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Abstract

In this thesis, we are concerned with signal analysis toward the goals of both effi-
cient representation and efficient classification. Thus, we consider analyses, called
pursuits, that seek out the elements of a signal which characterize it best. The gen-
eral structure of pursuit algorithms is extended to a probabilistic framework, thereby
developing a Probabilistic Pursuit (PP) algorithm in which the search is no longer
deterministic. The algorithm is based on a prior signal model in the form of a prob-
ability distribution on the search space. It is used in defining a stochastic process on
that space, giving direction to the search. Accurate prior information allows us th e
efficiency of favoring the representation of signal over noise. In this context, we de-
velop a Minimum-Time Decomposition principle and use it to construct an efficient,
application independent classifier. Then, we describe the time-frequency analysis im-
plications of the Probabilistic Pursuit by considering a specific search space, namely
the set of Gabor functions. We apply these ideas to speech classification. Motivated
by the theory of speech production, prior signal models are developed for a number
of VCV utterances. These are based on novel non-stationary models for speech and
use predicted formant path information. The models are used in an instantiation of
the classification paradigm. Our results suggest that the new representation derived
from the PP provides unique and useful information for classification.
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Chapter I

Introduction

In this thesis, we are concerned with signal analysis toward the goals of both efficient

representation and efficient classification. For this reason, representation is not simply

the computation of a fixed transformation of a given observation signal. Rather, the

analysis seeks out those elements in the signal which characterize it best, a technique

known as a Pursuit. Such a procedure leads to representations which are efficient

in the sense that they are compact, consisting, for example, only of elements of the

transformation judged to be important. However, the selection of these elements

is based only on information contained in the signal being analyzed. Herein, we

develop a novel probabilistic generalization of Pursuit type algorithms which we call

the Probabilistic Pursuit where in addition to the information in the observation, a

priori information is also used in the form of a probability distribution on the search

space. Such a distribution constitutes for us a prior signal model.

Fundamental to the structure of Pursuits is a search algorithm and generallywhat

is considered important is the result of the search, which is deterministic. But in our

development we give meaning to the search itself b -basing it on probabilistic prior

signal models, in the context of which we will interpret the length of time it takes for

us to search as an indication of the validity of our model. Thus we derive a Minimum-

Time Decomposition Principle on which we base, our novel classification scheme. The

Probabilistic Pursuit representation scheme, and,.b�ii�ethe classifier, based on it, has

greater efficiency because it allows us to ignore aspects of the observation consisting
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of noise. These are universal results applicable to many different domains.

We give insight into how the application independent results interact with a spe-

cific application domain, in particular speech. In order to do so, a specific search

space, or dictionary, must be specified. In this case, the Gabor dictionary is chosen,

the use of which allows the extraction of localized time-frequency information. In

particular, we show that a Probabilistic Pursuit analysis with the Gabor dictionary

results in a representation containing, in the limit, more information than a Short

Time Fourier analysis. Given a set of speech utterances, we show how to construct

prior models for them on the Gabor dictionary via the use of novel non-stationary

speech models. The arguments used to elucidate the meaning of the search are based

on a consideration of the theory of speech production. The results of these applica-

tion specific considerations are combined with the universal, application independent

results to develop a speech classification experiment.

I Background

The history of Pursuit algorithms can be traced back to Tukey, Friedman, Stuetzle,

Huber, and others [13]. The basic motivation for them is that high dimensional data

is very difficult to analyze. That it is difficult to visualize is obvious when one thinks

about data in greater that four dimensions. But it is also true that the data is gen-

erally sparse and does not "fill up the space" as it were. Both considerations suggest

that we should look for appropriate low dimensional subspaces which carry most of

the information. Moreover, the representation is efficient because fewer variables are

needed to describe the data.

Principal Component analysis is based on such a philosophy. One projects high

dimensional data onto the space spanned by eigenvectors belonging to the biggest

eigenvalues of its covariance matrix. In this case, we see that the search is charac-

terized by looking for large eigenvalues and their associated eigenvectors. It is worth

mentioning here that just because these subspaces contain most of the data, that in

and of itself does not mean that these subspaces are meaningful [6]. To a large extent,
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the significance of the representational elements chosen is dependent on the applica-

tion. If dimension reduction in a representation is the goal, then principal component

analysis is appropriate. However, if discrimination based on a representation is the

goal, this type of analysis may overlook critical but insubstantial data. The connec-

tion between a given application and the search for characteristics in a signal that

support it, lies in the ob ective function'. Let us describe the general technique as

follows.

1.1.1 The Pursuit Paradigm

Our definition of the paradigm is simply that given an input, we search iteratively over

a dictionary of explanatory objects for the one which matches our signal the best.

Since we are interested in the comparative match of the elements, the match will

always be expressed as a numerical quantity with larger or smaller values, depending

on the situation, indicating better matches. Then, the next time that we perform

this search, our new input consists of the original input plus the previously chosen

explanatory object(s). In this way we get a sequence of dictionary elements which

explain the data, according to our matching criterion. We may in various contexts

refer to this sequence as a decomposition as well as a construction of our input. In

either context, dictionary elements are referred to as atoms. The decomposition's

overall properties are governed by those of the dictionary, the matching criterion, as

well as those of the search procedure. We will make an attempt in this thesis to

indicate such connections. Already we see though that the particular explanatory

objects chosen depend on the input signal and will in general be different for-different

inputs. This means that given two signals, the collection of elements chosen in the

analysis of each separately may be different from., the elements chosen in the analysis

of their sum, implying non-linearity.

On the other hand, the specification of the dictionary indicates what we believe to

be the important features of our signal. If we consider all of the inputs we might see

and take away from thatthe totality of signals we could construct from our dictionary,

we get what might be considered noise. Since we are specifying beforehand what might

18



be significant, we expect that we will require fewer parameters in our representations.

1.1.2 Previous Work

The Matching Pursuit Decomposition [18] with the Gabor dictionary is such a de-

composition. The theory is developed in a Hilbert space 'H. The input is assumed

to be an element of 'H, the dictionary is a subset of elements of 'H, and the matching

criterion for selecting dictionary elements is based on the inner product. When the

space is L2 and the dictionary is the Gabor dictionary, a set of modulated Gaussians,

the result is an adaptive representation for signals whose time-frequency character-

istics vary in time. Its adaptive nature is based on the fact that measurements of

the match between the input and dictionary elements are used to select elements of

the representation, and as mentioned before, this leads to non-linearity. The decom-

position is based completely on the particular input signal, the dictionary, and the

matching criterion. Effectively, the entire dictionary is searched and the best element

is chosen at each step.

1.2 The Contributions of this Thesis

1.2.1 Probabilistic Pursuit

A careful analysis of the procedure leads us to believe that we can exploit its sequential

structure. There is information in the way in which elements are picked, the nature

of which can be made precise by introducing probability and prior information in

the context of pursuit algorithms. A contribution of this thesis is that, rather than

searching the entire dictionary, we look at elements one at a time in a principled way.

We call the procedure that we define a Probabilistic Pursuit. We assume that

we have a probability distribution defined on the dictionary, which we call a prior

signal model, and we look at the elements in the order that they appear in an i.i.d.

sequence chosen according to this distribution. When one is found that matches the

signal well, it is chosen and the search is started again. Note that when a match is
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found, we know in addition to the element description its location in this sequence, or

its waiting time. By introducing probability into the search procedure, we are able to

define a set of theoretical waiting times for the dictionary elements which will depend

on the distribution that exists over these elements. These times will be used as an

indication of how well the probability distribution over the dictionary models our

input. In fact, a distribution on the dictionary represents our assumptions -of what

is signal and what is noise, and we can partition the dictionary accordingly. Then, a

measure of fit for the model is that elements that are noise should have large waiting

times, whereas the signal elements should have short waiting times. A related but

different measure of fit deals with the distance of the chosen dictionary elements from

the signal model. We will consider parametric dictionaries and this distance will be

measured in the space of parameters. A more precise description requires us to be

more specific about the dictionary, so we reserve the discussion until then.

Super-dictionary

Conceptually, and later practically, we deal with a set of signals f uil, one of which we

may observe as our input, which may contain an additional random noise. For each of

the ui, we will have a prior signal model Pi, which as mentioned before is synonymous

with distribution on a dictionary, and they will be collected in P - jPij, called the

8uper-dictionary. What it means to analyze a given input is that an element of P is

chosen, and then a Probabilistic Pursuit is performed with respect to it.

Representation

In this context, we develop results showing that when we have a good prior model, the

analysis should choose signal elements before it chooses noise elements as indicated

by a partitioning of the dictionary. The efficiency gained here comes as a result of

not matching the noise part of the observation. Also, we develop a result to show

that a good prior model should in fact give small waiting times.

The following scenario illustrates the benefits� of using a prior signal model when

performing an analysis on an observation. We can think of a class of signals, f uil, each
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element of which matches different parts of the dictionary. Furthermore if one took

the union of all these parts, there would still be elements of the dictionary left out.

That is, the complement of this union in the dictionary is non-empty. In this case,

regardless of which ui we actually encounter, in our search it would be advantageous

to ignore the part of the dictionary that was left out, i.e. in the complement, because

those dictionary elements would only match noise. More precisely, our observation

would be one of the �ujj plus some noise. Though we do not know beforehand which

ui will occur, we do know that certain parts of the dictionary can only be used in

representing the noise part of the observation. Thus, by concentrating probability on

the union, the analysis could ignore noise.

Classification

Given an unknown input from fuil we perform in parallel a separate analysis with

respect to each element of 'P. By comparing the results for each, we select one as

explaining the input best based on waiting time and distance measures. Thus, we view

classification as a pursuit over 'P where the matching criterion is based on waiting

times and parameter space distances. Viewing classification as- an hierarchy of finer

and finer grained coverings of f uil, our scheme will, in general, provide information

at an intermediate level of the hierarchy. The decision could then be refined, moving

to a higher level, by further processing of the decomposition.

Some properties of this classification scheme are efficiency, in that it will be based

on a small number of parameters, and parallelizability. The following discussion pro-

vides motivation: As mentioned before, the probability distribution on the dictionary

represents our prior knowledge, or our assumption of what the best matching ele-

ments are going to be. Furthermore, each model is based on a different element of

NJ. If the model is wrong, we will have to wait a long time to completely analyze

a signal. On the other hand, if the model is good, elements will be chosen quickly.

Turning this around, if indeed we have to wait a long time for a match, then this is an

indication that the prior model embodies a poor assumption about the input signal

characteristics. From this idea we develop a Minimum-Time Decomposition principle
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by which we associate model complexity to the search time. That is, a prior model

is complex if using it causes the procedure to search for a long time in order to find

a matching element. On the other hand, a prior model is simple when by using it,

the search procedure easily finds matching elements. Similarly, a poor model implies

large parameter space distances.

Discussion

Continuing the above discussion then, one could view different distributions on the

dictionary as templates. That is, when we analyze different noiseless inputs with

a particularly limited dictionary, we should get different amounts of matching with

the various elements. On the other hand, if we analyze different noiseless inputs

with a very general dictionary, the procedure will select different sets of explanatory

elements. Informally, if these sets are appreciably different, then they can serve to

identify the input. Consider using each of these sets in succession as dictionaries for

a set of decompositions of one of the inputs. The best matching will occur when the

dictionary is the one that the input itself generated. When we introduce a random

noise into the picture, this may no longer be true. Rather than considering different

sets of elements, we take different probability distributions on a general dictionary, as

in the Probabilistic Pursuit, and in this way we can better deal with the noise issue.

In general, the elements of P will not represent those of fuil in an exact sense.

The difference is modeling error and in essence means that the assumptions about the

signal and noise parts of the dictionary are not exactly correct. But based on these

assumptions the elements that we believe constitute noise will have a low probability.

To ensure that we can perform an analysis even when our assumptions are wrong,

we might stipulate that a fall-back scheme be used when-very long waiting times are

encountered. From a signal analysis point of view, we can use the procedure to obtain

a more compact representation of a given signal for which we have some information.

Probabilistically then, we look in the areas where we know there should be energy. In

this case, we show that we are more likely to- get signal atoms before noise atoms. But,

since the method is probabilistic with non-zero probabilities for all of the dictionary
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elements, we will eventually look in areas that are away from our model and so we

will eventually pick up noise.

To summarize, the probability distribution on the dictionary is really our prior

signal model and whereas before we were matching simply the input signal, we are

now matching the signal plus a signal model which represents our a priori information.

At this point we note that the previous discussion was independent of any application

domain and in particular it was independent of the specific nature of the dictionary.

On the other hand, it is the particular structure of the Gabor dictionary and L2

matching criterion which will allow us to analyze speech in a meaningful way.

1.2.2 Application to Signal Analysis: Speech

Dictionary and Matching Criterion

By choosing a particular dictionary and associated matching criterion we are in effect

specifying the application space. Like in the Matching Pursuit, we choose a Hilbert

space, L2 and the Gabor dictionary. In this context the expression for the inner prod-

uct is shown to be identical to that for a windowed Fourier coefficient. Under these

conditions, there is a result showing that the analysis, considered as a construction

of the observation, will in fact converge to the observation. Thus in the frequency

domain, the construction will converge to the Short Time Fourier Transform and any

information obtainable from this representation, e.g. cepstra, is still present in the

representation. In addition, we have time-frequency localization beyond the capa-

bilities of the Short Time Fourier Transform, and hence more information. Cepstral

parameters are used in a Hidden Markov Model framework as the components of a

feature vector. With the Gabor dictionary based Probabilistic Pursuit representation,

this feature vector could be extended to include the extra time-frequency localization

information.

Further, we provide new analysis of the significance of the pursuit by considering

our inputs to be realizations of semi-stationary oscillatory processes, the theory of

which was developed by Priestley [22]. These can be thought of as being characterized

23



by a two dimensional function ht(�) which, for each time and frequency pair, specifies

the relative strength of the signal. This function is called the evolutionary spectral

density. The term semi-stationary indicates that the components of this density are

changing slowly with time. Our analysis shows that the pursuit looks for peaks of

ht

Classification Paradigm

The ultimate goal of a speech recognition system is the mapping of a speech waveform

to linguistic phonemes or words, and as such is really a subset of the speech under-

standing problem. It may take a rather direct route by mapping the waveform into

a sequence of spectral components and then mapping that sequence into a string of

words 7 or it may take a more sophisticated route involving the estimation of various

speaker parameters from the waveform, or more commonly a collection of waveforms

from the same speaker, and then using that information in the mapping from wave-

forms to words. Characteristic formant positions is an example of such information

and can in fact be used as a form of speaker normalization.

The recognition problem is most often seen as one of classification. That is,

we know beforehand the set of utterances that we may see. For each of these a

model is constructed. This model information is prior information. The use of prior

information itself is a characteristic of speech analysis [251 [21]. It is common for

this information to be statistical, and, such models must be built by training. The

Hidden Markov Model is the ubiquitous paradigm for this case. However, templates

are also used, and these are created based on our knowledge of speech. This may

be a superficial distinction, between statistical models and templates, and really only

serves to indicate how the models are created. We follow the latter method.

Non-Stationary Models for Speech

the set P was introduced as a super-dictionary of prior signal models in a

universal setting. To,,translate the results into theapplication domain, we show how to

construct the� elements of P by using speech formant paths as approximations to ht
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Having studied the consequences of our Probabilistic Pursuit on semi-stationary os-

cillatory processes, we relate speech, through a development of the theory of speech

production, to the defining characteristics of these processes, embodied in the evolu-

tionary spectral densities. This is a novel contribution in that we are modeling speech

as a non-stationary process rather that a set of locally stationary processes. That is,

for each element of f ui 1, we essentially predict the formant paths to get say, f hi (�) 1.

Normalizing each density, we get 'P, a set of distributions on the Gabor dictionary.

At this point, the classification method described in the application independent sec-

tion can be used in a discrimination experiment. As was mentioned previously, the

classification made will be at an intermediate level of an hierarchy. We could use

Dynamic Programming techniques to capture, for example, the temporal correlations

in the selected Gabor dictionary elements to perhaps refine the classification.

Classification Experiment

The set of utterances we choose has in it voiced stop consonants and glides. Pairwise

differences in the predicted formant paths of the utterances can be great as well as

small. We perform the experiment with the goal of showing that our classification

procedure is efficient and can separate broad classes of data.

1.3 Thesis Outline

Chapter 1 Introduction

Chapter 2 Probabilistic Pursuit

First, background information is given describing the general ideas behind Pursuit

methods. In the course of describing various existing methods, the basic Pursuit

framework of interest in this thesis is developed. We then go on to develop the

Probabilistic Pursuit and discuss the implications for signal representation and clas-

sification. Unique to this pursuit is the use of a prior signal model in the form of a
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probability distribution on the search space. By searching in this space probabilisti-

cally, we are able to associate the length of time required in the search to a notion

of model fit. An important characteristic of this discussion is that it is universal, in

that it does not depend on a particular application.

Chapter 3 Probabilistic Pursuit.- Application to Time Frequency Anal-

ysis

In this chapter we will instantiate the universal results presented in the first chapter.

In particular, the Gabor dictionary will be studied as the search space, and the re-

lationship to Time-Frequency analysis will be drawn out. First, deterministic signals

will be looked at. But then we extend the discussion by considering non-stationary

stochastic processes as well. We will consider these semi-stationary oscillatory pro-

cesses to be inputs to the Pursuit and argue that the selected measurements reflect

the densities of the processes. We develop a continuity result that allows the use of

the application independent results in Chapter 2.

Chapter 4 Analysis of Speech

The goal of this chapter is to provide justification for building pri'or signal models

from the resonance characteristics of speech. By looking at the theory of speech

production, we argue that in many cases, the formants contain most. of the energy of

a signal. As they evolve in time, they trace out tracks in the time-frequency plane.

A connection is then made between formants in a signal and the density of a semi-

stationary process from which we argue that the formant paths give a good indication

of the matching dictionary, or search space, elements.

hapt er, 5, Classification Scheme and A. Preliminary Experiment

The ideas from the preceding chapters are here combined into an experimental frarne-

work for classification. We describe the nature of the implementation of the Proba-

bilistic Pursuit and the parameters extracted from it to make classification decisions

based on a Minimum-Time Decomposition principle. Furthermore, the parallel na-

ture of the method is discussed. The experiment, consisting of the identification of
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stops in vowel contexts, is then described and the results are discussed. They suggest

that the new representation derived from the Probabilistic Pursuit provides unique

and useful information for classification.

Chapter6 Discussion, Modifications, and Extensions

After summing up, we go on to describe a number of modifications and extensions

to our work. We suggest techniques to improve the accuracy of the measurements

used in the selection criterion for a Probabilistic Pursuit analysis of semi-stationary

oscillatory processes using the Gabor dictionary. Also, whereas the classifier we de-

velop is efficient and parallelizable, classification accuracy could perhaps be improved

by post-processing. This might include the use of Dynamic Programming to take

advantage of correlations that may by present in the representation. Also, we based

our models on predicted formant paths. We discuss statistical model building as a

way of deriving models from training data.
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Chapter 2

P robabi'll'stic Pursuit

2.1 Pursuits -Background

Inferences drawn from observations depend largely on their salient characteristics.

First, this requires us to have a definition of what a salient characteristic is and then

we must be able to find these in the observed data. Thus the Pursuit is characterized

by an objective function with respect to which the search is performed. Once a feature

is found, the data associated with it should be removed from the observation since it

may obscure the search for later features. This suggests an iterative framework.

2.1.1 Projection Pursuit

Consider the case of a high dimensional Euclidean space where the observation con-

sists of a set of points, commonly referred to as a point cloud. In general this cloud

does not fill the entire space, and is concentrated in a small number of subspaces.

Projection pursuit searches over the set of projections to find these spaces. Huber [13]

has given'ail'obje tive function which i§ maximized -by-the'eigenvect-or corresponding

to the largest eigenvalue of the covariance matrix of the point cloud. Once found, he

gives a method to find the eigenvector corresponding to the second largest eigenvalue,

and so on. The result is that the data is projected onto the subspaces generated by

the eigenvectors associated with the largest eigenvalues. The rnethod is Prin6pal
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Component analysis.

2.1.2 Projection Pursuit Regression

This theory was developed by Friedman and Stuetzle [11]. The goal is to approximate

a function which can vary over many variables arbitrarily by a linear combination of

functions which can vary along only one direction in the space of variables. These

functions are called ridge functions and are constant on hyper-planes. The idea here is

that salient characteristics of a complex function can be expressed in terms of simple

functions.

2.1.3 Matching Pursuit

Mallat and Zhang [181 develop a Pursuit in the context of a Hilbert space, 'H. The

observation, or input as we will also call it, is a function f E 'H. The objective

function is derived from the inner product and the residuals are formed by removing

the projections in the chosen directions. In this case, the search is restricted to a

dictionary D C W, which represents our generating capacity for signals. "Noise"

consists of the signals we will not try to match. Before describing the procedure in

more detail, we present a generalization of the framework given in [18].

A General Class of Decompositions

We work here with a function class, and impose probability when needed. So, let 'H

be a Hilbert space of functions with an associated norm 11 - 11 derived from its inner

product. (e.g. L2with 11 - 112) D - f 011, E_,, a complete set of elements in 'H. This

means that the closed linear span of the elements in D is equal to the whole space:

L (D) -_ W,

where L(.) denotes the linear span of its arguments, and closure in the Hilbert space

topology is indicated by the over-line. _T is the parameter space for the dictionary D.
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Furthermore, we assume a one to one correspondence between the elements of D and

the elements of I and define the following set valued map, where for A C 1,

(A) = f 07 : -y Al,

and for A C D

0-'(A) -- J-y : 07 c Al.

At this point let us introduce a measurable space (Q, Al), where Q - 1, which will

be referred to in the sequel. A_T can be taken as the Borel. sets. By decomposing

f c W, we mean finding a set of constituent dictionary elements, not necessarily

unique, that make up f as an infinite linear combination, f = F_' I wheren=

each O'Yn is an element of D and each c,,, is a coefficient. That we will be able to do

this for every f E W is a consequence of the completeness of D. A fundamental

property of the decomposition is that on each iteration i, an element of D will be

chosen to be the j1h element of this linear combination, which as i --� 00, should

converge in norm to the desired function. To this end, we formally define an iterative

decomposition to be a sequence

(Do; 0-yo 7 fo) 1 (D,) Oy, fi)) (D2 i 072 7 M 7 ... I

i1hwhere we have Di, Oyi, and fi, which we will call the dictionary, (selected) element,

and residue. Each Di is a subset of D, the full dictionary. The function which governs

each iteration is

r: 2 D XH D x W.

Given a dictionary, E 2 D and a function, E w, rdetermines an element of D for.... ... ...

the approximation and a residue in 'H.

(0-yi I fi+ 1) r(Di, fi). (2.1)
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where O., is selected to match "fi according to the desired criterion, and

fi+1 = A - < A, 0-ri > 07i - (2.2)

Define the projection operators 7ri : D x D and 7r 2: D x W �-+ 'H as

7F 1 (07, f 07,

and

7r2(0,y, f) f.

Then equation 2.1 can be rewritten as

(07i, fi+1) = (7r, (r(Di, fi)), 7r 2 (r(Di, fi)))

For i = 0, take fo = f, the function we wish to decompose. Oy,, is then the first

dictionary element chosen to be in the linear combination, which starts with i = 0.

The variation of Di with i can be arbitrary. For m > 0, the m th approximation is

M M
fm < f�, 07, > O-y, aiON

The decomposition is successful if 11 fi 11 -+ 0 as i --+ oo.

Note: This formulation is a generalization of the Matching Pursuit in the sense

that we allow the dictionary to vary on each iteration.

To better understand this linear combination, note that the determination of fi

requires the subtraction of the dictionary elements chosen on previous iterations. We

could write our construction as

M
< fi, (1, (f , O > "D (f , O,

where the function -1�(f, i) 'H x Z+ F-4 D takes a function and iteration number
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as arguments and returns the dictionary element chosen on that iteration when the

given function is being decomposed. In terms of the previous notation, (D (f I O -

71(r(Dj, f - am,,, - ... - ai-107i-J). Note that the sequence of Dis is known. This

representation makes the dependence of the residues on the previous elements explicit

in the function 4) (f , i), which is a non-linear function of the input f . In fact, (D (f , O

always returns a dictionary element. Since in general it is not true that the sum of

two dictionary elements is also a dictionary element, the function �D cannot be linear.

Properties of Element Selection: In general the signal to be analyzed, f, will

be an observation of some data in the presence of some noise. That is,

f (t) -_ 5 (t) + n (t).

In fact, if we assume that we are observing stochastic processes defined on a measure

space (Qo, Ao, Po), where the sample space Q0 wo 1, then we can think of the signal

as

f (t, s (t, -) + n (t,

and the signal construction is

M
f. (t < A (t 4) (f (t .)I O > ID (f (t i).

Taking this view in the case when Di D V i, we can define for each iteration i a

probability distribution on the dictionary parameter space 1, Pinduced,&). Note that

because of the one to one relationship between _E and D, it is also a probability measure

on D. Let A C A_T be a measurable subset of the parameter space. Pinducedi(A)

is the probability that on iteration i A. The probabilistic nature

is solely due to the process being analyzed and it is assumed that the distribution

on the dictionary parameter space is derived from the distribution of the stochastic

processes. Define

W'(A) two Qo 0-'(-F'(r(Dfj(two)))) Al,
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or more simply

W'(A) = Iwo E Qo (14�(f (t, wo), i)) G Al,

Then provided that w'(A) is a measurable subset of QO, i.e. provided that w'(A) c-

o 0

AO,

Pinducedi(A) = PO(W'(A)). (2.3)

In this context, Pinducedi (A) is the probability that (D (f (t, wo), i) c A.

Again, we point out that the probability on the dictionary defined in equation 2.3

is induced by the probabilistic nature of the function being analyzed. One must be

cautious here and recognize that when a specific observation, e.g. a realization of the

stochastic process, is being analyzed, there is no probability involved. This is because

the function which returns dictionary elements given the residues and dictionary, r, is

a deterministic function. Furthermore, it is important to note that the decomposition

operates on the signal f, and the fact that noise is an integral part of the observation

means that the selection of elements will be influenced by the noise. This is a property

of the Matching Pursuit. However, in most instances we desire a decomposition of 8

while ignoring n. Toward this end, we develop the Probabilistic Pursuit in which the

selection of dictionary elements is made probabilistic to reflect our prior assumptions

of signal and noise. In essence this means that even when given a specific realization

to analyze, the selection of dictionary elements, i.e. the functions, is probabilistic,

reflecting our assumptions (see Section 2-2).

Back to Matching Pursuit

We can view the Matching Pursuit as an instance of the general paradigm, which

is characterized in terms of an optimality factor 0 < a < I and choice function

C : 2-T �-� 1, the purpose of which is to select in a deterministic way, one element from

the set of dictionary elements satisfying an optimality criterion for each iteration. If

A C 1, then

C(A) = -y, where -y E A.
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Which particular -y is chosen depends on the specifics of the choice function. Let us

use the same notation for the choice function operating on subsets of D. Thus, if

A C D, then

C (A) - Oy, where A.

Here Di D, so the dictionary for each iteration is the same. Then more

formally, we have a signal f fo c 'H. On every iteration i, we choose an element

EE D such that

< fi, 0, > I > a sup < fi, 07 >
'Y G I

where 0 < a < I is the optimality factor. Actually, there may be many elements

that satisfy the optimality criterion, so the set of these is defined,

Da'i D and < fi, 07 > > a sup < fi, 0, > (2.4)
-Y E I

Which one of them is chosen is given by the choice function C:

07i - C(Da'i)

This specifies the selection criterion in r (equation 2.1). Convergence, i.e. that

11 fi 11 --+ 0 as i -- � oo, is proven in Mallat and Zhang [18] and we summarize the

concepts in the proof here.

For reference, two key Lemmas from Mallat and Zhang in the convergence proof of

the Matching Pursuit are restated.

Lemma I (Mallat, Zhang) Let hn < fn, > 0,yn. For any n > 0 and M > 0

I < hm, A, > < h. h,�
a

It is from within this Lemma that the optimality factor a enters the proof of

convergence.
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Lemma 2 (Mallat, Zhang) If (s,,), E Z is a positive sequence such that E+10 S2 <n n

+oc, then
n

lim inf Sn I: Sk = O-
n + +oo

k = 0

In the pursuit, since we are removing the contribution of the elements as we choose

them, it seems reasonable that on each iteration, we are decreasing the energy in the

input. This can be seen in the energy conservation statement [18]

f 112 I < f,, 07 > 12 + 11 f. 11 2

i = 0

derived from

11 A 11 2 = I < f,, O_Y > 12 + 11 f,+l 112,

which is a consequence of the fact that we are removing projections from the data

on each iteration. So we know that 11 fi 11 is monotonically decreasing with i and

converges to some value. To show that it converges to zero, it is shown that f fi I is a

Cauchy sequence and that the limit is orthogonal to the elements in the dictionary,

which is complete.

From equation 2.2, it is seen that, given integers N, M > 0 with N < M, the

residues in the decomposition obey

M-1
fN = fM + E < A, 0-�i > 0-yi,

i=N

or stated in terms of h, defined in Lemma 1,

M-1
fN = fm + E hi,

i=N

Thus, expansion of 11 fN _ fM 11 2 and subsequent use of Lemma I allows the

derivation of

2 M-1
fN _ fM 11 2 < fN 11 2 fM 11 2 + - 11 hm h.

a n=N
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for non-negative integers N, M. For large enough N, M the difference between 11 fN 11 2

and 11 fm 112 will be negligible since 11 fi 11 converges. Then, by using Lemma 2 one can

show that the last term in the above right hand size is also negligible for large enough

N, M. The application of these ideas is not as straightforward as this, but the basic

ideas are here and are used to show that f fil is a Cauchy sequence. Then it is shown,

by using energy conservation once again, that limj + - < 07 > 0 for each

-y, establishing that the limit of fi is orthogonal to the elements of the dictionary.

We note some observations and generalizations of the result. In the statement of

the problem, a is required to be positive for convergence.

Observation a need not be the same on every iteration. Consider f a,, 1, any posi-

tive sequence of a's, one for each iteration.

Claim I Convergence is guaranteed as long as inf,, a, > 0.

Proof: One simply uses the infimum in Lemma I.

2.2 Probabilistic Pursuit

Now we define a more general pursuit decomposition, which we call the Probabilistic

Pursuit, fitting in the general paradigm, which incorporates prior knowledge in a

probabilistic framework. We give meaning not only to the result of the search but to

its ability to find matching elements. This ability will more precisely be characterized

as the length of time it takes to complete the search. We retain some of the features of

the Matching Pursuit, namely the optimality factor. The fundamental idea is that we

allow the dictionaries to evolve as a Stochastic Process in each iteration. Effectively,

for each i we probabilistically choosea sub-dictionary Di E. 2 D one element at a

time according to a probability distribution, representing our assumptions about the

signal structure, until the optimality criterion is met. It will be shown that the better

our assumptions are, the faster we are able to find matching elements, and vice versa.

We no longer have -a choice function in the sense of the Matching Pursuit, however

one is implied. In the development, the input f is deterministic and an element of
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'H. We could also consider f (t, wo) to be a realization of a process on A, Ao, Po). In

this case, we assume that

Po (two f (t, Wo)

2.2.1 Dictionary Process

candidate 7

i4h parameter set

P

wi i-th waiting time

7 accepted?

Figure 2-1: The process of choosing a dictionary element.

Formally then, we set Q = -T and let (Q, A_T, P) be a probability space with P

a probability measure on T. This is the measure by which our algorithm operates.

Though for the theoretical development here it is considered arbitrary, later it will

in fact constitute prior knowledge. Let p(.) denote the density of P(.). Recall that

-T is a space of parameters and that 7 E -T is a vector of parameters. Consider

a vector-valued i.i.d. discrete time stochastic process defined on a measure

space (Q., Ay, P.), where for fixed n, N (.) : Q �-+ Q is the random vector in

(Q, A, P) defined by the identity map. Since the sample space Q is the parameter

space of the dictionary, each 7,jw) is an element of I =_ Q, i.e. it is a random vector

taking values in the parameter space -T of the dictionary. For each iteration of the
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decomposition, we take a realization of the process and define the selected

dictionary, which we call Di, to be

Di

In this case, the elements of Di are ordered according to the timeltheir parameters

were chosen in In the following, choosing an element means the same thing

as choosing a parameter set. D,,,,i is as in equation ( 2.4). Then the element chosen

on a given iteration is defined as the first element in Di that is also in D",i. In figure

2.2.1 this is depicted as a communication between Awo agents. The first sends out

candidate dictionary elements using the probability distribution, and the second tests

whether or not the element meets the optimality requirements.

Let X = �Xo, X,-,,-ll be a partition of I =_ Q, and hence of the dictionary

D, where each Xi Al. We define the sub-dictionary process associated with X

to be a discrete time i.i.d. m-ary stochastic process f dx (n, .)I on (Qd, Ad, Pd) where

each dx (n, -) is a random variable taking values in 0, .. -, m - I I with

Pd(dx(n) = i) = P(Xi) for i � 0, ... , m - II.

We will use sub-dictionary processes in the following derivations.

The purpose of the following Lemma is simply to show that eventually, an element

that meets the optimality criterion will occur.

Lemma 3 Di n D,,i is non-empty w.p. I if 0-1(DCe'i) is a measurable subset,

0-'(Dc,,i) E A-,, with P(O-'(D,,i)) b > 0.

Proof: Recall the definition of -the set Dai,,

DC"i D and < fi, Oy > I > a sup < fi, Oy > I 1, (2-5)

consisting of the set of elements satisfying theoptimality criterion on iteration i. We

want to show that at least one element of Di satisfies the optimality criterion, or
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in other words that there exists an n, where is the n'h element in the stochastic

process generating Di, such that c D,,i. We show that w.p. I this

occurs by the following argument.

Let XI - D,,,i and X0 = D" Now X X0, XI 1. Then the sub-dictionary

process f dx (n, .)I is a Bernoulli sequence, modeled by (Qd, Ad, Pd), with dx (n) = I

corresponding to the event that oy,,, E D,,i and dx (n) = 0 corresponding to the

event that D'

The sub-dictionary process is i.i.d., thus the event dx(n) = I is independent of

dx(m) = I when m =A n. Now EnPd(dx(n) = 1) = En b = oo. Then, the

Borel - Cantelli lemma can be used to show that a I will occur w.p. I in f dx (n,

and thus the Lemma is true. 0

Lemma 4 For each measurable subset of 1, A E A.T, let tA be the waiting time for

first occurrence of some element of A in the dictionary process f-yn(.) I. Then, tA is

well defined.

Proof: If P (A) > 0, then as before, define a sub-dictionary process with XI = A

and X0 = A'. Again, f dx (n, is a Bernoulli random variable sequence with

probability of success given by b P(A) for each element. Since a success will

occur w.p. 1 in f dx (n, -) 1, the Lemma is true for this case.

If P (A) = 0, then set tA = oo, and the Lemma is true in general. 0

We have now defined r, the function which explains the relationship of the decom-

positions elements from one iteration to the next. The probability distribution P will

be referred to in various contexts as a prior signal model or prior information.

Hence we have generalized the pursuit, which given a dictionary had worked only

on correlation measurements with the observation in a deterministic fashion, to take

into account prior information in a probabilistic framework. In our development, this

prior distribution is independent of the actual observation signal, as well as of the

iteration i. This however need not be the case, as discussed in Chapter 6. Further-

more, note the contrast with the probability given in equation 2.3, which is induced

by the probabilistic nature of the observation. We compare the two in Section 2.2.2.
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We develop the consequences of our formulation in two different contexts, rep-

resentation and classification. If we are interested in efficient signal representation,

i.e. with a small number of parameters capturing the salient characteristics, we can

view the prior information as a way of finding these quickly. But, we do not want

the assumptions that we have made about the structure of the input to prevent our

finding important characteristics that are inconsistent with our prior knowledge. To

ensure that we eventually find these, we can enforce the condition that the signal de-

composition revert to a fall-back scheme when it is too difficult to find elements. On

the other hand, it is the way in which the probability is distributed over D that will

control, on any given input, the amount of time it takes to find matching elements.

Thus, using the length of time it takes for the Probabilistic Pursuit to reduce the in-

put signal energy, in addition to distance measures, we can construct a classification

scheme.

Before continuing, we show that in our framework, the norm of the residues either

goes to zero or at some iteration, the residue is inconsistent with the prior model.

Theorem 1 Consider a Probabilistic Pursuit on f (t, With probability 1, either

fi 0 as i -+ oo or for some iteration i, we have to wait infinitely long for a

match.

Proof: By assumption,

Po wo : f (t, WO) G

To f (t, wo) E W, we can apply the Probabilistic Pursuit. Then on every iteration

the second agent in the probabilistic search makes sure that the optimality criterion

is satisfied., On a given iteration i, it is satisfied w.p., I on Q1Y if P (D,,i)) > 0 by

Lemma 3. Previously, we saw that it was the fact that projections onto successively

chosen dictionary elements were removed from the data and that the elements were

chosen to satisfy the optimality criterion which guaranteed convergence. Hence the

first part of the result. On the other hand, if for some i, P(O-'(D,,i)) - 0, then

the criterion will not be met. This means that the set of parameters corresponding
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to the dictionary elements that match the residue fi have zero measure with respect

to P(.). By Lemma 4, this means we would have to wait infinitely long for a match.

0

Let P Pi I be the set of all the signal models, or distributions over the

dictionary, that we wish to consider. Introducing some new terminology, call this set

of signal models the super dictionary. We claim that the classification problem can be

seen as a pursuit with respect to the super dictionary where the matching criterion is

given in two parts. The first involves the waiting times for the atoms selected on each

iteration whereas the second measures the distance of these from the signal model.

2.2.2 Representation

The goal is to analyze and represent the signal part of an input which we know

contains signal and noise. If we denote the observation by o(t), then

f (t) _= o (t) -_ s (t) + n (t),

where s(t) and n(t) indicate the signal and noise parts respectively. By specifying

P, we are making assumptions about s(t). 11 f 11 contains energy contributedfrom

both the signal and noise parts. The Probabilistic Pursuit reduces 11 fi 11, but in

a structured fashion, namely it seeks to reduce the energy due to the signal part

before that of the noise part. The practical consequence of this is that here we expect

that for any finite number of atoms chosen, our procedure produces more atoms that

represent the signal as compared to the Matching Pursuit which does not differentiate

between signal and noise processes. Put another way, to reduce the same amount of

signal energy from our observation, we have do not have to carry the decomposition

as far. As we will see this statement depends on the quality of the prior information

we have.

We suggest with the following example to show that the framework is fairly flex-

ible. One way to see the usefulness of this procedure then, is to consider the case

where the signal part of the observation is one of a possible set or class of signals.
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When the dictionary elements matching well at least one of the signals in the class are

combined, it is a reasonable assumption that the result is not the entire dictionary.

Assume that we know this combined set. We can think of it as an assumption about

the particular signal part we see that has some error in it. Thus, perfect knowledge

of the class can be seen as partial information about the signal.

Tomakethesenotionselearweusethesignalmodeltopartitionthedictionaryin-

a meaningful way based on which we can make the arguments. Consider the following

simple partition:

D - Parts of D where p(OY) > c.

Dn - Parts of D where p(O-Y) <- 'E.

Note again that A.) is used here as denoting the assumed density of P(-) and that

c is a small positive number. This partition can be used to compare the probability

in equation 2.3 with the prior distribution. That is, the probability of selecting a

noise dictionary element can be defined in both cases. For equation 2.3, one simply

integrates the probability over the noise dictionary parameters. Let A c 0-'(D')

such that A E A.E. Then using equation 2.3, the probability of selecting noise

present in A is

Pinducedi(A) -- Pok(A)).

For the prior model, recall from before that we defined D,,i, the elements that

match the input signal on iteration i. Then, the critical information lies in the extent

to which the elements that satisfy the optimality criterion match our assumptions of

what is signal and noise. Their relative sizes give us information about the selection

procedure.

The probability of, choosing a signal,,,element, will be large, when D,,i overlaps

significantly with D,.

Theorem 2 Let 0-'(DI) and 0-'(D') be measurable, 0-'(D'), 0-'(D n A and

di 'oint such that their union Z's equal to -E. Further, suppose 0-'(D,,,j) is measurable,

0-'(D,,i) c Al, and that P(O-I(D')) - .6. Then for the signal model PHI we
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have that for each iteration i, the probability of selecting a dictionary element in D',

Pn(i), is bounded. We have,

P. (i) < in + is'

where,

is = P(O-'(Ds)),

n)),in = P(O-'(Di

io = P(O-'(Do)),

where the sets D�, D�', and Do are defined as,

Ds = Ds n D,,i,i

Dn = Dn n D,,i,

Do = Dc

i ai'

Proof: The quantities 0-'(D�), 0-'(D�'), and 0-'(D?) are well defined because of

the measurability of

The set of waiting times I tAj JAj G A. may be an uncountable set, but given any

finite number of subsets I Ail, there is an ordering. These waiting times give an indi-

cation that the noise elements have a small probability of occurring. More precisely,

for iteration i, the numbers is and in indicate the degrees to which D,,i matches

the signal and noise components, and as defined, they are actually the probability of

occurrence for those elements in the dictionary process. The important quantity is

Probability(D' occurs before D') Zni i in + is'

This is derived as follows. Consider the sub-dictionary process Id. (n, .)I on (Qd, Ad, P d)

defined by X X0, X1, X2 1, where

Xo
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X, - 0-'(D'), andi

X2 0-'(DO).

A dictionary is said to occur if an element from it occurs. That is, D� occurs if

d,(n) 0, D�' occurs if dx(n) 1, and D? occurs if d,(n) 2. Then,

Pd (dx (n) - 0) = i,

Pd(dx(n) = 1) = in, and

P d (dx (n) = 2) -- i'O.

Let T,,,, T,,-,,,, and Toj be the times for the first occurrences of the three dictionaries

D�, R', and D?

Probability(D n occurs before D') == Probability(Tj < T'j)

i i

Probability(Tnj = i, Tj > i) = iio-lin

0"Probability(Tnj < TJ) = in ii-1 (2.6)0
00

ii (2-7)
= in 1: 0

i=O

in (2-8)
- Z'O
in (2.9)

in + i,

By assumption, P(O-'(D')) 6. But,

in - P(O-'(D n)) (2.10)

< P(O-'(D n)) (2.11)

6. (2.12)

44



So,

in_ <
in + + i,

Dccj

D -- T DI

S
D

D!"

D

Figure 2-2: A sample partitioning of the dictionary.

These results can be made clear by considering the particular instance of the

setting described above. Namely, we let DI and D" be defined as the sets preceding

the theorem. In figure 2.2.2 these two sets are schematically represented as the two

sections of the rectangle divided by the dashed line. D is the entire rectangle. The set

D,'i Which represents the part of the dictionary that satisfies the optimality criterion

is depicted as the oval. As seen in the theorem, the quantities of relevance are the

intersections of this set with the partition of the dictionary, which are indicated by

the inside portions of the oval separated by the dashed line. On any given iteration,

the probability of choosing an element of the noise dictionary is given by the ratio

n
P. W

+

the quantities being defined in the theorem. First we note that i, will be large if
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the set of elements that satisfy the optimality criterion overlap significantly with our

assumptions, inherent in the prior signal model P(.), of where the signal energy should

be. This is because DI is defined in terms of elements having a large probability of

occurrence. On the other hand, even if the satisfying set overlaps significantly with

Dn ) in will be small because Dn has elements with low probability. Thus when

our assumptions are correct we expect that i, will be the dominant term in the

denominator, and in will be small, giving a low probability of choosing a noise element.

Of course, this probability is a function of the iteration. Thinking again in terms

of f being made up of contributions from the signal and noise parts, the probability

of choosing noise should be small on the first iterations where there is a lot of signal

energy. As this energy is reduced by the decomposition, the in term will become

important, making it more likely to get a noise element. This supports our claim

that the Probabilistic Pursuit reduces signal energy before that of noise. Then, notic-

ing that i, will be small when DI n D,,i is small and that P(0-1(D')) = I - 6

shows that we will choose overlap or noise only if the correlation with the signal

dictionary is small. Now let us rewrite Fn(i) as Pi(choosing noise element). The

important thing to note here is that the probability in this case is a result of the

probabilistic selection procedure operating on a deterministic function, as opposed to

Pinducedi (choosing noise element) which comes as a result of a deterministic procedure

006kating on stochastic processor's

Let the selection procedure used in deriving Pinducd,&) be that of the Matching

Pursuit, i.e. one that deterministically returns a dictionary element satisfying the

optimality criterion. Consider the following partition, where the signal being analyzed

is f (t, (.,)o) - s(t, (,)o), i.e. a realization of s(t, .), defined on (QO, AO, PO), without

noise (note that Pinduced,&) is a function- of the iteration, but we have simplified

this in the following for the sake of "analysis). Pinducdj is assumed to have density

Pinducedj

D Parts of D where Pinducedj(o,�) >

nD Parts of D where Pin'du'ce'dj(07) <_
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But, since the observation is a realization of f (t, -) - s(t, -) + n(t, -) defined

on (Qo, Ao, Po), the recovered dictionary elements by the Matching Pursuit will in

general be different from D'. However, with the Probabilistic Pursuit, if the prior

model is given by Pinducedl (-) we can correct for the presence of noise in the signal

precisely because we look at dictionary elements according to Pinducedl (,). That is,

we note that D,,,i is dependent on the input signal f. On the first iteration, for

example, PinducedI(O'(Dal)) should be large. Here we directly see the effect that

our procedure has of biasing the selection toward signal elements.

2.2.3 Classification

Hierarchical Modeling

The universe of signals is a finite set NJ. The observation will be one of these

plus perhaps some noise. The goal of our classifier is to identify which ui occurred.

Actually the method presented below should be viewed as giving information at one

level of an hierarchical classification scheme (see figure 2.2.3).

Each such level represents a covering of the space of signals with the lowest level

corresponding to the coarsest description, i.e. the whole space, and the highest level

to the singleton elements, or the finest covering. The nature of this covering depends

on the universe of signals and on the dictionary used as well as the procedure used

to classify the observation and the amount of noise it contains. Inherent in our use

of a cover rather than a partition is the notion of ambiguity. At any given level of

the hierarchy, one signal could be in more than one set of the covering. This implies

that at that level, the given classification procedure and noise structure are such that

there is not enough information extracted from an observation of the signal to make a

choice between the classes, sets, of which it is a member. Furthermore, many signals

can belong to the same class.

An intermediate level can be thought of as a covering of the data which is finer than

the level below and coarser than the level above. At a particular level, classification

means giving the set, or sets, in the cover that contains the observation. The higher up
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highest 1,-,.l

i.te.nediate leels

lo-St le'el

Figure 2-3: Hierarchical Classification: Each level represents a covering of the data
with the lowest level giving the coarsest description and the highest level giving the
finest.

in the hierarchy that we go, the more information is necessary in order to distinguish

between the sets as they are more specific. In this context the base data set is the

universe of signals, fuil and at the lowest level, no distinction is made between the

elements. Here, the different classes are identified with the elements of 'P. Given

an observation, the following classification scheme will identify a prior model, or set

of prior models, matching it the best. That is, from the original set a set of

subsets f f Ui, I I f Ui2 11 N3 are created where the indices take values in different,

possibly overlapping, sets, and each, possibly empty set, corresponds to a prior signal

model. To determine the structure 'of the covering, one would evaluate a set of test

signals.

The advantage of the scheme can be seen by recognizing its parallelizability and

considering the small number of parameters on which a decision is made. In fact, as

will be seen in Chapter 5 Section 5.3.1 (Minimum-Time Decompositions), virtually
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no post-processing of the decomposition is necessary in order to make a decision. On

the other hand, in order to refine the decision and select a partition at some higher

level, it is possible to take into consideration the correlations between the dictionary

elements that are selected. However, to evaluate these correlations would require

significant post processing, e.g. the Dynamic Programming scheme given in Section

6.2.2.

PI

noise

Figure 2-4: Description of the classification algorithm. The observation u' is one of
the signals from the universe of possible signals. The classifier chooses a signal model
P' based on a set of parallel decompositions.

As figure 2.2.3 shows, the classification procedure involves running a set of parallel

decompositions, one for each signal model in 'P, which will contain a model for each

of the possible signals in Juil. It is the job of C, in figure 2.2-3, to determine

which model fits the observation the best. The definition of model fit is based on

one of our novel contributions, namely that in the Probabilistic Pursuit we associate

goodness of fit with speed of decomposition and the distance in parameter space of

that decomposition from the signal model being used. The justification is given by

the following.
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Waiting Times

Theorem 3 Let P(.) be a signal model. Then given any input f G L2, the expected

value of the waiting time for element selection -F,' is given by

E P(0-'(D.,j))

for all iterations i.

proof: Immediate. 0

Again, we can look at figure 2.2.2. The average waiting time is controlled by the

probability of occurrence of the set D,,i in the stochastic process that gives the sub-

dictionary for iteration i. If we assume for the moment that there is no noise, then in

order to have low waiting times, we must give high probability to D,,i. But another

way to describe this is to say that DI n D,,i must be large, or the assumptions inherent

in the signal model must be consistent with what actually matches the input. On the

other hand, large waiting times result when DI n D,,,,i is big, or when the dictionary

elements that match the signal are the ones that we assume to be associated with

noise. The sizes of these intersections are dependent on the iteration number i. This

is important in that case where the assumptions are partially correct. Then, the

appropriate way to view classification is to notice that large waiting times will be

2encountered before all of the energy in the input, 11 f 11 , is reduced.

But now assume that there is some noise. This noise may in fact have energy

which overlaps with the signal part of the observation. In this case, if the correct

signal model is used, the waiting times that result in the decomposition should be

consistent with our earlier discussion. Another way to interpret this is to consider

the case when the signal model is wrong. If there is noise-energy where the signal

model assumes there is signal energy, the decomposition may still have low waiting

times, i.e. the waiting times in this case can indicate the wrong signal model.
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Parameter Space Distances

We can define a distance measure in the parameter space of the dictionary and use this

in conjunction with the waiting times to make decisions. The dictionary elements, or

atoms, that the decomposition chooses are described in terms of a set of parameters,

the possible values of which constitute -E. Each element of P is a probability measure

on this same parameter space. So, we can define the parameter space distance,

d (7, P (-)) : 1 x P �-+ R,

as a function which for example measures the distance from -y E T to the nearest

local maximum of the density associated with P(.), which of course represents the

assumptions of signal energy location inherent in the observation.

2.3 Finite Dimensional Signal Space

To close this chapter, we give the results in the finite dimensional case which is

relevant to the experiments. We have a redundant dictionary described by 1. As in

Mallat and Zhang we suppose that there exists a finite subset, indicated by -T"' such

that I for f E L2 - Since 1, is finiteSUP-Y E -1. I < f I O'Y > I > a SUP7 E< f I O'Y >

the sup is really a max. Choose 3 such that 0 < 3 < I.

The dictionary process f -y,, defined on (Qy, Ay, P.), resulting in Di, is now the

sameasfd,(n,.)Iall,,,I-arysub-dictionaryprocesson(QdAdPd)whereX = fXiJ

such that each Xi is simply an element of -E,,

Analogous to equation ( 2.4),

D,3,i E 1, and I < fi, Oy > I > 0 max I < fi, O-y > II,
-Y E -E.

and the element chosen on a given iteration is defined as the first element in Di that

is also in D,3,i.

Claim 2 If Pd(dx(n) i) > 0 for i E II,-, then the procedure above
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implies

11 fi 11 < 11 f 11 (I - (aO)2A2)ij2' where 0 < A = inf sup < > <
f E'H-�El f

Proof: The effect of the probabilistic procedure is to modify the optirnality factor

from a to Oa. On replacing a by Oa in the proof in Mallat and Zhang, the result

follows. 0

So the convergence is still valid. The two theorems above will be valid as well if

the dictionary is such that the sets Dpi are measurable with respect to the probability

measure. Since -Ea is finite, this will be the case. This is in fact the setting which

we will use for our experiments, where we will discretize and periodize the Gabor

dictionary. If following [18] we included the DFT basis, it would result in a redundant,

finite dictionary containing a basis. However, we choose to leave out the Fourier

Basis because in the experiments to be described later, we are primarily interested in

classification.
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Chapter 3

Probabilistic Pursuit - Application

to Time Frequency Analysis

In analyzing any real signal, we must deal with the presence of noise. The definition

of noise can be simply any energy in the signal which is not contributed by the source

of interest, or it can more subtly be defined as the characteristics of the source which

are to be ignored in addition to extraneous noise. In light of this, the observation

is most generally viewed as a signal part plus a noise part. In order to separate

the two in an analysis, we must have a way to distinguish between these interesting

and uninteresting parts of the signal, which for our purposes will depend on time

and frequency. The interesting parts of the signal will be those that are present in a

dictionary, D.

In the last chapter, we described a general class of iterative decomposition proce-

dures for functions whose purpose was to select out the elements in the input obser-

vation which match the dictionary. A desirable property was that given any input,

the procedure should be able to reconstruct it entirely, but at the same time, since

elements are chosen successively, the first components chosen should be those that

characterize the signal part best. A deterministic special case, the Matching Pursuit

Decomposition, which possess the first of these properties was described. However,

we sa,,v that this procedure operated with no prior information with respect to noise

and the selected components did not have the above ordering property. We defined
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the Probabilistic Pursuit, a methodology in this broad class which operates with re-

spect to a prior signal model in the form of a probability distribution on D. It has the

property that given information about the signal part of the input, the components

matching it are favored and found quickly, provided that the prior model is reason-

ably accurate. A bad signal model will still allow the input to be represented entirely,

but the signal components will be found slowly. In practice we may have only rough

information about the signal, and so the results are framed in a way that shows how

performance should degrade as our information becomes weaker. It is precisely for

this reason that we pursue the goal of ordered reconstruction of the signal, looking

for signal elements first.

Toward the development of the application domain, which is speech classification,

we present in this chapter the instantiation of the universal ideas of the last chapter

in the context of time-frequency analysis. The development will be in two stages.

First, we discuss analysis of deterministic signals which are elements of the Hilbert

space L2. From this we infer the kind of information that is extracted in the selection

procedure. Then, to relate this specific kind of information to the signal models for the

observation, we expand the analysis by considering the input to be a non-stationary

stochastic process. In the next chapter, we develop the relationship of these processes

to speech through the theory of speech production.

3.1 Pursuit Based Time Frequency Analysis on

Deterministic Signals

3.1.1 Application Specific Definitions

Here, the developments will complement those of the last chapter since we choose

a particular dictionary and associated selection criterion. By being specific about

the dictionary to be used, we are making a decision about the application domain

in the sense that the dictionary is meant to capture all of the variability that might

be present in.the input. By defining the selection criterion, we are defining a way to
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quantify the amount of this variability in the input with the hope that it will be useful

in finding salient characteristics. In this thesis, the application domain is speech and

thus we are interested in time-frequency analysis.

The Gabor Dictionary

By performing the decomposition, we want to extract specific information from the

signal. Signals such as speech are characterized by a time varying spectrum, and

we might expect that we could characterize various speech sounds according to this

variation. Thus, we choose as our dictionary, the Gabor dictionary which facilitates

extraction of estimates of the signal energy in localized time and frequency bands.

Such an analysis was proposed by Gabor [2]. We let D be the set of Gabor functions,

.I t - U
D 0-y = 7g(� �)ei�t

S

each element of which is completely specified by an index set -Y S, u, scale,

translation, frequencyl E R+ x R 2 = 1. The window function g(t) is a Gaussian,

1/4 ,-7rt2

g W = 2

The constant is chosen so that the L2 norm of g(t) equals 1. An important property

of this dictionary is that the Gaussian is an optimal window for a particular time

frequency tradeoff, because in this case the product of the variances of the window

and its Fourier transform meets with equality the inequality given in the next section.

Selection Criterion

In the Hilbert space framework that we use, the matching criterion used to select

dictionary elements on any given iteration is based on the magnitude of the inner

product of the input o(t) f (t) and the dictionary elements,

I +00 t - U
< 0 W M > - f O(Og( )e-*dt.-00 S
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This is a windowed, or Short Time Fourier analysis. We elucidate the properties of a

selection procedure based on this matching criterion in the following discussion.

Time Frequency Analysis

In this thesis we will be dealing almost exclusively with functions in L2, and for these

the Fourier transform, which is also in L2, is defined as

F f (t)e--"tdt, f c L2-
f 00

The Hilbert space structure of L2 will be important and we denote the inner product

on this space as

< fg > - f(t)#(t)dt, fg E L2-

The norm is then defined as

II f II V�<f , �f>, f (E L2

Time-Frequency analysis [17] [7] is subject to an uncertainty constraint that precludes

arbitrary knowledge of the time varying energy distribution of any process. Given a

function w(t) -e L2 and its Fourier transform W(�), consider the functions I W (t) 12

and 1 IW(�)12. Let the second moment about the mean, the variance, be defined as
27r

Vy (t)) 00 (t M (f (_))) 2 f (t) dt,

where

M(f (t)) 00 t f (t) dt.

Then if w I I 1, V (I W (t) 12) V ( I I W 12) >1 [17].
2,ir - 4

To understand the implications for signal analysis we must consider the problem

of extracting local information from a signal o(t), which may be defined for all time

t C R. If we choose a time to and ask about the energy in the signal at a specific

frequency & we cannot get the answer from, 0(�) because it is a measure of the
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frequency content for all time. So we may try to analyze o(t) in a neighborhood of

to. That is, we limit the time extent of the signal by multiplying it with a window

function w(t) with mean to. But this is the same as convolving 0(�) and W(�). The

more that we try to localize around to, which corresponds to making the variance of

IW(t)12 smaller and smaller, the bigger the variance of I JW(�)12 must become. The
2ir

net effect is to increasingly blur 0(�). Likewise, sharpening the frequency analysis

would correspond to increasing the variance of I W (t) 12, which indicates a loss of time

localization.

So if we have a set of times and frequencies, or more generally the entire time-

frequency plane, can we assign numbers to the points (t, �) that uniquely describe o(t)

and moreover what do these numbers tell about the local properties of the signal?

This question does not have a unique answer. In essence, there is a multiplicity of

answers, each of which corresponds to a set of time-frequency resolution tradeoffs

that one is allowed to make. It is the specific task which often motivates the tradeoffs

to be made. A constant, even window yields a Short Time Fourier Transform. An

analysis based on the time dilations of certain functions yields a Wavelet Transform.

Looking at it a little more carefully, we see that to each point (t, �) in the time

frequency plane, we associate a window function whose purpose is to capture local

information about the signal energy near (t, �). Our choice of window parameters will

indicate a neighborhood around (t, �) and in some sense we can think of this window

function as covering that neighborhood. Informally, if we choose points f (ti, �j) I and

their associated windows so that we cover the entire time frequency plane, we know

that we can assign numbers to each point in f (ti, �j) I such that we may reconstruct

our observation from this data. There are many possible coverings. For a more precise

discussion of the preceding, we introduce the concept of frames.

Define f Oj 1, j E J where J is a possibly infinite index set, to be a sequence in

a Hilbert space 'R. Following [17], consider the signal transformation defined by the

operator T : 'H 12 (J), where for f E 'H,

Tf (j) < f, Oj > V j E J.
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The adjoint of T is T*, defined by

T*c(n) c(j)Oj, V c(n) E 12(Z)-
E J

Then the pseudo inverse is

c(n) - (T*T)-' 1: c(j)oj
i E J

Oj I is a frame for 'h if there exist A, B > 0 (a tight frame when A - B) such that

for all f C 'H,
,I < f, Oj > 12A f < < B f

j E i

Then, f is reconstructed as t-'Tf -_ Ej EJ < f I Oi > �j, where �j = (T*T) -'Oj.

The set f �j 1, with j E J is called the dual frame. The key point is that a signal

transformation can be viewed of as a map from W into 12(J) and the pseudo inverse

of this map, which is well defined because of the frame condition, tells us how to

reconstruct any function in R from its image in 12(J)-

When we multiply our observation by a window and then take its Fourier trans-

form, the equation that we get is

+00
C 0(t)W(t)e-*dt.

00

However, if we let W (t) ei�t and make sure that w(t) is square integrable,

then this is really the same as c - < o(t), 0(t) >. Accepting the fact that we

cannot measure an instantaneous frequency at an instant in time, we talk about

localized measurements in both time and frequency. But now we have a way of

showing that these measurements are good enough for unique representations. Instead

of computing numbers for each point in the time-frequency plane, we can choose

a countable subset, �(tj,�j)j. In fact, the Short Time Fourier Transform (STFT)

and the Discrete Wavelet Transform (DWT) are simply the result of choosing a two

dimensional grid and assigning windows to each point in two different ways. Both of
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these are regular in the sense that the grids are defined by two parameters a, b > 0.

For the STFT,
imbtg (t - na) e m, n E Z' (3-1)

whereas for the DWT,

(t) 7b1 t -
nabm ), m, n E Z. (3.2)

bm

The corresponding grids are f (na, mb)11,m E Z and f (nabm, bm) In,, E z. The first com-

ponent is easily seen to be a discretization of the time axis. Only in the STFT case is

the second component a discretization of the frequency axis. Nevertheless, the second

component for the DWT case is inversely related to the frequency variable and we call

still interpret the grid as a sampling of a time-1/frequency plane. There are theorems

which give conditions on 9(t), a, and b such that the resulting Oi constitute a frame

of L2 -

The STFT and DWT techniques imply that the same window functions can be

used to represent any function in L2. But a frame is, in general, different than a

basis. It can be quite redundant in fact, depending on the bounds A and B. So a

natural question is whether or not we need to compute the inner products with all of

the frame elements and if not, how do we choose the elements? Here, we no longer

deal with a pseudo inverse, but rather we generate a sequence of approximations in

the space spanned by the f Oil which converges to a given f E L2. The Matching

Pursuit [181 generates these approximations iteratively, where at each stage a Oi is

chosen based on maximizing its L2 correlation (inner product magnitude) with the

signal. This transformation of the signal is non-linear in the sense that expansion

functions are not chosen before hand and will in general be different for different

signals. Since we can view a frame as a dictionary in L2, the Matching Pursuit, using

• dictionary derived from the STFT or Wavelet grid (see equations 3.1 and 3.2), is

• way to choose one at a time, points in a two dimensional plane, with an associated

window, tailored to the signal being decomposed. One is choosing the elements of the

dictionary to match the signal being analyzed. The Probabilistic Pursuit uses this
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information in the form of a matching criterion in addition to a priori information

represented by the prior signal model or probability distribution in the search.

Now, we discuss the advantages of an adaptive time-frequency representation over

those derived from a grid, like the STFT (Short Time Fourier Transform) and DWT

(Discrete Wavelet Transform). In an adaptive representation, the location and size

of the window function in time, and hence frequency, is determined over the course

of the decomposition, unlike the case of the STFT or the DWT. In the STFT, the

window size remains constant, but the location of the analysis is determined by a grid

in the time-frequency plane. For the DWT, the time location and size of the wavelet

is given by a grid on a time-scale plane and in this analysis the frequency analyzed

is related to the scale with larger scales implying analyses of lower frequencies. But

this notion is made clearer if we consider the following wavelets [23]:

V),rnn (t) -_ 2m/2,27ri(21nt-n) 0 < t < I
I - - 2m'

Here the scale parameter directly gives the frequency that is analyzed and the duration

of the window, and thus the two are not independent.

The quality, or resolution, of the analysis in time and frequency is determined by

the window size. A large window in time gives good frequency resolution but poor

timexesolution, a small window the. reverse., We saw that it is not possible to have

arbitrary resolution in both domains at once as a consequence of the uncertainty

principle. With this in mind, we note that each STFT measurement is characterized

by an identical resolution in time as well as in frequency, and thus these quantities

are not a function of the grid location of the analysis. On the other hand, the time

and frequency resolution in the DWT analysis using On,,,(t) is a function of the

grid location�o'f the measurement.- In this case,-,a large positive m means a small

duration and large frequency. A large negative m means the opposite. Thus from our

discussion showing that large time windows give good frequency resolution we can

make the statement that this Wavelet analysis will have good frequency resolution at
the statement that thi

low frequencies and vice versa.- However, we must also rn e s
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analysis will have poor time resolution at low frequencies and vice versa.

Thus there is a tradeoff between time and frequency resolution. In both the STFT

and the DWT above, these tradeoffs are made before any analysis occurs and is

completely independent on the signal to be analyzed. The various Pursuits discussed

in this thesis are fundamentally different in that the tradeoffs are made on-line as the

decomposition is evolving. In the Matching Pursuit, the selection criterion decides

which window and modulating function to use based only on correlations with the

signal. In the Probabilistic Pursuit, the selection criterion uses this information in'

conjunction with a priori information in the form of a prior signal model. Thus these

representations are better in that the tradeoffs are made according to an optimality

criterion. In this thesis, maximal signal energy was used as the basis for the selections.

The effect is to produce a compact representation containing most of the signal energy,

whereas with the STFT and DWT above, the signal energy is spread out over all of the

elements and a further search would be required to determine significant components.

3.2 Pursuit Based Time Frequency Analysis on

Stochastic Processes

3.2.1 Instantiating the Universal Results

The purpose of the previous discussion was to relate the selection procedure in the

Probabilistic Pursuit to the general field of time-frequency analysis. Having made

this connection, we would now like to use the results of the last chapter in the time-

frequency context. More specifically, in the previous chapter we generalized the dic-

tionary selection procedure to include a priori probabilistic information. Here, we

generalize the discussion in a different direction by considering the prior signal model

to be a model for a stochastic process which generates the input. Having done this, we

will develop probability distributions on the Gabor dictionary, and then later discuss

ways to partition the dictionary.
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3.2.2 Stochastic Model for Input

In order to gain some insight we consider the class of semi-stationary oscillatory pro-

cesses [22], appropriate in modeling sources whose energy distribution over frequency

is changing slowly with time. We then approach the signal analysis problem as the

analysis of a rea lization of such a stochastic process. Having defined this framework,

we can see explicitly what our methods are measuring.

Let X (t) = X (t, wo), wo E Q0, t E T, be a non-stationary stochastic process

that is 0-mean and has finite variance. Also, we will assume that X(t, -) c L 2 W.p.

1.

Oscillatory Processes

The heart of what is important for our analysis is a two dimensional function, called

the evolutionary spectral density, which for each time and each frequency specifies

the relative strength of the process. In order to show how this function is related to

a non-stationary stochastic process, we must look at the definition of an oscillatory

process.

Let F = fAt(�)e*j be a set of functions indexed by �, such that for each

At(�)e* is a function of time t. Define the spectrum of At(�) with respect to t to be

dK�(w) so that
+00

At f 00 eitw dK� (w).

If for each �, JdK�(w)j has an absolute maximum at the origin, W - 0, then F

is called a family of oscillatory functions. Each At(�)e* has a Fourier transform

centered around �.

An oscillatory process X(t, X(t) (Priestley) is defined as one for which

there exists a family of oscillatory functions F and a measure /_t(�) on the real line

such that the covariance kernel of the process can be written as

2-tlE[T(tj)X(t2)1 Tt2(�) At, e"(' dl-t (3-3)
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Then, the process can be represented by

X (t) = f At(�)e*dZ(O (3-4)

where dy(�) = E[JdZ(�) 12 1 and dZ(�) has orthogonal increments. Thus an oscillatory

process has a time varying spectral representation.

For any given oscillatory process X(t), the family T may not be unique and in

general there will be a collection Cx = fTj,.F2,...j of families in terms of which

X(t) has a representation of the form given above.

Evolutionary Spectral Density

12The evolutionary power spectrum is defined at time t as dHt(�) = lAt(w) dp(�).

This is a two-dimensional function which characterizes the time varying energy dis-

tribution over frequency. In this thesis, p(�) is assumed to be absolutely contin-

uous w.r.t. Lebesgue measure. Thus we can write dHt(�) = lAt(w) 12 dp

2
ht(�)dlld�), where ht(�) is a density on R , the evolutionary spectral density, and

14(�) is the one-dimensional Lebesgue measure (AL(') in dl-O') is replaced with the

appropriate integration variable when needed). We assume therefore, that Ht(�) is a

measurable function on R 2 which has a density with respect to AL X AL. Further, it

is assumed that

f f ht(�)<dt < oc.

Since f ht(�)< gives the power in the process at time t, the above integral is the total

energy over all time, and we require it to be finite. The equations for discrete time

oscillatory processes are essentially the same except that the frequency integrals go

from -- F to +7r.

As previously mentioned, there may be a number of families, Cx -Fl, -F2,

in terms of which the process can be defined. Since the evolutionary spectral density

ht (�) is defined by the family, each Tj will define a separate density hTi (�). When

we restrict our attention to the class of semi-stationary oscillatory processes, defined

below, we will see that this non-uniqueness is not significant from the point of view
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of signal analysis.

Semi-Stationary Oscillatory Processes

These processes have a characteristic width WX associated with them which indicates

the length of time over which the process can be viewed as stationary.

WX UAF G C SUN f 00 jwjjdK�

where K. F (w) is the spectrum of At (�), and f At

Generally, there will be a subset of CX which contains the families with the largest

characteristic width. Then let us simply define Cx to be this subset. Though it is

true that an evolutionary spectral density can be defined for each element Cx, the

important point is that measurement of the process characteristics will not reveal

the differences between them. In the discussion of time-frequency analysis, we noted

that the operations of localizing in time and frequency blurred the characteristics of

the signal. The following discussion will show that when we analyze semi-stationary

oscillatory processes using the Gabor dictionary and associated matching criterion,

there is an analogous blurring and error introduced into the measurement. Thus,

though from a representational point of view, the covariance of the process may have

a number of representations, each associated with a different evolutionary spectral

density, from an analysis point of view, the localized measurements obtained will not

allow us to distinguish between them.

The measurements we make do not depend significantly on our assumptions re-

garding the family. In the discussion following equation 3.11 we will see that regard-

less of which family in Cx is used to represent the process, the expected measurements

do not differ' 'significantly.

3.-2.,13 Selection Criterion on Semi-Stationary Input

Our method of analyzing the realizations of a process is to compute their inner prod-

ucts with elements in our dictionary. Let us now analyze the implications. We will
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use the Short Time Fourier Transform as our inner product model, because as seen

previously, when we use a Gaussian function as our window, this implies that we are

decomposing over a Gabor dictionary.

Let 0(t) be a semi-stationary oscillatory process with family Co f.Fj,.F2, ... I

and the associated set of evolutionary spectral densities fht t

Continuous Time Short Time Fourier Transform

Let o(t) be the observed signal, a realization of 0(t). The STFT is a two dimensional

function of time and frequency,

S (u, +00 0(t)w(t - U)e-ictdt.
00

But if we let w(t) be a normalized Gaussian, then also,

S (u, < 0 (t), 0-Y (t) > (3.5)
I +00 t - U
- f o (t) g e -*dt. (3.6)

Vs - 00
(3-7)

Windowed Analysis of Oscillatory Processes

When we substitute 0(t) for o(t) in the above, we get

+oo
< 0 (t), 0'Y (t) > 0(t)g(u - t)e-'C'dt by symmetry (3.8)

V'S S
I +00 t

0(U - t)g(_)e_'C(`)dt. (3.9)
,7s= 00 8

(3-10)

The last expression is a convolution which is a function of -y, and the expression on

the right hand side shows where the three parameters enter. The shift by u indicates

the location in time around which the analysis will occur. The scale 8 determines

the size of the window, and the frequency � locates the frequency neighborhood of
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interest. So in particular, the window function is centered at the origin. Now,

+00 t 2

ItIIg(-)Idt
8

Let G(�) be the Fourier transform of g(), so that5

G(�) - sg(s�)-

Then, from Priestley [22] we have the following, for Fi C Co.

+00 2
E < 0 (t), 07 (t) >12 I G (W' )12 dH -Fi (w + �) + (3.11)U 0( , ),_00 WO

or,
2

< 0 (t), 07 (t) > 12E I G (w) 1 2h-":i (w + �) dw + 0 ( 5
f- 00 U 7rWO

where O(x) goes to 0 with x.

We note now that f_�.' JG(w) 12 hu (w + �) dw is a smoothed estimate of ht This

is because JG(w) 12 is centered at w = 0 with a variance proportional to '2. TheS

bigger s is the better the estimate of the evolutionary spectral density at frequency

However, this means that the window function is increasing in length because its

2variance is proportional to s

To expand on the consequences of a non-unique representation, we consider the

above expression for all members of Co. The two quantities E [ I < 0 (t), 07 (t) > 12 1

and 0 ( ' 2 ) are independent of which particular'family in Co is used. Further-
�Two

more E[ I < 0 (t), O" (t) > 12 is a fixed value. Thus the difference between
f�: JG(w) 12 h-":i (w + dw and f 12 U ). Therefore,

(w) hj'j (w + �) dw is only 0 ( '2

it is of no practical consequence which family is used in the representation.

I < 0 (t), O" (t) > 12Moreover, the important point is that is an approximately

unbiased estimator of the smoothed evolutionary spectral density up to an error term
S2

that is 0(-). Thuswe see that our selection criterion searches on average for peaks7rWO
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in the evolutionary spectral density. We analyze the consequences of this result in

the following section.

3.3 Probabilistic Pursuit and Non-Stationary Sig-

nal Analysis

We will assume that the observed signal is f (t) =_ f (t, wo) -_ s (t, wo) + n (t, wo),

all of the processes being defined on a common probability space (Qo, Ao, Po) with wo

sample point. s(t) and n(t) are oscillatory, so we also have T, A'(�)ei�t

T,, = �A-(�)e*j. Though we deal practically with deterministic signals, they are

assumed to be realizations of a well defined process. Corresponding to T, and F",

we have the evolutionary spectral densities h'(�) and h'(�). We choose an interval,

say [0, TI, on which to decompose the signal.

3.3.1 Defining a Probability Measure: Prior Signal Model

Prior knowledge in our framework is embodied in the probability distribution on the

dictionary that we use in the decomposition. In the discussion above, we identified the

signals that might be observed with evolutionary spectral densities of the stochastic

processes that produce them and went on to show that the Probabilistic Pursuit,

in its search for salient characteristics, looks for the peaks of these functions. In

the following discussion, we derive the distribution on the dictionary based on this

density, which will be used to partition our dictionary D, on [0, T], into DI, D-, and

D', the signal, noise, and other dictionaries. These result by observing first that

dHt'(�) = h'(�) dAL (6) on [0, T].

Let us make a few more definitions.

Zh,, -= f f h'(�)<dt < oo,

67



and

Zh,� =- f f h-(�)<dt < oc.t

Using these normalization constants, define the densities

1 hs
Ps (t, ZhS t

and

hn
Pn (t, Zhn t

from which we defines the measures

Ps (A) - f f IAp, (t, <dt,

and

Ps (A) - f f IAp, (t, < dt,

where IA is the indicator function of A C B2 , the Borel sets in R 2 Define a

probability measure on I - R+ x R 2 by taking the density of a distribution on R+,

for example the exponential distribution on R+, and combining it separately with p,

and Pn so that the marginal distributions on R 2 are given by Ps and Pn ('). The

resulting measures are prior signal models for s(t) and n(t).

3.3.2 Partitioning the Dictionary

Rather than using the probability distribution, we first partition the dictionary using

the evolutionary spectral densities to show more concretely the contents of the noise

and signal parts.

0, h'(�) > 0) and t [0, T]
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which is the support on the time-frequency plane, restricted to [0, T], for the evolu-

tionary spectral density h'(6) and

0. (t, hn > 0) and t c [0, TJ 1,t

the support on the time-frequency plane, restricted to [0, T], for the evolutionary

spectral density h- (�). Let

0 = 0, n 0,,,

which is the set of time-frequencies that the signal and noise have in common. Choose

0. Let 0, be the subset of 0 such that h'(6) < E for (t, 6) C- O,. On O, we

will approximate the signal as being noise free. This is justified as follows.

Fix to. Let h(6) be a bandpass filter with frequency support given by the set of

frequencies in f � : (to, 6) E O'J = Of'to nObandwhere PL (Oband) = Cband is small

but otherwise0band is an arbitrary measurable subset of R. Consider a stationary

noise with spectral density h' (6). If this noise is input to the filter, the varianceto

(energy) of the output would be

hw < (3.12)10"to nOband to fo"t( nOband

= CYL (O'E'to nOband) (3-13)

< ECband- (3.14)

Let

D, (f -Y = G9, U, 0 (u, (Q1 - 0.) U PE) 1) I

n _Y -D - (s, u, E (u, 0 - 0, 1), and

Do = off-y - (s, u, �) E I : (u, E On - 0, 1) -

Note that this is simply one way of partitioning the dictionary, and we could have

done it differently if we wished. The connection to evolutionary spectral densities is
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important when we consider the relationship to speech, where we will show that these

densities actually describe physically meaningful phenomena.

We see that the two sets D' and D' are in fact partitioned according to the prob-

ability densities by noting that these quantities differ from the evolutionary spectral

densities, used in defining D' and D' only by a constant factor. Thus, we can apply

Theorem 2.

Measurability of Generated Sets

The conditions of the Theorem 2 require that 0-'(D) and 0-'(D') along with

0-'(D,,i) be measurable. 0-'(Ds) and 0-'(D') are measurable sets because of the

assumptions on ht(�). The following theorem guarantees that for the Gabor dictionary

and L2 based matching criterion, 0-'(D,,i) is measurable.

2Theorem 4 < > I is continuous and measurable on I R+ x R

Proof: First, we show that < f, 07 > I is continuous in -y 1. Each -y in I is

of the form f s, u, �j where s c R+ and u, � E R. Consider a sequence f 7nj

f Sn, Un, �n with IS - Sn I < 6,,n, I U - Un I < 6un, and �n < 6�,n such that 6,,n,

6un i 6�,n 0 as n ---� oc. For each n,

< f I 07n > f 9(t - Un),-i27r�,,t dt (3.15)
Sn

Since f L2, we can multiply it by another function in L2, and the resulting

product will be in L1. We will use this fact to construct a dominating function as
(t-u,,,)e-i27r�ntI is -un)I, which is bounded, i.e. I -un) I < B9,n,

follows. First, I-q I_q(t g (tSn Sn Sn

where B91n is a constant depending on n. Choose an N. Let B9 - SUPn>N Bgn

and s' SUPn>N Sn- Since f 8n, Un, �nj f s, u, �J, EIM > N such that for

n > M Ig(t-un)I < IZgBgg(t-u)I, where Z', is a normalization constant that forcesSn 'Si

�(')_�o equal 1 at t u. The If lZgBgg( ) is an integrable function bounding

the magnitude of the integrand in (3.15) for all n > M. This follows because

and ZgB,9(L___1U) are both in L2, which implies that their product is in L1. This in
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turn implies that the proposed dominating function is integrable. By the Dominated

Convergence theorem,

fg ( t - U- ) e-i2,,,6, t dt fg(t U )e- i27*dt

f s, f

Therefore < > is continuous in -y. Since < f, > I is a continuous function

of < f, < Oy,, > I is continuous in -y. Hence the function is also measurable.

0.

With this result, we conclude that the universal properties developed in the pre-

vious chapter are applicable here as well. In this chapter, we have made a connec-

tion between the Probabilistic Pursuit and any application domain that may involve

time-frequency analysis. First, the time-frequency consequences of pursuit analysis

on deterministic signals was given. Then we generalized by considering the input

to be a non-stationary process. It is this generalization that allows us in the next

chapter to develop a specific time-frequency application based on the theory of speech

production.
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Chapter 4

Analysis of Speech

We desire that the theoretical results we have obtained fit naturally into an exper-

imental framework, and furthermore, that the corresponding results give us more

insight into our theoretical claims. In this chapter, we explain how speech is a natu-

ral choice for our experimental domain. Briefly summarizing the main points of the

theoretical model, its knowledge base is a set of probability distributions 'P which we

call the super dictionary. Each member of 'P is considered to be derived from a non-

stationary stochastic process whose time frequency characteristics are different. The

observation is a realization of one of these processes plus perhaps some noise, and by

performing a time-frequency analysis, the Probabilistic Pursuit, of this observation,

the goal is to efficiently identify the element in 'P which explains the observation best.

In fact the observation need not be a realization of one of the processes described in

'P, and instead could be arbitrary. The notion of finding the best element to explain

the observation still remains valid. It was hypothesized that we could use waiting

times and the distance measure to optimize over the elements. In this chapter, the

.construction, of 'P is justified by considering the physical speech process for a number

of Vowel-Consonant-Vowel (VCV) sequences. Then, given utterances of speech which

are instances of the VCV sequences, we try to find the best matching element in

our super dictionary, which must be constructed, by combining our waiting time and

parameter space distance data. -
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4.1 Time-Frequency Information in Speech

In the preceding chapters we developed a signal decomposition which requires a signal

model in the form of a time-frequency energy distribution. It should be reiterated

that P should have elements that are significantly different for the method to be

effective. This means that the portions of the search space that one model gives high

probability to must not overlap completely with the same such portions defined by

another model. Here we describe in some detail, the nature of speech as it relates

to the construction of our signal models, the elements of 'P. In doing so we hope

to provide justification for their use as well. We begin by noting that the physical

speech process is the result of airflow through the vocal cavities, which are most often

modeled as tubes with time varying cross sectional areas. The resonances of the vocal

tract, and their variation in time, describe the time frequency energy distribution in

speech.

4.1.1 Modes of Vocal T�act Models

Uniform Tube

X/4

Figure 4-1: Uniform tube: closed at one end, open at the other.

Length 1, Cross-sectional area = constant, closed at one end and open at the

other.

F. = C (2n - 1), n = 1, 2, 3..T,
where c 35,400 cm. The approximate length from the glottis to the lips iss

I = 17.7 cm. This gives

Fn = 500(2n - 1).
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X/2 X/2

Figure 4-2: Uniform tube: closed or ope-n at bothr ends.

If the tube is open at both ends,

C
F. (n), n 0, 1, 2. .

21

or

F,,, 1000(n), n 0, 1, 2 ....

Helmholtz resonator

C M

Figure 4-3: Helmholtz resonator

The natural frequency is
1

2 -F vf M--C

where M is the acoustic mass and C the acoustic compliance of the resonator.

These.can be considered as, building blocks from which more complex vocal tract

shapes are constructed by interconnection. However, in that case we must deal with

the effects of coupling the tubes together which are often seen as slight modifications

to the uncoupled resonances. To form a more complete model of the vocal tract,

effects of excitation sources must be added.
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4.2 The VCV Environment, where C is a Stop

Consonant

This environment [28] is a sequence of articulatory movements, depicted in Figure

4-4, that take the vocal tract from a vowel like open position through a closure to a

fully closed position, from which a release is initiated to bring the vocal tract back to

the vowel configuration. This is manifest in our coupled tube model of the vocal tract

as changes in lengths and cross sectional areas of the various sections and results in

the movement of the natural frequencies of the entire model.

wide tube

labial
constriction

tube

voicing

Ottis

labial
onstriction

A P

Figure 4-4: Sequence of Vocal Tract configurations for Vowel-Labial Stop Consonant-
Vowel

During this sequence of articulatory movements, there is a corresponding sequence

of excitation sources which appear in varying degrees and contribute to displaying or

hiding these natural frequencies in the output. We can, observe the movement of the

natural frequencies to the extent that the sources excite them and in accordance with

our ability to resolve fast spectral changes.
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In order for a particular source to be active, certain conditions must be met by

the vocal tract configuration. Often times, most of these sources do not exhibit an

on/off behavior but rather they are active to various degrees. Voicing, turbulence

noise, and transients are the major categories. The voicing and turbulence categories

are further subdivided depending on differences in the vocal tract configurations.

Resonances of the vocal tract are best observed in the vowel environment where

there is little mobility of the natural frequencies and where the excitation is modal

voicing. This type of source, if modification by the radiation is included, has a If
behavior in magnitude, so we use preemphasis to correct the spectrum. The source

is situated at the glottis and thus excites all of the natural frequencies of the vocal

tract. For a voiced consonant, this excitation is strong for most of the utterance. In

the case of a voiceless consonant however, as the vocal tract moves into and out of

the closed position, this mode of excitation is weak.

On the other hand, at the release of the stop, the turbulence excitation is strong.

This type of excitation is formed when there is a constriction in the vocal tract through

which air is forced at a high speed. The constriction separates the vocal tract into

back and front cavities. In the case of a glottal constriction, the back cavity is called

the sub-glottal cavity. The net effect of this separation is an introduction of zeros

into the vocal tract transfer function near poles of the back cavity transfer function.

Thus at the output, we see mainly the front cavity resonances. But when the noise

source is at the glottis, a case called aspiration, the front cavity resonances are those

of the vocal tract proper, and the zeros that are introduced correspond to the poles

of the sub-glottal cavity, which also appear.

Under the conditions that the supra-glottal constriction has both a small length

and a rapid rate of increase in its cross sectional area, there is an initial transient

in volume velocity in the first millisecond following the release. This source may

contribute to the low frequency spectrum of the radiated sound.
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4.2.1 Some General Com, ments

During periodic voicing, the fundamental frequency F0 is determined by the vocal

folds. For males, F0 - 125 Hz whereas for females, F0 = 230 Hz, approximately,

on the average. There are changes spectrum amplitude which are roughly correlated

with the movements of the formants, especially Fl. Also, it is important to keep in

mind that the lower formant frequencies usually increase faster than the higher ones

at the release of a consonant.

4.2.2 VCV:Low Back Vowel - Lablial Stop Consonant - Low

Back Vowel

The sequence of vocal tract states as well as the approximate formant positions

for a typical VCV utterance with a low back vowel and a labial stop consonant are

given in Fig. 4-5. As can be seen, the vocal tract state for the vowel is modeled by

a narrow tube near the glottis connected to a wider tube ending at the lips. This

configuration is that of two resonators which are coupled together. The lowest natural

frequency of the configuration, in this case F1, will be associated with the longer of

the two sections. For the low back vowels, this is mostly the back tube, or cavity. As

such, the state of the glottis will affect the bandwidth of Fl. Typical values of F1

are in the range of 750-800 Hz.

When the tongue is in the back position, the value of F2 is close to the value of

F1, and F3 and F4 are also close together. This can be seen in the figure, in the

sections where voicing is active.

The transition to a labial stop consonant is achieved by closing the lips, and is

indicated by the transition to the middle configuration in Fig. 4-5.

In the closure interval, F1 -- 200 Hz. From the rate of change of the constriction

at the lips 100 cm 2/S for the labial), it is estimated that most of the F1 movement,

as well as that of the higher formants, is completed in about 10 ms. Here we have

assumed that F1 is a front cavity resonance, and consequently is affected a great

deal by the lip movement. On the other hand, this implies that F2 is a back cavity
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Figure 4-5: Vocal Tract Deformations in a VCV where V is a low back vowel and C
is /P/-
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resonance which is relatively unaffected by the constriction at the lips. A typical

range of F2 would be 1100-1200 Hz. F3 is then a front cavity resonance, and moves

as well, though less than Fl. It may go from 250OHz down to about 2200 Hz.

4.2.3 VCV:High Front Vowel - Labial Stop Consonant - High

]Front Vowel

Fig. 4-6 shows the vocal tract configuration sequence and the associated formant

values. In this case F1 is a Helmholtz resonance, and the frequency in the closure

should be -- 200 Hz. F2 is a front cavity resonance, (due to narrow lip opening) so

it is affected by the lip movement. It may start at 2100 Hz, and transition to about

1400 Hz. Again much of the transition occurs within are approximately 10 ms, for

the 100 cm 2/s rate. F3 goes from approximately 2250 Hz to about 2000 Hz. The

first Back cavity resonance is about 2000 Hz. It starts as F2 and as the lips close, it

becomes F3.

The two cases presented describe the articulatory effects during the rendering of

labial stop consonants. Also, the figures serve to show the formant positions for the

low back "aa" and high front "iy" vowels.

Effect of Place of Articulation

In addition to the labial, the data set used in the experiments contains alveolar and

velar stop consonants. One essential difference lies in the rate that the articulators

move, but another is the direction of movement and the starting points of the F2 and

F3 transitions. The tongue moves slower for the alveolars than for the labials, and

slower still for the velar. Consequently, the formants move more slowly in these cases.

4.3 'Transition to Models

In this section we argue that in the context of a Probabilistic Pursuit analysis based

on the Gabor dictionary, signal models for speech utterance observations can be
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Figure 4-6: Vocal Tract Deformations in a VCV where V is a high front vowel and C
is /p/.
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derived from the paths of the formant frequencies as they evolve over time. As

discussed in Section 3.2.3, when this type of analysis is performed on a realization of

semi-stationary oscillatory process O(t) with evolutionary spectral density h'(�),

the criterion for selecting dictionary elements looks for those with large values of the

correlation with the observation, whos e expected value is (see equation 3.11)

2
E < 0 (t), 0-y (t) >12 JG(w) 12 h-r-(w + �) dw + 0 ( 8

00 U 7r WO

Thus, the dictionary element selection procedure in effect searches for peaks in the

smoothed evolutionary spectral density. Practically, we work with realizations and

so let us consider the inner product of a dictionary element and the observation o(t),

< 0 (t) (t) > = 1 +00 O(Og( t - U )e_*dt)7, f- 00 8

which is actually an estimate of the smoothed h-F(�) in the neighborhood of the time

and frequency parameters of Oy(t) (see equation 3.11). The time and frequency pa-

rameters that result in large correlations correspond to the locations of the resonances,

or formants, in the signal.

The idea is that if speech observations are modeled as realizations of some semi-

stationary oscillatory process, the peaks of the evolutionary spectral density of that

process can be estimated from the formant paths, which contain most of the energy

in the signal. Thus the locations of the formants give us a good idea of which Gabor

dictionary elements, in terms of their time and frequency parameters, will match the

observed signal.

4.3.1 Prior Signal Model Construction

The models themselves are probability distributions on the Gabor dictionary. Here we

specify how we construct such distributions based on knowledge of where the formant

paths should be. Consider again the universe of signals fuil and the corresponding

super-dictionary 'P = �Pjj. Now each ui is a speech utterance for which we know
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the formant trajectories in the time-frequency plane. More precisely, we have for

each ui, a two dimensional function hui(O : R' �-+ R, whose peaks occur at

t, � corresponding to the predicted formants paths. As the notation suggests, hui W
could be viewed as an estimate of the evolutionary spectral density of a process, a
realization of which is ui - Normalize hu'(�) so that pi (t, Zihu'(�), is such that

t t

pi(t,�)dt< _- 1,

Zi being a constant. Then we follow the procedure in the previous chapter to form

pi.

In the cases that we have described, the movements of the resonances are the

result of a physical process that is not discontinuous. This process can produce rapid

movements in the formants, but they are continuous. We claim that this continuity

justifies our modeling of these utterances as semi-stationary oscillatory processes,

which as we have noted before have the property that their energy distribution over

frequency is changing slowly over time. The more rapidly the formants move, the less

this is true however. But, the point is that the locations of the formants, wherever

they may be, give a good indication as to which dictionary elements will match the

observation and therefore should serve in creating a good signal model.
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Chapter 5

Classification Scheme and A

Preliminary Experiment

In this chapter, the application independent classification methodology is instantiated

in the form of a speech classification experiment using the results on time-frequency

analysis. First, we discuss the main ingredient of the analysis, which is 'P. It is derived

from the predicted formant paths of the set of utterances f uil that constitute the data

set. Then we describe in greater detail the specific waiting time and distance measures

that we will use in making the decision, a process most easily viewed as a race in

terms of the set of discrimination measures which we define in this chapter. Then we

present the results, where our goal is to gain an understanding of the significance of

the decision parameters.

5.1 Experiment

The purpose of the experiment is twofold. First, from the results, we want to inter-

pret the significance of each of the components of the discriminant function, to be

described. Then, we will provide a proof of concept of the classification paradigm.

The set of data we use is based on these considerations and consists of utterances of

voiced stop consonants in the context of a vowel.
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5.1.1 Construction of P

Though the theoretical development in the previous chapter gives us an idea of what

should occur, we must ultimately look to the actual data to determine appropriate

rates of movement for the formants and the models based on them. Denote the set

of signals that we may observe by Fuji. For each of these, we construct a model of

the time-frequency behavior, based on our knowledge of speech and an analysis of

the actual waveform. We then compare the models produced by our estimates with

the formant tracks provided by the Entropics LPC tracker. By this we mean that the

LPC tracks are used only to verify, that the models are reasonable. This is because

we -want the models to be rough in order to account for the fact that in practice we

will not have perfectly accurate models.

LPC Analysis

Let s(n) be the discrete time speech signal. The assumption made is that the value

of the speech signal at time n can be predicted as a linear combination of the past N

speech samples,

s(n) ais(n - 1) + a2S(n - 2) + + aNS(n - N).

In the Z-transform domain, this homogeneous difference equation gives the charac-

teristic equation
NC (Z) 1: aizi,

j=1

from whose roots we can estimate the formant frequencies. The analysis consists

of estimating the coefficients aj based on differences between the real and predicted

signals. The Entropics'LP-C tracker 'Uses these roots in' determining the formant paths

through a signal. The problems with this method of obtaining formant estimates are

well known and are a result of the fact that an all pole transfer function as above

is not always a good model for the vocal tract. We use the tracks only to test the

validity- of the predicted mo dels,:--,
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5.1.2 Hypothesized Models

We assume that for each utterance, we know the formant frequencies for the vowel

environment, the start and finish locations for the stop transitions, and parameters,

described below, for the formant paths during the stop transitions. Given this in-

formation, we model the formant paths as piecewise linear [29]. Thus the additional

parameters that we need are the slopes and ranges of the line segments used. For the

transition into the closure, the starting point is given by knowledge of the formant

frequency and start location. Then, in succession, we linearly move this frequency

through the given range using the given slope. The ending point for this segment is

used as the starting point for the next. A similar technique is used for the transition

from the closure except that now our starting point is the known ending formant

frequency and finish time. In this case we build the model using the same procedure

as for the transition into the closure, but going backwards in time. We note that

the lengths of the transitions for different elements of fujj are different. Thus, after

the models are constructed with the above procedure, they are gated to fit within

the transition. Recall that we assume the location and length of the transitions are

known. For the experiment, each ui is a speech waveform, and the known quantities

were determined by looking at this waveform. See Appendix A for the parameter

values for the speakers that we consider: cb, a female and ks, a male. The lengths

of the models actually used were different from the ones derived from the parameters

because they were gated. We present in figure 5-1 of one of the models, in the low

back vowel case. The sampling rate for the signal is 16129 Hz, and the frequency axis

is in Hz. In the figure, the thin lines are the LPC tracks and the thick superimposed

lines constitute the model. In the transition, the model is at 0 Hz. However, the

middle section of the utterance is not considered in the experiment.

As can be seen in the figure, we do not have perfect matches. One reason for this

is that we force all formants to start and end at the same times, whereas the LPC

tracks do show some variation. But, it seems more reasonable to assume a starting

and ending time for the closure as a whole. These values are obtained by looking at
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Figure 5-1: The prior signal model for the utterance aagaa overlapping the LPC
derived tracks.

the waveform. Another reason is that the LPC tracks are sometimes erroneous. The

models are thus a combination of what we expect to see, in light of the discussion in

the previous chapter, and what we do see, from the tracks.

Probability Distribution

We assume that for each time and each formant, its likely location is distributed as

a Gaussian in frequency with mean equal to our model value, and a small variance

to account for errors. Then, we normalize the entire set of values to get a probability

distribution which is one of the models in 'P.

5.2 Frame Based Analysis

For reasons of efficiency, we choose to perform a frame based analysis, though the

theory does not require it. Let.us briefly exploreAhe r'elatio'fiship between 'a windowed
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Probabilistic Pursuit analysis and the Short Time Fourier Transform (STFT). In the

case of the STFT, we can view the window position parameter as specifying a frame

of data because the time frequency plane is sampled at uniform intervals in time

with the same window size. But when we adoptively select the window size and

position, as in the Probabilistic Pursuit, a frame based analysis must be defined more

carefully. To do this, we note the following duality property: While in the time

domain, the Probabilistic Pursuit can be viewed as constructing a function of time,

in the frequency domain, this procedure builds the Fourier transform of this function.

M-1
OM E ao,,, (t) + r'o(t). (5.1)

n=O

As a consequence of the linearity of the Fourier transform, we have

M-1
0(�) 1: an4),yj0 + R-o(�), (5.2)

n=O

where (1)'Yn (0 is the Fourier transform of O'Yn (t) and R'o(�) is the Fourier transform

of r-o(t).

Both sums above converge to their respective left hand sides. We know that

rMOt 0.

But

Rmo(�) K rmo(t) 11, Vm.

Therefore,

Rm o 0

So now rather than letting the window length determine the size of the frame, we

choose this beforehand and treat each frame as a finite time signal to be analyzed

by the Probabilistic Pursuit. Then as the decomposition proceeds in each frame the
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STFT is being built. In discrete time,

s (m, n) - a,,, 0,,, (n) + r, (n), (5-3)

where the right hand side is an MPD. Transforming both sides, we obtain

S (m, k) - a,,, -cDnl (k) + R, (k) (5.4)

So, based on the above duality, in the limit as I increases we have not lost anything,

as compared to the STFT, by doing this., One -might argue that when I ranges

over a finite set, the components that are left out are in fact noise. We can obtain

temporal information: derivatives of spectral components, cepstra, etc., as before,

but in addition, we have gained information about the time-localization of the various

frequency components in an analysis frame. This information is potentially useful in

front-end processing.

5.2.1 Windowing

The choosing of frames for the Probabilistic Pursuit is a windowing operation in

itself. The construction of these frames is not necessary to the signal analysis, but

,does increase the efficiency of the procedure,

Let us assume that we have an utterance of length M samples. One iteration of

the MPD takes on the order of MlogM operations. For the sake of argument let

us arbitrarily fix the number of atoms we wish to compute, N. Computation of the

total representation will require on the order of NM log M operations. On the other

hand, say we wish to window our signal so that it has length W << M. Then,
fi e _11'k� th' 6rd-i'6f'NW-l`-kW-' atio'n'�s.: � this is a -considerable

t roc`�dur6 w':il a o n' e e 0 oper

saving when W < < M. Further, as M increases, so does NM log M, which is not

the case for NW log W.

Another reason for windowing is that it gives us the ability to use a different dic-

tionary at each frame, allowing us 'to provide information on the 'location of significant
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components in the signal. The representation can thus be adoptively controlled.

However, there may be adverse effects as well. Assume we have a signal o(t),

and that we split it into beginning, b(t), and ending, e(t), parts. We can compute

decompositions for b(t) and e(t) independently, which when combined appropriately

will converge to o(t). Separately, we could compute a decomposition for o(t), which

also converges. The two separate procedures would most likely yield non-identical

sets of atoms. Most might be the same, but, for example, those atoms in the last

decomposition with scales greater than the length of b(t) and e(t) would disappear

and appear as combinations of smaller atoms in the first two decompositions, as would

those on the border of b(t) and e(t).

5.2.2 Window Size

The window size chosen was 256 points, or approximately 16 ms. The reason for

this was to obtain a reasonable amount of frequency resolution. This does not have

a serious consequence for our analysis since we are optimizing over window length.

However, the scale was limited to be at most 128, which is approximately the duration

of the periodic source waveform during voicing for males. The rationale is that we

are interested only in components that are within a pitch period.

Having made the connection to frame based analysis, we mention briefly that the

output of the Probabilistic Pursuit can be viewed in such a way that it gives comple-

mentary information. Namely, we could continue with the frame based approach and

calculate a (variable length) vector of features for each frame. That is, we augment

the cepstra and their derivatives with time localization information and bandwidth

information now available. One could argue that the added information could improve

performance.

5.2.3 Implementing the Probabilistic Pursuit

In the experiments we deal with discrete time signals of a certain length N, and

consequently we use a sampled and periodized version of the Gabor dictionary. Recall
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from before that the continuous time dictionary is defined as

I t - U -

'i�tD

each element of which is completely specified by an index set 8, u, scale,

translation, frequency E R+ x R' - -E where the window function g(t) is a Gaussian,

9 (t) = 2 1/4 -7rt2

and the constant is chosen so that the L2 norm of g(t) equals L A sampled and

periodized version of the window function is given as

Kp + 00 n - J-N
9,P (n) - E g

V/1-5 i=-". 8

Kp being a normalization constant. The dictionary element is then defined as

(27rkn)/N0-, (n) = gp (n - p) e-'

The new index set is -y s, p, k 1, where s E (1, N) and p, k G [0, 1, 2, ... , N - I].

This is the dictionary we use. However, the signal we decompose is real, and thus in

our selection process, wemaximize the norm of the inner product of the signal, fi,

with the real atoms

2,,T k
O-y,,,(n) = K-y,,_qp(n - p) cos(-n + �0)1

N

where �o is the phase of < 0. (n), fi > and K,,,, is a normalization constant

Consider a subset of the index set given . by (2j, p2il- 1, k-F 2 -j), where 0 < 3' <

1092 N, 0 < p < N2-j + ', and 0 < k < 2j+'. We first maximize over this set

and then find a local maximum in the complete dictionary in a neighborhood of the

resulting element.

This defines the best matching element with respect to which the Probabilistic
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Pursuit must operate. The prior signal models are thus distributions on this dis-

cretized and periodized Gabor dictionary. In our experiments we chose to optimize

over the scale parameter, and thus the distribution is on the time-frequency plane.

We simply choose the best scale, from those possible, for each time frequency point

that occurs in the dictionary process. Then in implementing the Probabilistic Pur-

suit, the two step selection procedure is carried out after having chosen a value 0,

0 < 0 < 1, used in the criterion, i.e. the candidate is chosen if its match value

is greater than 0 x best match value. Using the same utterance and signal model in

figure 5-1, we show the effect of using a prior distribution. First in figure 5-2 the

results of a decomposition when we do not use any prior information is given. Then

in figure 5-3 we see the effect of using a prior signal model. In these figures, the

pluses denote the locations of the selected dictionary elements.
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Figure 5-2: Frame based decomposition of the utterance aagaa where no prior knowl-
edge is used.
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Figure 5-3: Frame based decomposition of the utterance aagaa where a prior signal
model is used.

5.3 Frame based Discriminant Function

Consider that there is a set of utterances that we might observe which make up the

set f Uj Tj = 1'...'M' and to each of them we have associated a prior signal model included

in 'P. The observation in discrete or continuous time, call it f now, is a realization

of one of the utterances, say ujo. The signal restricted to the k" frame is f k - f0k,

where fik is the i1h residue.

Assume that for frame k, there are Nk atoms, a number which can be specified

beforehand or determined over the course of the decomposition by stopping if the

waiting time gets too big. The signal energy consumed by these atoms is

Nk

Ek < k' OY� (t) > 12.
A
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The total waiting time for the frame is taken to be the sum of the waiting times,

Nk

Wk -rik.

The total distance is
Nk

dk d(7ik),

and in the experiment we use the LI distance of the selected elements to the nearest

model peak at the same time index. We define a frame discriminant function, PH,

to be a function of all the
Wk

Ek

Wk

Nk

dk

Nk

Nk

for each k. The method that is used in the later experiments stops the decomposition

in a frame if the waiting time for that element is too large. As a result, the number

of atoms in each frame is not known beforehand. For this reason, the first three

components Of Pk are given as per atom quantities. The smaller each component

Of Pk, the better the match for the first three components. But we use the last

component, the number of atoms in the frame, to indicate the amount of the signal

decomposed and thus a larger number here is better. For these reasons, we choose

Ek W1Tk (1) + W2Pk (2) + W3Tk (3)
I + Ek pk(4)

5.3.1 Minimum-Time Decomposition

The decision procedure based on the function p defined above is closely related to the

Minimum Description Length (MDL) principle developed by Rissanen [26]. The prin-

ciple is based on joint consideration of model and data complexity. More specifically,

given a parametric model class f Mj I defined over a variable length set of parameters

= XnOi taken from f Oi, i 1, 2, 3, ... I and a sequence of observations f xi, ... , x" I I I

let 4i be the Maximum Likelihood estimates of the parameters given the data Xn for
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model Mj. Then, the principle would select a model from the class by minimizing

the quantity

L(x'lMj) code-length(x'IMj(�j)) + code-length(Oi).

Essentially,

L(x'lMj) complexity(x'jMj(�j)) + complexity(4j),

1 1

where complexity in this case is associated with the length of the codewords nec-

essary to transmit the components. Our formulation however requires a somewhat

different notion of model complexity. The models we use below, in 'P, are still para-

metric. However each has the same finite parameter set, consisting of the values of

the probability mass function on the time frequency plane. While the notion of code-

length still has relevance in evaluating the data complexity, the first term on the right

hand side above, the notion has little meaning for our model complexity, given that

each is simply a finite, same-sized set of numbers. The notion of model complexity

that we develop uses the time required to analyze our observation given a model.

Thus our operating principle is Minimum-Time Decomposition. The numerator of p

is WI Ek Pk (1) + W2 Ek Pk (2) + W3 Ek Pk (3). Since Ek Pk (3) is the sum of distances

d(-yik) between the prior model and the decomposition of the observation data, we

can associate it, minus a normalization constant, with -log(p(observationlmodel)),

and thus the code-length interpretation is valid. Ek Pk (1) and Ek Pk (2) are a sums of

per/energy and per/atom waiting times, respectively, and these together constitute

our model complexity. That is, a model is complex if using it requires long searches

through the dictionary in order to find matching components.

5.3.2 The Parallel Nature of the Decision Procedure

Since each frame can be analyzed independently, and moreover, since no post-processing

is necessary in the calculation of g(f Pk 1), a decision can be- made at any time simply
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by pooling the current results in each frame. In this case, the decision is based on a

set of vectors,

W, W2 W3 -W--L
El E2 E3 Ek

W, W2 W3 Wk
Ni N2 N3 Nk ...

di d2 d3 dk
Ni N2 N3 Nk

L N, i L N2 i L N3 j L Nk i

which, in principle, are all simultaneously being constructed for each model. In

fact, we need not use all of the frames in making a decision. That is, an incomplete

decomposition of the observation will not necessarily hurt the classification. We might

in fact choose to alternate the decomposition iterations with the decision making so

as to be able stop when a clear choice becomes apparent.

5,4 Decomposition Results

The experiment is as follows. An utterance is seen and it is to be decided which of

/b/, /d/, or /g/ occurred. The decisions will be made based on the frame based

discriminant function described in the last section and so for each utterance frame

and each signal model, a decomposition is computed. Speaker cb is a female.

For speaker cb, the following models were created:

• /b/, /d/, or /g/ in the context of /aa/

• /b/, /d/, or /g/ in the context of /ih/

For speaker cb, the following utterances are tested:

9 /b/, /d/, or /g/ in the context of /aa/

* /b/, /d/, or /g/ in the context of /ih/

For comparison we also include some results for a male speaker, ks.
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For speaker ks, the following models were created:

* /b/, /d/, or /g/ in the context of /aa/

For speaker ks, the following utterances are tested:

/b/, /d/, or /g/ in the context of /aa/

In analyzing the results of the experiments, we want to find out the significance

of the parameters used in the frame based discriminant function as well as verifying

the usefulness of the paradigm. The experiment was performed so as to be able to

analyze separately the transitions into and out of the closures for each formant.

5.5 Classification Results

The experiments we performed can be thought of as being 36 cases of a three way

decision problem. For each frame of data that is analyzed, three basic values are

computed:
Nk

Ek < fik, OY� (t) > 12,

Nk

Wk Tik ,and

Nk

dk d(-yik).

Recall from before that these are used in making up three of the four components of

the vector Pk, the fourth being the number of atoms in the frame Nk, and the actual

decision is made based on

Ek WlPk (1) + W2Pk (2) + W3Pk (3)
+ Ek Pk (4)
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where WI = 1000, W2 = 100, and W3 = 10 were chosen so as to bring all of the

values to the same order of magnitude. Let us write the above as

Lo WI Ek Pk (1) + W2 Ek Pk (2) _ + W3 Ek Pk (3) (5-5)
1 + E k -Pk (4) 1 + F-kPk(4) I + E k Pk (4)

pi LO 2 LO 3
+ W2 + W3 (5.6)

+ LON + LO N + QN

It might be the case that we do not get any atoms for the frame, that is Nk -- 0,

and for this k, Pk('), pk(2), pk(3), and j5k(4) are all zero. However, in this case we

want to add a baseline value to the each of the three o quantities in order to penalize

the fact that no atoms were found in a reasonable time. We chose to set Pk(') = 1'Wi

for i -- 1, 2, 3 when Nk = 0. The results from the decomposition can be found

in Appendix B. There, for speaker cb, the results for the /aa/ context are given,

followed by the /ih/ context, after which come the /aa/ context results for speaker

ks. The tables are organized with the various parameters described above across the

top and the different models along the side. Thus, each table represents the results

of a parallel decomposition using the three models /b/, /d/, and /g/. As we are

interested in low waiting times and small distances, our decisions consist of choosing

the model that gives the lowest values for the parameters. In the appendix, each

utterance has two tables associated with it. All of the parameters in the headings are

described above. The second table, i.e. the normalized parameters, are what we base

our decisions on. The normalization accounts for the differences in the total number

of atoms in each of the decompositions. The data is presented so that we can see

which decision would be made if each parameter was used independently, as well the

combined score Q. The tables in the appendix are further analyzed below.
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Table 5.1: Speaker: cb, Classification results in the context of /aa/. A I in the
matrix indicates correct classification, a 0, incorrect classification�, and an i indicates
an indeterminate case. In the model column, a I corresponds to the first formant
in the transition to the closure, a 2 to the first formant in the transition from the
closure, a 3 to the second formant in the transition to the closure, and a 4 to the
second formant in the transition from the closure.

model 91/1 + QN 92/1 + ON 93/1 + ON 9

bl i i i
b2 I I I 1
W I I i I
b4 I I 0 1
dl I I I I
d2 I I I I
D I i 0 1
d4 1 1 i I
gi I I I 1

g2 I 1 0 1
g3 I I 0 1
g4 0 0 0 0
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Table 5.2: Speaker: cb, Classification results in the context of /ih/. A 1 in the
matrix indicates correct classification, a 0, incorrect classification, and an i indicates
an indeterminate case.

model 0111 + ON 92/1 +QN 93/1 + ON 9

bI I I I 1
b2 0 0 1 0
W 1 0 i I
b4 0 0 0 0
dI I I 0 1
d2 I I 0 1
D I I I I
d4 1 1 i 1
gl I 1 0 1
g2 0 0 0 0
g3 I 0 0 0
g4 1 1 0 1
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Table 5.3: Speaker: ks, Classification results in the context of /aa/. A I in the
matrix indicates correct classification, a 0, incorrect classification, and an i indicates
an indeterminate case.

model 91/1 + ON 92/1 + ON 93/1 + ON 9

bI 0 0 1 0
b2 0 0 1 0
W I I I I
b4 I I 0 1
dI I I I I
d2 I I I 1
U I I I I
d4 I I 0 1
gI I I 0 1
g2 I 0 0 1
g3 I I 0 1
g4 I 0 0 1
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Table 5.4: Speaker:cb, Correct classification percentages for the /aa/ environment.

91/1 + ON 92/1 + ON L03/1 + ON 9

% correct 83 75 33 83

Table 5.5: Speaker:cb, Correct classification percentages for the /ih/ environment.

91/1 + ON 92/1 + LON 03 ON 9

% correct 75 58 25 ::67

5.5.1 Analysis

Let us consider each parameter making up Lo independently, and then Lo itself. The

three tables 5.1, 5.2 and 5.3 give separately the classification results based on

each parameter as well as those based on their linear combination. In each table,

a I indicates correct classification, a 0 indicates incorrect classification, and an i

indicates that the case was indeterminate. In the first column, the number after the

stop indicates the particular transition and formant looked at in making the decision.

A I corresponds to the first formant in the transition to the closure, a 2 to the first

formant in the transition from the closure, a 3 to the second formant in the transition

to the closure, and a 4 to the second formant in the transition from the closure. In

tables 5.4, 5.5, the rounded percentages of correct classifications are given for the

two contexts for speaker cb. And in table 5.6, percentages for the /aa/ context for

speaker ks are given.

These results are intuitively satisfying and reinforce the observations we have

made. Namely, the waiting time parameters give very good results whereas the dis-

tance parameter seems to have a lot of variance. Rather than training, we constructed

Table 5.6: Speaker:ks, Correct classification percentages for the /aa/ environment.

91/1 + ON 92/1 + ON 93/1 + 9 0

% correct 83 67 83L
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models. But again we reiterate that the models were made purposefully rough for the

sake of experiment. We made 36 classifications, taking into account the independence

of the decisions for each transition and formant. Though the absolute percentages are

not very high (They could have been improved by constructing more specific models.),

here we directly see the advantage that our waiting time approach gives us. We know

from the theory that spectral estimators have a large variance. To reduce the e ct

of this variance, we used parameter space distances. However, they are still based on

the exact location of the spectral peaks encountered and thus still are affected by the

variance. We point out that since the atoms are selected probabilistically, there is an

additional variance in the distance. The consequences of these effects are evident in

our results. On the other hand, the waiting time parameters, which are based on a

distribution of where the peaks might occur, work very well.
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Chapter 6

10 0Discussion, lWodifications, and
0Extensions

We have developed a Probabilistic version of a pursuit type algorithm with the goals

of both efficient representation and efficient classification in mind. The basic notion

of the pursuit, that the way to analyze a signal is to search for its most salient char-

acteristics, is generalized to include a requirement that the matching in the search be

done with respect to a probabilistic prior signal model. The results of the decompo-

sition in such a scheme indicate whether or not the prior signal model is a good one.

Namely, we developed the idea of a Minimum-Time Decomposition. Moreover, when

the prior model is good, the representation favors signal over noise. When there are

a number of models, we can select one as explaining our signal best if it results in the

best match. In our case, this was indicated by small decomposition (waiting) times

and parameter space distances for the selections. Also, we noted a potential gain in

the information obtained when this decomposition is used in the front-end processing

stage of an analysis.

A point of note is that our decomposition procedure needs only the distribution

on the dictionary, yet in the thesis we considered partitions of the dictionary. These

partitions were conceptual entities which we used to argue that correct signal models

yield low waiting times. That is, a distribution is an assumption of what in the

dictionary constitutes signal and noise. If our input has energy on the components
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that we consider to be signal, the waiting times in the decomposition will be small.

There is a generalization here which takes us one level above that which is normally

dealt with. Namely, the distributions that we call templates constitute in and of

themselves a dictionary: The dictionary of distributions on the primary dictionary

D, called 'P -_ fPjj. The matching criterion is based on small waiting times

and parameter space distances.- -Classification is choosing the distribution on the

dictionary that explains the input best, i.e. a Pursuit with respect to 'P.

The above are properties of the pursuit which are essentially independent of the

application domain. Once we choose a dictionary though, we are explicitly stating

the nature of the inputs that we will consider. In this thesis, we chose to deal with the

Gabor dictionary and developed some results that show the consequences for time-

frequency signal analysis. We then generalized to the case when the signals analyzed

were realizations of semi-stationary oscillatory processes. Then we argued that speech

is a good candidate for our application domain. Towards this end, we discussed the

nature of speech formants and used them to derive probability distributions on the

Gabor dictionary. This was based on the claim that the resonances contain most of

the energy. Although, they do not capture all of the energy, since for example, there

is noise. By noting that the formants move smoothly, we argued that it is reasonable

to model speech utterances as semi-stationary processes. Thus, the distributions that

we obtain from the formant paths are, to a constant factor, approximations to the

evolutionary spectral density. Thus, based on our results, we concluded that they

give a good indication of the dictionary elements that will match the signal. These

were the distributions that made up 'P.

We then experimented with classifying utterances based on such models and our

probabilistic generalization of the structure of Pursuits. Our results, based on 36

classifications, indicate that the procedure is efficient and useful. In particular, we

saw that based on a relatively small number of parameters, and using a technique,

based on a Minimum-Time Decomposition principle, that required no post-processing,

good classification results were possible. Further, the Minimum-Time Decomposition

based classification was much better' than that based on the parameter space distance,
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suggesting that it is a worthwhile measure providing unique information.

6.1 Modifications

6.1.1 Bigger Frame Size

Clearly, we get better results if we use a bigger frame size. This is quite unlike the

Short Time Fourier Transform where there are serious consequences such as poor time

localization, In our case, we are optimizing over the window length. Because in our

experimental implementation this optimization is time consuming, we chose a rela-

tively small frame. An obvious improvement is to use a more efficient implementation

and use bigger frames. Based on the results in [18], we can safely claim that such

an implementation does indeed exist. Bigger frames would mean better frequency

resolution and would allow for more accurate prior models.

6.1.2 Time Averaging

In chapter 3 we developed an analysis of the decomposition selection criterion in the

context of Time-Frequency analysis. Not only did we consider deterministic inputs,

but we extended the analysis to non-stationary oscillatory processes. The framework

was based on the inner product and to restate a result from Priestley,

+00 82

E[ I < 0(t), O-Y(t) > 1 2 1 I G (w) 12 h,, (w + �) dw + e (6-1)
f_00 7r WX

It was noted that the quantity has a very large variance. It is possible to reduce the

variance by time averaging. That is, given a point in the parameter space, -Y, instead

of looking at the quantity I < o(t), 0,(t) > 1, which we recall is a function of the set

of parameters, and thus u, as explained in chapter 3, we look at

I < 0 (t) (t) > 12 V (S
f - u) du.
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Here v(-) is another (weighting) window function with the property that f!�" v(u)du

1. This is useful when the prior signal models that we have are good estimates of the

evolutionary spectral densities of the processes we are trying to identify. Recall that

the selection procedure looked for elements in a set D,,i, but that the contents de-

pended on I < fi, 07 > To use the time averaging, a new set must be defined.

f I < fi, O'Y > 12 V (8
Dalitav O'Y : Oy E D and u)du >

a sup f I < f,, O'Y > 12 V (8 - u)du (6.2)
-y El

Then, the selection procedure must wait for an element, or parameter set, that is in

Dalitav- However, this does not necessarily guarantee that the construction of the

signal converges. If on the other hand, the agent also checked that the parameter set

was in D,,i, for an appropriate small positive E, convergence would be guaranteed.

6.2 Extensions

6.2.1 Dictionary Evolution

There are some natural extensions to this probabilistic paradigm. Since the analysis

is frame based, and it is likely that the spectral components in adjacent frames are

correlated, a scheme that adapts the distribution for the next frame given the elements

chosen in the current frame is reasonable. In this case, templates and classification

loose their significance. Instead we infer that our decomposition will be very fast and

would adapt the distribution to the signal structure.,

6.2.2 Dynamic Programming-- Extracting Components

In this thesis we have discussed representation and classification. However, we can

also talk about extracting components from the results of a Pursuit. In extracting

components, the goal is to group together a subset of the atoms in the decomposition

to form descriptors of the input signal. Furthermore, this grouping need not be static.
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One could decompose the signal into N, atoms, perform the grouping, and then do

it again with N2 > N, atoms, etc. The information we gain from grouping at one

iteration can be used in the next, an so on. This approach is outlined below.

We can restate the above in the framework of dynamic programming. We assume

we have a signal to be analyzed and that a (Probabilistic) Pursuit for it has been

computed. We decide a priori the number of descriptors we will look for. Let us

consider the case of a one descriptor. After N iterations we get N elements of the

dictionary, each element of which is described by a set of parameters. Consider the

set of points in the parameter space which correspond to the selected atoms. The

state space for the dynamic programming algorithm will be built upon this set. We

take the product space of this with a set of states which describe a local measure of

fit, which for example can be the derivatives of the parameters. At any given stage,

the control space of the system consists of the possible assignments of an atom to the

descriptor. This is a deterministic problem.

Assume we are in state Tk, which is a vector containing the atom and local fit

parameters. The result of control Uk will be an assignment of one atom to the de-

scriptor. This procedure directly gives the new atom parameters k + 1. The local fit

measures for stage k + 1 are determined as a function of the new atom parameters

and the old parameters in Tk. This will be denoted as T = A (yk, Uk)

The cost at stage k, g (Tk, Uk), is determined as a function of the differences be-

tween the parameters in stage k + I and stage k. The cost can, in general, be more

complicated. For example, the statistical correlations we may discover could be em-

ployed.

Then the Dynamic Programming equations are:

JN(YN) = 0 V TN

for any k,

Jk(yk) =min(g(YkUk) + Jk+1(fk(TkUk)))
Uk

In terms of the hierarchical description of classification, the structure of these
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components could be viewed as extra information allowing a refinement of the classi-

fication decision.

6.2.3 Statistically Derived Prior Models

In our experiments, we constructed prior signal models based on predicted formant

paths and the idea was that we were trying to model the densities of non-stationary

processes. In future work, we could however take a different point of view. Given a

database that contains many repetitions of the signals to be distinguished, we could

perform a deterministic decomposition of all of its elements� Then by combining all

of the elements that are instances of a particular signal, we could derive the induced

distribution, Pinducedi, on the dictionary elements, and use it as a prior signal model.
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Appendix A

Tables of Parameter Values
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Table A. 1: Speaker cb: parameter values for the voiced stop consonants in the context
of /aa/.

aabaa-cb F1
to from

segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)
I 10 -1 10 -0.5
2 70 -4 200 -10
3 50 -4 100 -15
4 100 -4 150 -15

aabaa-eb F2

to from
segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)

1 60 6 50 2
2 60 6 50 1.75
3 100 7 50 1.5
4 50 3 50 1.5
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Table A. 2: Speaker cb: parameter values for the voiced stop consonants in the context
of /aa/.

aadaa-cb Fl

to from
segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)

I 10 -0.5 10 -0.4
2 70 -3.5 100 -3.5
3 50 -4 100 -15
4 50 -4 200 -15

aadaa-cb F2
to from

segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)
1 70 4.5 50 2
2 70 4.5 50 2
3 70 4.5 50 2
4 50 4.5 100 2



Table A.3: Speaker cb: parameter values for the voiced stop consonants in the context
of /aa/.

aagaa-eb F1

to from
segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)

I 10 -1 10 -0.4
2 100 -4 100 -3
3 10 -5 100 -15
4 20 -5 200

aagaa-cb F2

to from
segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)

1 40 4 50 1.75
2 40 4 50 1.75
3 100 5 50 1.75
4 50 5 50 1.75
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Table A-4: Speaker cb: parameter values for the voiced stop consonants in the context
of /ih/.

ihbih-cb F1
to from

segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)
I 10 -0.4 10 -0.4
2 100 -2 100 -3
3 10 -0.5 60 -9
4 150 -15 100 -9

ihbih-cb F2

to from
segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)

I 10 -2 10 -0.5
2 80 -7 0 -0.5
3 100 -7 15 -0.5
4 200 -7 50 -4
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Table A.5: Speaker cb: parameter values for the voiced stop consonants in the context
of /ih/.

ihdih-cb F1
to from

segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)
I 1 -0.5 10 -0.4
2 70 -2 100 -3
3 100 -20 60 -10
4 200 -20 100 -10

ihdih-cb F2
to from

segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)
1 1 0.1 50 1.25
2 1 0.1 50 1.25

1 0.1 50 1.25
4 1 0.1 50 1.25
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Table A-6: Speaker cb: parameter values for the voiced stop consonants in the context
of /ih/.

ihgih-cb F1

to from
segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)

1 50 -3 10 -0.4
2 50 -3 100 -3
3 100 -3 60 -12
4 50 -3 100 -12

ihgih-cb F2

to from
segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)

1 70 2.5 50 1.75
2 70 2.5 50 5
3 100 3 50 5
4 100 3 150 5
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Table A-7: Speaker ks: parameter values for the voiced stop consonants in the context
of /aa/.

aabaa-ks F1

to from
segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)

I 10 -1 10 -0.7
2 50 -3 50 -5
3 50 -4 50 -5
4 100 -6 50 -5

aabaa-ks F2
to from

segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)
1 50 -3 50 -3
2 50 -3 50 -3
3 20 -3 20 -3
4 10 -3 10 -3
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Table A.8: Speaker ks: parameter values for the voiced stop consonants in the context
of /aa/.

aadaa-ks F1

to from
segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)

I 10 0.5 10 -0.4
2 70 -2 100 -3
3 100 -5 100 -3
4 200 -5 100 -3

aadaa-ks F2

to from
segment range (Hz) slope (Hz/Ms) range (Hz) slope (Hz/ms)

1 50 2.5 50 1.5
2 100 2.5 50 2
3 100 4 50 2
4 150 6 100 2
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Table A.9: Speaker ks: parameter values for the voiced stop consonants in the context
of /aa/.

aagaa-ks F1
to from

segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)
I 10 -0.5 10 -0.5
2 50 -3 100 -3.5
3 100 -4 10 -3.5
4 200 -5 250 -3.5

aagaa-ks F2
to from

segment range (Hz) slope (Hz/ms) range (Hz) slope (Hz/ms)
I 10 2 50 .2.5
2 100 2 50 2.5
3 100 6 50 2.5
4 150 7 100 2.5
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Tables of Decomposition Results
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Table B.I: Summed results for F1 going into the closure in aabaa-cb
model pi 92 93 ON

b 626.432560 57-125000 3.083333 15
d 1364.077490 113-325000 1.050000 20
9 626.432560 57-125000 3.083333 15

Table B.2: Normalized results for F1 going into the closure in aabaa-cb

model VI/1 + ON 92/1 +ON 93/1 + ON 9

b 39.152035 3.570313 0.192708 0.941260
d 64.956071 5.396429 0.050000 1.239204
g F-39,152035 1 3.570313 0.192708 10.9412

Table B.3: Summed results for F1 coming out of the closure in aabaa-eb

model pi 92 93 ON

b 1524-323389 74-855556 1.952778 37
d 2998.701729 155-985714 1.814286 31
g 1 2580.077303 152-838636 1.722727 29

Table BA: Normalized results for F1 coming out of the closure in aabaa-cb

model 0111 + ON 92/1 + ON 03/1 + ON 9

b 40.113773 1.969883 0.051389 0.649515
d 93.709429 4.874554 0.056696 1.481246
9 86.002577 5.094621 0.057424 1.426912
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Table B.5: Summed results for F2 going into the closure in aabaa-cb

model 91 -02 0-3 9N

b 782.803703 17.700000 1.400000 60
d 821.316346 19.800000 1.400000 60
g 807.418776 19-800000 1.350000 60

Table B.6: Normalized results for F2 going into the closure in aabaa-cb

model 91/1 + 9N L02/1 + 9N 0-3/1 + 9N 9

b 12.832848 0.290164 0.022951 0.180296
d 13.464202 0.324590 0.022951 0.190052
g LL3.236373T 0.324590 0.022131 0.186954

Table B.7: Summed results for F2 coming out of the closure in aabaa-cb

model 91 92 93 9N

b 542-828757 12.050000 1.850000 60
d 633.791788 14.050000 1.700000 60
9 646.671789 14.450000 1.700000 60

Table B.8: Normalized results for F2 coming out of the closure in aabaa-cb

model 91/1 +,O-N 92/1 +,O-N L03/1 + 9N 9

b 8.898832 0.197541 0.030328 0.139070
d 10.390029 0.230328 0.027869 0.154802

F�g 10-601177 0.236885 0.027869 0.157569
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Table B.9: Summed results for F1 going into the closure in aadaa-cb

model pi 02 93 ON

b 3351-791488 154-000000 3.100000 42
d 1959.254256 105-826389 2.333333 37
g 4285-877607 1 247-000000 1 12.100000 40

Table B. 10: Normalized results for F1 going into the closure in aadaa-cb

model 91/1 + ON 92/1 + ON 93/1 + ON 9

b 77-948639 3.581395 0.072093 1.209719
d 51.559323 2.784905 0.061403 0.8554871 1
g 104-5336001 6.024390 1 0.295122 11.942P:7:]

Table B.11: Summed results for F1 coming out of the closure in aadaa-cb

model pi 92 93 ON

b 4147-031042 355.825000 31-600000 38
d 4570.130950 284-565934 14.173077 49

g 4554-080318 322-888889 13.065874 44

Table B.12: Normalized results for F1 coming out of the closure in aadaa-cb

model pill + ON 92/1 +ON 93/1 + ON 9

b 106.334129 9.123718 0.810256 2.785969
d 91.402619 5.691319 0.283462 1.766620
9 101.201785 7.175309 0.290353 2.019901
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Table B. 13: Summed results for F2 going into the closure in aadaa-cb

model PI L02 93 -ON

b 1186-311596 23.250000 1.850000 80
d 1119-359480 23.250000 1.950000 80

1147.398409 23.250000 1.900000 80

Table B.14: Normalized results for F2 going into the closure in aadaa-cb

model 60111+,-ON 9211+60-N 0-311+PN 9

b 14-645822 0.287037 0.022840 0.198001
d 13.819253 0.287037 0.024074 0.190970
g 14.165412 0.287037 0.023457 0. ib-3 �15

Table B. 15: Summed results for F2 coming out of the closure in aadaa-cb

model pi 92 93 ON

b 2457-819271 52.000000 3.450000 120
d 2424.431824 50.750000 3.350000 120
g 2453.611724 1 51.050000 3.350000 120

Table B. 16: Normalized results for F2 coming out of the closure in aadaa-cb

model 9111+LON 9211+QN 0311+PN 9

b 20-312556 0.429752 0.028512 0.274613
d 20.036627 0.419421 0.027686 0.269994

_g 20.277783 0.421901 0.027686 0 -T7 2 �65 4F I'l
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Table B.17: Summed results for F1 going into the closure in aagaa-cb

model pi 92 93 ON

b 2674.778263 100-600000 2.027778 33
d 1035.475867 48.250000 2.027778 15
g 1527-675650 1 42-600000_ 2.361111 47

Table B.18: Normalized results for F1 going into the closure in aagaa-eb

model 01/1 + ON 92/1 + ON 93/1 + ON 0

b 78-669949 2.958824 0.059641 1.142222
d 64.717242 3.015625 0.126736 1.075471
9 31.826576 0.887500 0.049190 0.456206

Table B. 19: Summed results for F1 coming out of the closure in aagaa-cb

model pi 92 93 ON

b 5058-965155 283-995192 13.323077 43
d 4306-600793 262.025000 3.366666 44
9 4311-310589 189-153097 3.661839 47

Table B.20: Normalized results for F1 coming out of the closure in aagaa-cb

model 91/1 + ON 92/1 + ON 03/1 + ON 9

b 114.976481 6.454436 0.302797 2.098006
d 95.702240 5.822778 0.074815 1.614115
g 89-818971 1 3.940690 0.076288 1.368547
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Table B.21: Summed results for F2 going into the closure in aagaa-cb

model pi 92 93 ON

b 785-676726 12.900000 1.700000 60
d 773.371474 12.950000 1.450000 60
9 719-186180 12.150000 1.650000 60

Table B.22: Normalized results for F2 going into the closure in aagaa-cl-,

model Lol/I +LON 92/1 + ON L03/1 + LON

b 12.879946 0.211475 0.027869 0.177816
d 12-678221 0.212295 0.023770 0.171782
9 11.789937 1 0.199180 1 0.027049 0.164867

Table B.23: Summed results for F2 coming out of the closure in aagaa-cb

model Lo i -02 0-3 ON

b 2068.107637 46.750000 2.650000 81
d 2008.339282 44.300000 2.500000 81
g 2485.344293 1 60.300000 1 2.600000 81

Table B.24: Normalized results for F2 coming out of the closure in aagaa-cb

model 91/1 +,O-N 92/1 + ON L03/1 + LON 9

b 25.220825 0.570122 0.032317 0.341538
d 24.491942 0.540244 0.030488 0.329432
9 30-309077 0.735366 0.031707 0.408335
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Table B.25: Summed results for F1 going into the closure" in ihbih-cb

model pi 92 93 ON

b 250.572697 11.104545 1.363636 51
d 581-155847 29.750000 1.766667 52
g 1 370.906028 1 17.066667 1 1.766667_L46J

Table B.26: Normalized results for F1 going into the closure in ihbih-cb

model 01/1 + ON 92/1 + ON 93/1 + ON 9

b 4.818706 0.213549 0.026224 0.095766
d 10-965205 0.561321 0.033333 0.199117

7.891618 1 0.363121 � 0.037589 28M

Table B.27: Summed results for F1 coming out of the closure in ihbih-eb

model pi 92 93 ON

b 988-637496 85.166667 3.716667 86
d 884.716451 45.550000 4.100000 82

1644.031205 190.200000 4.400000 82

Table B.28: Normalized results for F1 coming out of the closure in ihbih-cb

model 91/1 + ON 92/1 + ON 93/1 + ON 9

b 11.363649 0.978927 0.042720 0.254250
d 10-659234 0.548795 0.049398 0.210869

g 19-807605 2.291566 0.053012 0.480245
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Table B-29: Summed results for F2 going into the closure in ihbih-cb

model pi 02 LO 3 ON

b 7994.739667 287.600000 11.400000 21
8034.568591 288.000000 11.400000 21

9 8015.127682 287.450000 11-500000 21

Table B.30: Normalized results for F2 going into the closure in ihbih-cb

model L01/1 + LON L02/1 + LON L03/1 + LON Q

b 363-397258 13.072727 0.518182 5.459427
d 365.207663 13.090909 0.518182 5.479349
9 364.323986 13.065909 0.522727 5.472558

Table B.31: Summed results for F2 coming out of the closure in ihbih-cb

model Q I 02 93 ON

b 12582-899710 440.250000 21.050000 41
d 12554.647392 437-550000 20-850000 41
9 12972.106252 448.550000 20.850000 41

Table B.32: Normalized results for F2 coming out of the closure in ihbih-cb

model 91/1 + ON L02/1 + QN 93/1 + LON 9

b 299.592850 10.482143 0.501190 4.545333
d 298.920176 10.417857 0.496429 4.527416
g 308.859673TIO-679762 0.496429 4.653001
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Table B.33: Summed results for F1 going into the closure in ihdih-cb

model pi 92 93 ON

b 1911.765505 135.550000 2.550000 64
d 1215.997150 74-383333 3.200000 66

9 1212-377731 87.150000 3.450000 �65

Table B.34: Normalized results for F1 going into the closure in ihdih-cb

model LOI/I + ON 92/1 + 12N 93/1 + ON 9

b 29.411777 2.085385 0.039231 0.541887
d 18.149211 1.110199 0.047761 0.340273
9 18.369360 1.320455 0.052273 0.368012

Table B.35: Summed results for F1 coming out of the closure in ihdih-cb

model pi 92 03 ON

b 3639.235690 325-937500 23.462500 80
d 2384.904482 221.475000 23-075000 78
g 3516.687905 267.400000 22.450000 81

Table B.36: Normalized results for F1 coming out of the closure in ihdih-cb

model 0111 + ON 92/1 + ON 93/1 + ON 9

b 44.928836 4.023920 0.289660 1.141341
d 30-188664 2.803481 0.292089 0.874323
g 42-886438 3.260976 0.273780 1.028742
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Table B.37: Summed results for F2 going into the closure in ihdih-cb

model pi 92 -03 LO N

b 5412-562093 210.742857 12.114286 13
d 5420-985407 209.476190 1 11-880953 14 11
9 6093-632107 303.142857 F2-1.714286

Table B.38: Normalized results for F2 going into the closure in ihdih-cb

model 01/1 + ON 92/1 + ON L03/1 + LON 9

b 386-611578 15.053061 0.865306 6.236728
d 361.399027 13.965079 0.792064 5.802562
g 677.070234 33.682540 2.412698 12.

Table B.39: Summed results for F2 coming out of the closure in ihdih-cb

model 91 92 93 ON

b 14205.243874 652.700000 41-950000 35
d 12503-188151 477.416667 22.700000 51
9 12593-517657 479-316667 22.700000 51

Table B.40: Normalized results for F2 coming out of the closure in ihdih-cb

model 91/1 + ON 92/1 + QN 03/1 + ON 9

b 394.590108 18-130556 1.165278 6.924234
d 240.445926 9.181090 0.436538 3.759107
9 242.183032 9.217628 0.436538 3. T8 0 �13 2Fj
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Table B.41: Summed results for F1 going into the closure in ihgih-cb

model pi 92 Q3 ON

b 2607-669858 127-100000 4.250000 105
d 3394-617280 309-973077 23-315385 55

1311-366342 1 63-190757 1 4.050420 93
9 1 �

Table B.42: Normalized results for F1 going into the closure in ihgih-cb

model 01/1 + ON 92/1 + ON 03/1 + ON 9

b 24-600659 1.199057 0.040094 0.406007
d 60.618166 5.535234 0.416346 1.576051
9 13.950706 0.672242 0.043090 0.249821

Table B.43: Summed results for F1 coming out of the closure in ihgih-cb

model pi 92 93 ON

b 3814.371194 340.700000 33.200000 85
d 4031.780036 369.866667 33.433333 86

F�g �j 3700-596843 1 329.450000 i 32.6500

Table B.44: Normalized results for F1 coming out of the closure in ihgih-cb

model 91/1 + ON 92/1 + ON 03/1 + ON 9

b 44-353153 3.961628 0.386047 1.225741
d 46-342299 4.251341 0.384291 1.272848
9 45-129230 4.017683 0.398171 1.251231
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Table B.45: Summed results for F2 going into the closure in ihgih-cb

model pi L02 93 ON

b 8160.938661 473.800000 32.000000 44
d 10959.593591 435.681818 22-063636 56
9 5536-859648 423-100000 41.100000 40

Table B.46: Normalized results for F2 going into the closure in ihgih-cb

model LOI/I + ON -02/1 + LON L03/1 + LON 9

b 181.354192 10.528889 0.711111 3.577542
d 192.273572 7.643541 0.387081 3.074171
g 1135.045357 j 10-319512 1 1.002439 13.384844

Table B.47: Summed results for F2 coming out of the closure in ihgih-cb

model pi 92 93 ON

b 10097.423211 548-050000 41-600000 62
d 9904-635802 415.766667 22.533333 85
9 8881.003473 374.166667 23.300000 85

Table B.48: Normalized results for F2 coming out of the closure in ihgih-cb

model P111 + LON 92/1 + ON L03/1 + LON 9

b 160.276559 8.699206 0.660317 3.133004
d 115.170184 4.834496 0.262016 1.897167
9 103.267482 4.350775 0.270930 1.738683
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'Table B.49: Summed results- for F1 going- into the closure, in aabaa-ks

model pi 92 93 ON

b 890.417720 34.250000 1.450000 40
d 579.090718 22.450000 1.550000 40
9 579.090718 22.450000 1.550000 40

Table B.50: Normalized results for F1 going into the closure in aabaa-ks

model 91/1 + ON 02/1 + ON 93/1 + ON 9

b 21-717505 0.835366 0.035366 0.336077
d 14.124164 0.547561 0.037805 0.233803
9 14.124164 0.547561 0.037805 0.233803

Table B. 5 1: Summed results for F1 coming out of the closure in aabaa-ks

model pi 92 93 ON

b 1433.245265 76.941667 1.519444 45
d 953.249085 48-123684 2.378070 45
g 1144-564061 67-372549 2.078431 35

Table B.52: Normalized results for F1 coming out of the closure in aabaa-ks

model 91/1 + ON 92/1 + ON 93/1 + ON 9

b 31.157506 1.672645 0.033031 0.511871
d 20.722806 1.046167 0.051697 0.363542
g 31.793446 1.871460 0.057734 0.562815
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Table B.53: Summed results for F2 going into the closure in aabaa-ks

model O_ I 92 93 ON

b 389-804044 10.100000 1.100000 40
632-517969 15.300000 1.300000 40

9 632.517969 15.300000 1.300000 40

Table B.54: Normalized results for F2 going into the closure in aabaa-ks

model 91/1 + ON 92/1 + ON L03/1 + QN 0

b 9.507416 0.246341 0.026829 0.146538
d 15.427268 0.373171 0.031707 0.223297
g Fl-5-427268 0.373171 0.031707 1 0.223N71

Table B.55: Summed results for F2 coming out of the closure in aabaa-ks

model pi 92 93 9N

b 305.182253 9.850000 1.700000 60
d 421.428993 13.400000 1.900000 60
9 438.400660 13.650000 1.600000 :60

Table B.56: Normalized results for F2 coming out of the closure in aabaa-ks

model 0111 + ON 92/1 + ON 0-3/1 + LON 9

b 5.002988 0.161475 0.027869 0.094046
d 6.908672 0.219672 0.031148 0.122201
g L 7.186896 0.223770 0.026230 0.120476
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Table B.57: Summed results for F1 going into the closure in aadaa-ks

model pi 92 93 ON

b 2441.432986 178-739286 12.946104 61
d 2076-325968 93-525000 2.583333 79
g 3652.266738 1 146.275000 1 3.350000 1 96

Table B.58: Normalized results for F1 going into the closure in aadaa-ks

model 91/1 + ON L02/1 + ON 93/1 + ON 9

b 39.377951 2.882892 0.208808 0.890877
d 25.954075 1.169062 0.032292 0.408739
9 37.652234 1.507990 0.034536 0 561857

Table B.59: Summed results for F1 coming out of the closure in aadaa-ks

model pi 92 93 ON

b 4994-853257 387-550000 31.872222 58
d 1846.762668 80.761765 3.902941 101
g 2685.967642 1 112.629412 1 4,576471 117

Table B.60: Normalized results for F1 coming out of the closure in aadaa-ks

model 91/1 + ON 92/1 + ON 123/1 + ON 9

b 84-658530 6.568644 0.540207 2.043657
d 18-105516 0.791782 0.038264 0.298497
9 22-762438 0.954487 0.038784 j 0.361857
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Table B.61: Summed results for F2 going into the closure in aadaa-ks

model Pi 92 -03 ON

b 2312.038684 208-950000 21-350000 60
d 1538.803709 36.250000 2.616667 95
9 1599.213837 40.600000 2.971429 94

Table B.62: Normalized results for F2 going into the closure in aadaa-ks

model 01/1 + ON L02/1 + ON 93/1 + LON 9

b 37.902274 3.425410 0.350000 1.071564
d 16-029205 0.377604 0.027257 0.2253091
9 16-833830 1 0.427368 1 0.031278 10.24235311� � [I

Table B-63: Summed results for F2 coming out of the closure in aadaa-ks

model pi 92 93 ON

b 4499.095767 350-916667 31.650000 52
d 4716.812818 157.550000 3.736364 92
g 6059-474492 1 200.800000 3.150000 i 86

Table B.64: Normalized results for F2 coming out of the closure in aadaa-ks

model 91/1 + ON L02/1 + ON P-3/1 + LON 9

b 84-888599 6.621069 0.597170 2.108163
d 50-718417 1.694086 0.040176 0.716769
g L69-649132 2.308046 0.036207 0.963503=
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Table B.65: Summed results for F1 going into the closure in aagaa-ks

model pi 92 93 ON

b 4219.032709 323.411538 24.325962 74
d 2437.737936 109-546079 4.487255 124

1966-952847 89.817647 4.772374 124g I

Table B.66: Normalized results for F1 going into the closure in aagaa-ks

model 01/1 + ON 02/1 + ON 93/1 + ON 9

b 56.253769 4.312154 0.324346 1.318099
d 19-501903 0.876369 0.035898 0.318554
9 15-735623 1 0.718541 1 0.038179 0.267389

Table B.67: Summed results for F1 coming out of the closure in aagaa-ks

model pi 92 03 ON

b 4536.239403 366-166667 31-721568 40
d 3749.955866 178.721710 4.058991 96
9 2287.964334 144.784066 3.499634 67

Table B.68: Normalized results for F1 coming out of the closure in aagaaj�s

model 91/1 + ON 92/1 + ON 93/1 +QN 9
8.9308 .773186

110-639985 94 0.773697 2
d 38.659339 1.842492 0.041845 0.612688
9 33-646534 2.129177 0.051465 0.600848
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Table B.69: Summed results for F2 going into the closure in aagaa-ks

model Q1 L02 93 ON

b 3440.629810 313.600000 32.100000 72
d 1798-749936 39-400000 4.000000 140
9 1463-869800 34-675000 4.000000 136

Table B.70: Normalized results for F2 going into the closure in aagaa-ks

model L01/1 + LON 92/1 + LON L03/1 + ON 9

b 47-131915 4.295890 0.439726 1.340634
d 12.757092 0.279433 0.028369 0.183883
9 10-685181 0.253102 0.029197 0.161359

Table B.71: Summed results for F2 coming out of the closure in aagaa-ks

model pi 0-2 93 ON

b 2532.168974 216-500000 149.700000 47
d 4540.803860 97-850000 3.250000 120
9 3904.388192 98.913636 1 3.718182 1 Hill

Table B.72: Normalized results for F2 coming out of the closure in aagaa-ks

model Q111 + ON 92/1 + LON L03/1 + LON 9

b 52.753520 4.510417 3.118750 4.097327
d 37.527305 0.808678 0.026860 0.483000

34.860609 0.883157 0.033198 20

137



Bibliography

[1] Peter F. Assmann. The role of formant, transitions in the perception of concurrent

vowels. J. Acoust. Soc. Am., 97(l), January 1995.

[2] Martin J. Bastiaans. Gabor's expansion of a signal into gaussian elementary

signals. Proceedings of the IEEE, 68(4), April 1980.

[3] John J. Benedetto and Michael W. Frazier, editors. Wavelets: Mathematics and

Applications. Studies in Advanced Mathematics. CRC Press, 1994.

[41 Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena

Scientific, 1995.

[5] Leo Breiman. Probability. Classics in Applied Mathematics. SIAM, 1992.

[6] Herman Chernoff. Notes. August 1977.

[7] Ingrid Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional Conference

Series in Applied Mathematics. SIAM, 1992.

[8] John R. Deller, Jr., John G. Proakis, and John H. L. Hansen. Discrete-Time

Processing of Speech Signals. Macmillan Publishing Company, 1993.

- [9] J.L. Doob. Measure Theory. Graduate Texts- in Mathematics. Springer-Verlag,

1994.

[10] Richard 0. Duda and Peter E. Hart. Measure Theory. John Wiley & Sons, 1973.

[I 1] Jerome H. Friedman and Stuetzle. Projection pursuit regression. Journal of the

American Statistical Association, 76(376), December 1981.

138



[12] Mark Allan Hasegawa-Johnsori. Formant and Burst Spectral Measurements with

Quantitative Error Models for Speech Sound Classification. PhD thesis, Mas-

sachusetts Institute of Technology, 1996.

[131 Peter J. Huber. Projection pursuit. The Annals of Statistics, 13(2), 1985.

[141 Lee K. Jones. On a conjecture of huber concerning the convergence of projection

pursuit regression. The Annals of Statistics, 15(2), 1987.

[15] Gary E. Kopec. Formant tracking using hidden markov models and vector quan-

tization. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(4),

August 1986.

[16] Shan Lu and Peter C. Doerschuk. Nonlinear modeling and processing of speech

based on sums of arn-fm formant models. Technical report, School of Electrical

Engineering, Purdue University, 1995.

[171 St6phane Mallat. Wavelet Signal Processing. Academic Press, 1996.

[18] St6phane G. Mallat and Zhang Zhifeng. Matching pursuits with time-frequency

dictionaries. IEEE Transactions on Signal Processing, 41(12), December 1993.

[19] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing.

Signal Processing Series. Prentice-Hall, 1989.

[20] Emanuel Parzen. Statistical inference on time series by hilbert space methods,

i. Technical report, Applied Mathematics and Statistics Laboratory, Stanford

University, January 1959. Technical Report No. 23.

[21] Joseph W. Picone. Signal modeling techniques in speech recognition. Proceedings

of the IEEE, 81(9), September 1993.

[22] M. B. Priestley. Spectral Analysis and Time Series. Probability and Mathemat-

ical Statistics. Academic Press Inc., 1981.

139



[23] M. B. Priestley. Wavelets and time-dependent spectral analysis. Technical report,

Department of Statistics, Stanford University, April 1995. Technical Report No.

311.

[24] L. R. Rabiner and R. W. Schafer. Digital Processing of Speech Signals. Signal

Processing Series. Prentice-Hall, 1978.

[25] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of Speech Recognition.

Signal Processing Series. Prentice-Hall, 1993.

[26] J. Rissanen. Shannon-wiener information and stochastic complexity. Technical

report, IBM Almaden Research Center. From a talk.

[27] Stephanie Seneff. An auditory-based speech recognition strategy: Application

to speaker independent vowel recognition. In From the Proceedings of the Speech

Recognition Workshop, 1986.

[28] Kenneth Stevens. 6.541 course notes. To be published.

[29] Kenneth Stevens. Personal communication.

[30] Bart M. ter Haar Romeny, editor. Geometry-Driven Diffusion in Computer

Vision. Computational Imaging and Vision. Kluwer Academic Publishers, 1994.

David Mumford, pp. 135-146.

140


