two false alarms.

As more false alarms are added at every scan, as in cases E2, E3, and E4, the
tracker will eventually begin to err because the intermediary pruning that occurs,
since the maximum number of hypotheses ever kept is 1000, will begin to prune some
of the correct hypotheses. Simulation E2 tracks correctly until scan 7, after which
the correct hypothesis gets inadvertantly pruned by the intermediary pruning process.
Simulation E3 tracks less scans correctly than E2, and by the time there are twenty

false alarms per scan, as in E4, only four scans are tracked correctly.
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5.2 Pruning Comparison Simulations

Pruning Method 2 keeps Ny = 500 hypotheses per scan. Pruning Method 3 keeps 10

hypotheses per scan unless it is necessary to keep more.

F1. Pruning Comparison with Data of Case B

Table 5.1 shows the number of hypotheses kept after each scan dependent on the

pruning method chosen.

Scan [ Method 2 | Method 3
1 7 7
2 87 10
3 500 10
4 500 10
5 500 10
6 500 10
7 500 10
8 500 10
9 500 20

Table 5.1: Pruning Comparison for Simulation F'1

Although Ny of Method 2 could have been chosen to be 20 since that is che
largest number of hypotheses kept by Method 3, there is no way to know beforehand
how many hypotheses to keep after each scan. Since breakup spawns several hreakup
tracks that have the same score initially, a large value for Ny was chosen, although

in this case, that large number was unnecessary.

F2. Pruning Comparison with Data of Case C

Table 5.2 shows the number of hypotheses kept after each scan dependent on the
pruning method chosen.

In this case the choice of Ny = 500 for Method 2 is not large enough to detect
target breakups. Furthermore, notice that similar performance of tracking is obtained

froin scan 1 to scan 12 by keeping less than 500 hypotheses.
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Scan | Method 2 | Method 3
1 500 10
9 500 10
10 500 18
11 500 28
12 500 289
13 500 852
14 500 1000
15 500 1000
16 500 1000
17 500 1000

Table 5.2: Pruning Comparison for Simulation F2

Figure 5-1: Conceptual Visualization of Simulation A
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Figure 5-2; Conceptual Visualization of Simulation B
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Figure 5-3: Conceptual Visualization of Simulation C
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Figure 5-4: Conceptual Visualization of Simulation D
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Figure 5-5: Conceptual Visualization of Simulation E

73




Elevation (rad) [.442,.458])

Azimuth (rad) [.235,.254]

Figure 5-6: Simulation A - Elevation vs. Azimuth
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Elevation (rad) [.442,.457)

Azimuth (rad) [.226,.255]

Figure 5-7: Simulation B - Elevation vs. Azimuth

75




Elevation (rad) {1 078,1.092]

S-8-u-8-0e

Azimuth (rad) {-.208,-.189]

Figure 5-8: Simulation C - Elevation vs. Azimuth
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Elevation (rad) [1.074,1.094]

Azimuth (rad) [-.265,-.187]

Figure 5-9; Simulation D - Elevation vs. Azimuth
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Elevation (rad) [1.074,1.094]

Time (sec) [-52.450,1.450]

Figure 5-10: Simulation D - Elevation vs. Time
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Elevation (rad) [.442,.454)

Azimuth (rad) [.227,.250)

Figure 5-11: Simulation E1 - Elevation vs. Azimuth
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Results of scan 9

Number of Tracks: 22

Number of Hypotheses: 10

Track Summary

Track Observations Status Quality

1 ] ¢+ 2 3 4 5 -1 17 -1 39 -1 C 0,00000
2 | 6 -1 28 -1 80 0 O O 0 O B 0.00000 orig: &
3 I 1+ 2 3 4 -1 6 17 28 39 50 c 0.00000
4 |} 1 2 3 4 5 6 17 28 39 50 c 0.00000
5 | 5 7 18 29 40 51 0 O O O C 0.00000
6 | 7 18 29 40 52@ 0 O O O O B 0.00000 orig; 6
7 | 6 8 19 30 41 52 0 0 O0 O C 0.00000
8 | 8 19 30 41 52 0 0 O O O B 0.00000 orig: 6
9 | 6 9 2 31 42 83 0 0 O0 O} C 0.00000
10 | 9 20 31 42 53 0 O O O O] B 0,00000 orig: 5
11 | 10 21 32 43 54 0 O 0 O O B 0.00000 orig: 5
12 | 5 11 22 33 44 556 0 0 O O C 0.00000
13 | 11 22 33 4 65 0 0 0 O O B | 0.00000 orig: 5
14 | 12 23 34 45 58 0 O O O O B | 0.00000 orig: 5
156 | 5 13 24 35 46 57 0 0 O O C 0.00000
16 | 13 24 3 46 57 0 0 O O O B 0.00000 orig: 5
17 | 6 14 25 36 47 68 0 0 0 O C 0.00000
18 | 14 25 36 47 58 0 O O O O B 0.00000 orig: 5
19 | 5 15 26 37 48 59 0 0 0 O 4 0.00000
20 | 15 26 37 48 59 0 0 O O O B 0.00000 orig: 5
21 | 5 16 27 38 49 60 0 0 0 O c | 0.00000
22 | 16 27 38 49 60 0 O O O O B | 0.00000 orig: 5
Hypothesis Summary
Hypochesis Tracks Cost  Complexity
1 4 6 8 10 11 13 14 16 18 20 76.00000 38.
2 0 0 0 0 0 0 0 O0 O
2 1 2 6 8 10 11 13 14 16 18 84,00000 42,
20 2 0 0 0 0 0 0 o0 O
3 3 21 6 8 10 11 13 14 16 18 84,00000 42,
2 0 0 0 0 0 0 0 o0 O
4 3 9 6 8 11 13 14 16 18 20 84,00000 42,
2 0 0 0 0 0 0 0 o0 O
6 s 19 6 8 10 11 13 14 16 18 84,00000 42,
2 0 0 0 0 0 0 0 o0 O
6 3 12 6 8 10 11 14 16 18 20 84.00000 42,
2 0 0 0 0 0 0 0 0 O
7 3 7 6 10 11 13 14 16 18 20 84.00000 42,
2 0 0 0 0 0 0 0 0 O
8 3 15 6 8 10 11 13 14 18 20 84.00000 42,
2 0 0 0 0 0 0 0 O0 O
9 3 17 6 8 10 11 13 14 16 20 84.00000 42.
2 0 0 0 0 0 0 0 o0 O
10 | 3 6 8 10 11 13 14 16 18 20 84.00000 42,
| 2 0 0 0 0 0 0 0 0 O

Figure 5-12: Final scan summary of simulation A
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Results of scan 9

Number of Tracks: 46
Humber of Hypotheses: 20
Track Summary

Track Observations Status Quality
f | 1 3 5 7 9 11 23 35 47 59 | C | 0.00000
2 | 1 4 5 7 9 11 23 36 47 69 | C | 3.42175
3 ] 2 3 6 8 10 12 24 36 48 601 C | 3.50653
4 | 2 4 6 8 10 12 24 36 48 60| C | 0.00000
5§ | 13 26 37 49 61 0 O O O O/ B | 0.00000 orig: 9
6 | 18 25 37 4 61 0 O O O O] B | 1.65867 orig: 9
7 J] 13 30 37 49 616 0 O O O O} B | 0.37682 orig: 9
8 ) 18 30 37 49 61 0 0 O O O] B | 1.80062 orig: 9
9 | 13 25 42 49 61 0 O0 O O O B | 0.83632 orig: 9
10 | 18 25 42 49 61 c 0o o o o B | 1.91755 orag: 9
11 | 13 30 42 49 61 0 O O O O B | 1.06921 orig: 9
12 | 18 30 42 49 61 0 0 O o0 O] B | 1.91566 orag: 9
13 | 13 26 37 54 61 0 O O O 0| B | 1.36764 orig: 9
14 | 18 25 37 54 61 0 O O O O} B | 2.02308 orig: 9
16 | 13 30 37 54 68 0 0 O O O] B | 1,56757 orig: 9
16 | 18 30 37 54 68 0 0 O O O} B | 1.98814 orig: 9
17 | 13 256 42 54 61 0 O O O O| B | 1.79980 orig: 9
18 | 18 25 42 54 6t 0 0 O O O B | 1.87780 orig: 9
19 | 13 30 42 54 61 0 O O 0 O} B | 1.85580 orig: 9
20 | 18 30 42 54 61 0 0 O O 0| B | 1.69892 orig: 9
21 | 14 26 38 50 62 0 0 0 0 O] B | 0.00000 orig: 9
22 | 15 27 39 51 63 0 O O O O B | 0.00000 orig: 9
23 | 16 28 40 52 64 0 O O O O| B | 0.00000 orig: 9
24 ] 17 29 41 63 64 0 O O O O] B | 4.26414 orig: 9
25 | 16 28 40 52 66 0 O O O 0| B | 4.26412 orig: 9
26 | 17 29 41 53 65 0 0 0 O Ol B | 0.00000 orig: 9
27 | 13 26 37 49 66 0 0 O0 0 O| B | 1.69892 orig: 9
286 | 18 25 37 49 66 0 O0 0 0 Ol B | 1.85581 orig: 9
29 | 13 30 37 49 66 0 0 O O 0| B | 1.87779 orig: 9
30 | 18 30 37 49 66 0 O0 0 O O] B | 1.79981 orig: 9
31 | 13 26 42 49 66 O O 0 0 O} B | 1.,98814 orig: 9
32 | 18 26 42 49 66 O 0 O O 0| B | 1.567568 orig: 9
33 | 13 30 42 49 66 0 0 O O O | B | 2.02308 orig: 9
34 | 18 30 42 49 66 0 0 0 o0 O B | 1.36764 orig: 9
35 ] 13 25 37 54 66 0 0 o0 O o0 B | 1.91568 orig: 9
36 | 18 25 37 54 66 0 0 0 o0 O0| B | 1.06921 orig: 9
37 | 13 30 37 54 66 0 O o0 O o0 B | 1.91754 orig: 9
3 | 18 30 37 54 66 0 0 O0 O oO| B | 0.83633 orig: 9
3 | 13 25 42 54 66 0 0 0 O oO0| B | 1,80061 orig: 9
40 | 18 256 42 54 66 0 O 0 o0 o0 B | 0.37682 orig: 9
41 | 13 30 42 54 66 0 0 o0 o0 o0 B | 1.65868 orig: 9
42 | 18 30 42 54 66 0 0 O O o1 B | 0.00000 orig: 9
43 | 19 31 43 6 67 0 0 O o0 0| B | 0.00000 orig: 9
44 | 20 32 44 56 68 0 O O O O} B | 0.00000 orig: 9
46 | 21 33 45 57 €9 0 O O O O B | 0.00000 orig: 9
46 | 22 34 46 58 70 0 0 O o0 o0 B | 0.00000 orig: 9
Hypothesis Summary
Hypothesis Tracks Cost  Complexity
i | 1 4 5 21 22 23 26 42 43 44 | 90.00000 45.
| 46 46 0 0 0 O 0 0 O o0 |
2 | 1 4 7 21 22 23 26 40 43 44 | 90.75364 45.
| 46 46 0 0 0 0 0 0 o0 oI
3 | 1 4 9 21 22 23 26 38 43 44 | 91.67266 45.
| 45 46 0 O O O O0 0 0 O |
4 | 1 4 11 21 22 23 26 36 43 44 | 92,13842 45,
| 46 46 0 0 0 0 0 0 o0 oI
5 I 1 4 13 21 22 23 26 34 43 44 | 92.73529 45,
| 46 46 0 ©0 0 0 0 o0 o0 o0 |
[ | 1 4 15 21 22 23 26 32 43 44 | 93.135156 45,
| 45 46 0 0 0 0 O0 0 oO0 oI
7 | 1 4 41 21 22 23 26 6 A3 44 | 93.31734 45,
| 46 46 0 0 0 0 O O 0 0|
8 I 1 4 27 21 22 23 286 20 43 44 | 93.39784 45.
| 45 46 0 0 0 © 0 0 0 oI
9 Il 1 4 17 21 22 23 26 30 43 44 | 93.59961 45.
| 456 46 0 O 0 0 0 o o0 o
10 | 1 4 39 21 22 23 26 8 43 44 | 93.60124 45,
| 46 46 0 0 O 0 0 0 0 o0

Figure 5-13: Abridged final scan summary of sirmulation B
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Results of scan 18

Number of Tracks: 845
Number of Hypotheses: 1000
Track Summary

Track Observations Status Quality
1 1 10 18 28 37 46 55 64 73 82 | 0.00000
91 105 119 133 147 161 175 189 203 0 |
3 2 11 20 29 38 47 56 65 74 83 c | 0.00000
| 92 106 120 134 148 162 176 190 204 O | |
4 3 12 21 30 39 48 S7 66 75 84 | C | 0.00000
93 107 121 135 149 163 177 191 205 0 |
[ 4 13 22 31 40 49 58 67 76 85 c | 0.00000
94 108 122 136 150 164 178 192 206 O |
(] 5 14 23 32 41 S50 59 68 77 86 c | 0.00000
95 109 123,137 151 165 179 193 207 O |
7 6 15 24 33 42 51 60 69 78 87 c | 0.00000
| 96 110 124 138 152 166 180 194 208 O |
8 | 7 16 25 34 43 52 61 70 79 88 c | 0.00000
97 111 125 139 153 167 181 195 209 O |
9 8 17 26 35 41 53 62 71 80 89 c | 0.00000
98 112 126 140 154 168 182 186 210 O |
10 9 18 27 36 45 54 63 72 81 90 c | 0.00000
| 99 113 127 141 155 169 183 197 211 O |
11 | 100 114 128 142 156 170 184 198 212 0 B | 0.00000 orig: 82
429 | 101 115 129 143 157 171 185 199 213 O B | 0.00000 orig: 82
436 102 116 130 144 158 172 186 200 214 0 B | 0,00000 orig: 82
437 103 117 131 145 159 173 187 201 216 0| B | 0.00000 orig: 82
845 104 118 132 146 160 174 188 202 216 O | B | 0.00000 orig: 82

Hypothesis Summary

Hypothesis Tracks Cost  Complexity
1 | + 3 4 5 6 7 8 9 10 168,00000 79,

| 429 436 437845 O0 O 0 O O

[
o r

Figure 5-14: Abridged final scan summary of simulation C
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Results of scan 49
Number of Tracks: 38
Number of Hypotheses: 38
Track Summary
Track Observations Status Quality
2 1 3 65 7 9 11 13 156 17 19 c | 0,00000
22 31 40 49 58 67 76 85 94 103 |
112 121 130 139 148 157 166 175 184 193
202 211 220 229 238 247 256 265 274 283
292 301 310 319 328 337 346 355 364 373
7 2 4 6 8 10 12 14 16 18 20| C 0.00000
23 32 41 50 59 68 77 86 95 104 |
113 122 131 140 149 168 167 176 185 194
203 212 221 230 239 248 257 266 275 284
293 302 311 320 329 338 347 356 365 374
11 21 24 33 42 51 60 69 78 87 96 C 0.00000
105 114 123 132 141 150 159 168 177 186
195 204 213 222 231 240 249 258 267 276
285 294 303 312 321 330 339 348 357 366
3% o0 0 O O O O 0 0 O
12 25 34 43 652 61 70 79 88 97 106 c 0.00000
115 124 133 142 151 160 169 178 187 196
205 214 223 232 241 250 259 268 277 286
295 304 313 322 331 340 349 358 367 376
13 26 35 44 53 62 71 80 89 98 107 B 0.00000 orig: 19
116 126 134 143 152 161 170 179 188 197
206 215 224 233 242 251 260 269 278 287
296 305 314 323 332 341 350 359 368 377
21 27 36 45 54 63 72 81 90 98 108 B 0.00000 orig: 19
117 126 135 144 153 162 171 180 189 198
207 216 225 234 243 252 261 270 279 288
297 306 315 324 333 342 351 360 369 378
28 37 46 55 64 73 82 91 100 109 B 0.00000 orig: 19
118 127 136 145 154 163 172 181 190 199
208 217 226 235 244 253 262 271 280 289
298 307 316 325 334 343 352 361 370 379
33 29 38 47 56 65 74 83 92 101 110 B 0.00000 orig: 19
119 128 137 146 155 164 173 182 191 200
209 218 227 236 245 254 263 272 281 290
299 308 317 326 335 344 353 362 371 380
38 30 39 48 57 66 75 84 93 102 111 B 0.00000 orig: 19
120 129 138 147 156 165 174 183 192 201
210 219 228 237 246 255 264 273 282 201
300 309 318 327 336 345 354 363 372 381

32

Hypothesis Summary
Hypothesis Tracks Cost  Complexity
1 | 2 7 11 12 13 21 32 33 38 0| 88.00000 44.

Figure 5-15: Abridged final scan summary of simulation D
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Results of scan 9

Number of Tracks: 58
Number of Hypotheses: 42
Track Summary

Track Observations Status Quality
1 | 6 -1 -1 o 0 0 0 0 0 F ! 0.00000
2 | 7 -1 -1 0 0 0 0 0 O O F 0.00000
3 g8 -1 -1 0 0 0 O 0 0 O F 0,00000
4 51 -1 -1 -1 0 0 0 0 O L 0.00000
5 4 12 -1 -1 -1 0 0 0 0 O L | 0.00000
6 4 -1 -1+ 0 0 0 0 o0 0 O F 0.00000
7 10 16 -1 -1 -1t 0 0 0 0 O L 0.00000
9 13 17 -1 -1t -4+ 0 0 O O O L 0.00000
0 | 19 -1 -1 -1 0 0 0 0 0 O D 0.00000
14 2 2 -1 -1 -1 0 0 0 0 0 L 0.00000
16 23 -1 -1 0 0 0 0 O 0 O F 0.00000
16 24 -1 -1 0 0 0 O0 0 0 O F 0,00000
18 18 26 -1 -1 -1 0 O O 0 O L 0.00000
19 26 -1 -1 0 0 0 0 0 0 O F 0.,00000
21 8 -1 .1 0 0 0 0 O O O F 0.00000
22 40 -1 -1 -1 0 0 O 0 O0 O D 0.00000
23 4 -1 -1. -1 0 O O O O O D 0.00000
24 42 -1 -1 -1 0 0 0 0 0 0 D 0.00000
25 54 -1 -1 0 ¢ 0 O 0 0 O F 0,00000
26 66 -1 -1 0 O O O 0 0 O F 0,00000
27 39 57 -1 -1t 0 0 0 0 O O T 0,00000
28 68 -1 -1 0 0 O O 0 0 O B 0,00000 orig: 27
29 70 -1 0 0 0 O O O 0 O P 0,00000
30 66 74 -1 0 0 O O O 0 O T 0.,00000
31 1 2 3 9 156 21 27 43 59 75 C 0.00000
32 28 44 60 76 0 O O O O O B 0,00000 orig: 21
33 29 45 61 77 0 O O O O O B 0,00000 orig: 21
34 30 46 62 78 0 0 0 O 0 O B G,00000 orig: 21
41 31 47 63 79 0 0 0 O 0 O B 0.00000 orig: 21
42 32 48 64 80 O 0 O O O O B 0,00000 orig: 21
43 33 49 65 81 0 0O O O Vv O B 0.00000 orig: 21
44 34 50 66 82 0 0 0 0 0 O B 0.00000 orig: 21
45 35 61 67 83 0 O O O O O B 0,00000 orig: 21
46 3 52 68 84 0 O O O O O B 0.00000 orig: 21
53 37 53 69 85 0 0 0 O O O B 0.00000 orig: 21
54 ge o o0 O O O O O O O v | 0.00000
§5 72 87 0 0 O O 0 O O O T | 0.00000
56 g8 0 0 0 O 0 0 0 0 O U 0.00000
67 | 73 88 0 O 0O O O O O O T 0.00000
58 | 71 80 0 0 O O O O O O T 0.00000
Hypothesis Summary
Hypothesis Tracks Cost  Complexity
1 | 3 6 4 1 2 3 7 9 6 18 518,00000 259,
| 10 14 15 16 19 32 33 34 41 42
| 43 44 45 46 53 21 27 22 23 24
| 25 30 26 28 29 58 556 67 54 b6

Figure 5-16: Abridged final scan summary of simulation E1
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Chapter 6

Conclusions and Future Work

In this thesis, the problem of target breakup detection has been defined, given a
solution, and successfully incorporated into the multiple hypothesis tracking formu-
lation. Simulations have been performed to test out possible scenarios which the
tracker should be able to handle, including correctness of identifying breakup and
non-breakup tracks and implementation issues such as pruning. However, these sim-
ulations, by no means have demonstrated all aspects of the tracker. Some other things

worth looking at are:

o Ability to handle noise in the scan volume. This includes the density of false
alarms present in the scan volume and noisy measurements. A Monte Carlo test
would be most appropriate for determining the “noise level” that this tracker

can handle.

o Different combinations of difficult tracks. The simulations included crossing
tracks and independent vs. breakup track scenarios. Some more possibilities
include breakup tracks that also break up into more breakup tracks, breakup
tracks from two separate origins that cross, and tracks with missing measure-

ments,

® Real Data. The data that the tracker was tested on was generated by the
assumed model of the dynamics of a target. This assumed model does not

match exactly the real model of a target, and thus, this tracker needs to be

85



tested on real data to prove its worth. After all, that is the final goal of this

thesis, to track real targets and detect breakups of real targets.

There are many other scenarios to simulate to observe the performance of the tracker,
but the three mentioned above come immediately to mind.

One of the major assumptions imposed on targets was that targets cannot exhibit
any maneuvers. In this way, it was possible to distinguish an independent track
from a breakup track because only breakup tracks exhibited a AV in the middle of
tracking. So, a natural extension for the target breakup detection algorithm presented
in this thesis is to handle target breakup detection when targets have the ability to
maneuver. However, thinking about this more closely, it seems that target breakup
detection automatically detects target maneuvers. Maneuvers can be thought of as
an independent track that breaks up into exactly one breakup piece and where the
original independent track ends at the time of breakup. This is exactly the hypothesis,
H,, presented in the beginning of Section 3.1. Rather than identifying a track with
a single breakup as a target breakup, if the tracker can discriminate this special
case of breakup as a target maneuver, then target maneuverability has been handled.
Whether the target breakup model is a good model for target maneuvers needs to be
explored further in order to justify the above presumption about maneuver detection.

One problem with the implementation of the tracker, whose code is printed in
Appendix B, is that the code runs much too slowly to be used in a real tracking
system which requires real-time tracking. The simulated data returns a scan every
second. Fifty seconds of data where nine tracks are present in the scan volume takes
over five hours to analyze. Thus, optimization for speed is crucial for the usefulness
of this algorithm. All is not lost because the code of Appendix B is not the most
optimal implementation of this tracker and can be improved; furthermore, better
hardware, such as supercomputers, would definitely help execution time. A good
pruning algorithm will definitely lessen execution time; thus, coming up with a better
pruning algorithm would be a good start to improving the implementation of the

algorithm.
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Appendix A

Derivation of Akaike’s Criterion

The derivation of Akaike’s criterion that follows has been taken from [1]. The basic
idea is to minimize the Kullback-Leibler mean information since it is a measure of the
deviation between two probability distributions, The Kullback-Leibler mean infor-
mation takes only positive values, and a value of zero implies that the two probability
distributions are equal. Thus, considering N independent observations of a random
variable, 1, T3, ...,Zn, which could have been generated by one of the several pro-
jected probability densities, f(x | 8) parameterized by the vector # but which actually
has a “true” probability density of g(z), the best choice of the parameter 8 is

-~

0 = argymin I(g; f(- | 9)) (A1)

where

I(a;b) = /a(x) log Z((—:)) dz

is the Kullback-Leibler mean information between two densities, a(z) and b(z), Thus,
f(z | ) is the density that most closely matches the true density g(z). However, g(z)
is unknown so that the minimization in Eqn. A.1 must be performed without the
knowledge of g(z). This can be done, as will be demonstrated shortly.

Define the function

S(c;d) = / o(z) logd(z) dz
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for some densities, ¢(z) and d(z). Then,
I(g; f(-10)) = S(gig) — S(g; £(- 1 9)) .
Thus, Eqn. A.1 can be reduced to
6 = arggmax S(g; f(- | 6)) (A.2)

since S(g; g) does not change with different 6.
Returning back to the N-sequence, z,,z,,...,zy, the average log-likelihood, given

that the density of each z; is f(z; | 6), is

1 N
N';]ng(—’ﬂi |6) .

If N approaches infinity, then

v
S(6/10) = Jim 53 log (z:16) (A3)

Thus, the maximum likelihood estimate of 8, gotten by plugging Eqn. A.3 for finite
N into Eqn. A.2) is

X N
MLE 6 = arggmax Zlogf (zi ] 9) (A.4)

for some N. Note that the most natural estimate of S(g; f(- | 8)), the average log-
likelihood, does not depend on g(z). Thus, 6 can be found without the knowledge of
9(z).

Consider the situation where g(z) = f(z | 6p) and adopt the new notation, I(6y; #)
and S(6o;8), for I(g; f(- | 8)) and S(g; f(- | 8)) repectively. When @ is sufficiently
close tu 6y, I(6p;6) can be approximated by

1
1(6;6) =~ (5)" 6 — 6o
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where
2
= (0 - BO)TJ(G — 6)

Jo-a],

and J is the Fisher information matrix defined by

log /(X |6) Dlog (X |0),
26; a0,

Jij = E{

where J;; denotes the (z,7)% element of J and 6; the 2 component of §. Thus,
2
0 — 6

, which is the variation of S(g; f(- | 8)), measures the
J
deviation of the distribution f(z | 6) from the “true” distribution f(z | 6p).

the quantity, (3)

Now, consider the situation where the parameters § € © are restricted to a sub-
space of O, say ©, of lower dimension than ©. Furthermore © does not include 6y,

and the dimension of © is k. Let £ be the estimate from Eqn. A.2,

§ = argomax S(g; f(- | 9)) ,

restricted to the subspace ©, and let § be the maximum likelihood estimate from

Eqn. A4,
- 1 X
6= argomax > log f(zi | 6) ,

i=1
also restricted to the subspace ®@. Then, it can be shown that the distribution of
2

N| §-
¢ J

tions by a chi-square distribution with degree of freedom, &. Thus,

for sufficiently large N is approximated under certain regularity condi-

Bul2NI0)) = ExlN| 00 [
~ BV 0-£+e-0 )
2 2
= BalV| ¢ | + V] e-a )

2 2
EulN| 6 | 1+ Bl £~ 00 | |

where E,, denotes the mean of the approximate distribution, The first term on the

right hand side has a chi-square distribution, and the second term is constant with
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regards to E,,. Thus,

X 2
Ewl2NIQui0)] = N| 6~y |+ (A5)

k, as mentioned before, is the dimension of © and can be interpreted as the number
of independently adjusted parameters for the maximization of the likelihood,

When there are several models, the one to adopt as the “correct” model is the one

2
that minimizes E[I(fo;8)]. Thus, an estimate for N|| £ — g, || is necessary. Since it
J

2 -~
was a chi-square distribution, v N(6—¢&) is a Guassian
J

was assumed that NV

o-¢

distribution with mean zero and variance J!.

= aNI(0n6)

= ( (00700) (0015))
= Zogf z; | 6) — Zlogf(xilf))

N" £ — 0,

2

N N .
= 2() log f(z: | 60) — D _log f(z: | 0)) + k
i=1 i=1

where the last line obtained an added factor of k since replacing £ by 6 introduced a

downward bias. Since it is the minimum of E[I(6p; )] that is of interest, the term,
2

>N log f(zi | 6o), can be discarded. Then, plugging in the estimate of N “ £ — 6

into Eqn. A.5, Akaike’s criterion is obtained:
AIC(0) = (-2) log(mazimum likelihood) + 2k (A.6)

where the maximum likelihood is X, log f(z; | §). Thus, the f that minimizes

AIC(f) is the best estimate of the model.
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Appendix B

FORTRAN Code Implementing
MHT with Target Breakup

Detection

The following code must be compiled in FORTRAN 77 with a file called “metric.p”
and the IMSL math library. The file and software package are available at MIT Lin-

coln Laboratory Group 32.

- e o e o o e

Top Level Main Routine
for
Mulitple Hypothesis Tracking

#»#+ Global Variables ##s#

IMPLICIT REAL#8 (A-H,0-2)

——

* %R REERRER RS

* Parameter description:
N

M

D2R

R2D

pi
maxLength
max0bs
maxSize
maxTrack
IbigPrune
IlittlePrune
nScan

dimension of state vector

dimension of measurement vector

conversion constant from degrcus to radians
conversion constant from radians to degrees
constant for pi

maximum number of observations for a track
maximum number of observations stored
maximum number of tracks in a hypothesis
maximum number of tracks in the tracklist
maximum number of hypothesis ever stored
maximum number of hypothesis stored after scan
tracks combined after nScan observations same

Pm———

* Common bl

PARAMETER (N=6,M=3,D2R=,017463293D0,R2D=1D0/D2R,

pi=3.14156926636897932D0, maxLength=100,max0bs=1000,
maxSize=50,maxTrack=10000,1bigPrune=1000,IlittlePrune=10,

nScan=5)

o o e e O e Y e e e e e o B




Idebug
Iunit
IDATA
IDBUGO
IPICT
IMODEL
trackList
gatesize
distance
Q,R
V,Vin
GBR,Xs

sensorTime

L 25 20 28 BE B R BE BE BN K B R S K 3

different levels of printing debug information
Observations data (l-radians O-degrees)

data file (input)

debug file (output)

pict file (output)

model file (output)

array of tracks

size of gate

distance between predicted and actual position |
intensities for model error and measurement error |
innovations covariance and inverse

Ground based radar location in LLA coordinates
and ECI coordinates at initial time

time of sensor

COMMON /CDEBUG/Idebug

COMMON /CUNITS/Iunit

COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL
COMMON /CTRACKLIST/trackList,numTracks
COMMON /COBSERVATIONS/Observations,numQbs

COMMON /CGATE/
COMMON /CMODEL,

j

atesize, distance
Q(N,N), R(M,M), P(N,N), V(M,M), Vinv(M,M)

COMMON /CSENSOR/GBR(M), Xs(N), sensorTime

DIMENSION Observations(maxObs,M+1)

STRUCTURE /TRACK/

CHARACTER status

INTEGER length,using,points(maxLength),nev,misses

REAL#*B score,predState(N) ,updState(N),predP(N,N) ,updP(N,N)

END STRUCTURE
RECORD /TRACK/trackList(maxTrack)
INTEGER numTracks

STRUCTURE /HYPOTHESIS/
INTEGER numTracks,hypoTracks(maxSize)
REAL*8 score,complexity ! score = likelihood + complexity
END STRUCTURE
RECORD /HYPOTHESIS/oldHypos(IbigPrune)

INTEGER firstObsIpScan,numObsInScan,sloop,num0OldHypos

INTEGER I

REAL#8 aveCurTime,avePrevTime

»+»s Begin Main Routine s»s»

CALL FileDef
CALL EARTHB4

s»#»s Program Initialization »#es
CALL InitialData(numDldHypos,oldHypos,numScan)
CALL MakePictFile(1,num0bs,oldHypos)

D0 800 sloop = 1,numScan
IF (Idebug .GE, 1) WRITE (IDBUGO,*) ’Beginning Scan 8’,sloop
WRITE (+,*) ’Processing Scan 8’,sloop
ss+s Read Observations »#s=
first0bsInScan = numObs + 1
READ (IDATA,*) numObsInScan
pumObs = numObs + numObsInScan
DO 100 I = firstObsInScan,num0Obs
100 CALL ReadObservation(I)

s+s+ Move the sensor to appropriate ECI coordinate ##es

avePrevTime

= sensorTime

aveCurTime = 0.DO
DO 200 I = firstObsInScan,numObs
200 aveCurTime = aveCurTime + Observations(I,M+1)

aveCurTime

aveCurTime/numObsInScan

CALL MoveSensor(aveCurTime)

s2++ Predict next target states s++s
DO 300 I = 1,numTracks
IF (trackList(I).status .NE. ’U’) THEN
CALL TimeUpdate(I,avePrevTime,aveCurTime)

END IF
300 CONTINUE

++s+ Data Correlation and Make hypotheses #sse
CALL DoScan(firstObsInScan,num0bs,oldHypos,

num01ldHypos ,avePrevTime,aveCurTime)

CALL MakePictFile(firstObsInScan,numQbs,oldHypos)

#»#s» Print results from this scan s»ss

92



WRITE (IDBUGO,s) ’ °’
WRITE (IDBUGO,*) ’Results of scan ’,sloop
CALL PrintSummary(oldHypos,num01dHypos)

800 CONTINUE

CLOSE(IDATA)
CLOSE(IDBUGO)
CLOSE(IPICT)
CLOSE(IMODEL)

STOP
END !sss¢ Main Routine #%e»

SUBROUTINE FileDef

COMMON /CDEBUG/Idebug
COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL

IDATA = 10 !s+++ Contains all of the observation data »#s*
IDBUGO = 11 !#s#» Contains debug info LLL L]
IPICT = 12 t»»#* Contains info for picture generator s
IMODEL = 13 !#+s+ Contains sensor and Kalman filter info ##s»

OPEN (UNIT=IDATA,FILE=’"MHT.DATA’,STATUS='0LD’)

OPEN (UNIT=IDBUGO,FILE=’IDBUGO,OUTPUT’ ,STATUS="NEW’)
OPEN (UNIT=IPICT,FILE='PICT,DATA’,STATUS='NEW’)

OPEN (UNIT=IMODEL ,FILE=’MODEL,DATA’,STATUS=’0LD’)

RETURN
END {ssss FileDef #wss

et +
L] SUBROUTINE InitialData - get data for initial tracks, sensor, and |
. Kalman filter noise matrices |
P R +

SUBROUTINE InitialData(num0ldHypos,oldHypos,numScan)
IMPLICIT REAL#8 (A-H,0-2)

PARAMETER (N=6,M=3,D2R=,017453293D0,R2D=1D0/D2R,
pi=3.1415926636897932D0, maxLength=100,max0bs=1000,
maxSize;SO,maxTrack=10000,IbigPrune=1000,IlittlePrune=lO,
nScan=b

PARAMETER (DnewTarget = 5.,D-2, DfalseTarget = 5.,D-2)

COMMON /CDEBUG/Idebug

COMMON /CUNITS/Iunit

COMMON /CFILES/IDATA, 1DBUGO, IPICT, IMODEL

COMMON /CTRACKLIST/trackList,numTracks

COMMON /COBSERVATIONS/Observations,numibs

COMMON /CGATE/gatesize, distance

COMMON /CMODEL/Q(N,N), R(M,M), P(N,N), V(M,M), YVinv(M,M)
COMMON /CSENSOR/GBR(M), Xs(¥), sensorTime

DIMENSION Observatinnc(maxObs,M+1)

STRUCTURE /TRACK/
CHARACTER status
INTEGER lengch,using,polnts(maxLe;%th),neu,misses
REALs8 scrre,predScate(N),updSvate(N),predP(N,H,updP(N,N)
END STRUCTURE
RECORD /TRACK/trackList(maxTrack)
INTEGER numTracks

STRUCTURE /HYPOTHESIS/
INTEGER numTracks,hypoTracks(maxSize)
REAL*8 score,complexity
END STRUCTURE

RECORD /HYPOTHESYS/oldHypos(Ibighrune)

INTEGER I,J, numOldiypo>s
s34+ Reud in some debug parameters s+#++
READ (IDATA,s) Idebug
READ (IDATA,#) Iunit
READ {IDATA,+) censcrTine

s»s» Read in Kalman filter noise varjiances #vs»
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READ (IMODEL,+) ((Q(I,J),J=1,N),I=1,N)
READ (IMODEL,») ((R(I,J),J=1,M),I=1,M)
READ (IMODEL,s) ((P(I,J),J=1,N),I=1,N)

Read in sensor information **#»
CALL GetlInitialSensorState

Read in gatesize #*###
READ (IMODEL,+) gatesize
IF (Idebug .GE. g) THEN

WRITE (IDBUGO,*) ’Gatesize: ’,gatesize
END IF

Initialize Hypothesis List and Track List #«+s»

DO 100 I=1,IbigPrune
oldHypos(I) .numTracks = 0
oldHypos(I).complexity = ODO
oldHypos(I),.score = 0DO

DO 200 I=1,maxTrack
trackList(I).status =
trackList(I).length =
trackList(I).using = 0
trackList(I).new = 0
trackList(I).misses = O
trackList(I).score = 0DO

W
0

Read in first set of Observations and make each of them tracks ssss

numTracks = 0

READ (IDATA,*) numObs

DO 300 I=1,numQ0bs
CALL ReadObservation(I)
CALL MakeTrack(0,I)
trackList(I) ,using = 1 !###* this track is used by the initial s+ss

!###+ hypothesis seee

trackList(I),status = ’U’ !#s#* gince we assume a priori knovledge *#
oldHypos(1).score = oldHypos(1).score + trackList(I).score
oldHypos(1) .hypoTracks(I)=I
CONTINUE

oldHypos(1) .complexity = 7D0 # numObs

oldHypos (1) ,score = oldHypos(1),score + oldHypos(l).complexity

oldHypos(1) ,numTracks = numTracks

num0ldHypos = 1

Read in number of scans of data ssss
READ (IDATA,*) numScan

RETURN
END !##e¢+ InitialData #s»»

-

L2111

100

SUBROUTINE GetInitialSensorState
IMPLICIT REAL#8 (A-H,0-2)

PARAMETER (N=6,M=3,D2R=.017453293D0,R2D=1D0/D2R,
pi=3,1416926535897932D0, maxLength=100,max0bs=1000,
maxSize;SO,maxTrack=10000.IbigPrune=1000,IlittlePrune=10,
nScan=5

COMMON /CDEBUG/1debug

COMMON /CUNITS/Iunit

COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL
COMMON /CSENSOR/GBR(M), Xs(N), sensorTime

DIMENSION zeroVector(N)
REAL»8 OM
INTEGER IsenselUnit

Initialize some variables ss#»
DO 100 I=1,N
zeroVector(I) = 0DO
OM = ,72921151467D-4 !s#ss Earth rotation rate #se¢s

s»¢v Read in the vensor information ses+

READ (IMODEL,*) IsanseUnit ! 1 - radians 0 - degrees
READ (TMODEL,¢) (GBR(I),I=1,M)

eves Mzke appropriate conversions eess

1F (IsenseUpit .EQ. 0) THEN

GBR() = GBR(1)*D2R

GBR(2) = GBR(2)»D2R + OM¢sensorTime
EL3E
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GBR(2) = GBR(2) + OM#sensorTime
ENDIF

s»ss Calculate sensor state (LLA to ECI) #w»s
CALL XYZECI(zeroVector,Xs,GBR(1),GBR(3),GBR(2),1)

se»+ Debug output #e#+»
IF (Idebug .GE. 2) THEN
?ID

WRITE BUGD,#») ’-—==-—------------ssmoe-—omo-ooooomoo ’
WRITE (IDBUGO,+) ’Sensor : GDLat (rad) 32 ,GBR(1)
WRITE (IDBUGD,*) ’Location : ECEF Long (rad):’,GBR(2)
WRITE (IDBUGO,+) '’ ; Alt (km) :?,GBR(3)/1D3
WRITE (IDBUGO,*) ’Initial Time (s) ;? ,sensorTime
WRITE (IDBUGQD,#) ’----====m=m—-m——m-s==cmco—c———————o '

WRITE (IDBUGO,*) ’Sensor ECI state:’,(Xs(I),I=1,6)
WRITE (IDBUGO,#) '=---m-mmmmmmm=mmmmmmmm ;e ————mmmee e '
ENDIF

RETURN
END !#ss» GetInitialSensorState #e++s

. SUBROUTINE ReadObservation - read in an observation and put inte
. Observations(num)
B o e e e e e e o e

SUBROUTINE ReadObservation(num)
IMPLICIT REAL+#8 (A-H,0-2)

PARAMETER (N=6,M=3,D2R=,017453293D0,R2D=1D0/D2R,

. pi=3,1415926535897932D0, maxLength=100,max0bs=1000,

' maxSize;SO,maxTrack=lOOOO.IbigPrune=1000,Ili:tlePrune=10,
nScan=5

COMMON /CDEBUG/Idebug

COMMON /CUNITS/Iunit

COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL
COMMON /COBSERVATIONS/Observations,numObs

DIMENSION Observations(maxQbs,M+1)
INTEGER I,num

#ssx Read from file »»e»
READ (IDATA,*) (Observations(num,I),I=1,M+1)

»s#+ Convert to radians if in degrees ###*

IF (Iunit ,EQ, 0) THEN !###» read in as degrees
Observations(num,2) = Observations(num,2)+D2R
Observations(num,3) = Observations(num,3)*D2R

END IF

IF (Observations(num,2) ,GT, pi) then
Observations(num,2) = Observations(num,2) - 2DO+pi

END IF

»»+% Debug Info Output #=+s»
IF (Idebug .GE. 2) THEN
WRITE (IDBUG0,900) ’'Read obs(’,num,’) = ',
' (Observations(num,I), I=1,M+1)
END IF

900 FORMAT (A,I3,A,’ ’,F16.7,’ ',F16.7,' ’,F16.7,’ ' ,F16.7)

RETURN
END !###+ ReadObservation e*s#

B e o o o i o e e e 4

SUBROUTINE FindObsState(num,X)
IMPLICIT REAL*8 (A-H,0-2)

PARAMETER (N=6,M=3,D2R=,017453293D0,R2D=1D0/D2R,

' pi=3.14159265635897932D0, maxLength=100,max0bs=1000,

. maxSize;BO,maxTrack=10000.IbigPrune=1000.IlittlePrune=10,
. nScan=b

COMMON /CDEBUG/Idebug

COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL
COMMON /COBSERVATIONS/Observations,numObs
COMMON /CSENSOR/GBR(M), Xs(N), sensorTime
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DIMENSION Observations(maxObs,M+1)

DIMENSION rae(M),enu(N),X(N),sensor(M),Xstate(N)
REAL»8 delta,0M

*s++ Find sensor position at observation time ssss
delta = Observations(num,M+1) - sensorTime
OM = ,72921161467D-4
sensor(1) = GBR(1)
sensor(2) = GBR(2) + OMedelta
sensor(3) = GBR(3)
CALL XGBR(delta,l,sensor,3,Xstate)
CALL ECILLA(Xstate,sensor(1),sensor(2),sensor(3))

ss#» Convert observation to ECI ssse
DO 100 I = 1M

100 rae(I) = Observations(num,I)
IJOB =1
1IEFIX = 1
CALL RAEXYZ(rae,enu,M,1J0B,IER)
DO 200 I = M+1,N

200 enu(I) = 0DO

SECUSSEISIPISIININEIE PSS SN IO EIP IS RS SRS
*» Fudging velocities of initial tracks #»
FOSVSUISTIPSIPNS SIS IS PORNIINORIIPI PSSP INGS
. IF (pum .EQ. 1) THEN
= 2.81D0

enu(5) = -1713,92D0

enu(6) = -348.07D0
ELSE IF (num .EQ. 2) THEN

enu(4) = -396.61D0

enu(5) = -2713.43D0

enu(6) = -1249,11
END IF

IF (num .EQ. 1) THEX
= 80.756357D0
enu(5) = -381,20269D0
= -490,69328D0
ELSE IF (pum ,EQ, 2) THEN
enu(4) = 80.41604
enu(5) = -380.73522
enu(6) = -487.54462
ELSE IF (num .EQ. 3) THEN

LR 2K BE BRI B BN

enu(4) = 82,27586
enu(5) = -383,43454
enu(6) = -490.42602

ELSE IF (num .EQ. 4) THEN
enu(4) = 80.75446
enu(b) = -381,72344
enu(6) = -490.93692
ELSE IF (num .EQ, 5) THEN
enu(4) = 83.50017
enu(b) = -382,79434
enu(6) = -489.94941
ELSE IF (num .EQ. 6) THEN

enu(4) = 87.13216
enu(5) = -384,17541
enu(6) = -492,00993

ELSE IF (num .EQ. 7) THEN
enu(4) = 86.28474
enu(b) = -382,80877
enu(6) = -491,356981

ELSE IF (num .EQ. 8) THEN
enu(4) = 85,30807
enu(5) = -381.84414
enu(6) = -490.59327

ELSE IF (num .EQ, 9) THEN

LA LR 2 2 2 IR IR IR IR IR B B NE IR NR N NN N N I R R R Y

enu(4) = 88.01744

enu(b) = -383,72916

enu(6) = -492.61121
ENDIF

CALL XYZECI(enu,X,sensor(1),sensor(3),sensor(2),IEFIX)

RETURN
END !#+e#s+ FindObsState ses»

SUBROUTINE MoveSensor(curTime)

96



IMPLICIT REAL*8 (A-H,0-Z)

PARAMETER (N=6,M=3,D2R=,017463293D0,R2D=1D0/D2R,
pi=3,1415926635897932D0, maxLength=100,max0bs=1000,

. maxSize;SO,maxTrack=10000,IbigPrune=1000.IlittlePrune=10,

. nScan=5

COMMON /CDEBUG/Idebug
COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL
COMMON /CSENSOR/GBR(M), Xs(N), sensorTime

REAL#8 delta,OM

delta = curTime - sensorTime

0M = .72921151467D-4

GBR(2) = GBR(2) + OM#delta

CALL XGBR(delta,1,GBR,M,Xs,N)

CALL ECILLA(Xs,GBR(1),GBR(2),GBR(3))
sensorTime = curTime

#»ss Debug output ss+s
IF (Idebug ,GE. 2) THEN

WRITE (IDBUGO,*) ’---New Sensor Position-------------= ’
WRITE (IDBUGO,*) ’Sensor : GDLat (rad) :?,GBR(1)
WRITE (IDBUGO,*) ’Location : ECEF Long (rad):’,GBR(2)
WRITE (IDBUGO,s) °’ : Alt (km) :?,GBR(3)/1D3
WRITE (IDBUGQ,+) ’Initial Time (s) ;? ,sensorTime
WRITE (IDBUGD,#) *=---mmm=m=m=mm=mm=mm=mooommmomemaee ’

WRITE (IDBUGO,*) ’Sensor ECI state:’,(Xs(I),I=1,6)
WRITE (IDBUGD,*) ’-----=-mmm=mmmm=mmmm=m=m=mm=mommmoe '
ENDIF

RETURN
END !see¢* MoveSensor s+s*»

SUBROUTINE FindTrackRAE(num,predRae,updRae)
IMPLICIT REAL#8 (A-H,0-2)

PARAMETER (N=6,M=3,D2R=.017453293D0,R2D=1D0/D2R,
pi=3.1416926535897932D00, maxLength=100,max0bs=1000,
maxSize?So,maxTrack=10000.IbigPrune:lOOO,IlittlePrune=10.
nScan=5

COMMON /CDEBUG/Idebug

COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL
COMMON /CTRACKLIST/trackList,numTracks
COMMON /CSENSOR/GBR(M), Xs(N), sensorTime

STRUCTURE /TRACK/
CHARACTER status
INTEGER length,using,points(maxLength),new,misses
REAL*8 acore,predState(N),updState%N),predP(N,N).ude(N.N)
END STRUCTURE
RECORD /THACK/trackList(maxTrack)
INTEGER rumTracks

INTEGER num
DIMENSION predRae(M),updRae(M),enu(M)
REAL#8 geola,ecilo,height

CALL ECILLA(Xs,geola,ecilo,height)

CALL ECIXYZ(trackListgnum).predState,enu,geola.ecilo,height,
. M,1,1,IER

CALL XYZRAE(enu,predRae,M,1,IER)

CALL ECIXYZ(trackListgnum).updState.enu.geola,ecilo.height,
. M,1,1,IER
CALL XYZRAE(enu,updRae,M,1,IER)

AETURN
END !sss+ FindTrackRAE #s»»

L4 SUBROUTINE MakePictFile - make the input file for the picture
. driver

SUBROUTINE MakePictFile(first,last,oldHypos)
IMPLICIT REAL#8 (A-H,0-2)
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PARAMETER (N=6,M=3,D2R=.017453293D0,R2D=1D0/D2R,

. pi=3.1415926535897932D0, maxLength=100,max0bs=1000,
maxSize;SO,maxTrack=10000.IbigPrune=1000,IlittlePtune=10.
nScan=5

PARAMETER (DnewTarget = 6,D-2, DfalseTarget = 5.D-2)

COMMON /CDEBUG/Idebug

COMMON /CUNITS/Iunit

COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL

COMMON /CTRACKLIST/trackList,numTracks

COMMON /COBSERVATIONS/Observations,numQbs

COMMON /CMODEL/Q(N,N), R(M,M), P(N,N), V(M,M), Vinv(M,H)
COMMON /CSENSOR/GBR(M), Xs(N), sensorTime

DIMENSION Observations(maxQObs,M+1)

STRUCTURE /TRACK/
CHARACTER status
INTEGER length,using,points(maxLength),new,misses
REAL*8 score,predState(N),updState(N),predP(N,N),updP(N,N)
END STRUCTURE
RECORD /TRACK/trackList(maxTrack),curTrack
INTEGER numTracks

STRUCTURE /HYPOTHESIS/
INTEGER numTracks,hypoTracks(maxSize)
REAL#*8 score,compiexity
END STRUCTURE

RECORD /HYPOTHESIS/oldHypos(IbigPrune) ,htemp

INTEGER first,last,num,I,J
DIMENSION predRae(M),updRae(M)

WRITE (IPICT,#) last-first+l
DO 100 I=first,last
100 WRITE (IPICT,900) I,(Observations(I,J),J=1,M+1)

htemp = oldHypos(1)
WRITE (IPICT,*») htemp.numTracks
DO 110 I = 1,htemp.numTracks
curTrack = trackList(htemp.hypoTracks(I))
WRITE (IPICT,*) curTrack.length
IF (curTrack,length ,EQ. 1) THEN
WRITE (IPICT,910) O,curTrack.points(1)
CALL FindTrackRAE(htemp,hypoTracks(I),predRae,updRae)
WRITE (IPICT,905) (predRae(J),J=1,M)
WRITE (IPICT,905) (updRae(J),J=1,M)
ELSE
num = 0
DO 105 J=1,curTrack,length - 1
IF ((curTrack.points{curTrack,length-J) ,NE, -1)
. JAND, (num ,EQ, 0)) THEN
num = curTrack.length - J
END IF
106 CONTINUE
IF ((curTrack,status ,EQ. ’L’) .OR.
(curTrack,status .EQ. ’D’)) THEN
ELSERITE (IPICT,910) O,curTrack,points(num)
WRITE (IPICT,910) curTrack.points(num),
. curTrack,points(curTrack.length)
END IF
CALL FindTrackRAE(htemp.hypoTracks(I),predRae,updRae)
WRITE (IPICT,905) (predRae(J),J=1,M)
WRITE (IPICT,906) (updRae(J),J=1,M)
END IF
110 CONTINUE

900 FORMAT (14,’ ’,F16.7,’ ’,F16.7,’ ’,F16.7,’ ’,F16.7)
905 FORMAT (F16.7,’ ’,F16.7,' ’,F16.7)
910 FORMAT (2I4)

RETURN
END !##s» MakePictFile #*###

SUBROUTINE TimeUpdate - make predictions for next track’s state
from updState to predState

SUBROUTINE TimeUpdate(num,T1,T2)
IMPLICIT REAL+8 (A-H,0-2)
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PARAMETER (N=6,M=3,D2R=,017453293D0,R2D=1D0/D2R,

. pi=3.1415926535897932D0, maxLength=100,max0bs=1000,

. naxSize;SO,maxTrack=10000,Ibig?rune=1000,IlittlePrune=10,
. nScan=b

COMMON /CDEBUG/Idebug

COMMON /CFILES/IDATA, IDBUGOD, IPICT, IMODEL

COMMON /CTRACKLIST/trackList,numTracks

COMMON /CMODEL/Q(N,N), R(M,M), P(N,N), V(M,M), Vinv(M,M)

STRUCTURE /TRACK/
CHARACTER status
INTEGER length,using,points(maxLength),new,misses
REAL*8 score,predState(N),updState(N),predP(N,N),updP(N,N)
END STRUCTURE
RECORD /TRACK/trackList(maxTrack),curTrack
INTEGER numTracks

INTEGER num, I, J
REAL+8 delta,T2,T1
DIMENSION A(N,N), phi(N,N), temp(N,N), wxt(N), tempP(N,N)

curTrack = trackList(num)
delta = T2-T1
CALL JACECI(curTrack,updState,A,N)

*t5 Calculate Transition Matrix (phi) =ees
DOI=1,N
DO J = i,N
A(1,3) = A(I,J) * delta
END DO
END DO
CALL DMRRRR(N,N,A,N,N,N,A,N,H,N,phi,N)
DO I =1,N
D0 J=1,N
phi(I,J) = A(X,J) + 0.5DO#phi(I,J)
IF (I ,EQ. J) phi(I,J) = 1.D0 + phi(I,J)
END DD
END DO

ess» Predict next covariance matrix (P) #ese»
DO I=1,N
DO J =1,N
tempP(I,J) = curTrack.updP(I,J)
END DO
END DO
CALL DMRRRR(N,N,phi,N,N,N,tempP,N,N.N,teap,N)
CALL DMXYTF(N,N,temp,N,N,N,phi,N,N,N,zempP,N)
DOI=1,N
D0 J=1,N
curTrack.predP(I,J) = tempP(I,J) + Q(I,J)
END DO
END DO

s+#» Integrate to predict next state vector Xt #ess
DO I=1,N
wxt(I) = curTrack,updState(I)

END
CALL MOVESV(T1,wxt,T2,curTrack,predState)
trackList(num) = curTrack

RETURN
END !#»**+ TimeUpdate #s#»

SUBROUTINE DoScan - iterates over
all of the observations making all the different
hypotheses poseible, (i.e. this routine is the MHT part)
The logic of this routine goes something like this:
1) for each observation, make a potential track and
merge this track with the existing hygotheaia
2) for each track, check to see if the observation
gates with the track, If it does make new hypos.
3) delete tracks that no hypothesis is using

L R B BE 2R 2E 2 28 2% K}

SUBROUTINE DoScan(fixst,last,oldHypos,numOldHypos,T1,T2)
IMPLICIT REAL#8 (A-H,0-2)
PARAMETER (N=6,M=3,D2R=,017453293D0,R2D=1D0/D2R,

. pi=3,1416926636897932D0, maxLength=100,max0bs=1000,
maxSize=60,maxTrack=10000,IbigPrune=1000,Il1ittlePrune=10,
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25

60

100

nScan=5)

PARAMETER (DnewTarget = 5,D-2, DfalseTarget = 5,D-2)

COMMON /CDEBUG/Idebug

COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL
COMMON /CTRACKLIST/trackList,numTracks
COMMON /COBSERVATIONS/Observations,numObs
COMMON /CGATE/gatesize, distance

DIMENSION Observations(maxObs,M+1)
STRUCTURE /TRACK/

CHARACTER status

INTEGER length.using,points(maxLen%th).new.miaaes

REAL#8 score,predState(N),updState(N),predP(N,N),updP(N,N)
END STRUCTURE

RECORD /TRACK/trackList(maxTrack),tempTrack,tempTrackl
INTEGER numTracks

STRUCTURE /HYPOTHESIS/

INTEGER numTracks,hypoTracks(maxSize)
REAL*8 score,compiexity
END STRUCTURE

RECORD /HYPOTHESIS/oldHypos(IbigPrune) ,newHypos(IbigPrune)

INTEGER first,last,loop,I,num0l1dHypos,numNewHypos,J
REAL#8 T1,T2

INTEGER num0OldTracks,originNum

DIMENSION curObs{(M+1)

LOGICAL Gate,NewTrackPossibility,MakeBreakupTrack
INTEGER BreakupOrigins(maxObs)

num0ldTracks = numTracks !#*#* number of tracks existing prior ##s*

{»¥s» to this scan PTLT)

DO 300 loop = first,last

DO 25 I = 1,max0bs
BreakupOrigins(I) = 0

WRITE (»,*) ’Processing observation ’,loop
numNewHypos = 0
DO 50 I = 1,numTracks

trackList(I).using = 0

DO 100 I = 1,M+1
curObs(I) = Observations(loop,I)

*#9% Make a potential track with one observation ##+»

CALL MakeTrack(0,loop)
CALL IncorporateTrack(0,numTracks,oldHypos,num0ldHypos,
newHypos ,numNewHypos)

#*+#» And tracks that gate with this observation make new hypotheses #+##

DO 200 I = 1,num0ldTracks
IF ((trackList(I).status .NE, ’'F’) .AND.
(trackList(I).status ,NE, 'L’) ,AND.
(trackList(I).status ,NE, 'D’) ,AND,
(trackList(I),status ,NE, 'U’)) THEN

###» Here’s the continuing track part ##ss

200

IF (Gate(loop,I)) THEN
IF (trackList(I).status ,EQ. ’B’) THEN
WRITE (#,*) ’Breakup track ending with ’,
trackList(I),points(trackList(I),length),
! gates with obs ’,loop
WRITE (#,») 'distance: ’,distance
END IF
CALL MakeTrack(I,loop)
CALL IncorporateTrack(Il,numTracks,oldHypos,
END IF num01dHypos,newHypos ,numNewHypos)

END IF
CONTINUE

++#+#» For unassigned and newly formed breakup tracks predict velocity ###»

DO 276 I = 1,num01dTracks
IF (trackList(I),status ,EQ., ’'U’) THEN

*+#»% Save the unassigned track because PredictAPriori demclishes it w»##»

tempTrack = trackList(I)
CALL PredictAPriori(I,loop,T1,T2)
WRITE (*,*) ’Gatesize; ’,gatesize
WRITE (*,*) trackList(I),predState(4)
WRITE (*,#) trackList(I),predState(b)
WRITE (»,*) trackList(I),predState(6)
IF (NewTrackPossibility(trackList(I))) THEN
IF (Gate(loop,I)) THEN
CALL MakeTrack(I,loop)
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CALL IncorporateTrack(I,numTracks,oldHypos,
num01dHypos,newHypos ,nunNewHypos)
END IF
END IF
»*¥s Restore the unassigned track s+»#
tempTrackl = trackList(I)
trackList(I) = tempTrack
END IF
#»++ Make a breakup track with confirmed tracks *++»
IF ((trackList(I).status ,EQ. ’C’) .OR.
. ((trackList(I).status ,EQ, ’B’) ,AND.
. (trackList(I).length .GT, 2))) THEN
originNum = trackList(I).points(trackList(I),length)
IF ((MakeBreakupTrack(tempTracki,trackList(I),loop,
. T1,T2)) .AND.
. (BreakupOrigins(originNum) .EQ, 0)) THEN
BreakupOrigins (originNum) = 1
nunTracks = numTracks + 1
trackList(numTracks) = tempTrackl
CALL TimeUpdate(numTracks,T1,T2)
CALL UpdateState(trackList(numTracks),predState,
. trackList(numTracks) .predP,loop,
. trackList(numTracks) .updState,
. trackList(numTracks) .updP)
IF (loop .EQ, 13) THEN
WRITE (#,#) ’final pred state for breakup 13: ’,
(trackList (numTracks).predState(J),J=1,N)
WRITE (#,*) ’final upd state for breakup 13; °’,
(trackList(numTracks) .updState(J),J=1,N)

END IF
c D0 270 J = 1,N
c 270 trackList(numTracks) ,updState(J) =
c . trackLiat(numTracﬁs).predState(J)

CALL IncorporateTrack(0,numTracks,oldHypos,
numOldHypos,newHypou,numNevaposg

WRITE (+,*) ’Breakup track (orif:'.
. trackList(I).points(trackList(I).length),’) ’,
. loop,’ made.’

END IF
END IF
276 CONTINUE

num01ldHypos = numNewHypos
DO 260 I = 1,numNewHypos
250 oldHypos(I) = newHypos(I)

IF (Idebug .GE. 1) THEN
WRITE (IDBUGO,*) ’ °*
WRITE (IDBUGO,*) ’Summary after incorporating observation:’,
loo
CALL PrintSummary(oldHypos,num0ldHypos)
END IF
300 CONTINUE

CALL CheckMisses(num0OldTracks,oldHypos,num0ldHypos)
CALL PruneHypotheses(oldHypos,num0ldHypos,IlittlePrune)
CALL PackTracks(oldHypos,num0OldHypos)

RETURN
END !s#se DoScan s¢#*»

SUBROUTINE PredictAPriori - predict the a priori velocity vector
of the state

+ ® 8

SUBROUTINE PredictAPriori(prev,updObs,T1,T2)
IMPLICIT REAL#8 (A-H,0-2)

PARAMETER (N=6,M=3,D2R=,017463293D0,R2D=1D0/D2R,

. pi=3,1416926636897932D0, maxLength=100,max0bs=1000,

. maxSizg;SO,maxTrack=10000.IbigPrune=1000,IlittlePrune=10,
. nScan=

COMMON /CDEBUG/Idebug

COMMON /CUNITS/lunit

COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL
COMMON /CTRACKLIST/trackList,numTracks
COMMON /COBSERVATIONS/Observations,numQbs
DIMENSION Observations(maxObs,M+1)

STRUCTURE /TRACK/
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CHARACTER status
INTEGER length,using,points(maxLength),new,misses
REAL*8 score,predState(N) ,updState(N),predP(N,N),updP(N,N)
END STRUCTURE
RECORD /TRACK/trackList(maxTrack)
INTEGER numTracks

REAL*8 T1,T2
INTEGER prev,updObs,I,J
DIMENSION state(N),first(N),diff(M),pred(N)

trackList (prev).atatus = ’P?’
CALL FindObsState(updObs,state)

DO 100 J=1,N

100 first(J) = trackList(prev),.predState(J)
DO 200 J=1,M

200 diff(J) = (state(J) - first(J))/(T2-T1)

250 CONTINUE
DO 300 J=1,M
300 first(J4M) = dif£(J) + first(J+M)
D0 350 J=1,M
350 first(J) = trackList(prev).predState(J)
CALL MOVESV(T1,first,T2,pred)
DO 400 J=1,M
400 diff(J) = (state(J)-pred(J))/(T2-T1)
IF ((diff(1) .GE. 1D-5) .OR.
(dif£(2) .GE, 1D-5) ,OR,
(dif£(3) .GE. 1D-5)) THEN

GOTO 250
END IF
D0 460 J=1,N

trackList(prev) .predState(J) = first(J)
450 crackList(prev) .updState(J) = first(J)

DO 500 J=1,M
trackList(prev) .predState(J+M) = (state(J) -
. trackList(prev) ,predState(J})/(T2-T1)
500 trackList (prev) .updState(J+M) = trackList(prev),predState(J+M)

IF (Idebug ,GE, 2) THEN
WRITE (IDBUGO,*) ’--PredictAPriori-- Obs ’,updObs,’ state:’
WRITE (IDBUGO,*) (state(I),I=1,K)
WRITE (IDBUGO,*) ’'State before predicting:’
WRITE (IDBUGO,*) (trackList(prev).predState(I),I=1,N)
END IF

CALL TimeUpdate(prev,T1,T2)
IF (Idebug .GE, 2) THEN

WRITE (IDBUGO,*) ’State after predicting:’

WRITE (IDBUGO,*) (trackList(prev).predState(I),I=1,N)
END IF

nonon

RETURN
END !s#¢s PredictAPriori sss»

SUBROUTINE MakeTrack - make a new track by ugdatiug the track PREV|
with the observation(updObs) and put the track in the last
position of the trackList. increase numTracks by one

Note: as of yet, if the trackList overflows then there is a
problem ....

- o o 0 o o o e -

[ ORpp—

LR B 2K X I O )

SUBROUTINE MakeTrack(prev,updObs)
IMPLICIT REAL#8 (A-H,0-Z)

PARAMETER (N=6,M=3,D2R=,017463293D0,R2D=1D0/D2R,

, pi=3.1416926635897932D0, maxLength=100,max0bs=1000,

. maxSize;SO,mnxTrack=10000,IbigPrune=1000,IlittlePrunele.
. nScan=b

PARAMETER (DnewTarget=5.D-2, DfalseTarget=56,D-2, Pdetect=,95D0,
. dim=3,tlength=6

COMMON /CDEBUG/Idebug

COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL

COMMON /CTRACKLIST/trackList,numTracks

COMMON /COBSERVATIONS/Observations,numObs

COMMON /CGATE/,atesize, distance

COMHON /CMODEL/Q(N,N), R(M,M), P(N,N), V(M,H), Vinv(M,H)
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200

225

250
276

350
375

DIMENSION Observations(max0Obs,M+1)

STRUCTURE /TRACK/
CHARACTER status
INTEGER leugth,using.points(maxLen%th),neu.misses
REAL#8 score,predState(N),updState N) ,predP(N,N) ,updP(N,N)
END STRUCTURE
RECORD /TRACK/trackList(maxTrack),newTrack,oldTrack
INTEGER numTracks

INTEGER prev,updObs,J,K
REAL#8 dummy

IF (prev .EQ. 0) THEN !#%#¢ a new track ss+¢
numTracks = numTracks + 1
trackList(numTracks) .status = ’
trackList (numTracka),length = 1
trackList(numTracks) .using = 0
trackList (numTracks) ,pointa(1) = updObs
DO 200 J = 2,maxLength

trackList (numTracks) .points(J) = 0
trackList(numTracks) ,new = 0
trackList(numTracks) ,misses = 0
trackList(numTracks) ,score = 0DO
CALL FindObsState(updObs,trackList(numTracks),predState)
DO 2256 J = 1,N

trackList (numTracks) .updState(J) =

trackList(num7racks) .predState(J)

w

DO 275 J = 1,N
DO 250 K = 1 ,N
trackList (numTracks) ,predP(J,K) = P(J,K)
trackList(numTracks) ,updP(J,K) = P(J,K)
CONTINUVE
IF (updObs .EQ. 9) THEN
WRITE (»,*) ’'pred state for meas, 9 :’,
(trackList (numTracks) .predState(J),J=1,N)
WRITE (#,+) ’upd state for meas. 9 :’,
(trackList(numTracks) ,updState(J),J=1,N)
END IF

ELSE !s#*+ a new observation to update an existing track eeee
numTracks = numTracks + 1
oldTrack = trackList(prev)
newTrack = oldTrack
newTrack,length = oldTrack.length + 1
newTrack,using = 0
newTrack.points(newTrack,length) = updObs
newTrack.new = oldTrack,new
newTrack.misses = 0
DO 375 J = 1,N
newTrack,predState(J) = oldTrack,predState(J)
b0 360 K = 1,N
newTrack.predP(J,K) = oldTrack.predP(J,K)
CONTINUE
CALL UpdateState(newTrack,predState,newTrack,predP,upd0bs,
, newTrack.updState,newTrack,updP)

sene Scoring the track s»s»

500

IF (oldTrack.status ,EQ. ’P’) THEN
newTrack,status = 'T’

END IF
newTrack,score = newTrack,score + distance
IF (((newTrack,length; .GT. 2) ,AND,

. (newTrack,status .NE, 'B’))

. newTrack,atatuz = 'C’
trackList(numTracks) = newTrack

IF (Idebug .GE, 2) THEN
WRITE (IDBUGO,*) ’Dummy is ’,dummy
WRITE (IDBUGD,B00) 'V: ’,(V(1,1),I=1,M)
WRITE (IDBUGO,6500) *’ ', (v(2,1),I=1,H)
WRITE (IDBUGO,500) °’ ’,(v(3,I),I=1,M)
END IF
END IF

FORMAT (A,3F15,5)

RETURN
END !s#e¢» MakeTrack ess»

.-

SUBROUTINE UpdateState - update the state with the new measurement|

-

o -—— - +

SUBROUTIHE UpdateState(oldState,oldP,upd0bs,newState,newP)
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IMPLICIT REAL*8 (A-H,0-2)

PARAMETER (N=6,M=3,D2R=.017453293D0,R2D=1D0/D2R,

. pi=3.1415926535897932D0, maxLength=100,max0bs=1000,

. maxSlze;SO maxTrack-lOOOO IbigPrune=1000, IlittlePrune-lO
nScan=5

COMMON /CDEBUG/Idebug

COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL

COMMON /COBSERVATIONS/Observations,numObs

COMMON /CGATE/gatesize, distance

COMMON /CMODEL/Q(N,N), R(M,M), P(N,N), V(M,M), Vinv(M,M)
COMMON /CSENSOR/GBR(H) XB(N). sensorTime

DIMENSION Observations(maxObs,M+1)

REAL*8 newState,newP

DIMENSION oldState(N) 0ldP(N,N) ,newState(N) ,newP(N,N)

DIMENSION H(M, N).gaxn(u H),prodl(N H),prod2(N N), tempP(N N,
rae(H) enu(M) ,coxr(N), resid(H)

INTEGER updObs, I

#+»* Calculate observation matrix H s»#»
CALL HJRAE(oldState,Xs,H,N,M)

#+s% Calculate Kalman Filter Gain ##*+#
CALL DMXYTF(N,N,o0ldP,N,M,N,H,M,N,M,prodi, N)
CALL DMRRRR(N,M,prodi,N,M,M,Vinv,M,N,M,gain, N)

»»s+ Update Covariance matrix P ###»
CALL DMRRRR(N,M,gain,N,M,N, H M,N N,prod2 N)

CALL DHRRRR(N N,prod2, N,N,N,01dP N N,N tempP N)
DO 100 I = ,N
DO 100 J = 1,N
100 newP(I,J) = oldP(1,J)-tempP(I,J)

#s++ Update the target state estimate using new observation #ses
#»9» First calculate the residual ##*#»

CALL PENUST(oldState,Xs,rae,enu)

IF (rae(2) .GT. pi)

. rae(2) = rae(2) - 2.D0#*pi

DO 200 I = 1,M
200 resid(I) = Observations(updObs,I) - rae(I)

#+s+ Then add in the weighted residual to estimate *###
CALL DMURRV(N,M,gain,N,M,resid,1,N,corr)
DO 300 I = 1,N

300 newState(I) = oldState(I) + corr(I)

¢#+++ Some debug Info #%#»
IF (Idebu% .GE, 2) THEN
ID

WRITE BUGO,500) '----- Heasurement Update----- ’
WRITE (IDBUGD,500) ’oldState: ’,(oldState(I),I=1,N)
WRITE (IDBUGO,500) 'newState. ’,(newState(I),I=1,N)
WRITE (IDBUGO.500) ’oldP: ’,(oldP(1,I),I=1,N)
WRITE (IDBUGO,500) ° 71 (01dP(2.1) . 1=1 N)
WRITE (IDRUGD,500) ° 1 (01dP(3.1) . 1=1 .K)
WRITE (IDBUGO,500) ° »1(01dP(4,1) 151 N)
WRITE (IDBUGO,500) ° ' (o1dP(5,1) . 1=1.N)
WRITE (IDBUGO,500) ’ 11 (o1dP(6,1) . I=1 N)
WRITE (IDBUGD,500) ’newP: ’,(newP(1,I),I=1,N)
WRITE (IDBUGO.500) ° (newP(2,1),I=1,N)
WRITE (IDBUGO,500) ° "(neup(a 1).I=1,N)
WRITE (IDBUGO,500) ° (newP(4.1).I=1.N)
WRITE (IDBUGO,500) ° '(neup<s 1), I=1.N)
WRITE (IDBUGO,500) ° ') (newP(6,1),1=1.K)
WRITE (IDBUGD,501) ’gain: ’.(gain(1,I),I=1.M)
WRITE (IDBUGD,501) ° (gain(2.1) . I=1 M)
WRITE (IDBUGO,501) ° "(gain(s 1).1=1,M)
R e
, gain 1=
WRITE (IDBUGO,601) ° v, (gain(6,1),I=1 M)

END IF

500 FORMAT (A,6515.5)
6501 FORMAT (A,3F15,5)

RETURN
END !»ss+ Update State #*»»

SUAROUTINE IncorporateTrack - incorporates this track into all
hypotheses that contain the previous track,

LR K
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SUBROUTINE IncorporateTrack(prev,cur,oldHypos,num0ldHypos,
. newHypos ,numNewHypos)

IMPLICIT REAL*8 (A-H,0-Z)

PARAMETER (N=6,M=3,D2R=,017453293D0,R2D=1D0/D2R,

. pi=3,14156926535897932D0, maxLength=100,max0bs=1000,
maxSize=50,maxTrack=10000,IbigPrune=1000,IlittlePrune=10,
nScan=b)

COMMON /CDEBUG/Idebug
COMMON /CFILES/IDATA, IDBUGOD, IPICT, IMODEL
COMMON /CTRACKLIST/trackList,numTracks

STRUCTURE /TRACK/
CHARACTER status
INTEGER length,using,points(maxLength),new,misses
REAL#8 score,predStnte(N),updState%N),predP(N,N),ude(N,N)
END STRUCTURE
RECORD /TRACK/trackList(maxTrack)
INTEGER numTracks

STRUCTURE /HYPOTHESIS/
INTEGER numTracks,hypoTracks(maxSize)
REAL#8 score,complexity
END STRUCTURE
RECORD /KYPOTHESIS/oldHypos(IbigPrune) ,newHypos(IbigPrune) htemp

INTEGER prev,cur,num01dHypos,numNewHypos,I,J,K,temp

IF (Brev .EQ. 0) THEN !###+ a new potential track is being added *+#*
DO 100 I = 1,num0ldHypos
htemp = oldHypos(I
htemp.numTracks = htemp,numTracks + 1
htemp,hypoTracks (htemp.numTracks) = cur
CALL CalculateHypothesiasScore(htemp)
ss9s Adjust the using field of the track »e¢»+
DO 60 J = 1,htemp.numTracks
temp = htemp.hypoTracks(J)
60 trackList(tempy?using = trackList(temp),using + 1
CALL AddToHypos(htemp,newHypos,numNewHypos)
100 CONTINUE
ELSE
DO 300 I = 1,num0ldHypos
htemp = oldHypos(I
DO 200 J = 1,htemp.numTracks
IF (htemp.hypoTracks(J) .EQ. prev) THEN
htemp .hypoTracks(J) = cur
CALL CalculateHypothesisScore(htemp)
IF ((trackList(cur),points(trackList(cur),length) .GE,
. 37) .AND. (trackList(cur),points(trackList(cur).
. length) .LE, 46)) THEN
WRITE (»,%) ’'Track score: ’,trackList(cur),score
WRITE (#,*) ’Hypothesis score: ’, htemp,score
WRITE (*,*) ’Hypothesis complexity: ’,
htemp,complexity
END IF

#++ Adjust the using field of the track »ss«
DO 160 K » 1,htemp,numTracks
temp = htemp,hypoTracks(K)

+F0000000D0N0N

160 trackList(temp) ,using = trackList(temp).using + 1
C%LL AddToHypos (htemp,newHypos ,numNewHypos)
END IF
200 CONTINUE
300 CONTINUE
END IF

END !###+ IncorporateTrack »+++

.- - o o e o e ———
. SUBROUTINE AddToHypos - add hypo to list so that there is no |
* overflow |
» - o e o iy O O o o o e P O O e O B O O e +

SUBROUTINE AddToHypos(theHypo,hypos,numbypos)

IMPLICIT REAL#8 (A-H,0-2)

PARAMETER (N=6,M=3,D2R=,017463293D0,R2D=1D0/D2R,

. pi=3,1416926636897932D0, maxLength=100,max0bs=1000,
maxSize;BO,mnxTrack=10000,IbigPrune=1000,llittle?runeﬂlo,

. nScan=5

COMMON /CDEBUG/Idebug
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COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEI,
COMMON /CTRACKLIST/trackList,numTracks

STRUCTURE /TRACK/
CHARACTER status
INTEGER length,using,points(maxLength),new,misses
REAL#8 score,predState(N),updState(N),predP(N,N),updP(N,N)
END STRUCTURE
RECORD /TRACK/trackList(maxTrack)
INTEGER numTracks

STRUCTURE /HYPOTHESIS/
INTEGER numTracks,hypoTracks(maxSize)
REAL*8 score,complexity
END STRUCTURE

RECORD /HYPOTHESIS/hypos(IbigPrune),theHypo

INTEGER numHypos,index,I,temp
REAL#8 max

IF (numHypos .LT, IbigPrune) THEN
numbypos = numHypos + 1
ELsgypoa(numl-lypoa) = theHypo

index = 1
max = hypos(1).score
DO 100 I = 2,numHypos
IF (hypos(I).score .GT, max) THEN

index = I
max = hypos(I).score
END IF

100 CONTINUE
*##% Adjust using field of tracks in hypothesis that is to be deleted »+s#
IF (max .GT. theHypo.score) THEN
DO 200 I = 1,hypos(index),.numTracks
temp = hypos(index),hypoTracks(I)
200 trackList (temp) ,uaing = trackList(temp).using - 1
zypos(index) = theHypo

DO 300 I = 1,theHypo.numTracks
temp = theHypo, hypoTracks(I)
300 trackList(temp) .using = trackList(temp), using - 1
END IF
END IF

RETURN
END !#*#s AddToHypos ##»#

.- v mm e —— e ——a +
’ FUNCTION Gate ~ does observation gate with the track )
et i +

FUNCTION Gate(updObs,trackNum)
IMPLICIT REAL*8 (A-H,0-2)

PARAMETER (N=6,M=3,D2R=.017463293D0,R2D=1D0/D2R,

. pi=3,1415926635897932D0, maxLength=100,max0bs=1000,

' naxSize;SO,maxTrack=10000,IbigPrune=1000.IlittlePrnne=10,
, nScan=56

COMMON /CDEBUG/Idebug

COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL

COMMON /CTRACKLIST/trackList,numTracks

COMMON /COBSERVATIONS/Observations,numObs

COMMON /CGATE/gatesize, distance

COMMON /CMODEL/Q(N,N), R(M,M), P(N,N), V(M,M), Vinv(M,M)
COMMON /CSENSOR/GBR(M), Xs(N), sensorTime

DIMENSION Observations(maxObs,M+1)

STRUCTURE /TRACK/
CHARACTER status
INTEGER length,uaing,points(mnxLen?th),neu,misses
REAL#8 acore,predState(N) ,updState(N) ,predP(N,N),updP(N,N)
END STRUCTURE
RECORD /TRACK/trackList(maxTrack)
INTEGER numTracks

INTEGER updObs,trackNum

DIMENSION H(M,N),Xt(N),tempP(N,N),prod1(N,M) ,HPHT(M,H4),
. rae(M) ,enu(M),resid(M)

LOGICAL Gate
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Calculate Observation Matrix H esee
DO 100 I = 1,N

Xt(I) = trackList(trackNum).predState(I)
CALL HJRAE(Xt,Xs,H,N,M)

Calculate V (the innovations variance) weses
D0 200 I =1,N
DO 200 J = 1,N
tempP(I,J) = trackList(trackNum).predP(I,J)
CALL DMXYTF(N,N,tempP,N,M,N,H,H,N,H,prodl, N)
CALL DMRRRR(M,N,H,M,N,M,prodl N ,M,H, HPHT M)
D0 300 1 = 1,M
DO 300 J = 1 ,M4
V(I,J) = HPHT(I,J) + R(I,J)
CALL DLINRG(M,V,M,Vinv, M)

Compute chi-square distance between prediction and measurement s+s#
CALL PENUST(Xt,Xs,rae,enu)
IF (rae(2) .GT. pi) rae(2) = rae(2) - 2,DOspi
IF (rae(2) .LT. -pi) rae(2) = rae(2) + 2,DO+pi
DO 400 I = 1,4
resid(I) = Observations(updObs,I) - rae(I)
distance = DBLINF(M,M,Vinv,M,resid,resid)
Gate = distance .LE. gatesize
distance = distance / 50.Du !s+ess this fudge factor makes any ssese
!sese track(length>1) score positive »
t#s¢s no longer necessary with new scoring function sses

Print some debug info eses
IF (Idebug .GE. 2) THEN
IF (Gate) THEN
WRITE (IDBUGO,e) ’---Track ’,trackNum,’ gates with obs ’,
updObs, ' --="

E
WRITE (IDBUGO,*) ’---Track ’,trackNum,’ does NOT gate ’,
. 'with obs ’,updObs,’---’

END IF
WRITE (IDBUGO,*) ’Normalized distance; ’,distance
END IF

END !eses Gate seee

“ 48 e

o e ——— - ——

SUBROUTINE PrintSummary - Etint a summary of the tracks and
ypotheses

SUBROUTINE PrintSummary(hypos,numHypos)
IMPLICIT REAL*8 (A-H,0-2)

PARAMETER (N=6,M=3,D2R=,017453293D0,R2D=1D0/D2R,
pi=3,14156926536897932D0, maxLength=100,max0bs=1000,

f nazSize;SO,maxTrack=10000,IbigPrune=1000,Ili:tlePrune=10.

. nScan=5

COMMON /CDEBUG/1debug
COMMON /CFILES/IDATA, 1DBUCO, IPICT, IMODEL
COMMON /CTRACKLIST/trackLiat, numTracks

STRUCTURE /TRACK/
CHARACTER status
INTEGER length,using,points(maxLength),new,misses
REAL*8 score,predState(N) ,updState(N),predP(N,N) ,updP(N,N)
END STRUCTURE
RECORD /TRACK/trackList(maxTrack),curTrack
INTEGER numTracks

STRUCTURE /HYPOTHESIS/
INTEGER numTracks,hypoTracks(maxSize)
REAL#8 score,complexity
END STRUCTURE

RECORD /HYPOTHESIS/hypos(IbigPrune),htemp

INTEGER numHypos,TLOOP,HLOOP,numShow
IF (numHypos .LT, 10) THEN

numShow = numHypos
ELSE IF (Idebug .EQ. -1) THEN

numShow = 1
ELSE

numShow = numHypos
END IF
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510
620

630
640

900
901
902

920

FORMAT (14,° 17,1014, | '",A,7 |
FORMAT (°’ |’,1014,’ | 1"
FORMAT (14, 17,1014,7 | ?,A,° |
FORMAT (13X,’|’,10I4,’ | ?)

FORMAT (16,7X,’)’,1014,’ | *,F14.5,’ ’,F4,0)

RETURN
END !#»##s PrintSummary s+«

WRITE (IDBUGO,#*) ’Number of Tracks: ’ numTracks
WRITE (IDBUGO,*) ’Number of Hypotheses: ’,numHypos
WRITE (IDBUGO,*) ’ Track Summary’
WRITE (IDBUGO,*) ’' Track Observations
Status Quality?
DO 520 TLOOP = 1,numTracks
curTrack = trackList(TLOOP)
IF (curTrack,status .EQ. ’B’) THEN
WRITE(IDBUGD,902) TLOOP, (curTrack,points(I),I=1,10)
, curTrack,.status, curTrack,score, curTrack.new

ELSE

WRITE(IDBUGO,900) TLOOP, (curTrack.points(I),I=1,10)

, curTrack.status, curTrack.score

END IF
DO 510 J = 1,9

IF (curTrack,length .GT, J+10)

WRITE (IDBUGD,901) (curTrack.points(I),
I1=J#10+1,(J+1)*10)

CONTINUE

CONTINUE

WRITE (IDBUGD,+)’ °*
WRITE (IDBUGO,*)’ Hypothesis Summary’
WRITE (IDBUGO,*)’ Hypothesis Tracks
Cost Complexity’
DO 540 HLOOP = 1,numShow
htemp = hypos(KLOOP)
WRITE (IDBUGOD,920) HLOOP,(htemp.hypotracks(I),I=1,10),
htemp.SCORE, htemp,complexity
DO 6530 J = 1,4
IF (htemp,numTracks.GT.J*10)
WRITE (IDBUGO,910) (htemp.hypotracks(I),
I=J¢10+1,(J+1)-10§
CONTINUVE

CONTINUE

WRITE (IDBUGO,#)’ °’

WRITE (IDBUGO,#)’ ’

*,F13,6)

’,F13,5,? orig:’,14)

SUBROUTINE CheckMisses - check to see if any of the hypotheses are|
using the old tracks that existed before this
scan was zver analyzed., These tracks have a

miss,

SUBROUTINE CheckMisses(num0ldTracks,hypos,numHypos)
IMPLICIT REAL#*8 (A-H,0-2)
PARAMETER (N=6,M=3,D2R=.017453293D0,R2D=1D0/D2R,

pi=3.1415926535897932D0, maxLength=100,max0bs=1000,
maxSize=50,maxTrack=10000,IbigPrune=1000,IlittlePrune=10,
nScan=5)

PARAMETER (DnewTarget=56.D-2,DfalseTarget=5,D-2,Pdetect=,96D0,
penalty=-2.99673227356640D0,LT1imit=3,FAlimit=4,D-2)

COMMON /CDEBUG/Idebug
COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL
COMMON /CTRACKLIST/trackList,numTracks

STRUCTUKE /TRACK/

CHARACTER status

INTEGER length,using,points(maxlLength),new,misses

REAL#8 score.predState(N).updState%N),predP(N,N).ude(N.N)
END STRUCTURE

RECORD /TRACK/trackList(maxTrack)
INTEGER numTracks

STRUCTURE /HYPOTHESIS/

INTEGER numTracks,hypoTracks(maxSize)
REAL*8 score,complexity
END STRUCTURE

RECORD /HYPOTHESIS/hypos(IbigPrune),htemp
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INTEGER num0OldTracks,numHypos,I,J,K

DO 200 I = 1,num0ldTracks
IF ((trackList(I).using .GT. 0) .AND.
. (trackList(I).status ,NE, ’F') ,AND,
. (trackList(I).status .NE, ’L’) ,AND,
(trackLiat(().suatus ,NE, 'D’)) THEN
trackList(I) .misses = trackList(I).misses + 1
trackList(I),length = trackList(I).length + 1
trackList(I).points(trackList(I).length) = -1
DO 100 J = 1,N
trackList(I),updState(J) = trackList(I).predState(J)
DO 100 K = 1,N
trackList(I).updP(J,K) = trackList(I),predP(J,K)
100 CONTINUE
IF ((trackList(I),.status ,EQ, ’'P’) ,OR,
. (rrackList(I).status ,EQ, ’U’)) THEN
trackList(I),status = ’P’
IF ((trackList([).length ,EQ. 3) .AND.
(trackList([) .misses ,EQ. 2)) THEN Isses false alarm #ee#
trackList(I),status = ’F’
trackList(I),length = 1
END IF
ELSE !###s if not a potential track #++#
IF ((trackList([).misses .GE, LTlimit) .AND,
. ((trackList(I).status .EQ. 'T’) .OR.
. (trackList(I).status ,EQ, ’C’))) THEN !ss#* lost track #s»
trackList(l),status = 'L’
ELSE IF ((trackList(I).misses .GE. LTlimit) ,AND,
(trackList(I).status .EQ. 'B’)) THEN
trackList(I),status = 'D’
END IF
END IF
END IF
200 CONTINUE

+s»s Update all the hypothesis scores #e=s
DO 300 I = 1,numHypos
htemp = hypos(l
CALL CalculateHypothesisScore(htemp)
hypos(I) = htemp
250 CONTINUE
300 CONTINUE

RETURN
END !#%#* CheckMisses #+*»

-*

- - -’

SUBROUTINE PackTracks - delete any unused tracks and pack them |
down to lowest index, Change the numbers of the tracks in thel|
hypotheses also,

-------------- - -

L 2R 2R 2

SUBROUTINE PackTracks(hypos,numHypos)
IMPLICIT REAL#8 (A-H,0-Z)

PARAMETER (N=6,M=3,D2R=,017453293D0,R2D=1D0/D2R,

. Ppi=3,1416926636897932D0, maxLength=100,max0bs=1000,

. maxSize;SO,mathack=10000,IbigPrune=1000,IlittlePrune=10,
. nScan=6

PARAMETER (DnewTarget = 5.D-2, DfalseTarget = 65.D-2)

COMMON /CDEBUG/Idebug
COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL
COMMON /CTRACKLIST/trackList,numTracks

STRUCTURE /TRACK/
CHARACTER status
INTEGER length,using,points(maxLength),new,misses
REAL#8 score,predState(N) ,updState(N),predP(N,N),updP(N,N)
END STRUCTURE
RECORD /TRACK/trackList(maxTrack)
INTEGER numTracks

STRUCTURE /HYPOTHESIS/
INTEGER numTracks,hypoTracks(maxSize)
REAL*8 score,complexity
END STRUCTURE

RECORD /HYPOTHESIS/hypos(IbigPrune)

INTEGER numHypos,I,new,temp
DIMENSION Newlocations(maxTrack)
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ssss Pack the tracks saving the new locations for the moved tracks s«
ney = 0
DO 100 I = 1,numTracks
IF (trackList(I),using .LE. O) THEN
IF (Idebug .GE. 2) THEN
IF (trackList(l),using .LT, 0) THEN
WRITE (IDBUGD,*) ’Track ’,I,’ is messed up.’

END IF
WRITE (IDBUGO,*) ’PackTracks - deleted track °',I
END IF
ELSE
new = nev + 1
trackList(new) = trackList(I)
NewLocations(I) = new
IF (Idebug .GE. 2) THEN
WRITE (IDBUGO,*=) ’PackTracks - Track ’,I,’ is now ’,new
END IF
END IF
100 CONTINUE
numTracks = new

svss Iterate through all of the hypotheses to change tracks that have moved ##
DO 300 I = 1,numHypos
DD 200 J = 1,hypos(I).numTracks
temp = hypos(I).hypoTracks(J)
hypos(I).hypoTracks(J) = NewLocations(temp)
200 CONTINUE
300 CONTINUE

END ¢ eses PackTracks »s+#

....... —~—— -+

SUBROUTINE PruneHypotheses - keep only the highest num hypotheses |
and sort them ... highest acore first |

LR R

+
+

SUBROUTINE PruneHypotheses(hypos,numHypos,num)
IMPLICIT REAL*8 (A-H,0-2)

PARAMETER (N=6,M=3,D2R=,017463293D0,R2D=1D0/D2R,

. pi=3,14159265635897932D0, maxLength=100,max0bs=1000,

. 2;xSize;80,naxTrack=10000,IbigPrune=1000,IlittlePrune=10.
. can=5

COMMON /CDEBUG/Idebug
COMMON /CFILES/IDATA, IDBUGO, IPICT, IMODEL
COMMON /CTRACKLIST/trackList,numTracks

STRUCTURE /TRACK/
CHARACTER status
INTEGER length,using,pointn(naxLen?th).neu,miaaes
REAL#8 score,predState(N),updState(N),predP(N,N) ,updP(N,N)
END STRUCTURE
RECORD /TRACK/trackList(maxTrack) !
INTEGER numTracks

STRUCTURE /HYPOTHES1S/
INTEGER numTracks,hypoTracks(maxSize)
REAL+8 score,complexity
END STRUCTURE

RECORD /HYPOTHESIS/hypos{IbigPrune) htemp

INTEGER num,nwrHypos,I,J],index,temp

#2es Sort the hypotheses list ses#
DO 200 I = 1,nunHypos-1
htemp = hypos(I
index = I
DO 100 J = I+1,numHypos
IF (hypos(J).score LT, htemp,score) THEN
htemp = hypos(J) '
index = J
END IF
100 CONTINUE

s99s Suap the I-th and index-th hypotheses se*+
hypos(index) = hypos(I)
hypos(I) = htemp

200 CONTINUE

#ss% Add extra hypotheses if their complexities are <= best hypothesis #+*#
220 IF ((num ,LT. numHypos) .AND,
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. (hypos(num+1) ,complexity ,LE, hypos(1).complexity)) THEN
num = num + 1
GOTO 220
END IF
ss#+ Erase rest of hypotheses #*##*
DO 400 I = num+t1,numHypos
D0 300 J = 1,hypes(I).numTracks
temp = hypos(I).hyPoTracks(J)
300 trackList(temp),using = trackList(temp).using - 1
hypos(I) .numTracks = 0
hypos(I).score = 0DO
400 CONTINUE
IF (numHypos ,GT. num) numHypos = num

RETURN
END !+*#+ Prunelypotheses #»+#

- - " o T " +
SUBROUTINE CalculateHypothesisScore - calculate the complexity and|
the score of the hypothesis

* & &

SUBROUTINE CalculateHypothesisScore(htemp)
IMPLICIT REAL#8 (A-H,0-2)

PARAMETER (N=6,M=3,D2R=,017453293D0,R2D=1D0/D2R,
pi=3,1415926535897932D0, maxLength=100,max0bs=1000,
maxSize;SO.maxTrack=10000,IbigPrune=1000,IlictlePrune=10,
nScan=5

COMMON /CDEBUG/Idebug
CO4MON /CFILES/IDATA, IDBUGD, IPICT, IMODEL
COMMON /CTRACKLIST/trackList ,numTracks

STRUCTURE /TRACK/
CHARACTER status
INTEGER length,using,points(maxLength),new,misses
REAL#8 score,predState(N),updState(N),predP(N,N),updP(N,N)
END STRUCTURE
RECORD /TRACK/trackList(maxTrack),tempTrack
INTEGER numTracks

STRUCTURE /HYPOTHESIS/
INTEGER numTracks,hypoTracks(maxSize)
REAL»S score,complexity
END STRUCTURE

RECORD /HYPOTHESIS/htemp

INTEGER BreakupOrigins(maxObs),I

DO 100 I=1,maxObs

100 BreakupOrigins(I) = 0
htemp.score = 0DO
htcmp.complexity = 0DO

DO 500 I=1,htemp.numTracks
tempTrack = trackList(htemp.hypoTracks(I))
htemp.score = htemp.score + tempTrack,score
IF (tempTrack,.status ,EQ, 'F’) THEN
htemp,complexity = htemp.complexity + 4DO
ELSEIF ((tempTrack,status .EQ. 'C’) .OR.
. (tempTrack,status ,EQ, 'T’) .OR.
. (tempTrack,status ,EQ, ’'P’) .OR.
. (tempTrack,status .EQ. ’U’)) THEN
htemp,complexity = htemp.complexity + 7DO
ELSEIF (tempTrack,status .EQ. ’'L’) THEN
htemp, complexity = htemp.complexity + 8D0
ELSEIF (tempTrack.status ,EQ, 'B’) THEN
IF (BreakupOrigins(tempTrack,new) ,EQ. 0) THEN
htemp.complexity = htemp,com;lexity + 4D0

BreakupOrigins(tempTrack,new) = 1
ELSE

htemp,complexity = htemp,complexity + 3DO
END IF

ELSEIF (tempTrack.status .EQ., 'D’) THEN
IF (BreakupOrigins(tempTrack.npew) .EQ. 0) THEN
htemp,complexity = htemp,complexity + 6DO
LsgreakupOrigins(tempTrack.new? =1

htemp.complexity = htemp,complexity + 4D0
END IF
ELSE
END IF
htemp.complexity = htemp,complexity + tempTrack.misses

111



500 CONTINUE

htemp,score = htemp.score + 2D0 * htemp.complexity

RETURN

END !»#ss CalculateHypothesisScore ####

o e — et —————————

. FUNCTION NewTrackPossibility - is the velocity part of the state |
» vector small enough |
LR el ek e e e D e e e e et L L +

FUNCTION NewTrackPossibility(aTrack)
IMPLICIT REAL#*8 (A-H,0-2)

PARAMETER (N=6,M=3,D2R=,017453293D0,R2D=1D0/D2R,
pi=3.1415926636897932D0, maxLength=100,max0bs=1000,
maxSize=50,maxTrack=10000,IbigPrune=1000,Ilitt1lePrune=10,

. nScan=5)
COMMON /CGATE/gatesize, distance

STRUCTURE /TRACK/
CHARACTER status

INTEGER length,using,points(maxLength),new,misses
REAL*8 score,predState(N),updState(N),predP(N,N) ,updP(N,N)

END STRUCTURE
RECORD /TRACK/aTrack

LOGICAL NewTrackPossibility
REAL*8 speed

speed = aTrack,predState(4)++*2D0 + aTrack,predState(6)++2D0

+ aTrack,predState(6)*+2D0

"IF (speed LT, (16D0 * gatesize)) THEN

NewTrackPossibility = ,TRUE.
ELSE

NewTrackPossibility = ,FALSE.
END IF

RETURN

END !#ss» NewTrackPossibility ##»s

—-—ut

. FUNCTION MakeBreakupTrack - make breakup track if possible with |
* everything already estimated

FUNCTION MakeBreakupTrack(breakup,orig,newMeas,T1,T2)

IMPLICIT REAL*8 (A-H,0-Z)

PARAMETER (N=6,M=3,D2R=.017453293D0,R2D=1D0/D2R,
pi=3,1415926536897932D0, maxLength=100,max0bs=1000,
. maxSize=50,maxTrack=10000,IbigPrune=1000,IlittlePrune=10,

. nScan=5)

COMMON /CMODEL/Q(N,N), R(M,M), P(N,N), V(M,M), Vinv(M,4)

STRUCTURE /TRACK/
CHARACTER status
INTEGER length,using,points(maxLen,
REAL#8 score,predState(N),updState
END STRUCTURE

RECORD /TRACK/breakup,orig

LOGICAL MakeBreakupTrack
INTEGER newMeas,I,J,K
REAL*8 T1,T2

¢

th) ,new,misses
N) ,predP(N,N) ,updP(N,N)

DIMENSION state(N),first(N),diff(M),pred(N)

CALL FindObsState(newMeas,atate)
IF (newMeas ,EQ. 13) THEN

WRITE (»,*) ’State for meas, 13: ’,(state(J),J=1,N)

END IF

CALL FindObsState(orig.points(orig,length),state)

IF (newMeas .EQ. 13)

WRITE (»,#) ’State for last meas. of track ’,

"END IF
CALL FindObsState(newMeas,state)
IF (newMeas .EQ. 13) THEN

orig.points(orig.length),’; ’,(state(J),J=1,N)

WRITE (»,+) ’State for meas. 13 again: ’,(state(J),J=1,N)
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END IF

IF (orig.points(orig.length) .NE, -1) THEN
breakup = orig

#s»% First predict velocity ##»+

CALL FindObsState(orig.points(orig.length),breakup,predState)

DO 150 J=1,M
first(J) = breakup.predState(J)

160 first(J+M) = 0DO
IF (newMeas .EQ. 13) THEN
WRITE (»,#) ’initial State for first: ',
. (first (K) ,K=1,N)

END IF
DO 200 J=1,M
200 diff(J) = (state(J) - first(J))/(T2-T1)
250 CONTINUE
DO 300 J=1,M
300 first(J+M) = diff(J) + first(J+M)
DO 350 J=1,M
350 first(J) = breakup,predState(J)
CALL MOVESV(T1,first,T2,pred)
DO 400 J=1,M
400 dif£(J) = (state(J)-pred(J))/(T2-T1)

IF ((diff£(1) ,GE. 1D-6) .OR,
. (dif£(2) .GE. 1D-5) .OR,
. (dif£(3) .GE. 1D-5)) THEN

GOTO 250
END IF
DO 450 J=1,N
breakup,.predState(J) = first(J)
450 breakup,updState(J) = first(J)

IF (newMeas .EQ. 13) THEN
WRITE (+,*) ’State for first: ’,(first(J),J=1,N)
END IF

IF (NewTrackPossibility(breakup)) THEN
MakeBreakupTrack = ,TRUE,
breakup.status = ’B’
breakup.length = 1
breakup.using = 0
breakup.new = orig.points(orig.length)
breakup.misses = 0
breakup,score = 0DO
breakup,points(1) = newMeas
DO 500 J=2,maxLength

500 breakup.points%g) =0
DO 600 I =1,N
DD 550 J = 1,N
breakup.predP(I,J) = P(I,J)

650 breakup,updP(I,J) = P(I,J)
600 CONTINUE
c CALL MOVESV(T1,first,T2,breakup.predState)
c DO 700 I = 1,N
c 700 s breakup,updState(I) = breakup.predState(I)
ELSE
MakeBreakupTrack = ,FALSE,
END IF
ELSE

MakeBreakupTrack = ,FALSE.
END IF

RETURN
END !###¢ MakeBreakupTrack #++s
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