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PAPER II 

SUCCESSIVE APPROXIMATION METHODS FOR THE 
SOLUTION OF OPTIMAL CONTROL PROBLEMS 

S. K. MIX 

1. INTRODUCTION 

IN THIS paper we present some successive approximation methods for the solution of a 
general class of optimal control problems. The class of problems considered is known as 
the Bolxa Problem in the Calculus of Variations [l]. The algorithms considered are exten- 
sions of the gradient methods due to KELLEY [2] and BRYSON [3] and similar to the methods 
proposed by MIRIAM [4, s]. MERRIAM approaches the problem from the Hamilton- 
Jacobi viewpoint and restricts himself to the simplified Bolxa problem. The algorithm 
presented is formally equivalent to Newton’s Method in Function Space [6, 73 and indeed 
in some problems it would be better to use Newton’s Method. 

The development in this paper is formal and indicates how we solve these problems 
on a digital computer. However, under the assumptions we have made a rigorous treatment 
of these successive approximation methods can be given. We shall do this elsewhere. 

The paper may be divided into 8 sections. In Section 3 we formulate the problem and 
state the assumptions we have made. In Section 4 we state the first-order necessary 
conditions of optimality. These are the Euler-Lagrange equations and the transversality 
condition. 

Section 5 is devoted to Second Variation Successive Approximation Methods and 
certain modifications to it. 

In Section 6 we show how the second variation method is formally equivalent to 
Newton’s Method and also indicate how the linear two point boundary value problem 
arising in Newton’s Method can be solved in essentially the same way as in the Second 
Variation Method. 

In Section 7 we point out certain advantages and disadvantages of the Second Variation 
Method. 

[l] G. A. BLISS: L.ectures on fke Calculus of Variations. University of Chicago Press, Chicago (1946). 
[21 H. J. KELLEY: Method of Gradients, in: Optimisarion Techniques, Chap. 6. ed_ by G. w. 

Academic Pmss, New York (1962). 
[3] A. E. BRYSON and W. F. Dm: A steepest ascent method for solvhg optimum prow 

problems. J. Appt. Meek. 241-257 (1962). 
[4] C. W. m, III: 

New York (1964). 
Optimisation Theory and the Design of Feedback Control Systems. McGraw Hill, 

[s] C. W. MEruubf, III: An algorithm for the iterative solution of a class of two point boundary value 
problems. S.Z.LiLK J. Corm. A2 l-10 (1964). 

[q R. H. MOORB: Newton’s Method and Variations, in: Nonhear Zntegral E&u&~. ed. by P. M. 
ANsarnNE University of Wisconsin Press (1964). 

m M. L. Sm: On methods for obtaining solutions of i&d end point problems in the calculxu of varia- 
tions. J. Res. Nat. Bur. Stand. 50, May (1953). 
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In Section 8 we indicate that algorithms and problems presented in this paper may 
be considered to be special cases of  a more general class of  problem. 

Some numerical work using these methods has been done. Detailed results will be 
presented elsewhere. 

2. NOTATION 

Throughout we shall use vector matrix notation. All vectors are column vectors. 
Components of a vector will be denoted by subscripts. Superscript T denotes transposed 
matrix. The symbol < . , .  > en denotes inner-product in Euclidean n-space. Usually 
we shall only write < . , .  > .  For  a scalar-valued function F(Xl, x2 . . . . .  x~). 

f F1T O x' t 
Fx(~) = 

are evaluated at x--~.  

For  a vector valued function f ( x l  . . . .  xn), where jr is an m-vector. 

f o:, . . . . .  0:_, 
~ ~X1 OXn 

L(~)-- l e f .  0f. 
I, axl ax. 

and the partial derivatives are again evaluated at x = ~ .  
Similarly for the scalar-valued function F 

6~2F t~ZF 

Ox~ ax~ax2 
Fxx(~)  = 

a2F 

~xnt~x l 

where the partial derivatives 

an m x n matr ix  

Ox x Ox,, 

oz ! 
ax~ 

D o t  indicates  differentiat ion.  

3. FORMULATION OF THE PROBLEM 

We consider the following Bolza problem. Find the optimal control function u and 
the corresponding optimal trajectory x so that the performance functional 

f" P[x(to), u] = F[x(t$), t$] + L(x(t), u(t), t)dt (1) to 
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is minimised, subject to the constraints 

dx 
dt = f i x ( t ) ,  u(t), t'] ; X(to) = c (2) 

G[x(t $), t f] =0 (3) 

Here x(t)eE n, u(t)eE m, f i s  a function mapping E n+m+ 1 t o e  n and G is a function mapping 
E n+t to E r, p<_n. The time t f  may be explicitly or implicitly specified. 

Assumptions. i. All functions are assumed to have continuous second derivatives. 
ii. The p-terminal constraints are assumed to be independent. 

iii. The system is assumed to be locally completely controllable uni- 
formly in (to, ty] along any trajectory £ corresponding to an 
admissible* control fi i.e. for the linearized system 

we have 

fYc =f~(t)fx + f~(t)fu; fiX(to) =0 

f tto~(t , x)f~(,)fr~(x)~PT(t, z)d*>0 (4) 

for all t~(to, t.r] and where ¢(t, ~) is the solution of 

d~ t -~-~(, to)ff ,(t)@(t,  to); eP(to, to)=l  (5) 

The local controllability assumption ensures that the solution of the accessory minimization 
problem is normal (in the sense of Classical Calculus of Variations). 

4. FIRST ORDER NECESSARY CONDITIONS 

For the problem formulated in Section 3 the Euler-Lagrange equations and Trans- 
versality conditions may be derived in the usual way. 

Let u ° and x ° be the optimal control and optimal trajectory and let ~°(t) be an n-vector 
of Lagrange multiplier functions and/~o be a p-vector of  constants which are the multipliers 
corresponding to the terminal constraints. 

Define 

H ° =H[x°(t), u°(t), ,~°(t), t]=L[x°(t), u°(t), t]+ <:~q(t),f[x°(t), u°(/), t]> (6) 

~o =$[xO( t -r), ts ) =F[xO( t -r), t :] + <go, a[xO( t -r), t ~]> (7) 

Then u ° and x ° satisfy 

Euler-Lagrange Equations 

Yc(t)ffif[x(t), u(t), t ] f  H~ (t); X(to)ffic 

A(t) = - H x (t); ~(tf) ffi ~:c (t f )  

H.(O=O 
~[x(t:), t:]=0 

* It is atmumed that u belongs to a bounded OlaCn set ~ c E .  

(s) 

(9) 

(lO) 

(11) 
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and Transversality Condition 
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o(t:)=n(t:)+ ¢, (t:)--o 02) 

5. SECOND VARIATION SUCCESSIVE APPROXIMATION METHOD 

We shall consider three different cases of the problem formulated in Section 3. 
Case (i). We assume that terminal constraints are absent and the terminal time t s is 

fixed. This is the simplified Bolza problem of the Calculus of Variations. 
Let us assume that we have chosen a nominal control function u and obtained the 

corresponding nominal trajectory x by integrating the system dynamic equations in the 
forward direction. We can now integrate the Euler-Lagrange equation 4 = - / / ~ ;  with 
the boundary condition 2(t/) =/rx(t:) where the bar indicates that H and F are evaluated 
at the nominal control and nominal trajectory. The performance functional may now 
be re-written as 

P[x(to), u] = F(tf) + < 1(t), ~ t )  > ]dt (13) 

Expanding the performance functional P in a Taylor's Series and retaining terms up to 
the second order we obtain the following expressions for the first and second variations 
of P 

[<//.(t), 6u(t)>]dt (14) 

f'r: [ < Fi..( t)tu( t), ½62P = ½ au(t) > + < Flx~(t)6x(t), 6x(t) > 

+ 2 <Fl,=(t)6x(t), 6u(O> ]dt +½<Px~(t:)6x(t;), 6x(tf)> (15) 

In obtaining the above expressions we have performed the usual integration by pans. 
At this point we have to introduce the following assumption: The matrix of partial 

derivatives H. .  is positive definite; F,= and Hx,-H~rt~IH.= are positive semi-definite. 
This implies that there are no points conjugate to t ffi t s in the interval [to, tf). 

The improvement in control ~u is obtained by minimising 

6P+ ½62P = ½ < arx~,(t:)tx(t,), 6x(t,) > + f ' i [  <H.(t), 6u(t)>]dt 

+½ <R..(O~u(O, ~u(t)> + <R..(O6x(t), ~x(O> + <H.(t)~x(O. ,su(O> )dt (10 
t 

where 6u and 6x are related by the linearized system, 

6~(t) =L(t)6x(O +L(O6~t);  ,~X(to) --o (17) 

This is a new variational problem. In view of the assumption we have just made this 
problem has a weak relative minimum. The Euler-Lagrange Equations of this auxiliary 
minimization problem are 

6Yfft) --f~(t)tx(t) + f,(t)tu(t); 6X(to) --0 (18) 
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A)t(t) = - I:lzx(t~x(t) - Fl~(t)tSu(t) - ]T~(t)A).(t); A~(tf) ffi Fxx(ty) 

~ , ( t )  = - ( r t . . ( t ) ) -  ' [ n . ( o  + lq . . (o~x( t )  + f Y ( o ~ o 3  

is the multiplier for the auxiliary minimization problem. 
Substituting (20) into (19) and (18), we obtain 

6:~(t) ---A(t)tSx(t) + B(t)A3.(t) + o(t); 

A,~(t) = - C(t)6x(t)- Ar(t)AR(t)- w(t); 

where 

Before proceeding further it 
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09) 

(20) 

6x(t.) =0 (21) 

~ ( t / )  = F =  (22) 

,4ffiL-;dt;.qq.~ 7 
n = - f ~ ; . ' F .  
cfH=-~q~t;.~ rt= 
v = -f~.-_.l  lq, 
w= - / / , , :7~,1/ / ,  

(23) 

is necessary to show that this choice of  6u reduces the value 
of the performance functional (assuming that the linearization of  the system dynamics 
and the Taylor's series expansion are valid) i.e. we have to show 6P+½62P is negative. 
Using (18), (19) and (20) and substituting in (16), it may be shown that the value of  
6P+½52P corresponding to the choice of  hu is giveh by 

6p + ½62p ffi _ ½ I "  { < FI,(t) + f~(t)A~(t), ~/~l(t)[// ,(t)  +fr(t)A2(t)] > }dt 
d to 

f" - <C(t)~x(t), 6x(t)>at (24) 
to 

which is negative. 

In general, the linearization and second order expansion of the performance functional 
will not be valid and it is nece: ~sary to introduce a parameter 8, 0 < 8 ~< 1 in the following 
way to reduce the step size. 

~u = - 8 ( / / , , (  ~)-l(Fl,(t)+Lr(Oa~(t))-Fl£1Fl,~(O~x(O (25) 

With this choice of  6u, 

6P +½6'P-- -½~2 f'i [ <Fl.(t)+ fr.(t)A;,(t ), Fl~,'(tXFl.(t)+ f[(t)AR(t)) > ]dt 

- < C(t)6x(t), ~x(t) ~, dr (26) 
to 

which is negative for 0 < 8 ~  1. 

The linear two-point boundary value problem (21)--(22) may be solved in various ways. 

The most advantageous way appears to be to introduce the linear transformation 

A/l(t) ffi l(t) + K(t)6x(t) (27) 
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where l(t) is an n-vector and K(t) is an n x n symmetric matrix. Differentiating (27) and 
equating with the right hand side of (22) we get 

l( t) + [K( t)B( t) + A r ( t)]l( t) + K( t)v( t) + w( t) 

+ [/~(t) + K(t)B(t)K(t) + K(t)A(t) + A r(t)K(t) + C(t)]6x(t) = 0 (28) 

Since (28) is true for arbitrary 6x we have 

l(t) + [K(t)B(t) + A r(t)]l(t) + K(t)v(t) + w(t) = 0; l(t l) =0 (29) 

K(t) + K(t)B(t)K(t) ÷ K(t)A(t) + Ar(t)K(t) + C(t) =0; K(tf) =Fxx (30) 

Equation (30) is a matrix Riccati Equation and its properties have been extensively studied 
in the literature. In particular the equation is stable when integrated in the backwards 
direction. The solution of equation (30) is defined everywhere in [to, t f] in view of our 
conjugate point assumption [8]. 

The computing algorithm for solving the Lagrange problem may now be summarised 
as follows: 

i. Guess the control function u and integrate the system equation ~(t)~fIx(t), u(t), t] 
forwards with X(to)=e. 
Store u and the corresponding trajectory x. 

ii. Integrate the Euler-Lagrange equation ~ = - H x  backwards with 2(tT)ffiF ~. 
Calculate H., H , ,  H~, and H=, and also evaluate ( H ~ - 1  along the trajectory. Simultane- 
ously integrate the differential equations for l(t) and K(t) with the proper boundary 
conditions. Store r(t)=H~l(t)[H~(t)+ff~(t)l(t)] and the feedback gain matrix 

M(t)--- H~t(t)[Hux(t) +jr(t)K(t)J 
where 0<e~< 1. 

iii. Repeat (i) using 

u,~w(t) = uo~(t)- er( t )-  M(t)[x,,,w(t)- Xotd(t)] 
iv. Repeat (ii). 

v. Stop computation when HH.H ~< 5, where e is a suitably chosen small number and 
II II is a suitable norm. 

Note: Some adjustment scheme for e must be included in the computer program. 

For many problems the assumption on H ,  and the non-existence of conjugate points 
may not be satisfied. In such cases a better estimate of the eontrol function may be obtained 
by using a gradient method. Alternatively the following successive approximation scheme 
may be used till the assumption on H .  is satisfied. For this development it is assumed 

Fxx is positive semi-definite 

L., is positive definite 
T -1  • L ~ - L ~ L ,  L.~ is positive semi-definite 

We again choose a nominal control function u and integrate the system equations to 
obtain the corresponding nominal trajectory x. The performance functional is now 
expanded in Taylor's series and terms up to the second order are retained. 

[8] S. K. lVlrrTea: On second order necessary conditions and sutfu~ent conditions for a class of optimal 
control problems. To be published. 



We obtain 

Su__ece~___ive approximation methods for the solution of optimal control problems 141 

~p = < p~(tr) , ~x(tr) > + 6u(t)> + </:~(t), ~x(t) >)dr 

½6Zp=½<Fx~(tf)6x(tf), 6x(tf)> +½f (<E~(t)6u(t), ~u(t)> + < ~xx(t)6x(t), ~x(t)> 
,][to 

+ 2 </:,~(0~x(t), ~u(0 >)dr 

The control improvement ~u is obtained by minimising ~p+½~2p subject to the constraint 

~ =jr~(0~x(t) + f.(t)~u(t); ~X(to) =o 

In view of our assumptions on F and L the strengthened Legendre condition and the 
conjugate point condition are automatically satisfied for this auxiliary minimization 
problem. 

The Euler-Langrange equations of this problem are 

¢~Y¢(t) =],t(t)6x(t) +f,(t)6u(t); ~X(to) = 0 (31) 

A~(t)_~ _ F~x(t)_£xx(t)6x(t)_ £~(t)6u(t)-frx(t)AA(t);A~(tf)~. I~:(t:)+ Fxx(t~x(tf) (32) 

~u(0 = - r-~(tXl:,(t) + l:,~(06x(0 +Y,r(0~(0 (33) 

Substituting (33) into (31) and (32) we get 

~(t) = A(t)~x(t) + B(t)A~.(t) + v(t) (34) 

Ave(t) = - C(t)~x(t) - .4 r(t)A~.(t)- w(t) (35) 

where 

A(t) =fx(t)-f,(0E£1(t)E,~(t) 

8(0 = - l , ( 0  r-£1(0]',~(t) 

c(o=E, , . , ( t ) -  L~,(t)rC, I ( O F ~ O  

v(t) = -f,(t)r=.~(t)E,(t) 

w(0--Zx(t)-  E~,(t)r.£1(t)r.,(t) 

This linear two point boundary value problem is solved in exactly the same Way as for the 
second variation case by assuming AA(t)=l(t)+K(t)6x(t). The differential equations for 
l(t) and K(t) are 

](t)+[K(t)B(t)+ Ar(t)]l(t)+ K(t)v(t)+w(t)--O; l(t f) ffiFz(Q) (36) 

l~(t) + K(t)B(t)K(t) + K(t)A(t) + A r(t)K(t) + C ~- 0; K(t$) ffi F~(t$) (37) 

Note however that the boundary condition of the I equation is different from that in the 
second variation case and there is no ~ equation to integrate. 
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It is easily shown that this choice of &t gives a value of 

aP +½6zPf -½ f [S [ E~,t(t)[ E,(t)+ f,(t)A2(t)] > 

+ <(E,,~(t)-E~(t)E~l(t)E,,,(t))fx(t), 6x(t)>]dt 

which is negative in view of the assumption on L. To reduce step size the parameter 
e, 0<e~< 1 is introduced as follows 

6u(t) = -E~ ,  I(O(eE.(O +E~,(O6x(t) + eyr(t)A2(t)) 

Case (ii). We assume that terminal constraints are present but the final time t :  is 
given explicitly. 

We define the ~k function as in Section 4 

~k[x(t:), ty]=F(x(t:), t:)+ <v, G(x(tf), t : ) >  

A nominal control ~ is chosen and the corresponding trajectory ~ is obtained by integrating 
the system equations forward. The multiplier v is estimated and the Euler-Lagrange 
equation ~=- /7~ ,  is integrated backwards with boundary condition 2(tf)=i~x(tf) 6u 
is now chosen so that 

eSP + ½6ZP = ½ < ~:x(t:)bx(tf), fix(t:) > + ['s < irl,(t), 6u(t) > dt 
J to 

t! 

+ ½[ (< N~(t)~u(t), 6u(t) > + < Rx~(t)~x(t), ~x(O > + 2 < 17,~(06x(0, 6u(O >)d t  
d to 

is minimized, subject to the constraints, 

(35) 

c~Yc(t) =fRt)6x(t) +f,(t)6u(t); 6X(to) = 0 (39) 

G(t :) + Gx(t f)&x(Q) =0 (40) 

The solution to this problem is similar to that of Case (i) the only difference being in the 
boundary condition of A2. The relevant equations are 

tS:c(t)=A(t)cSx(t)+B(t)A2(t)+o(t); Jx(t0) =0  (41) 

AJ.(t) = - C(t)6x(t)- Ar(t)AA(t) - w(t); A2(tf) = ~xx(tf)~x(tr) + G~(tf)Av (42) 

where Av is a p-vector of constants, being the multiplier for the terminal constraints, while 
the definitions of A, B etc. are the same as in equation (23). 

The linear two-point boundary value problem we have to solve is given by equations 
(40), (41) and (42). The solution is again analogous to that of Case (i). 

Introduce the linear transformations 

A2(t) = l(t) + K(t)&x(t) + N(t)Av 

&G = re(t) + Nr(t)Jx( t) + P(t)Av 

where I is an n-vector, m a p-vector, K a n x n matrix, N a n ×p matrix, P a p ×p matrix. 
Here 6G = G,,(t$)6x(tl) is the amount by which the terminal conditions have been missed. 
I f  this quantity is large we may introduce a parameter 82 where 0<e2~< 1 to specify the 
desired change in terminal condition i.e. 6G = - e :  ~. 
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In exactly the same way as for Case (i) we deduce, by equating the coefficients of ~x 
and Av to zero the following differential equations 

l(t) + [K(t)B(t) + Ar(t)]l(t) + K(t)o(t) + w(t) = O; l(t:) = O (45) 

g(t) + K(t)B(t)K(t) + K(t)A(t) + Ar(t)K(t) + C(t) = 0; K(ts) = ~ ( t f )  (46) 

l~l(t)+(Ar(t)+ K(t)B(t)N(t)=O; N(ty)=~f~(t$) (47) 

rh(t) + Nr(t)[B(t)l(t)+o(t)]=O; m(t f)=O (48) 

P(t) + Nr(t)B(t)N(t)=O; P(t $)=O (49) 

To proceed with the improvement process it is necessary to determine Av. Having inte- 
grated equations (45")-(49) backwards, we may determine Av from 

Av = P - 1 (to)[/5G_ m(to) - Nr(to)~X(to)] (50) 

The conjugate point assumption ensures that P -  1(to) exists. This procedure for determining 
Av is somewhat similar to that of BRFAKWI~L, SPlrcmt and BRYsON [9]. They, however, 
solve the linear two-point boundary value problem in a different way. It is thought that 
our method has advantages from the point of view of numerical stability. 

Substituting (43) and (50) into the expression for 6u, we obtain 

6u -- - H~l(t)['81/~,(t) + 81fr(t)l(t) +fT(t)N(t)P- ' ( t o ) [ tG-  am(to) - Nr(to)tX(to)] 

- ll~.l(t)[I:l.=(t) + 8fr.(t)K(t)]6x(t) (51) 

We have introduced 8~, 82, 0<81, 824 1 to reduce step size. It may be shown that by 
suitable choice of 81 and 52, ~p+½~2p is negative. 

The computing algorithm is almost the same as for Case (i). We however need to guess 
the initial value of v and store N(t) for all values of t. 

Case (iii). The terminal time t s is not given explicitly. In this case the linear two- 
point boundary value is more complicated. 

The control function u and the terminal time tf  is guessed and the nominal trajectory 
x is obtained by integrating the system equations. A value of v is guessed and the Euler- 
Lagrange equation A = - H  x is integrated backwards w~th the boundary condition, 
2(ty)ffi~;x(t$). The improvement &u is calculated by minimising 5 p + ~ 2 p  subject to 
certain constraints. 

Let us first calculate &p+½&2p. For the end-point we now have to consider dependent 
and independent variations, namely 

Ax( t f ) =~x( t l )  + ~( t $)dt t. 

In this case, 

[" 
6 / ' =  (1~(tf) + i~,(ts))dt f + </7 . (0 ,  ~u(0 > dt (52) 

d to 

[9] J. V. B N w x ~ ,  J. L. SpL~_.~ and A. E. I ~ N :  Opt;m;~ion and control of n o n  systems 
~ n g  the second variation. S.I.A.~..1". Contr. A I, (1963). 
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+~,d~t:+2<~,, ~(t:)d~:>)+ </L(t:), au(~:)dt:> 

+ ½ d[~/(0- < ;~(0, ~(t) > ], =,,~t~ 

+½[//(t;)- <~(tf), ~ts.)>]dat: 

+½f'i[<u.(t)au(0, ¢~u(t)>+<Rxx(t)6X(t), 'x(t)> 

+ 2 < ~.,(t)~x(t), 6u(t)>]dt (53) 

a~x(t:)=~t:)d ~tf + ~(t:)dt~,+ 2~%)dt: (54) 

The auxiliary minimization problem to be solved is Minimise ~P+~.6aP, subject to the 
constraints 

6:c(t) =f=(t)6x(t) + f.(t)6u(t); SX(to) = 0 (55) 

G(t ~.) + G.(t :)~x( t f) + Ox(t f):c( t f)dt f + Ot(t f)dt I =0 (56) 

If  we use ~ ( t l ) = ~ ( t l )  and negl~t  terms in d2tf and solve this variational problem, we 
obtain the following Euler-Lagrange Equations 

where 

6:~(t)=A(t)6x(t)+ B(t)AR(t)+v(t); aX(to)=O (57) 

A,~( O = -  c(  Oax( t) - A"(t)ea(O- w( t) (58) 

~(tf) = ~..~(t.r)6x(t:) + ~(t/)Av + (~,=(tI)~tf) + ~,(tf) +J~(tf)~.(tI))dt: (59) 

6G = ~x(t :)6x(t :) + ( G~(t /):c(t f) + OZ(t /))dt : (60) 

6~2 = < ~(t:)~(tf) + ~(t:) +f~(t/)~(t:), 6x(t:) > 

+ <~x(t:)~(t:)+G,(t/), Av> +s(ts)dt: (61) 

s(tf)=[<~xw:c, :~> + < ~x, fx$+fufi + f t >  + <Lx, $ >  - <L. ,  fi> 
+ L f + ~ . + 2 < ~ 2 .  ~>]t=, /  

The linear two-point boundary value problem 5/-60 is solved in exactly the same way as 
previously by introducing 

~(O = l(t) + K(t)6x(O + N(t)Av +p(t)dt: 

6G = m(t) + NT(t)6x(t) + P(t)Av + q(t)dt: 

6~---n(t) + <p(t), ~x(t)> + <q(t), Av> +s(t)dt: 

where 

6G = - ~2 •(tf) 

,s~ = - ~3(Fl(t f) + ~;,(t :)) 

0<82~< 1 

0<e3~< 1 
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The differential equations for l, K, N, m and P are the same as that given by equations 
(45)-(49). 

The equation for p, q, n, and s are obtained in the same way as in the previous two 
cases. They are: 

~t) 4. [AT(t)-6 K(t)B(t)]p(t) ----0 

~(t) + N~(t)B(t)p(O = o 

~(t)+ <p(t), B(t)l(t)4.v(t)> =0 

~(t)+ <p(t), B(t)p(t)> =0 

(62) 

(63) 

(64) 

(65) 

Av and dt: are determined by integrating equations (45)-(49) and equations (62)-(68) 
backwards and solving 

3G =re(to) + NT(to~X(to) + P(to)AV +q(to)dt s (69) 

6~=n(to)+ <p(to), 6X(to)> + <q(to), Av> +S(to)dt~r (70) 

6. RELATIONSHIPS WITH NEWTON'S METHOD 

For simplicity we consider the case when there are no terminal constraints present. 
The method and conclusions are valid for the general Bolza problem. Solving the varia- 
tional problem by Newton's Method means solving the Euler-Lagrange Equations (8), 
(9) and (10). The method consists in guessing a nominal control function, a nominal 
trajectory and a nominal multiplier function and then linearlzing equations (8), (9) and 
(10) round the guessed functions. A linear two-point boundary value problem is then 
solved which yields corrections to the guessed functions. The linear two-point boundary 
value problem to be solved is 

Yc + 6:c -~f(t) + f~(t)cSx(t) + f~(t)6u(t); 6X(to) -~0 

f~ 4- 6~. = - Fix(t)- H,~,(t)~Sx(t)- Fl~,(t)6u(t)- Flxa(t)~5~(t); 6~(t/).=O 

R,(t) + F/,(t)~Su(t) + F/,~,(t)~x(t) + FI, ~( t~( t )  =0 

But for the fact that the system equations and the Euler-Lagrange equations are not 
satisfied by the initially guessed functions, these equations are precisely the same as equations 
(18), (19) and (20). Thus the methods we have used in solving equations (18), (19) and (20) 
may be used in solving the linear two-point boundary value problem in Newton's Method. 
As we have indicated previously from the viewpoint of numerical stability it is advantageous 
to solve the two-point boundary value problem in the way we have indicated. In problems 
where there is a constraint of the form x( t l )=a  it may be better to use Newton's Method 
since we can guess the nominal trajectory to satisfy the boundary condition. 

7. A DISCUSSION OF VARIOUS METHODS OF 
SOLVING OPTIMAL CONTROL PROBLEMS 

A number of methods have been proposed for the solution of two-point boundary 
value problems arising in optimal control problems. These may be subdivided into three 
main classes: 

i. Boundary Condition Iteration Method 
ii. Control function Iteration Method 

iii. Newton type Iteration Methods 
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The choice of the method to be adopted depends on the problem and on the nature of the 
application. Each problem will have a certain structure and exhibit certain stability 
properties, although in a non-linear problem it might be very difficult to isolate either. 
Further the nature of the control application may impose various constraints. For example, 
if on-line control is envisaged, rapidity of convergence may over-ride other factors. For 
some problems it may be necessary to obtain extremely accurate trajectories, while in 
others convergence of the performance functional to within a pre-assigned tolerance 
may be sufficient. In spite of this, certain advantages and disadvantages of each of these 
methods may be pointed out and certain recommendations made. 

i. Boundary condition iteration 
In this method, typically the control function u is eliminated from the first two Euler- 

Lagrange equations by solving H~ =0  and the resulting first two Euler-Lagrange equations 
are solved by iteration on one of the unknown boundary values say, 2(to). A suitable 
scalar terminal error function V{x[ts, 2(to)I, 2[ts, 2(to)]} is then constructed. The boundary 
value 2(to) is then adjusted till the error function goes to zero. The adjustment requires 
the computation of the gradient of V. Systematic methods for doing this are available [10]. 
These methods have certain computer programming advantages. Computer logic is simple 
and fast storage requirements are small. In problems where the method is successful 
accurate trajectories are obtained. The main disadvantage is the inherent instability of 
one of the Euler-Lagrange equations. To determine whether the method is applicable a 
preliminary analysis of the problem may possibly be carried out in the following way: 
let the unforced system equation be linearized round the given initial condition. An eigen- 
value analysis of the linearized system matrix could now be made. If the matrix turns out 
to be essentially self-adjoint boundary iteration methods are quite suitable. If not and if 
t s -  to is substantially greater than the dominant system time-constant, severe instabilities 
may be encountered. 

ii. Control function iteration 
Control function iteration methods using both gradient techniques and steepest descent 

technique have been proposed in the literature. In these methods the control function is 
successively improved till II~,ll-.0, where I ! is some suitable norm of the H~ function. 
The primary advantage of this method is that computations are always performed in the 
stable direction. However convergence tends to be intolerably slow in a certain neighbour- 
hood of the optimum. To improve convergence the size-step cannot be increased since 
this leads to instability. The iteration methods we have presented in this paper may be 
considered to be direct extensions of gradient or steepest descent techniques. We have 
stated previously that the second variation method is formally equivalent to Newton's 
method in function space. In a suitable neighbourhood of the optimum convergence is 
therefore quadratic. Computations here are also always performed in the stable direction. 
In fact in a suitable neighbourhood of the optimum, the inherent stability properties of 
linear feedback control systems inhibits the propagation of numerical errors. As a by- 
product we obtain linear time-varying feedback gains for neighbouring optimum feedback 
control. 

[10] M. I.ZVlNE: A steepest descent technique for synthesizing optimal control progranumm. Paper 4, 
Conf. Advances In Automatic Control. Nottingham, April (1965). 
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On the other hand the conditions that H, be positive definite and that there be no 
conjugate point for the trajectories occurring in successive auxiliary minimization problems 
may be too strong. In such cases it may be necessary to get better estimates of the control 
function by using gradient methods or use the alternative successive approximation method 
we have indicated in conjunction with the second variation method. Numerical di&ulties 
may also be encountered in integrating the matrix Ricatti equations, specially if the dynamic 
system is unstable. It is also to be noted that the matrix H, is to be inverted. Computer 
storage requirements are also greater since the feedback gain matrices have to be stored. 

Some computational effort may be saved. For example, it is not necessary to compute 
H;’ at every iteration. In fact in practice this may be held constant after two or three 
iterations. Convergence will necessarily be slower. 

For ordinary minimization problem some very efficient computational algorithms 
have recently been proposed [l 11. These algorithms may be considered to lie somewhere 
between gradient and Newton’s method. A distinctive feature of these methods is that 
use is made of information generated in previous iterations. Generalisations of these 
methods to function spaces should be possible. 

In this paper we have not considered inequality constraints. The assumption was 
made that these could be approximated by means of penalty functions. Extensions of the 
techniques presented here to problems with inequality constraints on control and state 
variables appear to be possible. The auxiliary minimization problem then has additional 
linear inequality constraints. In this case the corresponding dual maximization problem 
could be solved to obtain the improvement in control function. 

iii. Newton’s method 

Newton’s method was first proposed by HESTENES [12] to solve fixed end point problems 
of the Calculus of Variations. A complete analysis of the method for this class of problems 
was given by STEIN [13]. In the context of function space, the method dates back to 
KANTOROVICH [l4]. KALABA [15] has also used this method for a special class of problems 
and called it “quasi-linear&ion”. Recently the method has been applied to some optimal 
control problems by KOPP and MCGILL [18]. They eliminated the control function u from 
the first two Euler-Lagrange equations by using the equation H,=O. The linear&d Euler- 
Lagrange equations are then integrated for n-linearly independent boundary conditions. 
The unknown boundary value cU(t,) is found by using linear interpolation and a matrix 
inversion. Improvements dx(t) and c%(t) are then obtained by one more integration. 

If the linear two-point boundary value problem is solved in this way, the method 
suffers from the instability disadvantages of boundary integration methods. 

In our view, the methods advocated in this paper could be used to solve the linear 
two-point boundary value problem arising within Newton’s Method. 

[ll] R.Fm and M. J. D. POWELL: A rapidly convergent descent method for minimimtion. 
J. 6 (1963). 

Computer 

[12] M. R. HEYIZNB: Numerical methods of obtaining solutions of fixed end point problems in the calculus 
of variations. RM-102, The Rand Corp, August (1949). 

1131 M. L. S’IEIN: ref. cit. 
1141 L. V. RANKBRO~I~: On Newton’s method. Trudy Mat. Inst. Stekfov 28, 104444 (1949). 
1151 R. KALAEN On nonlinear differential equations, the 

J. Muth. Me&. g, W-574 (1959). 
maximum operation and monotone convergence 

1161 S. K. Mrnaa: Pro gramming in function space. To be published. 
1171 L. CCUAIZ: Funktionalanalysis and Numerische Mathematok, Springer, Berlin (1964). 
1181 R. E. KOPP and R. MCGILL: Several trajectory optimization techniques. in: Computing Metko& in 

Optimization Problems. ed. by A. V. B ALAKRINSRNAN and L W. Nausrwr. Academic, New York (1964). 
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8. SOME GENERALISATIONS 

In the introduction we have stated that the derivations in this paper are formal. In 
this section we briefly indicate how a mathematically rigorous treatment of  the successive 
approximation methods can be given. To this end, it is convenient to consider the t'ollowing 
general problem: 

We are given a dynamical system whose behaviour is governed by the following 
operator equation 

g(u, x) = % . . .  (71), where g: .~ x U ~ Y  

is a non-linear mapping from the Hilbert Space ~ x U to the Hilbert Space ~ ,  and 0x 
is the null element of  ~'. U is to be thought as the control space and ~ the state space. 

Let £~ be an open subset of  ~ x U. The problem of  optimal control is to find a point 
z ° --(u °, x°)ef~ which satisfies equation (71), such that the functional 

f(u, x),f: ~x U~R 

is a minimum. 
We follow the notation and terminology of  DIm,;DOl, m~ [19]. 

Assumptions. i. 
f8C2(~; R); a8C2(~; ~) 

i.e. the mappings f and g possess continuous second Frechet Derivatives. 

ii. The mapping Dg(u °, x°)8.Z(~ x U; ~ )  is onto. 

iii. D~g(u °, x °) is a linear homeomorphism of ~ onto ~ .  
We are then able to prove [16]. 

Theorem 1. (Necessary condition). Under the above assumptions, necessary con- 
ditions for f to have a minimum at (u °, x °) subject to O(u, x)=Ox are 

<Dj'(u °, x°), (q, 0 ) > . +  < 2  °, D.O(U °, x°)'(tl, 0 ) > .  = 0  (72) 

<Dxf(u °, x°), (0, t2 )>x+ < 2  °, Dxg(u 0, x°)'(0, t 2 ) > x - 0  (73) 

and g(u °, x°)=0x (74), where < > ,  and < >x denote inner products in Hilbert Spaces 
U and ~r and 2 ° is a unique element of ~ .  

Theorem 2. (Necessary condition). If  the hypotheses of  Theorem 1 hold at the point 
(u °, x°), then a necessary condition for f(x)  to have a minimum at (u °, x o) subject to 
g(u, x)=o~ is 

lnf  D~h(u °, x°)'(t~, t2)~:O 

lltlt--1 
Dg(u O, x°) '( t l ,  t2)-~O x 

where hffif+ <2, g>, t=ft l, t2) and lit[I--max (llttH, ]lt2[I). 

[19] J. D ~ :  Foundations of Modern Analyaia. Academic, New York (1960). 
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Theorem 3. (Sufficient Condition). Let all the hypotheses of Theorem 1 hold and let 
the necessary conditions of Theorem 1 be satisfied. Further let 

Inf D2h(u °, x°)'(tl, t2)>0, where h f f +  <) ,  g > .  Then there 

Iltll:l 
Dg(u °, x°) • (tl, t2)=0~ 

is an open connected neighbourhood N of (u °, x°), such that f(u, x) >f(u °, x °) for every 
(u °, x°)~N. 

Theorems 1-3 are generalisations of familiar theorems in the minimisation of a function 
of n variables subject to p constraints. In order to solve the minimisation problem, we 
therefore have to solve the set of equations 

D~(u, x, ~)~0 

D,,~(u, x, ~)=0 

D~(u, x, ~)=0 
t (74) 

One way of solving this set of equations is to use Newton's Method in Function Space. 
At each iteration step we have to solve the set of linear equations given by 

Dxh(~, ~, ~)+D~h(~, ~, ~).(0, 8x, O)+D~h(~, ~, ~).(Su, O, O) 
+D2~h(~, ,~, ~.(0,  O, &~)=0 

D~h(~, ~, ;t) + D~J~(~, ~, ~)-(0, ~x, 0)+D~.h(a, ~, ~).(~u, o, o)ffio 
D,h(~, ~, ~)+ D~h(fl, ~, ~).(0, 6x, O)+ D2uh(~, ~, ~)-(Su, 0, 0) 

2 - 
+ D . ~ h ( u ,  ~, ~).(0, O, 6~)----0 

Based on the work of ST~n~ and COLLATZ [17] sufficient conditions for the Newton Process 
to converge can be given. 

The variational problem we have considered in this paper may be recast into this form 
by writing the Euler-Lagrange equations in integral form. 

9. CONCLUSIONS 

In this paper we have considered some successive approximation methods for the 
solution of a general class of optimal control problems. The methods we have presented 
are formally equivalent to Newton's Method in function space. The main advantage of 
the methods are rapidity of convergence and stable computation. However in many 
problems, it may be necessary to resort to Gradient or other methods to obtain a sufficiently 
good estimate of the nominal control function. The method directly provides neighbouring 
optimal feedback gains. 

For the variational problems treated here, it has been assumed that inequality con- 
straints on control and state variables are either absent or adequately approximated by 
means of penalty functions. The results presented here extend, in part to cases where bounds 
on the control variable and state variable are present. We shall cover this in a subsequent 
paper. 

Acknowledgem~nt--Tl~ research was supported by the Central Electricity Research Laboratories, Leather- 
head, England. 


