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I. Introduction

The dominant paradigm for much of Science has been the paradigm of
Physics, namely, the discovery of the laws of nature and their encapsulation
in the form of mathematical equations, which are local in character. The laws
of physics are immutable and the discovery of the laws of nature proceeds
from theories (usually mathematical) which are then verified by experiments
which are, in principle, repeatable infinitely often under identical conditions.
So dominant is the paradigm of physics, that even a field such as psycho-
analysis is under intense scrutiny today with the methods and standards of

M The fact that this may be inappropriate and that an observational

physies.
science such as astronomy may be a better model for psychoanalysis does not
seem to be taken into consideration. In a similar vein, much of the difficulties
of the conceptual foundation of economics could be traced to the chains put

on the subject of having Physics as its primary paradigm.

The "unusual success of mathematies"(z) in Physics is so pervasive that
one cannot conceive of the science of physiecs without mathematics. This
"mathematization of nature",(3) which began at least with Galileo, has
continued for centuries, and after a period of temporary decline in the
fifties and sixties is again in full bloom.(4)

Physics as we have said is inseparable from Mathematics. Conversely,
problems of physics have given rise to new mathematics. Geometry,
ordinary and partial differential equations, functional analysis (especially
the theory of unbounded operators on a Hilbert space, operator algebras),
theory of group representations, all have deep roots in physics. In a
very profound sense, physics, its mathematization and the interpretation

of nature are all different facets of the same fundamental reality.

Much of physics deals with systems which are isolated and the
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question of studying the effects of external influences on the dynamical
system is not of concern. Even when external influences are allowed,
they are typically taken to be functions of the state of the system and
hence can be incorporated into the original dynamical description of the
system. The prime example of this situation is a conservative mechanical
system where external influences are derived from a potential function.

Thus, although Newton's second law:

(1) mid -f

where m is the mass, g the configuration variable and F the external
force, was originally written with the external influence, the force, in a
predominant position, the modern study of classical mechanics almost

exclusively concentrates on the Hamiltonian formalism:

dqg _ 3H-(q.,p)
dt op

(1.2)
(_i_l_) = &'(q~p)
dt ap

where p is the conjugate variable and H is the Hamiltonian of the system.

A typical Hamiltonian is of the form

H(q,p) = V(q) + p2 ;

where V is a potential function, and it is assumed that the Hamiltonian
is a conserved quantity along the solutions of Hamilton's equations (1.2).
This viewpoint is embodied in the mathematical formalization of classical

mechanics as symplectic geometry.(s)



Secondly, much of physics is concerned with equilibrium or quasi-
state situations. This is the so-called thermodynamic formalism.(s) To
obtain this equilibrium description, one has to often pass to the thermo-
dynamic (infinite-volume) limit as is customarily done in equilibrium
statistical mechanics. However, in spite of many efforts, the conceptual
foundations of classical thermodynamics, notably the derivation of the thermo-

dynamic
laws from dynamical descriptions, has not been satisfactorily achieved in
the physies literature.

Thirdly, the idea of making inaccurate dynamical measurements on
functions of the '"state" of the system and making "inferences" about the
state of the system from these inaccurate observations, is notably absent
from physics.

As we have remarked, the fundamental goal of physics is to understand
the laws of nature. It thus basically is concerned with analysis and
the process of this analysis is one of discovery. There is no doubt,
that the fundamental laws of nature do exist, they always have existed,
and they will continue to exist in all future. There is however a need
for a different paradigm when one is interested in systems which are not
of nature but man-made, where one might want to create a new device
to perform a specific function, or shape the national economy to grow along
a particular path or to synthesize a complex system consisting of
interconnections of subsystems to perform a complex task. These systems
are not isolated in the sense that they interact with an external
environment, they do have inputs or external influences, some of which

can be controlled and some of which are uncontrolled. the behavior of

the system can be observed (perhaps inaccurately) and finally the

behavior of the system can be changed by a feedback mechanism which



feeds the input via a control mechanism into the system. The concern
here is one of synthesis (not of analysis) and the process is one of
invention and not of discovery.

For a mathematical theory of these systems and their synthesis, it
should be obvious from the above discussion that we need to describe
systems (physical or man-made) in terms of the external behavior of the
system. We shall see that this viewpoint is illuminating even for systems
which are usually of concern in physics. The internal description of
systems is then inferred from the external description and leads to the
notion of the "state" of a system and intuitively should contain the complete
memory of the system. Once this is accomplished, the primary concerns

of a theoretical framework are to understand the fundamental limitations

of the system and to classify the system by describing a complete set of

invariants (under appropriate transformations groups).

2. Fundamental Limitations of Systems

We want to illustrate the notion of fundamental limitation of systems
by means of two examples. The first comes from communication theory
and the second from linear systems theory. In discussing the second
example, = we shall also introduce the ideas of inputs, outputs and state

of a system.

2.1 Heisenberg's Inequality, Band and Time Limited Functions

We start with the original description of Heisenberg's inequality in

the context of one-dimensional quantum-mechanical particle.



A "state" of such a particle is a wave function Y €L2(IR') = (the
space of square-integrable functions). The probability of finding the

particle in the interval a < x < b is

b b
fw*wdx /Iw[zdx ;
a a

I

where * denotes complex conjugate. The total probability is [m]w (x)] 4 dx
which has to be 1.

An "observable" is a symmetric operator A acting on a suitable
domain D(A) C L2(IR'). The expectation value of A in the state y is

defined to be

E(A) = ﬁ;*Awdx for ¥ € D(A)

The position of the particle corresponds to the operator multiplication by
x. The "momentum" of the particle is associated with the operator

By = (Zni)_lw' acting on the domain, D(B) = {weLzlﬂw'ldx < «} and
where ' denotes differentiation. The expectation value of the power of

the momentum operator in the state y is given by

* ~ 2
ﬁb BMydx = frnlwl dy

where UJ is the Fourier transform of { . Hence

b b
fw{de - fl{lllzdv
a a

is the probability that the momentum finds itself in the interval a < y < b.

The position and momentum satisfy the commutation relation
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AB - BA = o

and one can show

1
167

pia - EANZ x BB - E®I% 2 1
which has the interpretation that the position and the momentum cannot
be measured simultaneously with arbitrary precision (the Uncertainty
Principle). This principle is in fact an inequality involving Fourier
transforms:

(ﬁc2| £(x) | 2 dx)(ﬁ2|%(y)|2dy) > lsiz<./‘|f(x)|2dx>2

m

A problem of interest in communication theory is that of synthesizing

a signal f(t) with total power /l f(t)] 2 4t = 1 with both

a
02 = f £t ? at

a

and

b

82 = f 12| dy
5

as close to 1 as possible for fixed positive numbers a and b. o =1
means the signal is time-limited in the period [ t| £ a and B = 1 means
the "power spectrum" of the signal is confined to the band |v| < b.
One can prove that it is impossible to make o = B = 1.

A refined result says: the pairs o, 3 corresponding to actual

signals f of unit power fill up the subregion of the unit square



[0,1] x [0,1] defined by

co8 te * @68 1B > icos T Y1

(if a or B = 0 (resp. = 1) then the other is < 1 (resp. 0)),

where Yl = sup{a2 class of band-limited signals of unit power].

It is a function of the product ab only.

(8)

2.1 Invariants of Linear Systems

We think of an input-output linear system as a linear
causal map between a set of variables (time functions) called
inputs (causes) and a set of variables (time functions)
called outputs (effects). A mathematical description of

such a linear system is given by

T
y(t) = ./O‘W(t—"c)u('r) dt

where y(t)e€ ]Rp, u(t)eIRm and W(t—T)e{P(IRm,JRp) (p X m matrix).
The fact that the weighting function (kernel) depends on the
difference t -1 reflects the fact that the system is time-
invariant (shift-invariant). If we assume that the Laplace
Transform of W is rational, then one can show that there
exists a vector x of minimal dimension (say n), the state
vector, and matrices A (nxn), B (nxm) and C (pxn) such that

dx

-CR = AX(t) + BU(t)

y(t) = Cx(t)



The initial condition is taken to pbe 0 which corresponds to
the assumption that the system is initially at rest.
Moreover, this representation is unique upto an isomorphism,
in the sense that two such minimal systems are related by a
similarity transformation on the space where x lives
(i.e., RM).

In line with our discussion, we can ask the following
question:

To what extent can we change the system by means of

(i) Coordinate transformations on the state space r"

(ii) Coordinate transformations on the input spaceimn

(iii) Feedback control of the form u(t) = v(t) + Kx(t) ?

The mathematical question we are asking is the
following:

Let Mn denote the set of nxn matrices and Mn it denote

b

the set of nxm matrices and Mm = denote the set of mxn

2

matrices.

Consider the group actions:

(a) GL(n) x Mn — Mn

1

(T,A) = T ~ AT where GL(n) is the group of

nxn matrices which are invertible

(b) GL(m) x Mn m—*—Mn -

> )

(S,B) = BS, where GL(m) is the group of mxn
matrices which are invertible
(c) Fx (M )— M
n n
(K,A) — A + BK, where F is called the feedback

group.



The simultaneous action of all these transformations
is the semi-direct product of GL(n), GL(m) and F and is given
by

(A,B) —> (T'l(A + BK)T, T—lBS)

If we denote by G this group, th?n the problem is to
study the action of G on the spaceimnz+mn and classify the
corresponding orbit space. One can show that this problem
corresponds to the study of an algebraic vector bundle over
EJ, the complex projective space. According to a theorem of
Grothendieck, every algebraic vector bundle over ]I>1 is
isomorphic to the direct sum of line bundles (i.e., vector
bundles with one-dimensional fibers) and upto isomorphism,
classes of algebraic vector bundles over IE>l are in one-one
correspondence with the set of integers K, < ... < Km’ Kie Z.
In our problem, the integers Ki correspond to dimensions of
certain subspaces of R® and have the property K1 + K2 t. .ok Km

= n. These are the invariants of the system and have the

interpretation that these numbers cannot be changed by means

of feedback control u(t) = v(t) + Kx(t) in a coordinate free

description of the linear system. It is another example of a

fundamental limitation of a system.

3. Systems With External Variables(g)

What kind of procedure should we follow in trying to
describe a system? The first step we have to take is to look

at the system as an entity distinguished from the outside
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world. We have to make clear what belongs to the system and
what we do not want to include in it. After this separation
between system and environment has been accomplished, we have,
roughly speaking, the following three possibilities to
describe the system.

The first one is that we consider the system as actually
isolated from the outside world, or at least that for all
purposes of accuracy we may regard the system as isolated.

The paradigmatic example of this possibility is our solar
system. Indeed this can be regarded as a world on its own.
However, it is hard to find down-to-earth and real (i.e.,

not idealized) systems which have this same strictly isolated
behavior although it may be in many instances a reasonable
assumption.

A second possibility is to regard the part of the outside
world which may influence the system under consideration as
nearly constant in time when compared to the dynamical behavior
of our system. The usual procedure is then to include into

the mathematical model a set of parameters which represent

this external influence and are supposed to be slowly varying
in time. Indeed, a large part of mathematics dealing with the
description of (dynamical) systems is at least partly concerned
with or motivated by this type of modelling. We mention
perturbation theory, bifurcation theory and the theory of
structural stability.

The third possibility is to try to really include the

connections of the system with the outside world into the
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description of the system. The system is therefore, so to
say, nhot regarded as an isolated '"box,' but as a '"box"
together with the '"wires'" connecting it to the rest of the

world. This third possibility we will call the system theoretic

description of a physical system. Of course this goes along

with a changing point of view. One does not try to isolate
the system "at all costs,'" but one is especially interested
in the continuous interplay of the system and its environment.
Since this environment is considered as '"unknown,' we have

to study the set of all dynamical behaviors which can occur

at the boundary of the system (the wires of the box), i.e.,
all behaviors which are compatible with the system under

consideration. This whole set is called the external behavior

of the system. We should, however, mention that for real
systems there may be a very large number of connections with
the outside world, whereas in a system-theoretic
description we will normally only treat a small number of them
and neglect the rest. Hence the same type of questions as
arising in the first and second possibility also exists in a
system theoretic description. However, we have at least on a
conceptual level a way to deal with the influences from and on
the outside world. This seems to be an important advantage
of the third possibility.

There is another argument in favor of the system theoretic
description. In disciplines 1like physics and chemistry it
has been a very successful approach to consider a system as

composed of smaller and simpler subsystems which are much
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easier to describe. Indeed the success story of physics seems
to be partly based on its concentration on the study of simple
and idealized systems. Afterwards the large real system can
then be '"understood'" in terms of the simple systems which
constitute the large system. In fact in celestial mechanics

a breakthrough made by Newton, was to consider the solar system
as composed of the heavenly bodies, each forming a system on
its own, governed by a simple law (Newton's second law), and
undergoing forces from the other systems and on its turn
exerting forces on them. This approach, called '"tearing,"
gives us the system as a (sometimes complicated) inter-
connection of all kinds of relatively simple systems. To study
the whole system we can study these simple systems separately.
But then we should also include in their description their
external behavior (i.e., the way in which they can influence
and can be influenced by the outside world), since this will be
needed in order to determine the behavior of the whole system.
The procedure is thus as follows. Tear the system into

simple subsystems. Study the systems together with their
external behavior. Then interconnect the simple systems again
with each other. For example, given an electrical circuit,

we can first study the behavior of its elements (capacitors,
inductances, resistances, and so on) out of which the circuit
is composed. Then by interconnecting these elements in
accordance with Kirchhoff's laws one can obtain the original
circuit again.

This brings us to another point in favor of the system
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theoretic approach, which has its roots in technical
applications and engineering. Instead of studying the behavior
of a complicated system by tearing it, we go the other way
around and we want to construct a system with a specified

behavior, out of simple building blocks. This leads to the

so-called synthesis problem: which building blocks should we

use and how should we interconnect them in order to achieve a
system with a specified behavior. Clearly to tackle this
problem we need a theory of systems which also includes their
external behavior.

A more general argument for the system theoretic
description, also originating from engineering, has to do with
the attitude to consider a system as a device. Usually, this
goes together with the so-called input-output framework. One
looks at a system as a device which transforms inputs (controls)
into outputs. The external behavior of the device is exactly
this relationship between input functions and output functions.
Clearly, this external behavior of the device is really what
counts in applications.

Summarizing, we want to study systems which may be
connected with other systems. Therefore, we consider the
system as separated from the outside world, but we also
incorporate in its description the external behavior of the
system. We will assume that this external behavior is given by
specifying the possible evolutions in time of a set of

variables, which we will call the external variables.
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3.1 The notion of state

Apart from connections with other systems there is still
another, maybe even more fundamental reason to study the
external behavior of a system. This has to do with the notion
of state. Intuitively the state of a system should contain
the whole memory of the system. Knowledge of the system at a
certain instance of time, together with the knowledge of all
future external influences should totally determine the future
(possibly probabilistic)

pdynamical behavior of the system. Hence, in the case that the
system is isolated, the state of the system is all one needs to
know in order to predict the future (single) behavior of the
system. The usual mathematical structure for this last
situation is a set of first-order differential equations in the
state variables. Partial differential equations can be seen
as first-order differential equations on an infinite-dimensional
state space, and many other mathematical descriptions are also
variations on this theme.

Of course, this type of modelling presupposes that one
knows which variables constitute the state of the system. 1In
many situations, however, a physical system is actually given
by a set of '"phenomenological'" laws, describing the external
behavior of the system and not involving the state variables.

A simple example is the law for ideal gases PV = constant,
which gives the relation between the two external variables P
(pressure) and V (volume). A state of the system consists of
the positions and velocities of all particles involved.

Another simple example is Newton's second law F = mg which is
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a dynamical compatibility relation between the two external
variables F (force) and q (position) as functions of time.
The state of this system consists of the position and the
velocity, or the position and the momentum. Hence in this case
the state can be very easily constructed from the knowledge of
the external variables as functions of time, but does not
explicitly enter the law F = mg. We also consider a (large)
electrical network, described by compatibility relations on
the voltages and currents on some wires emanating from the
network. These compatibility relations do not have to involve
the state variables, which are the voltages or currents of (a
subset of) the circuit elements inside the network. We see that
there can be two reasons for giving the system as a set of
compatibility relations (''laws') on the external variables, not
involving the state variables:

(i) The state of the system can be very complex, while

the external behavior is (relatively) simple.

(ii) The state of the system is not accessible to us;

we cannot measure what is going on inside the system.

This second reason goes along with the so-called '"black-box"
description of a system. We can only observe (or we only care
about) what comes into the box and what goes out of it. From
an experimental point of view it can be argued that descriptions
of physical systems are in first instance always ''black box"
descriptions.

Concluding, we can say that in many cases the external
behavior of a system should be actually taken as the starting

point for the description of a system. If we want to know the
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state of the system we should be able to deduce it from the
observations of the external behavior. In system theory this is

called the Realization Problem: How do we construct from the

external behavior

(i) a set of variables which is rich enough to be

called the state of the system, and

(ii) the equations governing the evolution of the state?
Since we only want to construct a state which "explains' the
external behavior it is of course possible that we end up with
a state which does not correspond to the '"'real physical state'
of the system. In the case of a mechanical system we might
take instead of the natural state, i.e., the positions and
velocities (or momenta) of the particles another set of
variables which is in one-to-one correspondence with it (notice
that wehgfﬁéady mentioned two possibilities for a natural
state: positions and velocities, or positions and momenta).
For thermodynamic systems it is always possible to find a set
of variables which is much smaller than the set of the positions
and velocities of all the particles involved, but which on a
more axiomatic level can be called the state since it contains
all the memory about the external behavior. An extreme example
is an ideal gas satisfying PV = constant. This system does not
have memory, and hence we do not need a state. The ''real
physical state' will be non-minimal, in the sense that a more

parsimonious description of the state may be
iavailable. Of course the loss of physical interpretation of the

state variables which may occur can be a serious drawback for

the theory. In the case of Hamiltonian and gradient systems
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we will try to combine these notions of a "minimal" and a
"physicali'" state, to end up with a minimal state which is also
physically interpretable. The approach which will be taken
can be compared with the use of generalized coordinates in
classical mechanics.

Finally we remark that we have so far described

deterministic systems. In many cases it is of course necessary

to take into account uncertainty about the observational data

and the parameters of our models, and "identification' will be
*See insert p. 17A

a central issue. In this context we remark that also in the

case of systems with external variables we need a theory which
gives information about the validity of our mathematical models,
if some parameters are subject to uncertainty (this has much to

do with the notion of structural stability).

We now describe a Hamiltonian system from this point of
view.

Consider a point mass m with position aq > influenced by a

force Fl' According to Newton's second law, the relation
between aq and Fl as functions of time is given by
(3.1) mq, = ¥y

Note that we see Fl as a basic variable and that (3.1) expresses

a compatibility relation between forces and positions. Hence

we have an external (linear) system

. — : o . 2 " il . (_1 >
Zei= {(a (), F ()R> RY (qy(+),F ()€, and
(3.2) mﬁl = F,, with equality in the sense of

distributions}



17a

The notion of state, if we assume a probabilistic description
of the uncertainties, is that of a conditional probability
density, given the observations, and is in general infinite-

dimensional.



18

In fact Ze is an external input-output system with input

u; = Fl' A minimal realization of Ze is given by
a; = = p
A 1 m *1 _
(3.3) » Y1 T 4
By = By
i.e., a linear input-output system £(A,B,C) %% = Ax(t)+Bu(t)

1L

with A = ( m) , B=(9) and ¢ = (1 0). Any definition of a
0O O

Hamiltonian system surely ought to include systems (3.2) and

(3.3). The basic observation is that the state space (ql,pl)

can be seen as a symplectic space with the usual symplectic
0o -1
% 0
i.e., A satisfies ATJ + JA = 0, and B and C are related as

form J = ( ) . Then A as above is a Hamiltonian matrix,
BTJ = ¢. Furthermore we notice that the space of inputs and
outputs (yl,ul) can be also seen as a symplectic space with the
symplectic form J€ = (2 —é).

Next we look at another mechanical system. Consider a
particle attached to a spring with spring constant k. Assume
that we can contirol the position do of the particle. We tuake
as output the force F2 exerted by the spring on the particle,

i.e., the force that we experience if we control the particle

in a certain position. This yields the static system

Fz = —qu, which can be also written as
.- dav .
(3.4) Fy = = Qg (92)

with V(qz) = %quz the potential energy. We regard (3.4) as

a static Hamiltonian system with input 4, and output F2.



Equation (3.4) defines a Lagrangian submanifold in the
(q2,F2)-space with generating function V(qz). Instead of the
potential energy %quz corresponding to a linear spring we

can take an arbitrary potential energy function V(q2). Notice
also that (3.4) is an example where external forces are not
necessarily inputs.

Finally we can interconnect the Hamiltonian systems (3.3)

and (3.4) by setting
(3.5) 44 = dg » ¥y =Fy

(this can be regarded as Newton's third law)

Ey Wy = 4 a4y

E, =%, G = dq
. F2 = —kq2
2 4o

The interconnection (3.5) is a particularly simple example of
what one might call a Hamiltonian interconnection. The system
resulting from the interconnection has the form (setting

q4=q,=05):
1

oo e (2)- (2 5) (3
(3.6) mg + kq 0 ‘or” | It (p) S D o

This constitutes a Hamiltonian vectorfield, or as we shall say
an autonomous (i.e., no inputs) Hamiltonian system. As outputs
we could take the position q, or the position q together with

- %%(q) = - kq, which is now the internal force.
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4. Optimization, Complexity and Monte-Carlo Techniques(lo)

for systems with external variables , possibly new
SinceAYe are dealing with synthesis ofhsystems, it is

necessary to evaluate in what sense the synthesis is successful.
This can be done using ad-hoc qualitative criteria or may be
formalized by formulating the notion of a best synthesis.
Mathematically, this means defining the set of feasible
solutions to the synthesis problem by specifying the constraints
(for example, static and dynamical laws, constraints on the
resources, constraints on the inputs and outputs) and by
specifying a performance function (usually real-valued) which
is optimized (minimized or maximized). Even though the best
synthesis cannot be implemented (for example, due to

economic considerations), this formulation allows us to compare
‘different syntheses. The actual optimization procedure will

be carried out by devising algorithms which will then be
implemented on a computing machine. A natural question then

is: how complex is this computation? In section 4.1, we
discuss some of these ideas in the context of combinatorial
optimization. This is a striking example of the interaction
between ideas of systems and computer science. Indeed,
understanding and dealing with complexity is one of the

outstanding scientific problems of modern technological systems.

4.1 Combinatorial Optimization and Complexity

An instance of an optimization problem is a pair (F,2)

where 2 is a set and F the cost function is a function

F . a - IR1
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where JR1 is the set of real numbers. The problem is to find

X €2 such that
F(x) < F(x) VxXex.

An optimization is a set I of instances of an optimization
problem. In an instance, we are given the "input data' and
have enough information to obtain a solution. A problem is
a collection of instances, usually all generated in a similar

way.

Example 1: Travelling Salesman Problem (TSP)

In an instance of the TSP we are given an integer n >0
and the distance between any pair of n cities in the form of

+
a nxn matrix (dij)’ d.. €Z (the set of positive integers).

1J
A tour is a closed path that visits every city exactly once.
The problem is to find a tour of minimal length. If we denote

by

2 = {all cyclic permutations m on n objects} ,

then a cyclic permutation represents a tour if we interpret
m(j) to be the city visited after city j, j=1, 2, ... n. Then
the cost function

n

BwL S Z 45m(4)

J=1

Example 2: (Minimal Spanning Tree (MST))

A spanning tree is an undirected graph (V,E) (where V =
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set of nodes and E = set of edges), that is connected and
acyclic.
We are given an integer n>0 and an nxn symmetric matrix

5 +
.. ed .
(d1J> 5 le o3 Let

Z'= {all spanning trees (V,E), V = {1,2, ...n}}

Then the MST problem is to minimize

F | A ]Rl

;0 (VLE) b E dij

i,j)EE

The above are examples of combinatorial optimization
problems.

In the modern theory of computation, we are interested
in algorithms which are efficient in the sense that the number
of steps required to solve the problem grows as a polynomial
in the size of the input. MST is an example of a problem which
is efficient in the above sense, while TSP is an example of a
problem for which no efficient algorithm is known, and generally
one has to resort to heuristics. These notions can be made
more precise by defining two classes of problems, P and NP.
We do this now.

We assume that the set 2 and the function F are given in
terms of two algorithms, %Q.and AF. The algorithms A{” given
xand a set S of parameters will decide whether «€Z, the

feasible set. On the other hand AF’ given a feasible 2« and
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another set of parameters Q, returns the value F(x). An
instance of an optimization problem is a representation of the
parameters in S and Q, using a fixed, finite alphabet and an

appropriate coding. We now define a recognition version of

the optimization problem:

Given a representation of S and Q and an integer L, is
there a feasible solution such that F(x) < L?

This problem has a yes and no answer. We denote by the
class P, the class of recognition problems that can be solved
by a polynomial-time algorithm. This can be given a precise
definition in terms of, say, a Turing machine. It turns out
that this class has a remarkable property, namely, if it can
be solved in polynomial time by one model of computation then
it can be solved in polynomial time by all reasonable models
of computation.

There is another class of recognition problems, the class
NP. For a problem to be in NP, we do not require that every
instance can be answered in polynomial time by some algorithm.
We simply require that if x is a yes instance of the problem,
then there exists a concise certificate (of length bounded
by a polynomial in the size of x) of x, which can be checked
in polynomial time for validity.

It is easy to see that PCNP. It is unknown if P = NP.
The travelling salesman problem is in NP and it is notoriously
difficult. If P were equal to NP then the travelling salesman

problem would have a polynomial time algorithm.

We say that a recognition problem A1 polynomially

transforms to another recognition problem A2 is given any
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string x we can construct a string y, within polynomial in
length of x time, such that x is a yes instance of A1 ittt y
is a yes instance of A,.

A recognition problem AENP is said to be NP-complete if
all other problems in NP polynomially transform to A. Combining
the conjecture PC NP and the definition of NP-completeness we
see that characterizing a combinatorial problem to be difficult
means showing it is NP-complete.

4.2 AProbabilistic Algorithm for Combinatorial Optimization(ll)

Simulated annealing, as proposed by Kirkpatrick, is a
recent Monte-Carlo algorithm for combinatorial optimization.
Simulated annealing is a variation on an algorithm introduced
by Metropolis for approximate computation of mean values of
various statistical-mechanical quantities for a physical system
in equilibrium at a given temperature. In simulated annealing
the temperature of the system is slowly decreased to zero;
if the temperature is decreased slowly enough the system should
end up among the minimum energy states or at least among states
of sufficiently low energy. Hence the annealing algorithm
can be viewed as minimizing a cost function (energy) over a
finite set (the system's states). Simulated annealing has been
applied to several combinatorial optimization problems including
the traveling salesman problem, computer design problems, and
image reconstruction problems with apparently good results.

The annealing algorithm consists of simulating a
nonstationary finite-state Markov chain which we shall call

the annealing chain. We now describe the precise relationship
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between this chain and the finite optimization problem to be
solved. Here and in the sequel we shall take IRto be the
real numbers, IN the natural numbers, andINO =INU{0}, and we
shall denote by IAl the cardinality of a finite set A. Let
Q be a finite set, say @ = {1,...,|2|}, and U,eR for ieg Q;
we want to minimize Ui over i €f. Let Tk> 0 for k;en%. Q

shall be the state-space for the annealing chain and we shall

refer to {UiiieQ as the energy function and {Tk}keﬂ as the

(k) _ (k)
_[“i ]ieQ

(a row vector) be a Gibbs distribution over the energies

annealing schedule of temperatures. Let m

{Ui}ieQ at a temperature T, , i.e.,
“Us /Ty
i, = 8 i €0
i -U./7T 2 ’
D
JER
for all k €EIN.. The annealing chain will be constructed such

0

that at each time k the chain has 71

(k)

as its unique invariant

distribution, i.e., at each time k the annealing chain shall

k,k+1 k,k+1
( : - [p( )

have a l-step transition matrix p i3 i,3j€qQ

such that 1 = n(k) is the unique solution of the vector
2 + : R ; :
equation m = nP(k’k 1). The motivation for this is as follows.
Let S* be the minimum energy states in 2. Now if Tké-O as
k = « then
1 : : *
-]—b—;;pl ifies |,
(k)
. -
1 *
0 if i ¢ S :
as kK » =, ji.e., the invariant distributions converge to a

uniform distribution over the minimum energy states. The hope
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is then that the chain itself converges to the minimum energy
states.

We now show how Metropolis constructs a transition matrix

p(k’K+1) with invariant vector W(k) for k Eimb. Let

Q= [d;.1. .. be a symmetric and irreducible stochastic
ij'1i,jeq
matrix, and let

-(U.-U,)/T
g Jo 9 F X it U, U, ,
1,) J 1

p (K E+L) Q. - if Uy < Uy, 3 # 4,

ij - 43 i

1 - ), pSkEFL) if j =1,
- i/
(#1i

for all i,j €H and K EIN.. Then it is easily verified that

0
ﬂ(k) = n(k)p(k’k+1) foy all k en%. In fact, p(k’k+1)

satisfy the reversibility condition

(k)

and

(k,k+1) o (k) _ . (k) (k,k+l) Lyd € &
Jl J 1 lJ

for all k EID%. Let {xk}keINo

l-step transition matrices {P(k’k+1)}kemb and some initial

be the annealing chain with

distribution, constructed on a suitable probability space
(M,pA,P). Let pi(k) = P{xk = i} for i€ Q and kﬁim%

The annealing chain is simulated as follows. Suppose
X, = i€§Q. Then generate a random variable y € with P{y = j} =

qij for j€Q Suppose y = j € Q. Then set

if U < U,
J (U -
(U.-U)/Ty

X = j if U; > U;, with probability e J ,

(SN

k+1

i else.
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Hence, we may think of the annealing algorithm as a
"probabilistic descent'" algorithm where the Q matrix represents
some prior distribution of '"'directions,'" transitions to same

or lower energy states are always allowed, and transitions

to higher energy states are allowed with positive probability
which tends to 0 as k =+ « (when Tk-+0 as k »» ), This
algorithm is a striking example of the power of thinking by
analogy, in this case analogy with problems in statistical

mechanics, notably the theory of spin glasses.

4.3 Dynamic Programming(lz)

The optimization problems we have described so far are
static in the sense that we are concerned only with equilibrium
situations where the systems under consideration do not change
with time. The more general and realistic situation that we
need to consider is where there is a dynamical (possibly
probabilistic) description of the system and where we have
imperfect partial observations of the state of the system and
on the basis of these observations we are required to use
feedback control to optimally control the system according
to some pre-assigned performance criterion. The general
method for doing this is dynamic programming and we illustrate
this by considering a deterministic dynamical situation.

Let us suppose that the state of the system evolves

according to a differential equation

— = f(x(t), u(t),t) ; x(0) = x
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where x(t) € R is the state of the system, t -+ u(t)
[0, - R is the control or decision function and we are
required to choose this function, in some appropriate class

to minimize the performance function
T
J(u;x) = _/ L(x(t),u(t))dt
0
A minimizing control is called optimal. We recognize this

as a problem in the Calculus of Variations. The philosophy

of dynamic programming is to embed the problem in a family of

problems:
(4.1) %}% = £f(x(t), u(t),t)
l x(x)=x |,

where the initial time in arbitrary and the initial state

x € R is arbitrary and we choose the control function:

t > u(t) : [s,») IR to minimize
T

(4.2) J(us;s,x) = ./.IAx(t),u(t)t)dt .
S

The idea of dynamic programming is based on the

principle of optimality which states: An optimal policy has

the property that whatever the initial state and the
initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from
the first decision.
Let us apply this to the variational problem at hand.

We denote by
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V(s,x) = Inf J(u;s,x)
u

Let us assume that this minimum is obtained for a control
function t - u*(t) and let x*(t) be the corresponding
solution of the differential equation (4.1). Let us apply
the control u over the interval (s,s + As) and the optimal
control u*(-) for the reamining time. Then by the Principle
of Optimality

s+A
V(s,x) = Min[Jf L(x(t),u(t),t)dt + V(stas,x(s)+ax(s))]
u vYs

Now if A is small, doing a first-order Taylor approximation,

we obtain:

5 . aV oV
Mtn[L(X(S),u(S)S)A+ V(s,x(s))-rszzn<+ e

V(s,x)

and hence when A - 0, we get the partial differential equation

ﬂ —] 1 gy—— S
= MEF[L(X(S),u(S)S)+ = £ (x(s) uls)ys)] -

This partial differential equation is nothing but the
Hamiltonian Jacobi equation of Classical Mechanics. We
however see that by carrying out the minimization within
square brackets we obtain the optimal control function as a
function of the state of the system, which is the idea
behind feedback control.

The philosophy and method of dynamic programming is
extremely general and is probably the only general method for

dealing with dynamic decision problems, even in the presence
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of uncertainties.

5. From Data to Models(ls)

We have discussed in the introduction that one of the
new problems in the theory of dynamical systems with external
variables is the building of mathematical models from observed
data, when there may not be any underlying physical law to
obtain on a priori mathematical structure of the model.

We take a possible logical view of this model-building
exercise to mean the removing of redundancies in the data
and thus to discover regular statistical features. We take
as a measure of determination of the best mathematical the
shortest length with which this data can be described, say

in binary digits. Following Rissanen we call this stochastic

complexity of the model, in a preassigned class of models,

and the criterion for determining the model is called the
Minimum Description Length criterion. These ideas are
inspired by the algorithms notion of information due to
Kolmogoroff and Chaitin.

Mathematical models are also used for prediction purposes
and hence a measure which codifies both the representation
of the data and the accuracy with which prediction can be
made is desirable. This leads to Rissanen's Predictive
Maximum Description Length Principle which we now describe.

The probabilistic models we consider consist of indexed
densities fa(x|u), or ultimately probabilities Pa(x|u),
where Xl’ PO Xn’ also written as xn, denotes a sample of

length n as a response or 'output'" to another "input' sample
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u = un of the same length. Because the input sample adds

nothing new in principle, we drop it to simplify the notations.
We let the lower case letters denote both random variables
and their values, letting the context tell which is meant.
The data items are often numerical, but, of course, not
always. When numerical, each number in the binary notation,
say, has only some number r of fractional digits. Hence,
when the model is a density it assigns a probability to x,
which is obtained by integrating the density over the
n-dimensional cube of edge length 2-T with x as the center.
We denote this induced probability function by Pa(X) without
indicating the implicitly understood precision r, which

we otherwise do not need. The index g may be taken
sufficiently general to allow comparision of nested and
non-nested models alike. However, it is the number of
parameters that turns out to be interesting quantity, and

we take for simplicity the index to be of the form o = (k,8),
where k denotes the number of components in the parameter
vector 6 = (9],...,0k), and k = 0,1,.... The value k = 0
corresponds to the empty parameter ).

We are interested in predicting the sequence X as well
as coding it. The former may be viewed as a special
predictive form of coding, and we gain generality by proceeding
with the coding interpretation. Often, we wish to model the
data such that the individual observations are independent.

Then, instead of coding a sequence the relevant problem is to
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consider coding of the n - element unordered set {Xi}’ where
repeated occurrences of a value are preserved. The required
modification for such a case will be discussed below.
Predictive coding means that we model the conditional

density for the possible values of the 'mext'" observation

X1 thus
(5.1) £ e iR x)
: K, 50t) X1 | ,
where 8(t) = B(x%) is an estimation algorithm for the

parameter ¢ with k components. Such a density allows us to
encode the observation Xi41 to the precision r with the "ideal"

code length - log P )(xt+1|xt), which, as just explained,

k,8(t
is represented by - log fk,@(t)(xt+1lxt)' The word '"ideal"
means that if the possible values of the next observation indeed
are distributed as modeled, then no prefix code exists with

a shorter mean length. Whenever we wish to express the code
length as the number of binary digits in the coding string,

the logarithm is to be taken to the base 2; otherwise, its

base does not matter. By adding all these ideal code

lengths, we get the total code length

n-1

(5.2) L(x|k) = - 168 By, By (%5 ] €70
=0 ’

t
This may be minimized with respect to k to give the estimator
ﬁ(n) = ﬁ(xn), which with the last data point defines the

final estimate é(n) having ﬁ(n) components.
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How should we select the estimate 6(t) for each k? On
first thought one might think of picking it so as to minimize
the ideal code length - log f (x [xt), which amounts to

k, 0" t+1
the maximum likelihood estimator. But, clearly, this cannot
be done, because such a minimization would make @(t) a

function of x which, in turn, would make decoding

t+1?

impossible. Indeed, decoding of X requires the Kknowledge

tAd

of §(t), which therefore must not depend on the value X1
to be decoded. We are faced with the central issue in
inductive inference, and we reason as follows: In the light

of past observations the best single value of the parameter

for encoding the ''mext'" observations, X 410 i=0,1,...,t - 1
t-1 i

is the value that minimizes the sum - 3§ log f (X |x1).
i=0 k,6 Ti+1

This is the maximum likelihood estimate §(t), except that
we add the restriction that the predicted density (5.1) is

positive for every possible value of x which is required

t+1’
to make (5.2) meaningful for all data sequences. We might
then say that this choice for the estimator é(t) is based
upon the hope that the predicted distribution (5.1) for the
new observation Xi41 is 1like it was in the past.

The minimization of (5.2) requires the initial estimate
6(0) for each number of components k. The traditional way
to calculate such is to select more or less arbitrarily a
priori density function for the parameters and then take one
of the maximizing values as the estimate @(O). The predictive

approach, however, offers a different way, and one which

avoids the both conceptually and technically difficult problem
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of specifying the prior densities. Indeed, what (5.2)
really requires is the specification of a density function
f(xl) for the first observation such that it reflects our
prior knowledge about its value. Technically, we may take
this density function to be in the parametric family and
specified by the empty parameter A. Such a distribution is
often much easier to pick than a priori for the parameters.
For example, if the prior knowledge consists of the fact
that the set of possible values of Xq is finite, M, put

- log f(xl) = log M. The procedure to compute (5.2) for
each selected number of parameters k is then as follows: The
first observation Xq is encoded with the ideal code length

- log f(xl), where the density is selected to represent our
knowledge, often ignorance, about the value Xq - We continue
encoding the next observation with this same density until
one parameter can be uniquely fitted, and we increase the
number of fitted parameters in this manner one by one until
the set value k, needed in the evaluation of (5.2), is
reached.

The minimized code length (5.2) does not quite represent
the complexity of the sequence x, because it is conditioned
on the optimizing number of parameters, which clearly is
required in the decoding process. This value can be given in
a coded form as a preamble in the entire code string. Because
the decoder will have to be able to separate the binary
codeword representing k(n) from the subsequent code of the
data without a separating comma, the preamble must be a

so-called prefix code. From information-theoretic considerations
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one can show that encoding the natural number k by a prefix

code requires

(5.3) L¥(k) = log*k + log ¢

binary digits, where log'k = log k + log log k + ..., the

sume including all the positive iterates, and c¢ is the

constant, about 2.865, that makes nZ g~L(n) _ 1. Therefore,

=1

we may define the (semi) predictive complexity of the

sequence X, relative to the selected class of models as

(x) = min { L(x|k) + log’k + c}
k

(5.4) QSP
The word '"semi'" suggests that the optimizing number of
parameters, which we still write as k(n), is not determined

the predictive way. Nevertheless, what is important is that
this complexity defines a proper density, which is proportional

= o= A(X) .
to hsp(x) = 2 . In fact,

o
./. p Bgp(x)dx = QE%Z_L*(k) nz_L(xlk)dx <1,
XE X xeX

where the integrals are taken over all strings of length

n. To avoid misunderstandings we emphasize that the main
effect for penalizing the number of parameters in (5.4) is

by no means due to the second term, log*k. In fact, in
most if not all the cases the minimizations of 5.2, where no
such term appears, and (5.4) produce exactly the same number
of components, which is why we may safely use the same symbol

to denote both.
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We can apply the above discussed inductive reasoning to
obtain a purely predictive complexity. Indeed, let K(t)
denote the minimizing number of parameters in (5.2), where n
is replaced by t. Then we may regard the pair (Q(t),a(t))
to represent our best estimate of the conditional density
for the possible values of the 'mext' observation Xt+1

available at time t. Adding the resulting ideal code lengths

we get the purely predictive complexity as follows

n-1

%

(5.5) tp(x) = 1x%),
£=0

TRy, 60) Fesa

where Q(O) = 0 and 6(0) = )\, representing the empty set of

parameters. In other words, the initial density f(xl) is

determined as described above. The predictive complexity

defines a density hp(x) = Z_QP(X), which is proper in that

it integrates to unity over the sequences of the same length.
We next study to what extent prediction error measures

can be interpreted as code lengths, which at the same time

illustrates how the large classes of models as studied

here are typically generated. Let X = ge(xt) denote a

t+1

parametric predictor of X where the parameter is to be

el ?
determined from the past data. Usually, the predictors are
defined by recurrence equations such as of the ARMA type. One
may view this process as a means of accounting for the
dependencies in the data, which when done well causes the

prediction errors to be nearly independent. Next, let

6t(xt+1’ 2t+1) denote a measure of the prediction error.
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Now define

(5.6) Gy o (%) = BT, g)a BT L)

ft,e

where K(xt,e) denotes that number for which f (y|xt)dy 1

t,0
We then see that

) - logK(x"%,8)

t _ A
- log ft,e (xt+1[x ) = Gt(xt+1’ X1

represents an ideal code length for the observation Xi41
given the past data. With a suitable estimator @(t) = é(xt)
the total ideal code length takes the form

n-1 n-1
(5.7) Lix k) = D 8 (X, 19K yq) - D log K(x%,8(t)).
£=0 £=0

We see that this predictive MDL criterion differs from the
first sum, involving the prediction errors, only to the
extent the second term depends on k. Most of the usual
prediction error measures actually depend only on the
difference et+1 = X

possible values of Xi4q Tange from -« to + «, Then we see

t+1 = Xt+1° and, moreover, often the

that K(xt,g(t)) = K(xt), and the difference between the two

criteria amounts to a constant.
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