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1. Introduction

The problem of controllability of linear differential
systems has recently been considered from a geometrical
point of viéw by several authors [1,2,3,4,5]. The study
of the controllability problem leads to the solution of
the minimum energy and minimum miss-distance problems in
a natural way.

In this paper we study the problem of controllability
of abstract linear systems in the presence of additive
disturbances. The controllability problem is formulated
as. the problem of finding an admissible control such that
the solution of an operator equation lies in a given target
in the presence of the worst disturbance. This study is
therefore closely connected to an associated min-max
problem. However, the min-max problem does not have a
saddle point; hence,conventional game-theoretical techniques
cannot be applied. Some related work in this direction
has been done by Witsenhausen [6]. Some results on the
necessary conditions of optimality for min-max problems
have also been reported in the literature [7,8].

The paper may be divided into nine sections.

Section 2 is devoted to the definition of the abstract

linear system, and the relevant definitions of controllability

are presented in Section 3.




In Section 4 we summarize some mathematical results
which are needed in the subsequent development.

In Section 5 we study geometrical properties of
various sets and obtain the necessary and sufficient
conditions of controllability.

In Section 6 we consider the characterization problem
while in Section 7 the associated problem is studied.

Section 8 contains a decomposition scheme to obtain
numerical solutions of the expressions arising from the
necessary and sufficient conditions.

Finally, in Section 9 we apply the main results to
the problems of point and functional controllability for

linear systems described by ordinary differential equations.



2 Mathematical Description of the System.

Let Xl and X, be reflexive Banach spaces, and X3

2

be a Banach space. X, is to be thought of as the control

1
space of the system, X, the disturbance space of the system

and X, the state space of the system. lLet U be a closed,

3
bounded convex subset of Xl’ W a closed bounded convex

subset of X2, B a closed convex subset of X, and let § be

3
a given element in X3.

Let L(Xl,X3) be the space of continuous linear maps
from X; into X5 and let L(X2,X3) be the space of continuous
l?near maps from X, into Xy Let Se:L(Xl,X3) and TE’L(XZ,X3)
and consider the abstract linear system defined by the
operator equation

(L) x=48 +Su+Tw.

A control uel will be called an admissible control,

and a disturbance we W will be called an admissible disturbance.

The set B will be referred to as the target.

3. Definitions of Controllability

Definitions 3.1 The system (L) is said to be controllable

under disturbance with respect to (4,U,W,B) if there exists

., an admissible control u such that 4 + Su + Twe B for all
admissible disturbances w in W.

Definition 3.2 If in the above definition B = {xd}, where

X4

controllable under disturbance with respect to (6,U,w,xd

is a given element in X3, then (L) is said to be strictly
3 12




Definition 3.3 If in Definition 3.1 w = {0}, then

(L) is said to be controllable with respect to (4,U, B).

Definition 3.4 If in Definition 3.1 W= {0}and B= *q1)

then (L) is said to be strictly controllable with respect to

(63 U:xd) .

4, Mathematical Preliminaries

In the following we shall use the theory of paired real
locally convex Hausdorff spaces as developed in Kelley
and Namicka [9, Chapter 5]. If X is a locally convex
space, X* represents its topological dual. The natural pairing
of X and X® is denoted by <x,x*> and the fixed bi-linear
functional by <x,x*>. The weak topology for X is denoted
by w(X,X*), and the weak* topology for X* is denoted by
w(X*,X). Real locally convex Hausdorff topological space
will be abbreviated as LCIVS. Stréng convergence will be
denoted by —» and weak convergence by - . R denotes
the real line and R' the positive non-zero reals. The origin

in the space X is written 0., and all the points different from

Oys X0y

We shall also need various results on lower semi-

X’

continuous convex functionals defined on a LCIVS, separation
theorems for convex sets, and properties of support functionals

of convex sets in LCIVS. These will be summarized below.



Theorem 4.1

Let X be a reflexive Banach space and let f: X— R be
convex and strongly lower semi-continuous. Then f is weakly
lower semi-continuous.

Proof: Since we are unable to fing any specific reference

for this theorem, a proof is given in the Appendix A.
Theorem 4.2 [10, p. 106, Proposition 1]

Let X be a ICTVS, A a non-empty convex, compact subset
of X, E the set of extreme points of A, and let f: A—R be
a strongly upper semi-continuous convex function. Then f attains
its least upper bound in A on at least one point of E.

The following definitions and results on support functionals
are due to Hormander [11].

Definition 4.3

Let X be a ICTVS and let K be a non-empty, closed,
convex subset of X. The support functional H(x*) of K, x*e X*,
is defined by .

H(x*) = sup [ <x, x*> : xeK ] . (4.1)
H(x*) is clearly everywhere > - e, Also; from the definition
of the support functional it is clear that the closed convex
‘set K is weakly bounded if and only if H(x*) is finite for
all x* in X*.
Theorem 4.4

If the support functionals of two closed convex sets K1
and K2 are identically equal, then Kl = K2.
Theorem 4.5

&
Let K1 and K, be two closed convex sets, and let Hl(x )

2
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and Hz(x*) be their corresponding support functionals.
Then K, K, if and only if H,l(x*) < H2(x*).
Theorem 4.6

A function H(x*) defined on X*, - <H(x*) <= is the
support functional of a closed, convex set in X if and
only if H(x*) is lower semi-continuous for the w(X*,X)
topology and also convex and positively homogeneous.
Theorem 4.7

The support functional of a closed convex set K is
strongly continuous if and only if K is strongly bounded.

Thus the support functional of a closed, bounded,
convex set K is everywhere finite.

The following theorem is an immediate consequence of
the strong separation theorem for convex sets in LCTVS

[9, p. 119 Corollary 1lu4.4 and p. 23 Theorem 3.9 and p. 14].

Theorem 4.8

let X be a Banach space, let A be a weakly compact,
convex subset of X and lét B be a closed, convex subset of
X . Then the following statements are equivalent:

(1) ANB¥# ¢
% %
(2) Inf{<x,x > : xeB} - Sup{<x,x > : xeA} <0,
x %
¥xeX ~ {0}
% %
(3) Sup{Infl<x,x > : xeB] - Supl<x,x > : xe A] :

* & ®
xeX x|l x=1r<0
X



The following definitions and theorem dealing with the Minkowski
functional are from Taylor [12, Chapter 3].

Definition 4.9 A set S in a real linear space X is called absorbing

if to each x € X corresponds some ¢ > 0 such that axe S if 0 < |a| < e [12,
p. 124].

It is cleér at once from the continuity of products and the fact
that 0.x = 0 that each neighborhood of 0 is absorbing.

Definition 4.10 A set S in a real linear space X is called balanced if

aScS for all a such that |a| < 1. [12,p. 123]

Definition 4.11 Let X be a real linear space and K a convex and absorbing

subset of X such that 0€ K. For each x€ X, let Ax be the set of those real a
such that a > 0 and xe aK. Since K is absorbing Ax is not empty. We then
define

p(x) = inf Ax :
The functional p is called the Minkowski functional of the set K. [12, p. 134]

Theorem 4.12 Let X be a Banach space. If K is convex, bounded,

symmetrical about 0 and has a non-empty interior which contains 0, then
the Minkowski functional for K defines a new norm on X. The normed topology
resulting from the new norm is the same as the initially given topology.

Proof : Since K has a non-empty interior containing 0, it is absorbing.

The proof of the theorem now follows from the properties of K and X [12,

p. 132, Theorem 3.4D, p. 135 Theorem 3.41C and p. 136 Theorem 3.41DJ].



5. Necessary and Sufficient Conditions for Controllability
under Disturbance.

In this section we first present a geometrical necessary and
sufficient condition for controllability under disturbance. We then
consider special restraint and target sets and present an analytical
necessary and sufficient condition.

Definition 5.1 For the linear system (L), the unperturbed attainable

set A is defined as
A={48+Su:uell}.

Definition 5.2 For the linear system (L), the zone of disturbance Dx

at a point x X, is defined as

-

DX={x+Tw:wew}.

Definition 5.3 For the linear system (L), the reduced target set TD

for the target B is defined as

= { xeX :Dxc.B}

™ 3
Proposition 5.4 The unperturbed attainable set A and the zone of

disturbance Dx are convex and weakly compact.

Proof': The proof of this theorem is an immediate consequence of the

" linearity and weak continuity of the maps S andl and the weak-compactness
of the sets U and W. Q.E.D.

Proposition 5.5 The target set B and the reduced target set T are

weakly closed and convex.

Proof': Since B is convex and closed, it is weakly closed. The convexity

of TD is obvious. We shall show TD is a strongly closed subset of Xge
Consider a strong Cauchy sequence {xn} in TD . Since TDC X X —> X,
where x €X. For any we 0 , the translated sequence { x * Tw } is Cauchy

and X+ Tw —» x + Tw. However, as points of T}, the xn's are such that



X + TweB ,szw . But since B is strongly closed, x + Tw €B ,Vwew,

and DXC B which implies x eTD. Hence TD is strongly closed and being

convex is thus weakly closed. Q.E.D.

Theorem 5.6 (Geometrical Form of the Necessary and Sufficient
Condition for Controllability)

The system (L) is controllable under disturbance with respect to

(8,U,0,B) if and only if ANT. # 0.

D
Proof': (Necessity)
If (L) is controllable under disturbance with respect to (s,U,W,B),
there exists an admissible u such that
5 +Su+TweB, Ywel,
and hence & + Sie T, However, u being admissible implies & + SueA,
and hence An TD 0.
(Sufficiency) AnTD # © implies that there exists an.xe X3 such
that xe A and x< T, Since xeA, there exists a u admissible such that
x = & + Su. Likewise xeTD implies x + Twe B, Ywew and hence 8+Si+Tw ¢ B .
Vwew . Q.E.D.

Proposition 5.7 If W is symmetrical about the origin of X, and B

is symmetrical about a given point x d:—X3, then TD # @ if and only

if X4€ TD.
Proof : Sufficiency is obvious. To prove necessity, let us first
X
. N d _ . )
define Bxd = {y:y= X=Xgq5 x € B} and TQ = {x: DXCBXd }. It is
clear that x & T if and only if 0, € T C.
d " D X3 D
* *
let x € T,%. Then D_cB, . Let H (x ) and Hy(x ) be the support
X7 Xy 1 2
functionals of D_ and B_ . Then from Theorem 4.5 D_c B_ if and only
X X4 X" Xy
* * % 9
if Hl(x ) _<_H2(x ),V X € X3. But = -



% % % % %
Hl(x)=sup[<z,x> :zer]= <xXyx >+ sup [Kw,T x> : wel],
% #
and Hy(x') = sup [<y,x > : yeB_ 1. Hence D_c B_ if and only if
Xy XXy
% % % % %
hi(x,x ) = <x,x > + sup [Kw,T x> : welW ] -su [<y,x > : yeB, J<o,

d
£ % * % '
V X € X3. Now h(-x,x ) = h(x,-x ), since W ande are symmetrical about

d
0x and 0X respectively. Hence
2 3
% ® % %
sup [ h(-x,x ) :|x llx* =1]=suwp [ hix,x ) :||x ux*= 1]1<0
X 3 x X4 g

which implies that -xeT d « Bat'T q is convex. Hence 0,, € T
D D X3 D

To obtain necessary and sufficient conditions in analytical form, we

. Q.E.D.

shall specialize the sets U, Wand Bto

U={u€Xl:|[uHxlip,0_<_p<°°}
w={WEX2:|IWHX2iB,O_<_B<m}
B = <g,01€<w,‘xex3gi\1€n}.

{xe X, :][x—xd\\x3 < 4

i % Y % % %
Proposition 5.8 TD # @ 1if and only if sup EMT X H X* : ) x || X:': =1 } L&,
2 3
x % %
where T : X2—> X3 is the adjoint operator of T.
Proof : This follows easily from Proposition 5.7. Q.E.D.

Theorem 5.9 (Necessary and Sufficient Condition for Controllability,
in Analytical Form).

The system (L) is controllable under disturbance with respect to

(4,U,W,B) if and only if

. * % %
(i) sup{Bl|Tx||X*:||x||X*=l} z2 & (5.1)
2 3 X
% % % £ %
(i) < 4-x.,x > —p||S x || * - sup {<x,x > : xeT dy O,VX e X N0,%, (5.2)
d X, D~ - 3 3

SR S . X3 .

where S : Xl > X3 is the adjoint operator of S and TD is the translate

of TD:
5 -

% % % &
Ty = { xeX; sup [ <x,x > + 8||T x HX; :||x IIX’;:l]SEE.

Condition (ii) of the Theorem is equivalent to
10



« s * * * F R * xd * oo
(iii) sup{es-x ,x > -o|] S x lel - sup [<x,x > : xeTy7] : | [x HX3 =1} <0
-.-(503)

Proof: From Theorem 5.6, (L) is controllable under disturbance with

respect to (4,U,W.B) if and only if Ar\TD # ©. From Theorem 4.8, given

the non-empty sets A and T, Ar\TD # @ if and only if

% * & %
inf{<x,x > : xe A} - sup {<x,x > : Xe TD} <0, )V‘x € X3m0X* (5.4)
3
Since s ¢ A, A # @, and from condition (i) of the theorem 'I‘D # 9, and
hence (5.4) makes sense. All that remains is to compute explicitly

the inf and sup operations. Now,
* * % % %
inf {<x,x > : x€A} = inf{<s + Su,x > :uel} =< &,x > - p[[S x [[* .
: 1

%
To compute sup{<x,x > : x €Ty} , let us first define

X
d
T, = {x€X; : D CB}, where B= {x€X; : [|x||X3_<_s} :
* & Xd
Hence sup{<x,x > : x€Tp} = sup{<x + x,,x > : x€ T }

* * X3
- T <XgHX > + sup{<x,x > : XCTD }

Corollary 5.10 In Condition (ii) of Theorem 5.9, the set T;d may be
breplaced by aT;d , where aT;d is the boundary of T;;d in the norm topology
of X3 . Moreover,

aT;d = (x€X, : suplax,x > + 8 [|Tx || il =10 =€)

2 %3
Proof: The proof of the above Corollary can be found in the Appendix B.

Corollary 5.11 Let the assumptions of Theorem 5.9 be true. Further,

11



let X, be a reflexive Banach space. Then in Condition (ii) of Theorem 5.9,

3
X X
TDd can be replaced by E , where E is the set of extreme points of TDd .

Proof: The proof of the corollary follows from the weak compactness of
X

d
p

points of TD is not available although recent work of Choquet [13] may

and from Theorems 4.6 and 4.2. A characterization of the extreme

be useful.

-,

v Corollary 5.12 If W= {0} , then (L) is controllable with respect

to (4,U,B) if and only if

% & & % %
x> - ISx | & |lx ||x.;..=1}_<_s,’fx € X

X

*

sup{<s - x 3

d

The following proposition verifies the intuitive perceived fact that strict

controllability cannot be achieved in the perturbed case.

Proposition 5.13  For the non-trivial (B# 0 , T # 0) system (L) it is

impossible to achieve strict controllability.

Proof: Suppose strict controllability is possible, that is € =0 . Then

from Proposition 5.8 Ty # ¢ if and only if

% % *
sup{B |[Tx || x:]lx || 41} <0
X5 X3
which implies

% % £ % %
ITx || 4 =0, ¥x€X; such that [Ix || o =1

X2 X3
This is possible if and only if T is the identically zero operator (which

is a trivial form of (L)). Therefore, if T is not the zero operator,

12



& % o
swp{B||Tx || & :lIx || g =1}>0,
X5 X3

which implies that the reduced target set is empty, making controllability

impossible. ‘ Q.E.D:

6. The Characterization Problem

If the system (L) is controllable under disturbance, then it is
useful to characterize the minimum values of p and e and the maximum
value of B for which the system is controllable. This is done in the

following theorems.

Theorem 6.1 (Minimum Norm Control)

For gi.ven g and ¢ , assume that (L) is controllable under
disturbance for some p , 0 <p <« . Then there exists a unique minimum
bound p* for which the system (L) is controllable under disturbance.

%
Furthermore, p 1is given by

* ) * * %4 %
(1) p=0 if sup{<s-xj,x > - supl<x,x > : x€Tp 1% ||x,._, =1} < 0
and 3
y % % X3 x
(2) if sup{<s-x,x > - sup[<x,x > : X€T"] : I || »=1}>0
X

£_ — . 2 g
p = p is the unique solution of

o

‘ * o k% % X3 *
sup{<s-x;,X > = p IS"x || 4 - supl<x,x > : x€Ty"] x|l & = 1)} =
X X
3

Consider the function
+ * % * * % #
f: RUOD XXy >R (p,x ) A-X 45X > = p IS x || & - supl<x,x >: x€E]
X
1

and the function

13



+ - & .
g: RU(0}>R:prsup {(floyx ) & [|x || *=11
3

We show that g is monotonically decreasing, continuous, convex

function of p. For Py 2Py 2 0,

x
3,
and hence g(pz) < g(pl) showing that g is monotonically decreasing.

* & £
£(pyox ) < £lpyx ) , Yx e X

For Py Z G0 and A€ [0,1],
%

F3 * 3 %
£Qpy + (1= 2) 05X ) = A £(pp,x ) + (1= 2) £(p,y,x ) WVxe X5,

which implies that g is convex. For Py 20y 20,

% % %
lgCe,) - gloyd] = glog) - gloy) < swp [(py-py) |18 % “Xi s x| = 1]

:. lpz - pll .K ’

where sup .[ HS*x*| IX; : ||x*|| 1]=Kc<«, since s* is continuous.
This shows that g is a continuous function of p.

Since (L) is controllable under disturbance for 3'_>_ 0, we have
g(®) < 0. There are two cases to consider:
(1) g(0) < 0. Then the unique minimum bound p*= 0.

(ii) g(0) > 0. Then by virtue of the properties of the function g(p),

%
p is given by the unique solution in R' of glp) = 0. Q.E.D.

Theorem 6.2 (Maximum Norm Disturbance )

Given the bounds ¢ and p, assume that the system (L) ( T# 0) is
controllable under disturbance for 8 = 0. Then there exists a unique
maximum bound B* such that (L) is controllable under disturbance if and
only if B < 8*. Moreover, defining(g by

F st

% % %
swp [T (1t + 11xl] 7 13
2 X
g* is given by

(i) e =8 if £ <0,

14



* = - ol . 5
(ii) g = B8 if f(B) < 0 , where B is the unique solution of f(g) = 0

in [0,8]. f£(B) is defined by

% % & % X4 *
£(B) = supl{<s-x.,x > - p||S x || * - supl<x,x > : xeT 3 (B)]: ||x || ,*¥ =1} .
d Xl D X3

Proof: A necessary condition for controllability of (L) is TD £0
which implies B < B. We shall show that f is monotonically increasing,
convex and continuous on [0,8]. Hence there are two cases:

(i) £(8) < 0. In that case (L) is controllable and hence 8" = 8.

(ii) f(B) > 0. Since £(0) < 0 by hypothesis and f(8) > 0, f(B) has a

g

unique solution 8 on [0,8] and 8 = é .

Now if 0 <8y <8y <8,

. % % % % % *

Bysupl | [T x | o* =[x || 3 13 < 8ysupl] [T | [ * = ||x7]] 2,13

3 %2 X 2 % xi
and therefore

TD(Bl)D TD(BZ) >

and hence using Theorem 4.5 f£(8;) < f(Bz) , which shows that f is
monotonically increasing.

Since ATj(8,) + (1 - MTp(8)) < T;(xg; + (1 - M)8,) , Y aelo,1],

it follows from Theorems 4.5 and 4.6 that
[exyx > : + (-0 o
Asupl<x,x > : xe T (8;)] 1 - Msupl<x,x > : xeTy(8,)]

* * %
‘ < swplx,x > 1 xe TH(Ag; + (1 -8y, Vx"e Xg-
Therefore, £(Xg; + (1 - 1)B,) < Af(8)) + (1 - A)f(8,), which shows
that f is convex on [0,8].
The convexity of f implies its continuity on (0,R]. The continuity

of £ at 0 may be proved in a manner analogous to Theorem 6.1. Q.E.D.

15



Theorem 6.3 (Minimum Miss-distance)

%
Given the bounds p and B8, there exists a unique minimum bound ¢
such that (L) is controllable if and only if ¢ > e*. Moreover defining ¢ by

2 % % %
e = sup{g||T x IIX*2"= | 1% IIX’;= 1},

%
e 1is given by

() e =% if £(2) <0

e if f(e) > 0, where e is the unique solution of f(e) = 0

(ii) €
in [e,= ). f£(e) is defined by
% % % % X %
fle) = sup{<d-x,,x > - p||S x || * - sup[<x,x > : xeT 3(e)]: | 1% ||* = 1}.
d Xl D X3

Proof': We first show that for some ¢ i 2 0, the system (L) is controllable.

let a and €a be defined as

% T -
a = SUp{<b-X ;X > - o||S x ||Xl 2 |l ||X3 = 1}
€q = la] #* € «
Xa
Clearly B(|a|) = {xeX, : x|y < lel} =Ty,
3

and for any x*e X: , the norm of which is unity
o = sup{<x,x*> : xeB(|a])} < sup{<x,x*> : xeT;d},
which implies that (L) is controllable for e = ¢, since f(e ) < o-|a| < O.
A necessary condition for controllability of (L) is Ty # @, which
implies ¢ > e. We shall show that f is monotonically decreasing, convex
on (e,»') and continuous on (E,sc]. Hence there are two cases:
(i) f(e) < 0. In that case (L) is controllable and hence s* = .
(ii) £(¢) > 0. Since f(e ) < 0 and f(e) > 0, f(e) = 0 has a unique
solution on (E,eC], and e = c.
The properties of the function f may be proved in a manner analogous

to Theorems 6.1 and 6.2. Q.E.D.

16



7. A Min-max Problem

It is not too surprising to find that there is a relation between
the bound ¢ on the minimal target and the following expression:

min {max [||8 + Su + Tw - :welW Jiwel}, (7.1)

Xl |x3
This min-max expression naturally arises when one desires to use the
best control to get as close as possible to the center of the target

in the presence of the worst disturbance; it is basically a game problem
with no saddle point.

Theorem 7.1 Let e* be the minimal bound on the target set B as
defined in Theorem 6.3 corresponding to the given sets of admissible
controls and disturbances, U and W; then :

(1) inf {sup [||s + Su + Tw - Xd”X3 :well: uel} = e*

(ii) if X3 is a finite dimensional Banach space, there exists u* U and
w* W such that

rwelWl:ue U},
3

rwelWl: uel},

X _ %
| |8 + Su + Tw - d||X3 = inf{supl |[[s + Su + Tw - xdllX

Proof : (i) Let ¢ = inf{sup [|]s + Su + Tw - x_||
o d X3

E2 %
then €y S € - The proof is by contradiction. If E,S € s ¥ n > 0,
+ there exists ue U such that

SLIp{Hé*SL-L*TW— :WEW}<go+n;

’ Xl Xy
in part:'%cular forn=¢ - €g the above expression contradicts the
minimality of ¢ .

(ii) It is readily seen from part (i) and the definition of g* that
there exists u.*e U such that

%
we W): uel} = sup{||s + Su + Tw - xd”X
3

tue Uy .

inf{supl||s + Su + Tw - xd”X3

17



Consider now the function

n:X,>R:wwe||s+Su*+Tw- xd||x

2

Let T(w) = {Tw : w e W}. The set T(w) is compact.
sup[|]s + Su* + Tw - xd||X :we W] = sup[]]s + Su* + x - Xq: X € T(w)]
: 3

The function n is continuous with respect to x and the set T(w) is compact.
Hence there exists a w*< W at which n assumes its maximum value.

The previous results concerning the existence of an admissible con-
trol and disturbance satisfying the min-max problem naturally call for a
geometrical interpretation.
Theorem 7.2. Let X3 be a finite dimensional Banach space and let u, w
be such that ||s + Su + Tw - xdllx3 = min{max[|[s + Su + Tw - deIXB:w € wl:

we U} =e*, then 5 + Su + Tw € aB(e*) M 3D ; in particular Tw € 3D, -

5+SU
Proof: Clearly [[|s + Su + Tw - x4|ly = e* if and only if
3
s + Su + Tw € 3B(e*) since B(e*) is the closed ball in X3 with centre X4
and radius €*. The remaining part of the proof is by contradiction; if
i —_— 1 _ *
by i 5 + ST Since D¢+Su c B(e*),
4+ Su+ Tw € int B(e*), which is in contradiction with the first result.

s+ Su+ Tw ¢ D then 5 + Su + Tw € int D

Q.E.D,

Corollary 7.3. In the unperturbed case (W = {0}), if u is such that

|]s + Su - xd||X3 =min {||s + Su - xd||X3 tu€ Ul = e*,

then 5 + Su € 3B(e*).

18,



8. A Decomposition Scheme and the Numerical Problem.

The relatively simple structure of the analytical expressions
‘derived in the previous sections is sufficient motivation to look
for a general iterative scheme involving successive approximations
in order to solve the controllability problem. We shall restrict
ourselves to the caée where the target, control and disturbance sets

are balls in their respective Banach spaces:

B = {xeX, : | |x - xdllx3 <e} (8.1)
U= {xeX : ||x||Xl Lo } (8.2)
W= {xeX, : |]x||X2 <B }. (8.3)

In the above case the necessary and sufficient conditions for
controllability are described in Theorem 5.9.

The decomposition will aim at separating the effect of the
perturbations from the effect of the controls by judiciously constructing

a new norm in the state space X,. In this we remain faithful to our

3.
previous techniques which have involved the definition of the reduced

target set TD'

Proposition 8.1 For B, U and W as described in(8.1), (8.2) and (8.3),

X
TDd has a non-empty interior which contains 0 if and only if
% % %
sup {8]|T % ||x* : | |x IIX* =1} <e . (8.4)
' . 2 3
Proof : Clearly ¢ cannot be zero, and the proof is obvious from

Proposition 5.8 and the fact that 0 has an open neighborhood. Q.E.D.
Theorem 8.2 Given B, U and W as described in (8.1), (8.2) and
(8.3) such that

* % *
st 175" 1 ¢ g =1 <e
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x
and the new norm for X, defined by the Minkowski functional p on TD?

(xl)y. = 200, (8.5)
3
the necessary and sufficient condition for controllability reduces to
* LTI %
sup{<s-x;,X > - o||S x ”Xi : [lx Isz =1} < e, (8.6)

where "

. . 3
. - L _ 1 sup{<x,x >: x€ T}
(Ix I)x’; = sup{<x,x > : (lx|]x3 g Yhses : D “(8.7)

*
is the natural norm in X3 arising from the new norm in Xqe
Furthermore, the norm [lej for x in X, can be computed as follows:
0,ifx=0
(|x|)= ; (8.8)
e/fe , if x# 0

where ¢ is the unique non-negative solution of the equation

% % % %
sup{c<x,x > + 8l 1Tx IIX* . | = ||X’3 Y)Y =83 (8.9)
2

the left-hand side of expression (8.9) is a non-negative, monotonically
increasing, convex and continuous function for all non-negative real c.

Corollary 8.3 In the unperturbed case (8 = 0, W = {0}), if € > O,

rlxl = ||x|], , and the necessary and sufficient condition for
S X3 X3

controllability is

% % % %
sup{<t-x4,x > - p|[|S'x Hxi s lx]] =1 e

Proof of Theorem 8.2: The expressions (8.5), (8.6) and (8.7)

clearly follow from the definition of a nmew norm in X5+ The equivalence
of the definitions of [lej in the expressions (8.5) and (8.8) is the
only point that requires a proof. Let f be defined as

£: RfuloriUto)

% P %
c — suplesx,x > + B||T x ||X='= s | % le 1}

2

It is readily seen that f is well-defined, monotone increasing, convex

O it

and continuous on R'U{0}. If x is not O , then the solution ¢ of the

20



expression (8.9) is finite and non-zero, so (le:‘ is well defined.
The Minkowski functional p(x) (Definition 4.11) is zero if x is 0;
if x is not 0, then

i 1 % % £
p(x) = inf{ a| sup[<5x,x >+ g||T x ||X’2 || = HX—*I leedk
3

The properties of the function f show that there exists a unique c
in R’ such that £(3) = ¢ .« Since f is monotone increasing,

1 od ) B

axeTD <=»> 0 <32 ¢

however, 0 < ¢ by expression (8.4), and hence p(x) = = . Q.E.D.

(o1 MY ol

It is interesting to note that the decomposition is achieved
by distorting the original unit ball in X3. In doing so the effects
of the controls and the disturbances are separated from each other,
reducing the numerical problem to the determination of the supremum
of each of the following expressions:

% % % N\

1. Q-xdax >"pl|sx llXi ,fOI‘ EIX le;-'-l,
# i, £

2. <cx,x >+ g||Tx ||X«2~ , for H x| X; =1,

3. < X,X*> , for El XI]XS =1.

The above expressions are continuous and positively homogeneous
functions which are either convex, concave or linear on a unit ball

in a Banach space.

9. Applications to Differential Equations.

In this section we shall show how the theory developed in the

previous sections may be applied to differential systems.
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We consider two cases:
(a) Controllability under disturbance of linear differential
systems in a Banach space
(b) Functional Controllability under disturbance of linear

systems described by ordinary differential equations.

Controllability of Linear Differential Systems in a Banach Space

let U, W and X be real Banach spaces. let t, >0 and 1 < p<e .

1

We define Lg (U) as the Banach space of all U-valued strongly measurable
1
functions defined on [o,tl] such that

o

JO u@ |8 dt < = .

The Banach space LE (U) is normed by
1

% 1

. P 4t)P
[l <J0|| u®)|[B at)

We shall assume that the space LE (U) is reflexive. This will be the

1
case if U is reflexive and separable or uniformly convex. The dual
% *
space [ L@ (U) 1 is isometrically isomorphic to 2 wh, Ll 1.
i tl P q

1
In an analogous manner, define Lg (W), 1 < p' < » , as the Banach
1
space of all W-valued strongly measurable functions with norm
5 1
' o |
[l e = <j0 |Jwee) [ [B'at )P

t
and assume that ﬁg (W) is reflexive.
1
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Consider the linear differential system
(LD) %(t) = Ax(t) + Bu(t) + Cw(t) (9.1)

with initial condition x(0)€ X, where A is a linear closed operator
with domain D(A) which is the infinitesimal generator of a strongly
continuous semi-group T(t), t > 0, of linear bounded operators, B is a
linear bounded operator mapping U into D(A) and C is a linear bounded
operator mapping W into D(A). We shall say that x(.) is a solution

of (9.1) with initial condition x(0)e X if x(.) satisfies the integral
equation

t t

T(t - t)Bu(r)dr + J T(t - t)Cw(t)dr (9.2)

x(t) = T()x(0) +j
0

0

where the integrals in the right hand side of (9.2) are in the sense

of Bochner [15, Sec. 3.7, p. 78].

For given Y 2 0, define linear bounded transformations

t
e 1
Ryt LEC’ (U) > X : uw J T(t; - t)Bult)dr
1 0
t
p' ik
ST: Lt (W) + X : we—r J T(tl - )Cw(g)dr ,
1 0

and define T(tl)x(O) Xy Then (9.2) can be written as

x(tl) =x,tR ou+ S, w (9.3)
i} 1
P p' =5
Iet()thtl(U),ch Ltl(W) and K< X be defined by
9, = {u: ||u||p_<_o}
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Q

T L Ml <o

and K= {x: [|x=-x4|lg < €}

where x 4 is a given element in X.

Definition 9.1

(I..D) is controllable under disturbance with respect to (x ,Q Qs
K,t,) if there exists a u€Q_such that x_+ R_u+ S_wé€K for all
1 u o tl tl
w€ Qw.
With this specification of the problem and the above definition
of controllability the theory developed in the previous sections is

applicable.

Functional Controllability

Consider the linear differential system

(Lo) %(t) = A(t)x(t) + B(tu(t) + C(tiw(t), : (s.4)

where x(t)€ x= Rn, u(t)e U=R", w(t)eW=RP and A(t), B(t), C(t) are matrices
of appropriate order which are bounded measurable on the given compact
interval [0,t;]. Let u(t) and w(t) be Lebesgue-measurable functions and
define Lp v, Lp (w>, l <p,p'< = , and the sets Q 2% w in a manner

|
analogous to the prevmus case, and let KC 12 (x) be defined by

K = ||x-xd||2<e}
where X4 is a given element in Lz (X). For given x(o)€X , u€ Lg (U)
1 1
]
and weLg (W) , and interpreting Eq. (9.4) in the Caratheodory sense, there

1

exists an absolutely continuous function x(-j;u,w) defined on the compact
interval [O,tl] which satisfies Eq. (9.4) almost everywhere. Since
x(+3;u,w) 1is absolutely continuous on the compact interval [O,tl] 5

xCesuw)e 12 &) .
L5
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The solution of (9.4) is given by

t t
x(t) = ¢(t,0) x(o) + J ¢(t,t) B(r) u(r) dr + I o(t,r) C(t) w(t) dr (9.5)
(o] (o}

where ¢ is the fundamental matrix of solutions. Let

2
R:IP W »L X
b | 51

be the linear bounded transformation defined by

t
(Ru)(t) = J o(t,1) B(r) u(r) dr 0 <t < tl s
(o]

and let

' 2
S : P (W) » L (X)
* L |

be the linear bounded transformation defined by

t
(Sw)(t) = I o(t,t) C(r) w(r) dr 0 <t itl 5
o
and let #(t,0) x(o) = Xy -
Then Eq. (8.5) can be written as
where
x = x(-3u,w)
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Definition 9.2

(L o) is functionally controllable under disturbance with respect to

(x5 2 25 K, t,) if there exists a Eenu such that x(-j;u,w)€ K , for
all we Q, -

The problem of functional controllability under disturbance can now be

treated using the results of previous sections.

26



APPENDIX A

Definition A.l

The functional f is called weakly lower semi-continuous at the point

Xy if, for any {x_} which converges weakly to X, s

f(x ) < lim f(x.)
O—E-;; n

([16] p. 73, Definition 8.1).

Theorem A.?2
let X be a reflexive Banach space, and let f : X -+ R be convex and

strongly lower semi-continuous. Then f is weakly lower semi-continuous.

Proof: The proof is by contradiction. Let us assume that the functional
f is not weakly semi-continuous. Hence for some X, in X
Definition A.l is not satisfied; that is there exists a weakly convergent
sequence, {xn} s

{xn} - X
such that

f(xo) > 1lim f(xn) .

N>

This implies that for some positive real e , we can find a subsequence,

also denoted by {xn} , for which
fx)) < f(x)-e , forall n. (A.1)
Now since X 1is a reflexive Banach space, for every weakly convergent

sequence and any positive real & , we can find elements X5 1.5 1 g00eoNCS)
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such that

||x l; oy % | < & , where &
- - - ’ - £al
o ;& Uiy i

0 and a. = 1

([17] p. 422, Corollary 1u).

Since f 1is strongly lower semi-continuous, we can choose § suf-

ficiently small such that

NN
£C ] o %) > flx) -5 . (A.2)
i=1

However, the convexity of the functional f and Eq. (A.1) and (A.2) lead
to a contrfadict ion :
N

Yl )-e) = flx))- ¢

€ rf N %‘ N
f(x )-= < f( ) a. x.) < a. Flx.) <
- 2 i=1 =1 l 1" = i=1l

i 1 — .
1

and
—>¢ >0

Q.E.D.
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APPENDIX B

We may characterize the boundary (with respect to the norm topology)

of T

D as follows:

Theorem B.1

If the set TD

is the set of points x in X5 such that

" is not empty, its boundary 3TD (in the norm topology)

% % % %
sup{<x-xX.3%.> + BT %, || & : |I%5 || s = 1} =€ .
d’>”3 3 X 3 X
2 3

Proof: Let the function f on X3 into R be defined as

% % % #
X Sup{<x-—xd,x3> + B”T X3 ” % : ”X3 ” L3 = l}
X
2 3
From Theorem 4.5,

Ty = (x€ X5t f(x) <e} .

(a) Let X be a point of T such that f(xo) = ¢ . Weassure x

to be an interior point of Ty (in the strong topology) and obtain a con-
tradiction. There exists an open ball Ba(xo) at xg entirely contained

in Ty » since X is an interior point of T, . However,

sup{f(x) : x € Ba(xo)} e+t s ,

as can easily be computed by changing the order of the two suprema ([14],
p. 352, Proposition 9). This clearly implies that there exists some x in
BG(XO)C:'TD for which f(x) > ¢ in contradiction with the definition of

I . 2
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(b) Let Xy be a boundary point of T (in the strong topology). We
assume that

a = f(xo) < g

and show that Xy cannot be a boundary point 'of TD . let 8§ = (e-a)/2

and Nd(xo) be an open ball of radius 6 at X, . For all y in Na(xo)

f(y)iu'*”y-xollxsf_a*'E;a<e;

X is an interior point of TD , since there is an open neighborhood of

X entirely contained in TD 8

: Q.E.D.

Theorem B.?2

Xa
If TD is not empty,

% X % X
sup{<x,x > : xe TDd} = sup{<x,X > : X€ aTDd}

X
Proof: By Theorem 4.5, for any xeTDd §

% % & %
o= suplax,x >+ B|Tx || 4 :llx |l x=1Y<e

-~

% %3
But by Theorem 8.2, there exists c¢ > 1 such that

% % % %
suplecx,x > + BT || 4t llx || 4= 13 = ¢,

X X

2 3
Xy X
and by Theorem B.1, cXe aTD . We then have for any X in TD

% %
|<x,x >| < [<cx,x >|

and
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X A X
sup{|<x,x*>| : X€ TDd} < sup{|<x,x >| : xe aTDd}

%
The theorem follows from the linearity of the functional <x,x > and from

x
the fact that TDd is symmetrical about the origin OX .
3

Q.E.D.
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