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A DESCENT NUMERICAL METHOD FOR OPTIMIZATION PROBLEMS
WITH NONDIFFERENTIABLE COST FUNCTIONALS*

DIMITRI P. BERTSEKAS- AYD SANJOY K. MITTER:

Abstract. In this paper we consider the numerical solution of convex optimization problems with
nondifferentiable cost functionals. We propose a new algorithm, the e,-subradient method, a large step,
double iterative algorithm which converges rapidly under very general assumptions. We discuss the
application of the algorithm in some problems of nonlinear programming and optimal control and we

show that the r,-subgradient method contains as a special case a minimax algorithm due to Pshenichnyi
[5].

I. General remarks. One of the most common approaches toward the
numerical solution of optimization problems with or without constraints is the
use of descent algorithms such as the steepest descent, conjugate gradient, quasi-
Newton methods, methods of feasible directions, etc. These decent methods have
enjoyed a great deal of popularity due to their reliability, simplicity, and good
convergence properties. In their usual form all these algorithms require the exis-
tence of the gradient of the function to be minimized both for explicit use in the
calculations and as a guarantee of their convergence to a local minimum. In many
optimization problems, however, often arising in an economics framework, the
natural cost functional of the problem turns out to be nondifferentiable. Such
problems have received considerable attention recently and are the subject of this
paper.

Early work on optimization problems with nondifferentiable cost functionals
can be traced to the early sixties with the research of Dubovitskii and Milyutin 1,
2] which apparently served as a starting point for subsequent work of Soviet
scientists [,3]-[6]. At about the same time the theory of subdifferentiability ofconvex
functions was developed by Moreau [7, [8, Rockafellar [-9], 10, and Brondsted
and Rockafellar 11]. The notion of the subdifferential of a convex function (set of
all supporting hyperplanes to the graph of the function) provided an efficient
generalization of the notion of the ordinary gradient and formed the basis for the
development of generalized necessary and sufficient conditions for optimality (see
e.g. 10]). Necessary conditions which generalize the Pontryagin maximum
principle of optimal control in very elegant form have been given by Neustadt 12],
Heins and Mitter [13, and Rockafellar 14]. The latter reference contains also
some generalizations of known results in the calculus of variations.
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Further necessary conditions for optimal control problems with nondif-
ferentiable cost functionals were given by Luenberger 15]. Some additional
results along the same lines can be found in the thesis by Ghanem 16]. Luenberger’s
results were somewhat generalized for the case of discrete-time systems using
subdifferential theory by the authors 17]. Questions related to stochastic op-
timization problems with nondifferentiable cost functionals have been examined
in 35, [36]. Such problems occur often in stochastic programming. A method for
approximating a nondifferentiable convex function by a smooth function was
also given in reference I35]. Necessary conditions for optimality for nonlinear,
nonconvex programming problems without differentiability were obtained by
Bazaraa, Goode and Shetty 18], 19] and for minimax problems by Danskin,
Dem’yanov and Pschenichyni I20], I21], [5]. Among existing nonlinear pro-
gramming algorithms, the convex cutting plane algorithm 25], 37] can be used
for the solution of convex nondifferentiable optimization problems.

In the area of descent numerical methods a minimization algorithm has been
reported by Ermol’ev 223, 23 and credited to Shor 24]. This algorithm is
applicable to unconstrained convex programming problems with nondifferen-
tiable cost. It reportedly has slow convergence properties 333 although computa-
tional examples using the algorithm are not available in the English literature. A
similar algorithm has been proposed by Polyak 33]. Decent algorithms for the
solution of minimax problems have been given by Dem’yanov [21], Pshenichnyi
[5], Birzak and Pshenichnyi I26, and Levitin 34]. It should be noted that many
optimization problems with nondifferentiable cost functionals can be converted
into minimax problems. The generalization of the steepest descent method
for the numerical solution of optimization problems with nondifferentiable cost
functions was given by Luenberger [15]; however, a proof of convergence of this
algorithm is not presently available. The problem appears to be that the algo-
rithmic map in this algorithm is not closed (using Zangwill’s terminology [25]).
The e-subgradient method, first presented in 17], circumvents this closure problem
as will be seen in what follows. Other papers related to optimization problems with
nondifferentiable cost functionals include those of Polyak 38], Minch [39],
Auslender 40], I41], and Butz I42].

In this paper we present a new descent algorithm for constrained or uncon-
strained minimization problems where the cost function is convex but not neces-
sarily differentiable. This algorithm, the e-subgradient method, is a large step,
double iterative algorithm that converges rapidly under very general assumptions.
The algorithm was first presented in [17 and is based on the notion of the -subgradient of a convex function. In 2 we describe the algorithm and we prove
its convergence. In 3 we consider some practical aspects of the algorithm and we
demonstrate by means of examples its application. Finally, in 4 we delineate
some classes of problems for which the e-subgradient method compares favorably
with existing algorithms. In addition we show that the e-subgradient method
contains as a special case a minimax algorithm due to Pshenichnyi I5].

2. The -subgradient method. In this section we describe a descent algorithm
for the minimization of a convex function subject to convex constraints. Rather
than considering explicitly the constraints, however, we shall allow the function to
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be minimized to take the value + o. Thus the problem of finding the minimum of
a function g(. over a set X is equivalent to finding the minimum of the extended
real-valued function f(x) g(x) + 6(xlX), where (. IX) is the indicator function
of X, i.e., 6(xlX) 0 for x X, 6(x[X) for x q X. Stating the problem formally:

Find inf f(x) where f:R" (- o, + o1 is a convex function which is lower
semicontinuous with infx f(x) > and f(x) < + for at least one x

With the above assumptions, the function f is a closed proper convex function
as defined in 10]. A detailed discussion of closed proper convex functions can be
found in the same reference. A basic concept for the algorithm that we shall present
is the notion of e-subgradient. This notion was introduced in [_9], 11] in connection
with investigations related to the existence and characterization of subgradients of
convex functions.

Let x be a point such that f(x) < oe and e > 0 any positive scalar. A vector
x* R" is said to be an e-subgradient of f at x if

(1) f(z) >=f(x)- e + z- x,x*) for allzR",

where (.,.) denotes the usual inner product in R". The set cf(x) of all e-sub-
gradients at x will be called the e-subdifferentiol of f at x. This set is nonempty,
closed and convex. It is evident that for 0 < e < ;2 we have

f(x) c ,f(x) c f(x).

A useful characterization of the set c3f(x) is given by the equation I10, p. 220]

(2)

where

(3)

cf(x) {x*lf*(x*) + f(x) <x,x*5 e},

f*(x*) sup{{x,x*) f(x)}

is the conjugate convex function off [10]. The support function of cf(x) is given
by the following useful equation [10, p. 220’

f(x + 2y)- f(x) + e
(4) r[y cf(x)] sup (y, x*) inf

x*eOf(x) 2 0

The set cf(x) has some interesting properties from the algorithmic point of view
as shown by the following two propositions.

PROPOSITION 1. Let x be a vector such that f(x) < o. Then

0 <= f(x)- inff(z) < e 0 e cf(x).

Proof. By the definition (1),

O ef(x) f(z) >= f(x) e for allzeR",

which is equivalent to the desired relations. Q.E.D.
PROPOSITION 2. Let x be a point such that f(x) < o and 0 q c3f(x). Let y be

any vector such that

(5) sup (y,x*) < 0.
x*eOf(x)



640 DIMITRI P. BERTSEKAS AND SANJOY K. MITTER

Then we have

(6) f(x) inf f(x + 2y)>
2_>0

Proof Assume the contrary, i.e., infz>=of(x + 2y) -f(x) + > O. Then we
have

f(x + &)- f(x) + for all 2 > 0.

This implies by using (4)

l(x + &)- f(x) +
sup (x*,y) inf" >_ 0.

x*eOf(x) 2 0

Since c.f(x) is closed this implies that 0e #f(x) which contradicts the hypo-
thesis. Q.E.D.

In the case where 0 q #f(x), a possible method for finding a vector p(x)e R"
such that SUpx,ex) (x*, p(x)) < 0 is the following. Let be the usual Euclidean
norm in R" and let if* be the unique vector of minimum norm in c?f(x). Then the
vector

(7) y(x)-

satisfies sup,x)(.(x), x*) Ilff*ll < 0.
Propositions and 2 form the basis for the algorithm that we shall present.

The former provides a termination criterion for the algorithm. The latter states
that whenever the value f(x) exceeds the optimal value by more than e, then by a
descent along a vector y satisfying (5) we can decrease the value of the cost by at
least e. Consider the following algorithm.

t3-SUBGRADIENT METHOD.

Step 1. Select a vector Xo such that f(xo) < m, a scalar Co > 0 and a scalar
a, 0<a< 1.

Step 2. Given x, and e, > 0, set e,+l ake,, where k is the smallest non-
negative integer such that 0

Step 3. Find a vector y, such that

(8) sup (y., x*) < O.
x*eOe lf(xn)

Step 4. Set x,+ Xn -t- 2,y,, where 2, > 0 is such that

f(x,,) f(x,+ 1) > re’n+ 1"

Return to Step 2.
It should be mentioned that if x, is not a minimizing point of f there always

exists a nonnegative integer k such that 0 q ca.f(x,), since by Proposition 1 we
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have

0 d cak.f(x,),--, f(x,)- inff(x)>

Also by Proposition 2 there exists a scalar 2, such that

(9) f(Xn) f(Xn -+- I[nXn) n+ 1,

thus showing that Step 4 can always be carried out. In fact, one can show that the
set of all scalars 2, satisfying (9) is an open bounded interval or an open half-line.
One way of finding a scalar 2, satisfying (9) is by means of the one-dimensional
minimization

f(x, + 2,y,)= minf(x, +
,l>0

assuming the minimum is attained. This in turn can be guaranteed whenever the
set of minimizing points of J’ is nonempty and compact, since in this case all the
level sets offare compact [.10, Cor. 8.7.1. We note also that Steps 2 and 3 can
be carried out by means of an auxiliary minimization problem as will be discussed
in detail in the next section.

We now prove the convergence of the :-subgradient method.
PROPOSITION 3. Consider the vectors x, generated by the :-subgradient method.

Then either f(x,,) minxf(x for some m >= 0 or the generated infinite sequence
{x,} satisfies

(a) lim,_ f(x,) infx f(x).
I.]; in addition, the set M {fflf(X) minf(x)} is nonempty and bounded, then"

(b) Every convergent subsequence of {x,} has its limit in M, and at least one
such subsequence exists.

(c) For every ; > 0 there exists an m >_ 0 such that x, M + eB jbr all n >= m,
whereB {xl[Ix _<_ is the unit ball in

(d)/f the minimum of f is attained at a single point

Proof. By Proposition 2 we have

f(x,)-f(x,+l) > e,+l for alln__>0

and hence,

f(xo)- ) e,i>f(x,)>inff(x) for alln=> 1.
i=1

Since ei > 0 the above inequality implies {ei} - 0. This implies that ei+ < e for
an infinite number of integers i. In view of Step 2 of the algorithm we have for
those integers: 0 < f(xi) inf,,f(x) _<_ :i. Since {f(x,)} is a decreasing sequence,
it follows that lim,_ .[’(x,) inf f(x), and (a) is proved. To prove (b) notice that
x, e Fo, where F0 {x[f(x) <__ f(x0) and since m is nonempty and bounded, Fo is
compact (see [10, Cot. 8.7.1]). Therefore the sequence {x,} has at least one con-
vergent subsequence. The fact that the limits of all convergent subsequences
belong to M follows from (a) and Cot. 27.2.1 in [10]. Part (c) follows from (a) and
Thm. 27.2 in [10]. Part (d) follows from (a) and Cot. 27.2.2 in [10]. Q.E.D.

The above proposition establishes that the e-subgradient method has attrac-
tive convergence properties. In fact, it converges to the optimal value even if an
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optimal solution does not exist. A further attractive feature of the method is that
it guarantees substantial progress at every iteration (Step 4) and that the progress
of the computation is monitored constantly via the parameter t (Step 2). The price
for this substantial progress is the computations necessary to find the direction of
descent in Steps 2 and 3. In the next section we shall describe some practical
aspects of the algorithm and demonstrate by means of examples its application.

3. Practical aspects of the -subgradient method. A cursory examination of
the t-subgradient method reveals that in fact the most difficult step in a single
iteration is finding the direction of descent y,. However, contrary to most descent
algorithms, the chosen direction of descent in the t-subgradient method can lead
to guaranteed substantial reduction of the value of the cost functional in a single
iteration. To demonstrate this fact consider the following lemma.

LEMMA. Assume that the scalars to and a in the t-subgradient method are such
that

(10) f(xo)- inf/(x) <= to, 1/2 =< a < 1.

Then for all n >= 1,

(11) f(x,) inf/(x) < ((1 a)/a)t, <= (1

Proof. We have f(xo) infx f(x) < to implying that 0 e C3o(Xo). Hence in Step
2 we have e 4: eo. This in turn implies that 0 c,/,f(xo), or equivalently,

f(xo)- inff(x) =<
On the other hand,

f(xo) f(x l) >

Combining the last two inequalities we have

f(xl)- inff(x) < ((1 a)/a)t,

proving (11) for n 1. Since 1/2 < a < 1, the last inequality implies that
f(xl) infx f(x) < tl and the same argument as above can be used to prove (11)
for n 2 and every n. Q.E.D.

It is evident now from (11) that a substantial reduction of the value of the cost
functional is possible by choosing the value of the parameter a high enough. On
the other hand, a value of the parameter a close to unity leads to an increased
number of iterations in order to find the scalar e,+ from t, in Step 2 of the algo-
rithm. Thus, in practice, one must settle on a compromise value for the parameter a
depending on how difficult it is to carry out a single check 0 e C3ak,f(x,) in Step 2.
Another possibility is to modify the algorithm so that the value of the parameter
a is adjusted during the iterations in Step 2 on the basis of information already
obtained. A number of convergent schemes are possible. We do not discuss these
schemes since they are not theoretically interesting but rather relate to the in-
telligent programming of the method.

We now turn to the important question ofhow the calculation of the direction
of descent is to be carried out once the value of the parameter a is selected. As
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mentioned in the previous section it is possible to carry out Steps 2 and 3 of the
algorithm by solving the following minimization problem"

(12) min x*]
x*eO,,..f(x.,)

Now clearly we have 0 e cak.f(x,, if and only if problem (12) has a zero optimal
value and therefore Step 2 of the algorithm can be carried out by solving problem
(12) successively for k 0, 1, .... There exists an integer k for which problem (12)
has a nonzero optimal value. Let if* be the optimal solution of problem (12) for
the first such integer k. Then a suitable direction of descent y, satisfying (8) in
Step 3 of the algorithm is given by

(13)

One efficient method for solving the minimization problem (12) is to solve
successively the unconstrained problem

(14) min ]x* 2 + pk(x,)}
X*

where Pk(.) is a (moderate) penalty function

P,(x*) > 0 for all x*
(15)

P(x*) 0 if and only if x*

It is clear that problem (14) has a zero optimal value if and only if problem (12)
has a zero optimal value. Furthermore, when k is such that problem (12) has a
nonzero value, problem (14) yields an approximate solution 2" to problem (12).
In this case one can either increase the penalty and obtain a more accurate solution
or obtain an approximate direction of descent )7, from

The approximate direction /7, is considered acceptable if it yields a point
satisfying f(x,) f(x,,+ 1) > e,+ in Step 4. If 37, is not acceptable we increase the
penalty in problem (14) and resolve the problem in order to obtain a more accurate
direction of descent.

The preceding discussion clearly demonstrates that the application of the
e-subgradient method to a specific problem requires the solution of minimization
problems of the form

(16) min IIx*
x*eOf(x)

At first sight it would therefore appear that the -subgradient method can be
applied only to the limited class of functions for which the e-subdifferential
cf(x) has a convenient characterization. We shall demonstrate in what follows in
this section that this is not the case and, in fact, the method can be applied to most
functions likely to be encountered in practice. This is due to the fact that problem
(16) can be cast into the usual nonlinear programming framework even if a con-
venient closed form characterization of the set Of(x) is not available.
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By making use of the characterization (2) of the e-subdifferential f(x) in
terms of the conjugate convex function f*, problem (16) can be written as

(17) minimize x*

subject to

f*(x*) + f(x)- (x,x*) __< .
Now there is a class of simple functions f for which the conjugate

f*(x*) sup {(x, x*) f(x)}

has a convenient closed form. Such functions include"
(a) Positively homogeneous closed convex functions, i.e., support functions of

given sets [10, 13]. Thus if

f(x) er(xiX) sup (x, x*),
x*eX

then

0 ifx*X,
f*(x*) a(x*lX)=

oo if x* q X,
where X is the closure of the convex hull of X. This class includes all norms and
seminorms in R" as well as linear functions. In addition, the conjugates of powers
greater than one of norms and seminorms in R" (including quadratic forms) are
given in [10, 15].

(b) Exponentials and logarithms of coordinates of x (see [10, 121).
(c) Indicator functions of affine sets (linear manifolds), convex cones and unit

balls with respect to a norm or a seminorm [10, 13].
(d) Indicator functions of sets with known support functions, [10, 13]. If X

is a closed convex set and

f(x) a(x x),
then

f*(x*) er(x* X) sup (x, x*>.
xeX

We note that constraint sets which are characterized by their support function are
encountered, for example, in some optimal control problems as will be discussed
in some detail in 4.

Now from this class of simple functions one can build more complicated func-
tions by means of various operations such as summation, affine transformation,
maximization, etc. The conjugates of such functions are characterized by the
following well-known relations:

(18) (fl+f2+... +f,)*(x*)= min {f.*,(x.*,) (V10, Thm. 16.4),
x7 x*

i=

where f, 1,..., m, are closed proper convex functions with a common point
in the relative interior of their effective domain, and the function fl + + f,, is
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defined by

(fl + f2 + + f)Ix) L(x) + f:(x) + + f(x),

(1.9) (f. A)*(x*) min f*(y*),
A’y* x*

wheref: R" - R is a closed proper convex function, A is a linear transformation
from R" to Rm, A* denotes its adjoint, the function f. A is the composition of f
and A, and, in addition, the range of A contains a point in the relative interior of
the effective domain of f.

(20) (max {fl,’’" ,fm})*(X*) min 2,f(x.*,) ([10, Thm. 16.5;),
x*= ,t;x i=

=>

where ,1, i= 1, ..., m, are convex real-alued functions and the function
max L, J} is defined by

(max {L, ,j})(x) max {L(x)," ,L(x)},

(21) g*(x*) f*(x*) + {c, x*),

where g(x) f(x c), f R" --, (-o, + is a closed proper convex function
and c R" is a given vector.

The equations (18)-(21) can be used in order to put the minimization problem
(17) in the standard nonlinear programming framework for a wide variety of
functions. As an illustration, consider the case where the function f to be minimized
by means of the c-subgradient method has the form

f(x) fl(x) + f(x) + + f,.(x).

By using (18) the optimization problem (17) can be written as

minimize x*
subject to

min f (x.*, + f(x) (x*, x) <= c.
x.*, x*

It can be easily seen that the above problem is equivalent to

subject to

minimize

Y r*(x*i, + f(x) (x/ x) < e,
i=1 i=1

This latter problem is in the standard nonlinear programming framework when-
ever the functions f belong to the class of simple functions mentioned earlier. As
another example consider the case where the function f has the form

f(x) max {f(Ax),-..
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where A1,..., A,, are linear transformations and f,... ,fro are real-valued
convex functions. By using (19), (20), the optimization problem (17) for this function
can be written as

subject to

min
x*=

2i>0

or equivalently,

subject to

minimize Ix*

min f?(y?)} + f(x) (x*, x) <
A y* x*

minimize Z /iAY
i=l

i=1 i=1

/i O, 2 /i-- 1.
i=1

Similarly, one can write the optimization problem (17) in standard form whenever
the function to be minimized involves simultaneously sums, compositions with
linear transformations and maxima of the basic simple functions referred to
earlier. Thus the e-subgradient method can be applied for the minimization of a
wide class of functions. This class of functions can be further enlarged by making
use of the following technique to eliminate some of the constraints of the mini-
mization problem.

Consider the convex programming problem

(22) minimize fo(x)

subject to

xeX, fi(x)<0= i= 1,...,m,

where fo,fl, "’", frn are real-valued convex functions and X is a closed convex
set. Let ff be an optimal solution of this problem and assume that there exists a
point 2eX such that f(2)< 0, i= 1, .-., m. Then there exist nonnegative
Lagrange multipliers, 21, "’, 2,,, corresponding to ff [25], [37] such that ff
minimizes

fo(X) "- Z ifi(X)
i=1

subject to x e X. Furthermore, it is known [15] that if k is a scalar such that

(23) k > max {/1, "’",
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then ff is an optimal solution to the problem

(24) minimize fo(x) + k max [0, f(x)]
i=1

subject to x e X.
Conversely, every optimal solution of problem (24) is an optimal solution of

problem (22) so that the two problems are equivalent and either one of the two
can be solved in place of the other. Concerning the selection of the scalar k, it can
be easily proved that if is a strict lower bound for the optimal value of problem
(22), then

k= max{f(Yc)-t f(2)- Iz}_f() _fm(C)

satisfies (23), where is a vector such that 2 X and f/() < O, 1, 2, m.
We shall close this section by showing explicitly the form of the auxiliary

minimization problem (17) for a specific problem.
Example. Consider the problem

minimize{ maX.>o (x,y)+ max [0,1/2x’Qx+ (c,x)]}
subject to x e X {x xi >= O, 1,... m}.

In the above problem, x, y are vectors in R", denotes the Euclidean norm
in R", Q is a positive definite matrix and c is a given vector. By defining

fl(x) max (x, y),
yi>--O

fz(x) (1/2)x’Qx + c, x),

0 ifxeX,
L(x) (xlX)=

o if xC X,

the problem is written

minimize f(x) f(x) + max [0, f2(x)] + f3(x).

The auxiliary optimization problem to be solved in Steps 2 and 3 of the -sub-
gradient method is

minimize Ix*

subject to f*(x*) + f(x) (x*, x) <= a%. By using (18) and (20) and the fact that
the conjugate of the zero function is the function

J 0 if x, 0,
(0)*(x*)

o ifx*

the above problem is equivalent to

(25) minimize x + ).x + x 2
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subject to

f(x) + /f2(x2) -1
I-- f3(x3)@ f(X)- (X "-1

I- 2X -J" X,X> < (-lkg,

We have

0<2<1.

0 ifx >0, x < 1,
f ((x()

c otherwise,

-(X2 c)’Q l(x c),j’(x) ._.1 *

’, 0 ifx* < 0
j3(X3)

m otherwise,

where the inequalities xT >= 0, x =< 0 are interpreted to be componentwise. Hence
problem (25) takes the form

minimize xT + 2x + x 2

subject to

(2/2)(x c)’Q-’(x c) + f(x) (x’ + 2x’. + x’, x5 <

0=<_x’, [Ix -<_, x_<_0, 0_<_2_<_,

a nonlinear program with linear and quadratic constraints. If (ff, ff, , ,) is an
optimal solution of the above problem then if* ]’ + ,ff + ff is an optimal
solution of the auxiliary optimization problem of Steps 2 and 3 of the e-subgradient
method.

4. Applications. In this section we attempt to delineate some classes of
problems for which the :-subgradient method compares favorably with existing
methods. It is well known that many optimization problems with nondifferentiable
cost functionals can be converted into nonlinear programming problems where all
functions involved are differentiable. For example consider the problem

(26) minimize max f,(x), f,,(x)

where the functions. are convex and differentiable. This problem is equivalent to
the problem

(27) minimize y

subject to
.(x) < y, i= 1,... m

where y is a scalar auxiliary variable. This latter problem can be solved by any of
the existing algorithms for differentiable functions such as, for instance, the e-

perturbation feasible direction method [25]. Also problem (26) can be solved by
using Dem’yanov’s minimax algorithm [21] which is closely related to the feasible
direction method mentioned above. It appears that either one ofthe two algorithms
is preferable to the ;-subgradient method for the solution of problem (26). This is
due to the considerable computation necessary in order to find the direction of
descent in the c-subgradient method. More generally, one can say that if the op-
timization problem can be converted to a nonlinear program where all functions
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involved are differentiable, standard methods should, in most cases, be preferable
over the e-subgradient method.

The e-subgradient method, however, should be considered advantageous when
applied to problems which cannot be converted to nonlinear programming
problems involving differentiable functions since it has the advantage of fast
convergence. One class of such problems is characterized by the presence of terms
of the form maxyy (x, y) either in the cost function or the constraints. The first
known algorithm involving functions of the form maxyy (x, y) is the one of
Pshenichnyi [5] who considered the problem

(28) minimize max (x, y)
yeY

subject to

where Y is a convex compact set and A is a given hyperplane. When the e-sub-
gradient method is applied to problem (26), the direction of descent is determined
by solving the auxiliary optimization problem

subject to

minimize x + x
x’eY, max(x,y)- (x,x) <__ e,

xj e A -,
where A +/- is the one-dimensional subspace orthogonal to the hyperplane A. This is
exactly the same optimization problem by means of which the direction of descent
is determined in Pshenichnyi’s method and thus the e-subgradient method and
Pshenichnyi’s method are identical when applied to problem (28). The e-sub-
gradient method, however, can be applied to much more general problems
involving terms of the form maxy x, y). One such example was given in the
previous section. For such problems the e-subgradient method compares favorably
with, for example, Dem’yanov’s minimax algorithm which involves comparable
computations for finding the direction of descent but does not converge as fast as
the e-subgradient method.

The e-subgradient method can also be used effectively for problems where some
of the constraint sets are not given explicitly but instead can be specified from their
support function. For such problems methods of feasible directions, for example,
are not applicable. As an example, consider the following optimal control problem
where some of the constraint sets are characterized as reachable sets of a dif-
ferential system.

Consider the linear system

(29) (t) A(t)x(t) + B(t)u(t)

over the time interval [to, T] which is controllable from to to T and where A(t) is a
Lebesgue integrable n x n matrix, and B(t) is a continuous n x m matrix function
on [to, T], The m-vector-valued function u(t) is assumed to be measurable in
[to, T] and such that

(30) u(t) e U almost everywhere in [to, T],
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where U is a nonempty compact subset of R". Assume further that the initial con-
dition is constrained to lie in X0, a convex compact subset of

(31) X(to) Xo.

(32)

Consider the problem of minimizing

Jx(to), u] Fx(T)3,

where F is a closed proper convex function in R" subject to the constraints (29)-(31).
Then under our assumptions, for every pair (X(to), u) satisfying (30) and (31),

there exists a unique absolutely continuous solution of (29). The set X(T) of
reachable states x(T) at time T corresponding to the constraints (30), (31) is con-
vex and compact by a theorem of Neustadt 30, and its support function is given
by ([31], [32])

T

aEx*lX(T)] aEO’(to, T)x*lXo] + aEB’(t)O’(t, T)x*l U] dt,

where (I)(t, r) is the unique absolutely continuous transition matrix corresponding
to the matrix A(t).

The problem can now be recast as one of minimizing the extended real-valued
convex function

fix(T)] FIx(T)] + 6[x(T)IX(T)]

and the e-subgradient method can be used for its solution. The direction of descent
is determined by solving the optimization problem

subject to

minimize x]’ + x

F*(x) + axlX(T)] + Fx(T)] (x + x,x(T)> < .
For the problem that we consider there is some difficulty associated with the

one-dimensional line search in Step 4 of the e-subgradient method since it is not
easy to check feasibility of any given terminal state. This difficulty can be circum-
vented by finding a point along the direction of descent such that the value of the
function F has decreased by e or a little less. It can be easily seen that such a point
is feasible and that the algorithm will still be convergent.

5. Conclusions. The :-subgradient method is a descent algorithm which can
solve efficiently some convex minimization problems with nondifferentiable cost
functionals which cannot be solved by standard nonlinear programming methods.
It converges fast under very general assumptions but requires the solution of an
auxiliary optimization problem in order to determine the direction of descent at
each iteration. Presently, we do not have any computational experience with the
method. It is hoped that such computational experience will be gained in the near
future.
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