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Abstract

We introduce and study a novel semi-random multigraph process, described as follows.
The process starts with an empty graph on n vertices. In every round of the process, one
vertex v of the graph is picked uniformly at random and independently of all previous
rounds. We then choose an additional vertex (according to a strategy of our choice) and
connect it by an edge to v.

For various natural monotone increasing graph properties P, we prove tight upper and
lower bounds on the minimum (extended over the set of all possible strategies) number of
rounds required by the process to obtain, with high probability, a graph that satisfies P.
Along the way, we show that the process is general enough to approximate (using suitable
strategies) several well-studied random graph models.

1 Introduction

In this paper we introduce and analyze a general semi-random multigraph process, arising
from an interplay between a sequence of random choices on the one hand, and a strategy of
our choice (that may also involve randomness) on the other. The process is defined as follows.
We start with an empty graph on the vertex set [n]. In each round, Builder is offered a
vertex v, chosen uniformly at random (u.a.r. for brevity) with replacement from the set [n],
independently of all previous choices. Builder then irrevocably chooses an additional vertex u
and adds the edge uv to his (multi)graph, with the possibility of creating multiple edges and
loops.

The (possibly randomized) algorithm that Builder uses in order to add edges throughout
this process is called the strategy of Builder. As a special case, we also show how the process
can be used to approximate (using suitable strategies) some well-known random graph models
such as the Erdős-Renyi random graph model (see [7]), the random multigraph model (see [10]),
the k-out model (see [22]), and the min-degree process (see [23]).

Given a positive integer n and a monotone increasing graph property P, we consider the
one-player game in which Builder’s goal is to build a multigraph with vertex set [n] satisfying

∗Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv, 6997801, Israel. Email: omrib@mail.tau.ac.il
†Department of Computer Science, Ariel University, Ariel 40700, Israel. Email: danhe@ariel.ac.il. Research

supported by ISF grant 822/18.
‡School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv Uni-

versity, Tel Aviv, 6997801, Israel. Email: galkrone@mail.tau.ac.il.
§Institut für Mathematik, Technische Universität Ilmenau, 98684 Ilmenau, Germany. Email:

olaf.parczyk@tu-ilmenau.de. Research supported by DFG grant PE 2299/1-1.
¶School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv Uni-

versity, Tel Aviv, 6997801, Israel. Email: clarashk@mail.tau.ac.il.
‖Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića
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P as quickly as possible; we denote this game by (P, n). The general problem discussed in this
paper is to determine the typical number of rounds Builder needs in order to construct such
a multigraph under optimal play. We mostly focus on the online version of the game, where
in each round Builder is presented with the next random vertex only after he chose a vertex
in the previous round and added the corresponding edge to his graph, but also consider the
offline version, in which Builder is given the entire sequence of random vertex choices before
the game starts.

A formal treatment. Suppose that Builder follows some fixed strategy S. Let S(n,m)
denote the resulting multigraph if Builder follows S for m rounds. That is, S(n,m) is the
probability space of all multigraphs with vertex set [n] and with m edges, where each of these
edges is chosen as follows. First a vertex v ∈ [n] is chosen u.a.r., and then another vertex u
is chosen, according to S, and the edge uv is added to the graph. Sometimes, when n and S
are clear from the context, we use Gm to denote Builder’s multigraph after m rounds. For the
online version of the game (P, n), for 0 ≤ p ≤ 1 and for a strategy S, we define τp(S) to be the
smallest integer m for which Gm ∼ S(n,m) satisfies P with probability at least p. If no such
integer m exists, then we define τp(S) to be +∞. Furthermore, we define τp(P, n) to be the
minimum of τp(S), taken over all possible strategies S for (P, n). In other words, τp(P, n) can
be seen as the smallest number of rounds Builder needs in order to build a multigraph which
satisfies property P with probability (at least) p, provided he adopts a best possible strategy
for this purpose.

For the offline version of the game (P, n) we define τ ′p(S) and τ ′p(P, n) in an analogous
manner. Note that τ ′p(P, n) ≤ τp(P, n) holds for every P, n and p.

For a given monotone increasing graph property P, our prime objective for the online
version of the game (P, n) is to obtain tight upper bounds on τ1−o(1)(P, n) and tight lower
bounds on τo(1)(P, n), where o(1) is a positive function tending to zero as n tends to infinity.
With some abuse of notation, we say that these bounds are, respectively, upper and lower
bounds on τ(P, n) which hold with high probability (w.h.p. for brevity). Note that in order
to prove that w.h.p. τ(P, n) ≤ m, it suffices to present a strategy S such that w.h.p. Gm ∼
S(n,m) satisfies P. On the other hand, in order to prove that w.h.p. τ(P, n) ≥ m, one has to
show that for any strategy S, w.h.p. the graph Gm ∼ S(n,m) does not satisfy P. Our prime
objective for the offline version of the game is analogous, namely, to obtain tight upper and
lower bounds on τ ′(P, n) which hold with high probability.

In this paper we will establish such lower and upper bounds on τ(P, n) and on τ ′(P, n)
for several natural graph properties P. In the next three subsections we describe the main
contributions of this paper: In Subsection 1.1 we explain how our model is connected to
other random graph models; Subsection 1.2 is dedicated to our results on the offline version;
and finally, in Subsection 1.3 we state tight upper and lower bounds for several properties of
interest in the online version.

1.1 Connections to other random graph models

The first few results we obtain in this paper show that, in some sense, our process generalizes
several well-known random graph models. Namely, given a certain model of random graphs
G, we prove that there exists an appropriate choice of a strategy SG for Builder such that
SG(n,m) can be coupled to G. Such results have independent interest, but will also enable us
to use these well-studied models to draw conclusions about our semi-random graph process.

The random graph and multigraph models. We first look at two classical random graph

processes. The first process {Gm}
(n2)
m=0 is defined as follows. Let G0 be the empty graph with
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vertex set [n] := {1, . . . , n} and, for every m ≥ 0, let Gm+1 = Gm∪e, where e ∈
(

[n]
2

)
\E(Gm) is

chosen u.a.r. It is well-known and easy to see that Gm ∼ G(n,m) for every 0 ≤ m ≤
(
n
2

)
, that

is, this random graph process generates the Erdős-Renyi random graph model [7]. The second
process we consider is the random multigraph process {M(n,m)}m≥0 that was introduced
in [10]. This process is similar to the first one except that, in each round, the edge we add
is chosen u.a.r. from

(
[n]
2

)
, allowing the graph to have multiple edges. For this reason, the

process is also not limited in length. We prove that our semi-random graph process can be
used to generate the second of these processes and to approximate the first.

Proposition 1.1. There exists a strategy SM for Builder such that the probability space
SM (n,m) is the same as the probability space M(n,m).

Furthermore, there exists a strategy SG for Builder such that if m = o(n2), then H ∼
G(n,m) and H ′ ∼ SG(n, (1 + o(1))m) can be coupled in such a way that w.h.p. H ⊆ H ′.
Finally, if m = o(n), then the strategy SG is such that H ∼ G(n,m) and H ′ ∼ SG(n,m) can
be coupled in such a way that w.h.p. H = H ′.

The following two results are immediate corollaries of Proposition 1.1.

Corollary 1.2. Let mP be a positive integer for which w.h.p. H ∼ G(n,mP) satisfies the
monotone increasing graph property P. If mP = o

(
n2
)
, then w.h.p. τ(P, n) ≤ (1 + o(1))mP .

Corollary 1.3. Let mP be a positive integer for which w.h.p. M ∼ M(n,mP) satisfies the
monotone increasing graph property P. Then w.h.p. τ(P, n) ≤ mP .

The k-out model. Given a graph G with minimum degree δ and a positive integer k ≤ δ,
let Gk-out(G) denote the probability space of subgraphs H of G obtained via the following
procedure: each vertex v ∈ V (G) chooses k out-neighbors uniformly at random among its
neighbors in G to create a digraph D; then, H is obtained by ignoring orientations in D
and replacing multiple edges with single edges. We abbreviate Gk-out(Kn) under Gk-out(n).
This model first appeared in “The Scottish Book” [15] and was also introduced by Walkup in
1980 [22], where he proved that for every sufficiently large integer n, a graph H ∼ G2-out(Kn,n)
typically admits a perfect matching.

The following result asserts that a typical G ∼ Gk-out(n) can be approximated using our
semi-random graph process (another related result will be discussed in Subsection 3.2).

Proposition 1.4. Fix a positive integer k. There exists a strategy Sout for Builder such that
H ∼ Gk-out(n) and G ∼ Sout(n, kn+ o(n)) can be coupled in such a way that w.h.p. H ⊆ G.

The following result is an immediate corollary of Proposition 1.4.

Corollary 1.5. Let kP be a positive integer for which w.h.p. H ∼ GkP -out(n) satisfies the
monotone increasing graph property P. Then w.h.p. τ(P, n) ≤ (kP + o(1))n.

Corollary 1.5 has several consequences. For example, it implies an upper bound on the
duration of the online Hamiltonicity game and the perfect matching game. This is further
discussed in Subsection 3.2 and Section 6.

A min-degree process. The graph process {Gmin(n,m)}m≥0, introduced by Wormald in
1995 [23], is defined as follows. Let Gmin(n, 0) be the empty graph with vertex set [n] and,
for every m ≥ 0, let Gmin(n,m + 1) be obtained from Gmin(n,m) by first choosing a vertex
u of minimum degree in Gmin(n,m) u.a.r., and then connecting it by a new edge to a vertex
v ∈ [n] \ {u} chosen u.a.r. among all vertices which are not connected to u by an edge of
Gmin(n,m). For more about this process (and other related processes), see, e.g., [12, 13, 23].

We show that this process can be approximated using the semi-random graph process.
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Proposition 1.6. If m = o
(
n2
)
, then there exists a strategy Smin for Builder such that

H ∼ Gmin(n,m) and G ∼ Smin(n, (1 + o(1))m) can be coupled in such a way that w.h.p.
H ⊆ G.

The next result is an immediate corollary of Proposition 1.6.

Corollary 1.7. Let mP be a positive integer for which w.h.p. H ∼ Gmin(n,mP) satisfies the
monotone increasing graph property P. If mP = o

(
n2
)
, then w.h.p. τ(P, n) ≤ (1 + o(1))mP .

In order to prove Proposition 1.6 we use two other min-degree processes (which we also
approximate using the semi-random graph process), presented in Subsection 3.3.

Corollaries 1.2, 1.3, 1.5 and 1.7 show that building a graph which satisfies some monotone
increasing graph property P in our semi-random graph process is at least as fast as building
such a graph in various other well-known graph processes. As we will see in the next two
subsections (see Theorems 1.8 and 1.10), for some properties the semi-random graph process
is much faster than all of these other processes.

1.2 Offline games

Here we state the upper and lower bounds on τ ′(P, n) that we obtain for various natural
graph properties P. Given a fixed graph H, let PH denote the property of containing H as
a subgraph. Our next result determines the order of magnitude of τ ′(PH , n) for every fixed
graph H.

Theorem 1.8. Let H be a fixed graph and let r = min{∆+(D) : D is an orientation of H}.
Let f, g : N → R be functions such that f(n) tends to zero arbitrarily slowly as n tends
to infinity and g(n) tends to infinity arbitrarily slowly as n tends to infinity. Then w.h.p.
f(n) · n(r−1)/r ≤ τ ′(PH , n) ≤ g(n) · n(r−1)/r.

Given a positive integer k, let Dk denote the property of having minimum degree at least
k. Our next result determines τ ′(Dk, n) asymptotically for every fixed positive integer k.

Theorem 1.9. Let k be a positive integer and let αk be the unique positive root of fk(x) :=∑k−1
i=0 (k − i) xii! − xe

x. Then w.h.p. τ ′(Dk, n) = (αk + o(1))n.

Remark. It is not hard to see that, for every k, indeed fk(x) has exactly one positive root.
Moreover, limk→∞ αk = k/2, that is, in the offline version, when k is sufficiently large, Builder
has a strategy to build a graph with minimum degree k in kn/2 + o(n) rounds.

1.3 Online games

In this subsection we state the upper and lower bounds on τ(P, n) that we obtain for various
natural graph properties P.

Theorem 1.10. Let H be a fixed graph and let d be its degeneracy. Then w.h.p. τ(PH , n) ≤
g(n) · n(d−1)/d, where g : N → R is a function which tends to infinity arbitrarily slowly as n
tends to infinity

It seems plausible that the upper bound stated in Theorem 1.10 is of the correct order of
magnitude for every fixed graph H. At the moment, we can only prove this for cliques.

Theorem 1.11. For a positive integer d, let Pd denote the graph property of containing a
copy of Kd as a subgraph. Then w.h.p. τ(Pd, n) ≥ f(n) · n(d−2)/(d−1) for every d ≥ 2, where
f : N→ R is a function which tends to zero arbitrarily slowly as n tends to infinity
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A consequence of Theorems 1.11 and 1.8 is that, perhaps not surprisingly, τ(Pd, n) �
τ ′(Pd, n) for every d ≥ 3.

Our next result determines τ(Dk, n) asymptotically for every fixed positive integer k.

Theorem 1.12. For every positive integer k, there exists a positive real number hk such that
w.h.p. τ(Dk, n) = (hk + o(1))n.

Note that the real numbers hk appearing in the statement of Theorem 1.12 can be (and
were) calculated using Wormald’s differential equations method [23, 24]. We discuss this in
greater detail in Subsection 5.2.

Given a positive integer k, let Ck denote the property of being k-vertex-connected. Clearly,
τ(Ck, n) ≥ τ(Dk, n) holds for every k. Our next result shows that, like in several other graph
models, Ck and Dk occur roughly at the same time in our semi-random graph process.

Theorem 1.13. Let k ≥ 3 be a fixed integer. Then w.h.p. τ(Ck, n) = (hk + o(1))n.

Note that, trivially, τ(C1, n) = n − 1. On the other hand, the best bounds we currently
have for τ(C2, n) stem from the fact that (h2 + o(1))n = τ(D2, n) ≤ τ(C2, n) ≤ τ(C3, n) =
(h3 + o(1))n.

We summarize the results of the last two subsections in the following table.

Property Online Bounds Offline Bounds

PH ≤ g(n) · n(d−1)/d (1.10)
≥ f(n) · n(r−1)/r

(1.8)≤ g(n) · n(r−1)/r

Pd ≥ f(n) · n(d−2)/(d−1) (1.11)

Dk = (hk + o(1))n (1.12) αk + o(1) (1.9)

Ck = (hk + o(1))n (1.13)

g tends to infinity arbitrarily slowly as n tends to infinity
f tends to zero arbitrarily slowly as n tends to infinity

hk is a known constant

αk is the unique positive root of fk(x) :=
∑k−1

i=0 (k − i) xii! − xe
x

1.4 Organization

The rest of the paper is structured as follows. In Subsection 2.1 we list some, mostly standard,
notation that will be used throughout the paper. In Subsections 2.2 and 2.3 we collect various
useful probabilistic tools that will be used in later sections. In Section 3 we show how to
use our semi-random process to approximate various random graph models; in particular, we
prove Propositions 1.1, 1.4, and 1.6. In Section 4 we study the offline version of the process;
in particular, we prove Theorems 1.8 and 1.9. In Section 5 we study the online version of the
process; in particular, we prove Theorems 1.10, 1.11, 1.12, and 1.13. Finally, Section 6 contains
a discussion of our semi-random graph process, including open problems and suggestions for
future research.

2 Preliminaries

2.1 Notation

Let N denote the set of all non-negative integers and let R denote the set of all real numbers.
For a positive integer n let [n] = {1, . . . , n}.
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In a (multi)graph G = (V,E), V is the set of vertices and E is a multiset of elements from(
V
2

)
. Let dG(v) = |{e ∈ E : v ∈ e}| denote the degree of v in G, that is, the number of edges

incident to v including multiplicities. Let ∆(G) denote the maximum degree of G and δ(G)
the minimum degree of G. For a vertex v ∈ V , let NG(v) = {u ∈ V \ {v} : uv ∈ E} denote
the set of distinct neighbors of the vertex v. Note that for every v ∈ V , |NG(v)| ≤ dG(v).

For a directed graph D and a vertex v ∈ V (D), let d+
D(v) denote the out-degree of v in

D and let ∆+(D) = max{d+
D(v) : v ∈ V (D)} denote the maximum out-degree of D. Often,

if there is no risk of confusion, we abbreviate d+
D(v) under d+(v). A graph G is called k-

degenerate if every subgraph of G has a vertex of degree at most k. Equivalently, a graph G
is k-degenerate if there exists an ordering (v1, . . . , vn) of its vertices such that vi has at most
k neighbors in the set {v1, . . . , vi−1} for every 2 ≤ i ≤ n. The degeneracy of a graph G is the
smallest value of k for which G is k-degenerate.

For a monotone increasing property P and a vertex v ∈ V (Kn), at any point during the
game (P, n), let off(v) denote the number of times v was offered up to that point.

2.2 Probabilistic tools

The following well-known bounds on the tails of the binomial distribution, due to Chernoff
(see, e.g., [1], [11]), will be used extensively.

Lemma 2.1. Let X ∼ Bin(n, p), µ = E(X) and a ≥ 0, then

1. Pr [X ≤ µ− a] ≤ exp
(
− a2

2µ

)
;

2. Pr [X ≥ µ+ a] ≤ exp
(
− a2

2(µ+a
3

)

)
.

The following is a well-known concentration inequality due to Azuma [2].

Theorem 2.2. [11, Theorem 2.27] Suppose that Z1, . . . , Zm are independent random variables
taking their values in the set [n]. Suppose further that X = f(Z1, . . . , Zm), where f : [n]m → R
is a function such that there exist constants c1, . . . , cm for which the following condition holds:

(a) If z, z′ ∈ [n]m differ only in the kth coordinate, then |f(z′)− f(z)| ≤ ck.

Then for every t ≥ 0 we have

Pr(|X − E(X)| ≥ t) ≤ 2 exp

{
− t2

2
∑m

k=1 c
2
k

}
.

The following is a simplified version of a concentration inequality due to Talagrand [21].

Theorem 2.3. [16, page 81] Let X be a non-negative random variable, not identically 0,
which is determined by n independent trials T1, . . . , Tn, and satisfying the following for some
c, r > 0:

(a) changing the outcome of any one trial can affect X by at most c, and

(b) for any s, if X ≥ s, then there is a set of at most rs trials whose outcomes certify that
X ≥ s,

then for any 0 ≤ t ≤ E(X)

Pr
(
|X − E(X)| > t+ 60c

√
rE(X)

)
≤ 4 exp

{
− t2

8c2rE(X)

}
.
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2.3 Balls Into Bins

Consider m balls, placed into n bins labeled 1, 2, . . . , n, where for each ball, we choose a bin
u.a.r. and independently from all previous choices. For every 1 ≤ i ≤ m, let Zi denote the
bin chosen for ball i. Note that Z1, . . . , Zm are independent random variables. For every
non-negative integer k, let Xm

k = Xm
k (n) be the random variable counting the number of bins

containing exactly k balls and let f(n,m, k) = E(Xm
k ). It is evident that

f(n,m, k) = n

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
. (1)

If k = o(min{n,
√
m}), then (1) takes the following simpler form:

f(n,m, k) = (1 + o(1))
e−m/n

k!
· m

k

nk−1
. (2)

The following bound on the maximum number of balls in any single bin is an immediate
consequence of (2).

Corollary 2.4. If m = O(n), then w.h.p. max{k : Xm
k (n) > 0} ≤ log n.

Remark. Much more accurate bounds on max{k : Xm
k (n) > 0} are known for a wider range

of values of m (see, e.g., [17]). However, Corollary 2.4 will suffice for the purposes of this
paper.

We next prove that Xm
k is concentrated around its mean.

Lemma 2.5. For every t ≥ 0

Pr(|Xm
k − f(n,m, k)| ≥ t) ≤ 2 exp{−t2/(8m)}.

Proof. It is evident that Xm
k = f(Z1, . . . , Zm) for some function f : [n]m → R. Moreover,

since moving one ball from one bin to another can change Xm
k by at most 2, it follows that

Property (a) from Theorem 2.2 holds with c1 = . . . = cm = 2. Applying Theorem 2.2 to Xm
k ,

we conclude that
Pr(|Xm

k − f(n,m, k)| ≥ t) ≤ 2 exp{−t2/(8m)}.

Lemma 2.5 can be used to show that Xm
k is concentrated around its mean whenever

f(n,m, k) = ω(
√
m). For smaller values of f(n,m, k), we use the following lemma.

Lemma 2.6. If
∑m

i=k+1X
m
i = 0, then

Pr
(
|Xm

k − f(n,m, k)| > t+ 120
√
kf(n,m, k)

)
≤ 4 exp

{
− t2

32kf(n,m, k)

}
,

for every 0 ≤ t ≤ f(n,m, k).

Proof. It is evident that Xm
k is a non-negative random variable which not identically 0, and

that Xm
k is determined by m independent trials. Moreover, since moving one ball from one

bin to another can change Xm
k by at most 2, it follows that Property (a) from Theorem 2.3

holds with c = 2. Now, if Xm
k ≥ s, then there are s bins, each containing exactly k balls. Since∑m

i=k+1X
m
i = 0 by assumption, it follows that there are ks balls which certify that Xm

k ≥ s.
Therefore, Property (b) from Theorem 2.3 holds with r = k. We can thus apply Theorem 2.3
to deduce that

Pr
(
|Xm

k − f(n,m, k)| > t+ 120
√
kf(n,m, k)

)
≤ 4 exp

{
− t2

32kf(n,m, k)

}
holds for every 0 ≤ t ≤ f(n,m, k) as claimed.
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3 Connections to other random graph models

3.1 Random graph model and random multigraph model

Proof of Proposition 1.1. Builder’s strategies for approximating both processes are similar.
Strategy SM : When offered some vertex v ∈ [n], he chooses a vertex u u.a.r. from [n]\{v}.

Then, Builder adds the edge uv to his graph.
Strategy SG: When offered some vertex v ∈ [n], he chooses a vertex u u.a.r. from [n]\{v}.

Then, Builder adds uv. If uv was added before, then he considers this round as a failure (which
will not be part of the graph he aims to build).

It is easy to see that, following SM , the probability of any edge being chosen in any
round is 2 · 1

n ·
1

(n−1) =
(
n
2

)−1
which is precisely the probability of this edge to be chosen in

{M(n,m)}m≥0. That is, these two processes are identical.
As for the classical random graph process, the two processes G(n,m) and SG(n,m) begin

to differ as soon as the first multiple edge is claimed. We begin by showing that w.h.p. this
does not happen if m = o(n). Indeed, fix m = o(n) and assume we have run SG(n, k) for
some 0 ≤ k < m. The probability that the edge chosen in round k + 1 already exists in
Gk ∼ SG(n, k) is at most k

(
n
2

)−1
. Hence, the probability that Gm contains multiple edges is

at most
∑m−1

i=0 i
(
n
2

)−1
=
(
m
2

)(
n
2

)−1
= o(1).

As m gets larger, some failures are expected, that is, w.h.p. Builder’s (multi)graph will
contain multiple edges. However, their number will be negligible assuming that m = o(n2).
Indeed, by the above calculation, the expected number of failures after m rounds of running
our process according to SG is at most

∑m−1
i=0 i

(
n
2

)−1
=
(
m
2

)(
n
2

)−1
= o(m). Hence, it follows

by Markov’s inequality that w.h.p. there are o(m) failures.

3.2 The k-out model

In this subsection we prove Proposition 1.4 by describing a strategy S for which S(n,m)
can be coupled to the well-studied random graph model Gk-out(G) (where G is a graph on
n vertices, k ≤ δ(G) is a positive integer, and m roughly equals kn). The strategy Sout is
roughly described as follows. Suppose that the set of vertices is [n]. For every 1 ≤ t ≤ n, we
consider k consecutive rounds of the process, and in all such rounds we connect the offered
vertex to t. If at least one of these rounds adds a loop or an edge that already exists, we run
r extra rounds (for a suitable r), and connect all vertices offered in these rounds to t as well.
As it turns out, for every fixed k, the total number of extra rounds required is w.h.p. o(n).

Proof of Proposition 1.4. For positive integers k and r, let G′(k,r)-out(n) be the probability

space of multigraphs H obtained via the following procedure: each vertex i ∈ [n] chooses k
out-neighbors, one by one, u.a.r. with replacement among all the vertices in [n] (including i).
If, during these k choices, i chose itself or the same vertex more than once, then i chooses
r additional out-neighbors, using the same procedure, to create a digraph D. Finally, H
is obtained from D by ignoring orientations (note that H might contain loops and multiple
edges).

Given positive integers k and r, let Sout = Sout(k, r) be the following strategy of Builder.

Strategy Sout: For every i ≥ 1, let ui denote the vertex Builder is offered in the ith round.
In the first k rounds, Builder claims the edges 1u1, . . . , 1uk. If 1 ∈ {u1, . . . , uk} or ui = uj
for some 1 ≤ i < j ≤ k, then in the next r rounds Builder claims the edges 1uk+1, . . . , 1uk+r.
Builder now chooses the “out-neighbors” of t for every 2 ≤ t ≤ n similarly. Namely, assume
that for some 2 ≤ t ≤ n Builder has already chosen the “out-neighbors” of j for every
1 ≤ j ≤ t − 1 (using the process described above for t = 2) and this took him mt−1 rounds.
In rounds mt−1 + 1, . . . ,mt−1 + k, Builder claims the edges tumt−1+1, . . . , tumt−1+k. If t ∈
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{umt−1+1, . . . , umt−1+k} or ui = uj for some mt−1 + 1 ≤ i < j ≤ mt−1 + k, then in the next r
rounds Builder claims the edges tumt−1+k+1, . . . , tumt−1+k+r.

For every 1 ≤ i ≤ n, let Ai denote the multiset of “out-neighbors” Builder chooses for
i when playing according to Sout; we refer to Ai as the ith block. Observe that for every
1 ≤ i ≤ n, we have |Ai| = k (in which case we will say that Ai is small) or |Ai| = k + r (in
which case we will say that Ai is big). Let n′ denote the number of big blocks.

Observation 3.1. The probability space Sout(n, kn+ rn′) is the same as the probability space
G′(k,r)-out(n).

Claim 3.2. Following Sout with r = 2, w.h.p. Ai \ {i} contains at least k different vertices for
every 1 ≤ i ≤ n.

Proof. A block Ai is called bad of type I if some vertex u ∈ [n] appears in Ai at least three
times. Similarly, a block Ai is called bad of type II if there are two distinct vertices u, v ∈ [n],
each appearing twice in Ai. Finally, a block is called bad if it is bad of type I or II. For every
1 ≤ i ≤ n, let pi denote the probability that Ai is bad of type I. Clearly

pi ≤
(
|Ai|

3

)
1

n2
≤ k(k + 1)(k + 2)

6n2

for every 1 ≤ i ≤ n. Therefore the probability that there exists a block which is bad of type I
is at most

n∑
i=1

pi ≤
k(k + 1)(k + 2)

6n
= o(1).

An analogous argument shows that the probability that there exists a block which is bad of
type II is at most

n∑
i=1

(
|Ai|

2

)(
|Ai| − 2

2

)
1

n2
≤ k2(k + 2)2

4n
= o(1).

It follows that w.h.p. there are no bad blocks. We conclude that w.h.p. Ai \ {i} contains at
least k different vertices for every 1 ≤ i ≤ n as claimed.

Claim 3.3. Following Sout (with any fixed k and r), w.h.p. n′ = o(n).

Proof. Our aim is to show that w.h.p. the number of big blocks is negligible compared to n.
A block Ai is called big of type I if some vertex u ∈ [n] appears in Ai at least twice. Similarly,
a block Ai is called big of type II if i ∈ Ai. Observe that a block is big if and only if it is big of
type I or II. For every 1 ≤ i ≤ n, let pi denote the probability that Ai is big of type I. Clearly

pi ≤
(
|Ai|

2

)
1

n
≤ (k + r)2

2n

for every 1 ≤ i ≤ n. Let X1 denote the number of blocks which are big of type I. Then X1 is

stochastically dominated by a random variable Y1 ∼ Bin
(
n, (k+r)2

2n

)
. Therefore, by Lemma 2.1

we have
Pr[X1 ≥ log n] ≤ Pr[Y1 ≥ log n] ≤ e− logn = o(1).

Thus w.h.p. the number of blocks which are big of type I is at most log n.
An analogous argument shows that w.h.p. the number of blocks which are big of type II

is at most log n as well. We conclude that w.h.p. there are o(n) big blocks.

Claim 3.4. Let k be a positive integer. Then H ∼ Gk-out(n) and H ′ ∼ G′(k,2)-out(n) can be

coupled in such a way that w.h.p. H ⊆ H ′.
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Proof. Consider the oriented versions of Gk-out(n) and G′(k,2)-out(n), denoted by ~Gk-out(n) and

by ~G′(k,2)-out(n), respectively. In order to prove the claim it suffices to show that D ∼ ~Gk-out(n)

and D′ ∼ ~G′(k,2)-out(n) can be coupled in such a way that w.h.p. D ⊆ D′.
For every 1 ≤ i ≤ n, let X

(i)
1 , X

(i)
2 , . . . be an infinite sequence of independent random vari-

ables, each having the uniform distribution on [n]. We can generate D ∼ ~Gk-out(n) as follows.

For every vertex 1 ≤ i ≤ n, let `i denote the smallest integer for which
{
X

(i)
1 , X

(i)
2 , . . . , X

(i)
`i

}
contains exactly k different elements from [n] \ {i}. These k elements will be the k out-
neighbors of vertex i. To generate D′ ∼ ~G′(k,2)-out(n), for every vertex 1 ≤ i ≤ n, we

look at
{
X

(i)
1 , X

(i)
2 , . . . , X

(i)
k

}
; if it contains exactly k different elements from [n] \ {i}, then

these k elements will be the k out-neighbors of vertex i. Otherwise, the k + 2 elements of

{X(i)
1 , X

(i)
2 , . . . , X

(i)
k+2} will be the out-neighbors of vertex i (as a directed multigraph).

Since w.h.p. `i ≤ k + 2 holds for every 1 ≤ i ≤ n by Observation 3.1 and by Claim 3.2, it
follows that w.h.p. D ⊆ D′.

Combining Observation 3.1 with Claim 3.4 implies thatH ∼ Gk-out(n) andG ∼ Sout(n, kn+
2n′) can be coupled in such a way that w.h.p. H ⊆ G. Since by Claim 3.3 we have that
n′ = o(n), this concludes the proof of Proposition 1.4.

It was proved by Bohman and Frieze [4] that w.h.p. G ∼ G3-out(n) admits a Hamilton
cycle (and, moreover, 3 is the smallest integer for which this holds). Hence, it readily follows
from Corollary 1.5 that w.h.p. τ(H, n) ≤ (3 + o(1))n, where H is the property of admitting a
Hamilton cycle (we would like to thank Michael Krivelevich for pointing this out). Similarly,
for every fixed positive integer k, we have that w.h.p. τ(Dk, n) ≤ (k + o(1))n, since the
minimum degree of Gk-out(n) is at least k (however, this bound is weaker than the result
stated in Theorem 1.12). In [9], Frieze extended the result of Walkup that we have mentioned
in Subsection 1.1, by showing that w.h.p. G2-out(n) admits a perfect matching, provided that
n is even. Combining this result with Corollary 1.5, implies that w.h.p. τ(PM, n) ≤ (2 +
o(1))n, where PM is the property of admitting a perfect matching. Frieze’s result was further
improved by Karoński, Overman and Pittel [14], who proved that w.h.p. G(1+2e−1)-out(Kn,n)
admits a perfect matching, where G(1+2e−1)-out(Kn,n) is obtained as follows. First, pick a
random element of G1-out(Kn,n) and then give every vertex that has been chosen as a neighbor
by at most one other vertex a ‘second chance’ to pick another random neighbor. In the model
G(1+e−1)-out(Kn,n), where only vertices that were not chosen at all are getting a ‘second chance’,
w.h.p. there is no perfect matching [14]. We will discuss the games (H, n) and (PM, n) further
in Section 6.

In the remainder of this section we briefly explain how to approximate G(1+2e−1)-out(Kn,n)
using our semi-random graph process. For simplicity we will restrict our attention to graphs
with an even number of vertices.

Proposition 3.5. There exists a strategy S ′out for Builder such that H ∼ G(1+2e−1)-out(Kn/2,n/2)
and G ∼ S ′out(n, (1 + 2e−1 + o(1))n) can be coupled in such a way that w.h.p. H ⊆ G.

Proof. Let [n] = X0 ∪ X1 be an arbitrary equipartition; denote X0 =
{
v

(0)
1 , . . . , v

(0)
n/2

}
and

X1 =
{
v

(1)
1 , . . . , v

(1)
n/2

}
. For i ∈ {0, 1} and every positive integer k, let xi(k) denote the number

of times a vertex of Xi was offered during the first k rounds; clearly x0(k) + x1(k) = k. We
are now ready to describe Builder’s strategy.

Strategy S ′out: For every positive integer k, let v
(i)
jk

(where i ∈ {0, 1} and 1 ≤ jk ≤ n/2)
denote the vertex Builder is offered in round k. The strategy is divided into the following two
phases.
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Phase I: Let f0(n) be the number of rounds until min{x0(k), x1(k)} ≥ n/2 first occurs. For
every 1 ≤ k ≤ f0(n) Builder plays the kth round as follows:

(1) If xi(k) ≤ n/2, then he connects v
(i)
jk

to v
(1−i)
xi(k) (that is, he connects the vertex he is offered

to the xi(k)th vertex from the other part).

(2) If xi(k) > n/2 but x1−i(k) < n/2, then he connects v
(i)
jk

to v
(1−i)
1 .

Phase II: At the beginning of this phase, for i ∈ {0, 1}, let Yi be the set of vertices of Xi

that were offered at most once during Phase I. For i ∈ {0, 1} let yi = |Yi| and let Yi ={
u

(i)
1 , . . . , u

(i)
yi

}
. Let y = max{y0, y1}. For i ∈ {0, 1} and every positive integer k, let yi(k)

denote the number of times a vertex of Xi was offered during the first k rounds of Phase II.
Let f1(n) be the number of rounds in Phase II until min{y0(k), y1(k)} ≥ y first occurs. For
every 1 ≤ k ≤ f1(n) Builder plays the kth round of Phase II as follows:

(i) If yi(k) ≤ y, then he connects v
(i)
jk

to u
(1−i)
yi(k) (that is, he connects the vertex he is offered

to the yi(k)th vertex of Y1−i).

(ii) If yi(k) > y but y1−i(k) < y, then he connects v
(i)
jk

to u
(1−i)
1 .

Let G ∼ S ′out(n, f0(n) + f1(n)) and let H be the graph obtained from G by removing all
the edges Builder has claimed in steps (2) and (ii). Then H ∼ G(1+2e−1)-out(Kn/2,n/2).

It remains to prove that w.h.p. f0(n) + f1(n) = (1 + 2e−1 + o(1))n. Indeed, for i ∈
{0, 1}, let Ri denote the number of times a vertex of Xi was offered during the first n +√
n log n rounds of the game. Clearly Ri ∼ Bin(n +

√
n log n, 1/2) and thus Pr(Ri < n/2) ≤

Pr
(
Ri ≤ E(Ri)−

√
n logn

2

)
= o(1) holds by Lemma 2.1. It follows that w.h.p. f0(n) ≤ n +

√
n log n.

Similarly, for i ∈ {0, 1}, let Ni denote the number of vertices of Xi that were offered at
most once during the first f0(n) rounds. For every 1 ≤ j ≤ n/2, let Ij be the indicator random

variable for the event “v
(0)
j was offered at most once during the first f0(n) rounds”. Then, for

every 1 ≤ j ≤ n/2, it holds that

Pr(Ij = 1) = (1− 1/n)f0(n) + f0(n) · 1/n · (1− 1/n)f0(n)−1 = (2 + o(1))e−1,

where the last equality holds by the concentration result we proved for f0(n) (note that, by
definition, f0(n) ≥ n). Therefore

E(N0) =

n/2∑
j=1

E(Ij) = (1 + o(1))e−1n.

Observe that changing the offered vertex in any single round of the process can change N0 by
at most 1. Hence, applying Theorem 2.2, we deduce that

Pr(|N0 − E(N0)| ≥
√
n log n) ≤ 2 exp

{
−n log n

2f0(n)

}
= o(1),

where the last equality holds by the concentration result we proved for f0(n). An analogous
argument shows that E(N1) = (1 + o(1))e−1n and that Pr(|N1 − E(N1)| ≥

√
n log n) = o(1).

Hence, w.h.p. y = (1 + o(1))yi = (1 + o(1))E(Ni) = (1 + o(1))e−1n for i ∈ {0, 1}. Finally, an
analogous argument to the one we used to prove the concentration of Ri, implies that w.h.p.
f1(n) = (2+o(1))y = (2+o(1))e−1n. We conclude that w.h.p. f0(n)+f1(n) = (1+2e−1+o(1))n
as claimed.
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Proposition 3.5 implies the following improved upper bound on the duration of the game
(PM, n).

Corollary 3.6. Assume that w.h.p. H ∼ G(1+2e−1)-out(n) satisfies the monotone increasing
graph property P. Then w.h.p. τ(P, n) ≤ (1+2e−1 +o(1))n. In particular, w.h.p. τ(PM, n) ≤
(1 + 2e−1 + o(1))n.

3.3 The min-degree process

Recall the min-degree graph process. Let Gmin(n, 0) be the empty graph with vertex set [n]
and, for every m ≥ 0, let Gmin(n,m + 1) be obtained from Gmin(n,m) by first choosing a
vertex u of minimum degree in Gmin(n,m) u.a.r., and then connecting it by a new edge to a
vertex v ∈ [n] \ {u} chosen u.a.r. among all vertices which are not connected to u by an edge
of Gmin(n,m).

For proving Proposition 1.6, we will use the following related models {G′min(n,m)}m≥0

and {G′′min(n,m)}m≥0 which are defined as follows. Let {G′min(n,m)}m≥0 be the same as
{Gmin(n,m)}m≥0 except that we allow multiple edges, that is, we choose v u.a.r. among all
vertices of [n] \ {u}. Similarly, {G′′min(n,m)}m≥0 is the same as {Gmin(n,m)}m≥0 except that
we allow loops and multiple edges, that is, we choose v u.a.r. among all vertices of [n]. We first
prove that our semi-random multigraph process can be used to generate {G′′min(n,m)}m≥0.

Proposition 3.7. There exists a strategy Smin for Builder such that the probability space
Smin(n,m) is the same as the probability space G′′min(n,m).

The semi-random process can also be used to approximate {G′min(n,m)}m≥0.

Proposition 3.8. If m = o
(
n2
)
, then the strategy Smin is such that H ∼ G′min(n,m) and

G ∼ Smin(n, (1 + o(1))m) can be coupled in such a way that w.h.p. H ⊆ G.

The following are immediate corollaries of Propositions 3.7 and 3.8.

Corollary 3.9. Let mP be a positive integer for which w.h.p. H ∼ G′′min(n,mP) satisfies the
monotone increasing graph property P. Then w.h.p. τ(P, n) ≤ mP .

Corollary 3.10. Let mP be a positive integer for which w.h.p. H ∼ G′min(n,mP) satisfies the
monotone increasing graph property P. If mP = o

(
n2
)
, then w.h.p. τ(P, n) ≤ (1 + o(1))mP .

Proof of Proposition 3.7. The strategy Smin used by Builder is the following.
Strategy Smin: Whenever Builder is offered some vertex v, he connects it to a vertex u,

chosen u.a.r. among all vertices of minimum degree (observe that this could result in loops
and multiple edges). For this purpose, the degree of v in Builder’s graph is computed before
it is offered.

Fix a non-negative integer r (that may depend on n), an arbitrary multigraph G with
vertex set [n] and r edges, and arbitrary indices 1 ≤ i, j ≤ n. In order to prove that our
process generates {G′′min(n,m)}m≥0, it suffices to prove that the probability of ij being added
to G in round r+ 1 of our process is equal to the probability of ij being added to G in round
r + 1 of {G′′min(n,m)}m≥0.

Indeed, in {G′′min(n,m)} the first vertex of the added edge is picked uniformly at random
from those vertices that have minimum degree before the round, and the second vertex is
picked u.a.r. from all vertices. On the other hand, in our process the offered vertex is picked
u.a.r. from all vertices, while the second vertex is picked u.a.r. from the vertices that had
minimum degree before the round. The statement follows.

We are now ready to prove Proposition 1.6. Note that a similar and, in fact slightly simpler
process, can be used to approximate {G′min(n,m)}m≥0 (thus proving Proposition 3.8).
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Proof of Proposition 1.6. We apply Smin as described in Subsection 1.1. Whenever Builder
claims a loop or a multiple edge, he ignores this edge and considers this round to be a failure.
We continue running this process until there are m edges in Builder’s graph which are not
failures. That is, for every m we will be able to generate Gmin(n,m) by Smin(n,m + f(m)),
where f(m) is the number of failures. We now prove that, if m = o(n2), then w.h.p. f(m) =
o(m). Consider a specific round of our process which starts with a (simple) graph G with
r edges. Let j denote the second vertex we choose in this round. By the description of our
process, we must have dG(j) = δ(G) ≤ 2r/n. Hence, the probability that the first vertex we

choose in this round is j or one of its neighbors in G is at most 1+2r/n
n = 1

n + 2r
n2 . For every

positive integer m, let Ym denote the random variable which counts the number of failures
that occur during the first m rounds of running our process according to Smin. Then

E(Ym) ≤ m

n
+

m∑
r=1

2r

n2
= O(m/n+m2/n2) = o(m),

where the last equality holds by our assumption that m = o(n2). Applying Markov’s inequality
to Ym, we conclude that indeed w.h.p. the number of failures is o(m).

4 Offline games

Theorems 1.8 and 1.9 (as well as a few other results which will be discussed in Section 6) are
consequences of a general result. Before stating it, we need to introduce some notation. For
a directed graph D with vertex set {v1, . . . , vr}, let d+

i denote the out-degree of vi in D for
every 1 ≤ i ≤ r. For a given sequence S = {vi}i∈N, let m(D) denote the smallest integer j
such that in the subsequence S′ = (v1, v2, . . . , vj) there are r distinct vertices u1, . . . , ur ∈ [n]
so that for every 1 ≤ i ≤ r, ui appears at least d+

i times in S′. For an undirected graph H,
let m(H) = min{m(D) : D is an orientation of H}.

Proposition 4.1. Let H be a graph on at most n vertices, let S = {vi}i∈N be a sequence of
vertices from [n], chosen independently and uniformly at random with replacement, and let
PH be the graph property of containing H as a subgraph. Then τ ′(PH , n) = m(H).

Proof of Proposition 4.1. Starting with the lower bound, suppose that Builder has a strategy
S to construct a copy of H in ` rounds. During the game, played according to S, orient each
edge claimed by Builder from the vertex he was offered to the vertex he chose. Fix some
copy of H in G` and let D′ be its orientation according to the aforementioned rule. Then
` ≥ m(D′) ≥ m(H).

As for the upper bound, we will describe a strategy for Builder to construct a copy of H in
m(H) rounds. Fix an arbitrary orientation D of H such that m(D) = m(H). Let {v1, . . . , vr}
denote the vertex set of H and let u1, . . . , ur be vertices in [n] such that off(ui) ≥ d+

D(vi) for
every 1 ≤ i ≤ r. For every 1 ≤ i ≤ r and 1 ≤ j ≤ d+

D(vi), let vi,1, . . . , vi,d+(vi) denote the
out-neighbors of vi in D. Let ϕ be the function which maps vi to ui for every 1 ≤ i ≤ r. In
every round, if there exist 1 ≤ i ≤ r and 1 ≤ j ≤ d+

D(vi) such that the vertex offered in this
round is ui and this is the jth time it is offered, then Builder claims the edge (ui, ϕ(vi,j)),
if it is free. In any other case, he plays arbitrarily. It is evident that, if Builder follows this
strategy, then, after m(H) rounds, Gm[{u1, . . . , ur}] contains a copy of H.

4.1 Offline fixed graphs

Proof of Theorem 1.8. Let r, f , and g be as in the statement of the theorem. It follows by
Proposition 4.1 that m(H) = τ ′(PH , n) and so it remains to prove that w.h.p. f(n) ·n(r−1)/r ≤
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m(H) ≤ g(n) ·n(r−1)/r. Fix some m < f(n) ·n(r−1)/r. The expected number of vertices which
were offered at least r times during the first m rounds is

m∑
k=r

f(n,m, k) =
m∑
k=r

n

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
≤

m∑
k=r

( e
k

)k mk

nk−1

≤ 3
m∑
k=r

(f(n))k · n(k(r−1)/r)−k+1 ≤ 3(f(n))r +
m∑

k=r+1

n1−k/r = o(1). (3)

Since every orientation of H contains a vertex of out-degree at least r, it follows from (3)
and from Markov’s inequality that w.h.p. m(H) > m.

Next, set m = g(n) · n(r−1)/r. Clearly we can assume that g(n) ≤ log n and thus, in
particular, m = o(nr/(r+1)). Hence, a simple calculation which is very similar to the one
in (3), shows that w.h.p. no vertex was offered more than r times during the first m rounds.
On the other hand, the expected number of vertices which were offered exactly r times is

f(n,m, r) = (1 + o(1))
e−m/n

r!
· m

r

nr−1
≥ C(g(n))r = ω(1),

where the first equality holds by (2) from Subsection 2.3 and C is some constant which depends
on r. Therefore, by Lemma 2.6, w.h.p. at least v(H) vertices were offered exactly r times
each. Hence, m(H) ≤ m as claimed.

4.2 Offline Minimum Degree k

Proof of Theorem 1.9. For a positive integer k and a vertex v ∈ V (Kn), at any point during
the game (Dk, n), let offk(v) = min{2off(v), k + off(v)}, where off(v) is the number of times v
was offered up to that point. The idea behind this definition of offk(v) is that when Builder
claims an edge which is incident with v, he advances the sum of degrees in his graph towards
having minimum degree k by 2 if d(v) < k, and by 1 otherwise (in both cases, this is only
if he chooses the other endpoint of this edge wisely). Therefore, this parameter allows us to
track the evolution of Builder’s graph and show that, in the offline version of the game (Dk, n),
Builder can construct a graph with minimum degree k as soon as

∑
v∈V (Kn) offk(v) ≥ kn first

occurs, but not sooner. We begin by stating and proving the following two simple auxiliary
claims.

Claim 4.2. Let Y r
k =

∑k−1
i=0 (k − i)Xr

i , where Xr
i is the random variable which counts the

number of vertices that were offered precisely i times during the first r rounds. Then Y r
k ≤ r

if and only if
∑

v∈V (Kn) offk(v) ≥ kn.

Proof. Our claim readily follows from the following calculation:∑
v∈V (Kn)

offk(v) =
∑

v∈V (Kn)

off(v)≤k

2off(v) +
∑

v∈V (Kn)

off(v)>k

(k + off(v))

= 2

k∑
i=0

iXr
i + k

r∑
i=k+1

Xr
i +

r∑
i=k+1

iXr
i

=

r∑
i=0

iXr
i + k

r∑
i=0

Xr
i −

k−1∑
i=0

(k − i)Xr
i

= r + kn− Y r
k .
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Claim 4.3. For a vertex v ∈ V (Kn), at any point during the process, let dk(v) = min{d(v), k}.
Then

∑
v∈V (Kn) offk(v) ≥

∑
v∈V (Kn) dk(v) holds at any point during the process.

Proof. We will prove the claim by induction on the number of rounds in the process. It is
clearly true at the beginning of the process when

∑
v∈V (Kn) offk(v) =

∑
v∈V (Kn) dk(v) = 0.

Assume that
∑

v∈V (Kn) offk(v) ≥
∑

v∈V (Kn) dk(v) holds immediately after the ith round of the
process, for some i ≥ 0, and consider the (i+1)st round. Let u be the vertex Builder is offered
in the (i+ 1)st round and let v be the vertex he connects to u in this round. If u has degree
at least k in the beginning of the (i + 1)st round, then offk(u) is increased by 1 and offk(x)
is unchanged for every x ∈ V (Kn) \ {u}. Moreover, regardless of Builder’s strategy, dk(v) is
increased by at most 1 and dk(x) is unchanged for every x ∈ V (Kn) \ {v}. Similarly, if u has
degree at most k− 1 in the beginning of the (i+ 1)st round, then offk(u) is increased by 2 and
offk(x) is unchanged for every x ∈ V (Kn) \ {u}. Moreover, regardless of Builder’s strategy,
dk(u) is increased by 1, dk(v) is increased by at most 1, and dk(x) is unchanged for every
x ∈ V (Kn) \ {u, v}. In both cases

∑
v∈V (Kn) offk(v) ≥

∑
v∈V (Kn) dk(v) holds immediately

after the (i+ 1)st round.

Returning to the proof of Theorem 1.9, assume first that
∑

v∈V (Kn) offk(v) < kn. It follows
from Claim 4.3 that

∑
v∈V (Kn) dk(v) ≤

∑
v∈V (Kn) offk(v) < kn. Clearly this means that the

minimum degree in Builder’s graph is strictly less than k.
Assume now that

∑
v∈V (Kn) offk(v) ≥ kn holds after r rounds of the process. We will

show that Builder has a strategy to ensure that the minimum degree in his graph will be
at least k. For every 1 ≤ i ≤ r, let ui denote the vertex which Builder was offered in
the ith round. Immediately after the rth round, for every 0 ≤ j ≤ k − 1 let Lj denote
the set of vertices which were offered exactly j times. We will construct k bipartite graphs
H1 = (A1 ∪ B1, E1), . . . ,Hk = (Ak ∪ Bk, Ek). Moreover, for every 1 ≤ j ≤ k, we will
construct a matching Mj in Hj which saturates Bj . This is done recursively as follows.
A1 = {u1, . . . , ur} (note that A1 is a multiset of size r in which every v ∈ V (Kn) appears
precisely off(v) times), B1 = L0 ∪ . . . ∪ Lk−1 and E1 = {uv : u ∈ A1, v ∈ B1 and u 6= v}.
Note that |B1| =

∑k−1
j=0 |Lj | =

∑k−1
j=0 X

r
j ≤ Y r

k ≤ r = |A1|, where the last inequality holds
by Claim 4.2. Let u ∈ A1 and v ∈ B1 be arbitrary vertices and let 0 ≤ j ≤ k − 1 be the
unique integer such that v ∈ Lj . By definition, if uv /∈ E1, then u = v. Since v ∈ Lj , it
follows that dH1(v) = |A1| − j ≥ |A1| − k. Similarly, dH1(u) ≥ |B1| − 1. Since, moreover,
r � k for sufficiently large n, a straightforward application of Hall’s Theorem shows that H1

has a matching which saturates B1; let M1 be such a matching chosen arbitrarily. Assume
we have already constructed H1, . . . ,Hi and M1, . . . ,Mi for some 1 ≤ i < k. Let Zi denote
the set of vertices of Ai that were matched in Mi and let Ai+1 = Ai \ Zi (again, Ai+1 is a
multiset and so, if some vertex appears `1 times in Ai and `2 in Zi, then it will appear `1− `2
times in Ai+1). Let Bi+1 = L0 ∪ . . . ∪ Lk−i−1. Let F 1

i = {uv ∈ Ei : u ∈ Zi or v ∈ Lk−i}
and let F 2

i = {uv ∈ Ei : ∃u′ ∈ Zi such that u′v ∈ Mi and u′ is a copy of u}. Finally, let
Ei+1 = Ei \ (F 1

i ∪ F 2
i ). It remains to prove that Hi+1 has a matching which saturates Bi+1.

We first claim that |Bi+1| ≤ |Ai+1|. Indeed

|Ai+1| − |Bi+1| = |A1| −
i∑

j=1

|Mj | − |Bi+1| = r −
i+1∑
j=1

|Bj |

= r −
i∑

j=1

j|Lk−j | − (i+ 1)

k∑
j=i+1

|Lk−j | ≥ r −
k−1∑
j=0

(k − j)Xr
j

= r − Y r
k ≥ 0,

where the last inequality holds by Claim 4.2.
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Now, consider arbitrary vertices u ∈ Ai+1 and v ∈ Bi+1. By definition, if uv /∈ Ei+1, then
either u = v, or uv ∈M1 ∪ . . . ∪Mi, or u′v ∈M1 ∪ . . . ∪Mi for some u′ which is a copy of u.
Therefore

dHi+1(v) ≥ |Ai+1| − off(v)− i ·max{off(z) : z ∈ V (Kn)} ≥ |Ai+1| − k log n,

where the last inequality holds by Corollary 2.4. Similarly,

dHi+1(u) ≥ |Bi+1| − 1− off(u) ≥ |Bi+1| − 1− log n.

Since, moreover, |Ai+1| ≥ |Bi+1| � log n for sufficiently large n, it follows by a straightforward
application of Hall’s Theorem that Hi+1 indeed has a matching which saturates Bi+1; let Mi+1

be such a matching chosen arbitrarily. This proves the existence of the matching Mj in Hj

for every 1 ≤ j ≤ k.
We are now ready to describe Builder’s strategy. For every 1 ≤ i ≤ r, Builder plays the

ith round as follows. If ui is unmatched in M1 ∪ . . . ∪Mk, then Builder claims an arbitrary
free edge which is incident to ui. Otherwise, let 1 ≤ j ≤ k be the unique integer such that
ui is matched in Mj . Builder claims the unique edge of Mj which is incident to ui if it is
free, and an arbitrary free edge which is incident to ui otherwise. We claim that, by following
this strategy, after r rounds the minimum degree in Builder’s graph is at least k. Indeed, let
v ∈ V (Kn) be an arbitrary vertex. If off(v) ≥ k, then the degree of v in Builder’s graph is at
least k regardless of his strategy. Assume then that off(v) = ` for some 0 ≤ ` ≤ k − 1. By
Builder’s strategy, v is matched in Mj for every 1 ≤ j ≤ k − `. Hence, its degree in Builder’s
graph is at least `+ (k − `) = k.

Finally, we are in a position to determine τ(Dk, n) asymptotically. It is the smallest
integer r for which

∑
v∈V (Kn) offk(v) ≥ kn. By Claim 4.2 it is then also the smallest r for

which Y r
k ≤ r. It follows by Lemma 2.5 that Y r

k is concentrated around its expectation and
thus (1+o(1))E(Y r

k ) ≤ r. By linearity of expectaion and by (2) the latter inequality translates
to

αn ≥ (1 + o(1))E(Y r
k ) = (1 + o(1))

k−1∑
i=0

(k − i)E(Xr
i ) = (1 + o(1))

k−1∑
i=0

(k − i) e
−α

i!
αin,

where α := r/n. Since fk(x) =
∑k−1

i=0 (k − i) xii! − xe
x is a continuous function, it follows that

α = αk + o(1) where αk is the unique positive root of fk(x), as claimed.

5 Online games

5.1 Online fixed graph game

Proof of Theorem 1.10. We will describe a strategy for Builder to build a copy of H and
will then prove that w.h.p. building such a copy using this strategy will take him at most
g(n) · n(d−1)/d rounds. Let (v1, . . . , vr) be a degeneracy ordering of the vertices of H, that is,
an ordering such that vk has at most d neighbors in {v1, . . . , vk−1} for every 2 ≤ k ≤ r. We
refer to these neighbors as the back neighbors of vk. We will define a mapping ϕ : V (H)→ [n]
such that Gmk

[{ϕ(v1), . . . , ϕ(vk)}] contains a copy of H[{v1, . . . , vk}] for every 1 ≤ k ≤ r,
where mk is the number of the round in which this is achieved for the first time. We will do
so inductively as follows. Let u1 be the vertex Builder is offered in the first round of the game
and let ϕ(v1) = u1. Assume now that for some 1 ≤ k ≤ r − 1, Builder has already built a
graph Gmk

and defined ϕ(vi) for every 1 ≤ i ≤ k such that Gmk
[{ϕ(v1), . . . , ϕ(vk)}] contains a

copy of H[{v1, . . . , vk}]. Builder would now wish to define ϕ(vk+1); he does so as follows. Let
vi1 , . . . , vi` be the back neighbors of vk+1 in H. If ` = 0, then Builder defines ϕ(vk+1) = u for
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an arbitrary vertex u ∈ [n] \ {ϕ(v1), . . . , ϕ(vk)} and mk+1 = mk. Assume then that 1 ≤ ` ≤ d
and observe that ϕ(vij ) was already defined for every 1 ≤ j ≤ d. For every i > mk, let ui
denote the vertex Builder is offered in the ith round. If ui ∈ {ϕ(v1), . . . , ϕ(vk)}, then Builder
plays arbitrarily. Otherwise, let t denote the total number of times ui was offered in rounds
mk + 1, . . . , i. Builder claims the edge uiϕ(vit). If, moreover, t = `, then Builder defines
ϕ(vk+1) = ui and mk+1 = i (in particular, 1 ≤ t ≤ ` and so this strategy is well-defined).

Now, observe that mk+1 − mk is the smallest number of rounds until some ui ∈ [n] \
{ϕ(v1), . . . , ϕ(vk)} is offered ` times (counting offers in rounds mk+1, . . . ,mk+1). By Builder’s
strategy, no vertex is offered more than ` times during those mk+1 −mk rounds and so the
conditions of Lemma 2.6 are satisfied. Since, moreover, r is a constant and ` ≤ d, it follows
from Lemma 2.6 that w.h.p. mk+1 −mk < g(n)/r · n(d−1)/d. This is true for every 1 ≤ k < r
(and m1 = 1) and so w.h.p. the entire game lasts at most g(n) ·n(d−1)/d rounds as claimed.

Proof of Theorem 1.11. The assertion of the theorem trivially holds for d = 2. Hence, for the
remainder of the proof we may assume that d ≥ 3. The main ingredient of the proof is the
following claim which upper bounds the number of copies of K`, for some integer ` ≥ 3, in
Builder’s graph up to some specific round.

Claim 5.1. For positive integers ` and m = m(n) and a strategy S of Builder, let ZSm,` denote
the number of copies of K` in Gm when Builder is playing according to the strategy S. Then
w.h.p. ZSm,` ≤ a(n) · m`−1

n`−2 , for any function a(n) which tends to infinity as n tends to infinity.

Proof. For positive integers ` ≥ 3 and m = m(n) and a strategy S, let Y Sm,` denote the number
of copies of K` that Builder creates in the mth round when he plays according to S. Note
that ZSm,` =

∑m
i=1 Y

S
i,`.

Let S be an arbitrary strategy of Builder. We prove by induction on ` that E(Y Sm,`) ≤(
(`−1)m

n

)`−2
. First we introduce some useful notation. For an integer m, let G′ be a copy of

K` in Gm. For v ∈ V (G′) ⊆ V (Gm), we denote by (K`−1, v)G′ the ordered pair consisting of
the copy of K`−1 in G′ that does not contain v, and the remaining vertex v. For the induction
basis ` = 3, it is evident that in order to create a copy of K3 in some round r, we must touch
a vertex v that belongs to a copy G′ of K2. If v was offered to Builder in round r, then the
pair (K1, v)G′ will lie in at most one copy of K3 after round r (it is impossible to create two
different copies of K3, both containing G′, in one round). The number of such potential pairs
after m rounds is at most 2m and the probability that a specific vertex v will be offered in
round r is 1

n . Therefore, E(Y Sm,3) ≤ 2m · 1
n = 2m

n . Now, for the induction step, assume that

E(Y Sm,`) ≤
(

(`−1)m
n

)`−2
. In order to create a copy of K`+1, Builder must touch a vertex v

that belongs to a copy G′ of K`. If v was offered to Builder in some round r, then the pair
(K`−1, v)G′ will lie in at most one copy of K`+1 immediately after the rth round. Since for each
copy G′ of K` there are ` ordered pairs (K`−1, v)G′ , the expected number of such potential
pairs after m − 1 rounds is ` · E(ZSm−1,`) and the probability that a specific vertex v will be

offered in round r is 1
n . Therefore,

E(Y Sm,`+1) ≤ ` · E(ZSm,`) ·
1

n
=
`

n

m∑
i=1

E(Y Si,`)

≤ `

n

m∑
i=1

(`− 1)`−2

(
i

n

)`−2

=
`(`− 1)`−2

n`−1

m∑
i=1

i`−2

≤ `(`− 1)`−2

n`−1
·m`−1 ≤ ``−1

n`−1
·m`−1.
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This concludes the induction, from which it follows that

E(ZSm,`) =

m∑
i=1

E(Y Si,`) ≤ (`− 1)`−2 · m
`−1

n`−2
. (4)

Now, let Smop be a strategy for Builder which maximizes the number of copies of K` in Gm.
Let Zopm,` be the number of copies of K` in Gm when Builder plays according to Smop. It follows

by (4) that E(Zopm,`) ≤ C · m`−1

n`−2 , where C = C(`) is a constant. By Markov’s inequality we
have that

lim
n→∞

Pr

[
Zopm,` > a(n) · m

`−1

n`−2

]
= 0

for any function a(n)→∞. Since

Pr

[
ZSm,` > a(n) · m

`−1

n`−2

]
≤ Pr

[
Zopm,` > a(n) · m

`−1

n`−2

]
holds for every strategy S, our claim follows.

Now, let m = (a(n))−1n(d−2)/(d−1). Then, by Claim 5.1, w.h.p. ZSm,d < 1 for any strategy

S. That is, if m ≤ (a(n))−1n(d−2)/(d−1), then w.h.p. Gm does not contain a copy of Kd.

5.2 Online Minimum Degree k

Our main goal in this subsection is to prove Theorem 1.12. In fact, we will study three variants
of the minimum degree k game: (Dk, n), where loops and multiple edges are not counted when
calculating the degree of each vertex; (D′k, n), where multiple edges are counted but loops
are not; and (D′′k , n), where all edges, including multiple edges and loops, are counted (every
loop increases the degree of the vertex by two). (D′k, n) will be useful in the next subsection,
concerned with k-connectivity.

Recall the strategy Smin presented in Subsection 3.3. We show that a simple variant of this
strategy, denoted S†min, is optimal for the game (D′′k , n). Utilizing Proposition 1.6, we conclude
that Smin is almost optimal for all of these three games in some precise sense.

Before stating our results, we need the following additional notation and terminology. For
two random variables X and Y , taking values in N, an integer ` ≥ 0, and a real number ε ≥ 0,
we say that X (`, ε)-dominates Y if Pr(X ≤ t+ `) ≥ Pr(Y ≤ t)− ε for any t. In our context,
we identify each strategy S for a given game G = (P, n) with its hitting time HG(S) for this
game, i.e., the random variable representing the number of rounds required for S to win G.
We say that S (`, ε)-dominates another strategy S ′ if HG(S) (`, ε)-dominates HG(S ′); in the
special case ` = ε = 0, we simply say that S dominates S ′. S is (`, ε)-optimal for a given game
if it (`, ε)-dominates any other strategy S ′ for this game; if S is (0, 0)-optimal, we simply say
that it is optimal.

Theorem 5.2. For every fixed positive integer k, the strategy Smin is (o(n), o(1))-optimal for
all three games (Dk, n), (D′k, n), and (D′′k , n).

Consider the following strategy, denoted S†min, which is a slight variant of Smin. In any
given round, let G denote Builder’s graph immediately before this round starts. Once a vertex
v is offered to Builder, we increase its degree by 1, and only then choose a vertex u u.a.r.
among all vertices of minimum degree at this point. Hence, unlike in Smin, it is possible that
v was a vertex of minimum degree before it was offered but is not after we increase its degree
by 1, and so will surely not be chosen as the second vertex in this round.

The main technical ingredient in the proof of Theorem 5.2 is the following lemma.
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Lemma 5.3. S†min is optimal for (D′′k , n).

The next lemma compares the performance of Smin and S†min, asserting that Smin is indeed
essentially optimal.

Lemma 5.4. Smin (o(n), o(1))-dominates S†min for (D′′k , n).

Theorem 5.2 is an immediate corollary of Lemmas 5.3 and 5.4, and Propositions 3.7 and 1.6.
Before proceeding to the proofs of these lemmas, we briefly discuss previous results on the
behavior of Smin. Wormald showed, using his seminal differential equations method [23, 24],
that for every positive integer k there exists a constant hk such that w.h.p. the min-degree
process reaches minimum degree k after hkn+o(n) rounds. This was explicitly shown in [23, 24]
for {G′min(n,m)}m≥0 (corresponding to the game (D′k, n)), but it is easy to show that it still
holds for {Gmin(n,m)}m≥0 and {G′′min(n,m)}m≥0 as well. Theorem 1.12 is thus an immediate
corollary of Theorem 5.2. In fact, we obtain the following more general result as implied by
Propositions 1.6 and 3.7.

Corollary 5.5. Let k be a positive integer. Then w.h.p. τ(Dk, n) = (hk + o(1))n. The same
is true for τ(D′k, n) and τ(D′′k , n).

The first few hk’s were explicitly calculated in [12]; it was shown there that

h1 = ln 2 ≈ 0.6931

h2 = ln 2 + ln(1 + ln 2) ≈ 1.2197

h3 = ln((ln 2)2 + 2(1 + ln 2)(1 + ln(1 + ln 2))) ≈ 1.7316

Calculating hk for k > 3 can be carried out in a straightforward manner, by iteratively solving
a simple differential equation with suitable initial conditions. For more details, see Subsections
3.1 and 3.2 of [24].

We now proceed to the proofs of Lemmas 5.3 and 5.4.

Proof of Lemma 5.3. For any integer i ≥ 0, a strategy S of Builder is called i-minimizing if
in each of the first i rounds, Builder chooses to connect the vertex he is offered to a vertex
of minimum degree. S is said to be minimizing if it is i-minimizing for every i. In order to
prove the lemma, it suffices to show that any i-minimizing strategy for (D′′k , n) is dominated
by some (i + 1)-minimizing strategy. Indeed, seeing that domination is a transitive relation
and that, trivially, any strategy is 0-minimizing, the last statement implies that any strategy
is dominated by a minimizing strategy. Moreover, any two minimizing strategies S and S ′
are clearly equivalent (in the sense that S dominates S ′ and S ′ dominates S). Since S†min is a
minimizing strategy, we conclude that it is optimal.

Let S be an i-minimizing strategy, and consider the following (i+ 1)-minimizing strategy
S ′; S ′ is identical to S in the first i rounds. Conditioned on the degree sequence of Builder’s
graph immediately after the first i rounds are completed and the vertex of round i + 1, say
vi+1, is offered, for any vertex v of the graph let qv denote the probability that, when playing
according to S, Builder chooses v as the second vertex in round i+ 1. At this point, let w be
an arbitrary vertex of minimum degree and let u be a vertex chosen randomly according to
the distribution induced by S, that is, for any vertex v, the probability that u = v is qv. In
round i+ 1, when playing according to S ′, Builder claims an edge connecting w and vi+1.

In the remainder of the game S ′ instructs Builder to play as follows. As long as dG(w) ≤
dG(u) (where G denotes Builder’s graph at any point during the game), S ′ imitates the be-
havior of S under the assumption that the second vertex chosen in round i + 1 was u (and
not w, as was actually instructed by S ′). If, at some point, the degree of w in Builder’s graph
exceeds that of u, then S ′ “switches roles” between these two vertices, that is, from now on,
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whenever S dictates that the offered vertex should be connected to u, S ′ dictates that it should
be connected to w instead, and vice versa. The behavior of S ′ with respect to other vertices
is identical to that of S.

Clearly, S ′ is (i+1)-minimizing, and it is not hard to see that it dominates S. Indeed, let E
denote the event that a role switch occurs (between some two vertices u and w as described) at
some point when following the strategy S ′. Conditioning on E, the distribution of the hitting
time of S is identical to that of S ′. On the other hand, conditioning on the complement of E,
at any point during the game, and for any non-negative integer `, the probability that both
vertices u and w have degree at least ` when playing according to S is at most the probability
that both vertices have degree at least ` when playing according to S ′. In fact, if u 6= w, then
after round i+ 1 the probability that min{dG(u), dG(w)} ≥ ` when playing according to S is
equal to the probability that min{dG(u), dG(w)} ≥ `+1 when playing according to S ′. Hence,
S ′ dominates S in this case as well.

In the remainder of this subsection, a graph H with vertex set {u1, . . . , ut} is said to
be degree-dominated by a graph G with vertex set {v1, . . . , vt} if there exists a permutation
π : [t]→ [t] such that dH(ui) ≤ dG(vπ(i)) for every 1 ≤ i ≤ t. For the proof of Lemma 5.4, we
will need the following fact, which can be straightforwardly proved by induction.

Observation 5.6. Suppose that H and G are graphs on the same number of vertices, such
that G degree-dominates H. Let XH (respectively, XG) be the random variable representing the
number of rounds required for Builder to reach minimum degree k when following the strategy
Smin, starting from the graph H (respectively, G). Then XG dominates XH . The same holds

for S†min.

Proof of Lemma 5.4. A round of the game played according to Smin is considered to be a
failure if both of the following conditions are met.

(a) The vertex v offered in this round is of minimum degree.

(b) Smin instructs Builder to connect v to itself in this round.

We first show that the number of failures when playing according to Smin is o(n) w.h.p., and
then we show how this implies the statement of the lemma.

Let N denote the number of vertices of minimum degree in Builder’s graph immediately
before a given round begins. The probability that both (a) and (b) above hold is N

n ·
1
N = 1

n .
Since Smin always reaches minimum degree k after at most kn rounds, the expected number
of failures is bounded by kn/n = k, and thus, by Markov’s inequality, the total number of
failures is w.h.p. o(n).

Suppose now that we play a round of Smin and of S†min in parallel, starting from the
same graph G, and using the same source of randomness. Let v be the vertex offered in this
round. Observe that, conditioning on the event that this round is not a failure for Smin,
the distribution on the second vertex chosen in this round according to Smin is identical to
that of S†min. On the other hand, suppose that this round is a failure, and one runs another
round of Smin, increasing by one the degree of some vertex u 6= v that was a minimum-degree
vertex of G. The resulting graph, obtained by running two rounds of Smin starting from
G, degree-dominates any graph generated by one round of S†min starting from G. It thus
follows by Observation 5.6 and the fact that w.h.p. the number of failures is o(n), that Smin

(o(n), o(1))-dominates S†min.

5.3 Online k-connectivity

In this subsection we prove Theorem 1.13. Note that the lower bound is an immediate corol-
lary of Theorem 1.12. For the upper bound, we utilize a slightly modified min-degree process.
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Consider a multigraph process {G∗min(n,m)}m≥0, which is defined exactly like the process
{G′min(n,m)}m≥0 except that, instead of choosing the first vertex among all vertices of mini-
mum degree, we choose it among all vertices with the smallest number of distinct neighbors.
These two processes are identical as long as there are no multiple edges. Once there are mul-
tiple edges, the neighborhood of an endpoint of such edges could have minimum size while
the degree of that endpoint could be strictly larger than the minimum degree. Consider the
strategy S∗min defined as follows.

Strategy S∗min: Whenever Builder is offered some vertex v, he connects it to a vertex u,
chosen u.a.r. among all vertices of [n]\{v} that have the smallest number of distinct neighbors.

The following result is analogous to Proposition 3.8, and its proof (which is omitted) is
essentially the same as that of Proposition 3.8.

Proposition 5.7. If m = o
(
n2
)
, then the strategy S∗min is such that H ∼ G∗min(n,m) and

G ∼ S∗min(n, (1 + o(1))m) can be coupled in such a way that w.h.p. H ⊆ G.

For every positive integer k, let H∗k = H∗k(n) denote the hitting time for the property that
every vertex of G∗min(n,m) has at least k distinct neighbors, i.e.

H∗k = min{m : |N(u)| ≥ k for every u ∈ V (G∗min(n,m))}

Furthermore, for every positive integer k, let Hk denote the hitting time for the property that
the minimum degree of Gmin(n,m) is k, i.e.

Hk = min{m : δ(Gmin(n,m)) ≥ k}.

We stress that Gmin refers here to the min-degree process that does not allow multiple edges
(as opposed to G′min) or loops. Recall the notion of (`, ε)-domination from Subsection 5.2.

Lemma 5.8. Fix a positive integer k. Then H∗k (log n, o(1))-dominates Hk.

Remark. The log n term was chosen arbitrarily; it can be replaced with any function that
tends to infinity with n.

Proof. Consider a round of G∗min to be a failure if a multiple edge is chosen in this round. For
any multigraph G, let simp(G) denote the simple graph H so that uv is an edge of H if and
only if uv appears at least once in G. It suffices to prove the following two statements.

1. For any multigraph G, the following two edge distributions are identical.

(a) The edge distribution of a single round of Gmin starting from simp(G).

(b) The edge distribution of a single round of G∗min starting from G, conditioned on the
event that this round is not a failure.

2. For any fixed k, the number of failures of G∗min until the point that any vertex in the
generated graph has at least k distinct neighbors is w.h.p. at most log n.

We start by proving the first statement. Note that a vertex v has minimum degree in simp(G)
if and only if it has a minimum number of distinct neighbors in G; let Vmin denote the set
of all such vertices. Let N = |Vmin| and let δ denote the degree of the vertices of Vmin in
simp(G). The probability of an edge uv to be chosen according to each of the distributions is
|{u, v} ∩ Vmin|/N(n− 1− δ), so the distributions are indeed identical.

To prove the second statement, observe that the probability for a multiple edge to be
chosen in a single round of G∗min is bounded from above by k/(n − 1), and thus the total
expected number of failure rounds in G∗min(n,m) is O(k2) as long as m = O(kn). Putting, say,
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m = nk + log n, we deduce by Markov’s inequality that w.h.p. (for fixed k) the total number
of failures in G∗min(n,m) is bounded from above by log n. Conditioning on this event, we know
that the generated graph had at least m − log n = kn successful rounds among its first m
rounds. Hence, it must already hold that any vertex has at least k distinct neighbors at this
point, concluding the proof.

Building on Proposition 5.7 and Lemma 5.8, Theorem 1.13 is now an immediate corollary
of the following result which strengthens a result from [12]; our proof builds on their method.

Theorem 5.9. Let k ≥ 3 be a fixed integer. Then w.h.p. G∗min(n, αn) is k-connected if α > hk
and is not k-connected if α < hk.

Remark. It follows from the results in [12] that k cannot be taken to be smaller than 3 in
Theorem 5.9.

In the proof of Theorem 5.9 we will make use of the following auxiliary lemma.

Lemma 5.10. Let k be a positive integer and let G ∼ G∗min(n, αn), where α ≤ k. Then w.h.p.
eG(A) ≤ |A| for every set A ⊆ [n] of size 1 ≤ |A| ≤ 101k2.

Proof. Fix some integer k ≥ 1 and let M = 200k2. For every 1 ≤ t ≤M , a round of the process
is said to be of type t if at the start of that round, the number of vertices whose neighborhood
is of minimum size is larger than n(t−1)/M and is at most nt/M . Since α ≤ k, it follows that
δ(G) ≤ 2k holds throughout the process. Moreover, it follows by the description of the process
that in every round we increase the number of neighbors of some vertex whose neighborhood
is of minimum size or we choose a multiple edge. Since, by the proof of Lemma 5.8, w.h.p.
there are at most log n rounds in which we choose a multiple edge, it follows that w.h.p.,
throughout the process there are at most 2knt/M + log n ≤ 3knt/M rounds of type t for every
1 ≤ t ≤M .

Fix an integer 1 ≤ i ≤ 101k2 and a set A ⊆ [n] of size i. We would like to bound from

above the probability that eG(A) ≥ i + 1. Let Si =
{

(s1, . . . , sM ) ∈ NM :
∑M

t=1 st = i+ 1
}

.

For every s̄ = (s1, . . . , sM ) ∈ Si, let pi,s̄ denote the probability that, for every 1 ≤ t ≤ M , at
least st edges with both endpoints in A were claimed during rounds of type t. Then

Pr(eG(A) ≥ i+ 1) ≤
∑
s̄∈Si

pi,s̄

≤
∑

(s1,...,sM )∈Si

M∏
t=1

(
3knt/M

st

)(
i

n(t−1)/M

)st ( i
n

)st
≤

∑
(s1,...,sM )∈Si

ckn
∑M

t=1(tst/M−(t−1)st/M−st) = c′kn
(i+1)(1/M−1),

where ck and c′k are appropriate constants, depending on k but not on n.
A union bound over all relevant choices of A then shows that the probability that there

exists a set A ⊆ [n] such that |A| = i for some 1 ≤ i ≤ 101k2 and eG(A) ≥ i+ 1 is at most

101k2∑
i=1

(
n

i

)
c′kn

(i+1)(1/M−1) ≤
101k2∑
i=1

c′kn
i+(i+1)(1/M−1) ≤ c′k · 101k2 · n−1 · n(101k2+1)/(200k2) = o(1),

where the last inequality holds since M = 200k2 and i ≤ 101k2.

We are now in a position to prove Theorem 5.9.
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Proof. If G is k-connected, then, in particular, every vertex of G has at least k distinct
neighbors. It follows by the definitions of H∗k and hk that w.h.p. G∗min(n, αn) is not k-
connected if α < hk. Assume then that α > hk. Since k-connectivity is a monotone increasing
property and hk < k, we can assume that α ≤ k. In order to prove that G ∼ G∗min(n, αn) is
w.h.p. k-connected, we will show that the probability that there exist pairwise disjoint sets
S,R, and T such that [n] = S ∪R∪ T , |R| = k− 1, 1 ≤ |S| ≤ |T |, and EG(S, T ) = ∅, tends to
0 as n tends to infinity. Since, by the definitions of H∗k and hk, w.h.p. every vertex of G has
at least k distinct neighbors, we can restrict our attention to the case |S| ≥ 2.

Fix a triple S,R, T as above, where |S| = s for some 2 ≤ s ≤ 100k2. Let A = S ∪ R and
observe that |A| = s+k− 1 ≤ 101k2. It follows by Lemma 5.10 that w.h.p. eG(A) ≤ s+k− 1
and eG(S) ≤ s. Since, moreover, w.h.p. every vertex of G has at least k distinct neighbors, if
EG(S, T ) = ∅, then eG(A) ≥ ks−s. Since k ≥ 3 and s ≥ 2, this is a contradiction unless k = 3
and s = 2. In the latter case |A| = 4 and eG(A) ≥ 5 which again contradicts Lemma 5.10.

Now, fix a triple S,R, T as above, where 100k2 ≤ |S| ≤ (n − k + 1)/2. A round of the
process is said to be bad if, in that round, the first vertex is chosen from R, good if it is chosen
from T , and great if it is chosen from S. It suffices to prove that the probability that no edges
between S and T were claimed in any round which is not bad is o(1). Since α ≤ k, it follows
that δ(G) ≤ 2k holds throughout the process. Since, moreover, the first vertex chosen in every
round has the least number of distinct neighbors and there are at most two edges between
any pair of vertices by Lemma 5.10, there can be at most 2 · 2k|R| ≤ 4k2 bad rounds. Let
XS be the random variable which counts the number of great rounds. Since δ(G) ≥ k holds
w.h.p. at the end of the process, and there are at most 4k2 bad rounds, if EG(S, T ) = ∅, then
XS ≥ k|S|/2− 2k2. Therefore, the probability that S,R, T as above exist is at most

(n−k+1)/2∑
s=100k2

αn∑
i=ks/2−2k2

(
n

s

)(
n

k − 1

)
Pr(XS = i)Pr(EG(S, T ) = ∅ | XS = i)

≤ nk−1

(n−k+1)/2∑
s=100k2

αn∑
i=ks/2−2k2

(
n

s

)(
s+ k − 2

n− 1

)i(n− s− 1

n− 1

)αn−i−4k2

(5)

It follows from Stirling’s formula that
(
n
s

)
≤ nn

ss(n−s)(n−s) for every n and s. Hence, a

straightforward calculation shows that(
n

s

)(
s+ k − 2

n− 1

)s(n− s− 1

n− 1

)αn−s−4k2

≤ ek
(

1− s

n

)(α−1)n−4k2

< e−s/2,

where the last inequality holds since hk ≥ h3 > 1.7 holds for every k ≥ 3. Therefore (5) can
be bounded from above by

nk−1

(n−k+1)/2∑
s=100k2

αn−s∑
i=ks/2−2k2−s

(
s+ k − 2

n− s− 1

)i
e−s/2

≤ nk−1
log2 n∑
s=100k2

αn−s∑
i=ks/2−2k2−s

(
s+ k − 2

n− s− 1

)i
+ αnk

(n−k+1)/2∑
s=log2 n

e−s/2

≤ αnk log2 n

(
2 log2 n

n

)48k2

+ αnk+1e− log2 n/2 = o(1),

where the last inequality holds for every k ≥ 3.
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6 Concluding remarks and open problems

In this paper we have initiated the research on the semi-random graph process, leading to
many intriguing open questions. We mention just a few of the possible directions for future
research.

Online fixed graph. Let H be an arbitrary fixed graph and let d be the degeneracy of
H. It is proved in Theorem 1.10 that w.h.p. τ(PH , n) = O(n(d−1)/d). For the special case
H = Kd+1, a lower bound of the same order of magnitude is proved in Theorem 1.11. We
believe that such a bound holds for any graph H.

Conjecture 6.1. Let H be an arbitrary fixed graph and let d be the degeneracy of H. Then
w.h.p. τ(PH , n) = Θ(n(d−1)/d).

Note that the assertion of Conjecture 6.1 is trivially true for d = 1, that is, when H is a
forest.

Perfect matching. Recall that PM denotes the property of containing a perfect matching.
It follows from our results that w.h.p.

(ln 2 + o(1))n = τ ′(PM, n) ≤ τ(PM, n) ≤ (1 + 2/e+ o(1))n, (6)

where the last inequality holds by Corollary 3.6. On the other hand, the equality is a simple
corollary of Proposition 4.1. Indeed, let H be a matching consisting of n/2 edges (for con-
venience, we will assume that n is even). Observe that in every orientation of H there are
precisely n/2 vertices of out-degree 1 and precisely n/2 vertices of out-degree 0. Therefore,
using the notation of Subsection 2.3, we have τ ′(PM, n) = m(H) = min{m : Xm

0 ≤ n/2}.
The required equality now follows by (2) and since Xm

0 is concentrated around its mean by
Lemma 2.5. We believe that neither the lower nor the upper bound in (6) is tight. It would
be interesting to close or at least reduce the gap between these two bounds.

Hamilton cycle. Recall thatH denotes the property of admitting a Hamilton cycle. Similarly
to the case of a perfect matching, it is not hard to show that w.h.p.

τ ′(H, n) = (α+ o(1))n, (7)

where α = 1.14619... is the unique positive real number satisfying 1 = (2 + α)e−α (it is
straightforward to verify that there exists a unique positive real number which satisfies this
equation). The equality (7) is a simple corollary of Proposition 4.1. Indeed, let H be a cycle of
length n. Observe that in every orientation of H, there are r vertices of out-degree 1, (n−r)/2
vertices of out-degree 2, and (n − r)/2 vertices of out-degree 0, for some integer 0 ≤ r ≤ n.
Therefore, a necessary and sufficient condition for Builder to construct a Hamilton cycle is∑n

k=2X
m
k ≥ (n−Xm

1 )/2 which is equivalent to n− 2Xm
0 −Xm

1 ≥ 0. Setting m = (c+ o(1))n
and using (2) and Lemma 2.5, we conclude that w.h.p. the aforementioned necessary and
sufficient condition holds for c which satisfies 0 = (1− 2e−c − ce−c)n as required.

For the online Hamilton cycle game we have the following bounds (which hold w.h.p.):

(h2 − o(1))n ≤ τ(H, n) ≤ (3 + o(1))n, (8)

where h2 = log 2 + log(1 + log 2) ≈ 1.219736 (as explicitly calculated in [24]). Indeed, the
lower bound holds by Theorem 1.12 since minimum degree at least 2 is a trivial necessary
condition for Hamiltonicity. On the other hand, the upper bound holds by Corollary 1.5 and
the well known result asserting that a random graph generated by the 3-out model is w.h.p.
Hamiltonian [4]. It would be interesting to close or at least reduce the gap between the lower
and upper bounds in (8).
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Bounded degree graphs. Let H be a graph with vertex set [n] and with bounded maximum
degree. Observe that τ(PH , n) ≤ (1+o(1))n log n. Indeed, Builder can construct H as follows.
For every 1 ≤ i ≤ n, let j1, . . . , jdi be an arbitrary ordering of the neighbors of i in H. In each
round, if Builder is offered some vertex i for the rth time for some 1 ≤ r ≤ di, then Builder
claims the edge ijr, otherwise he claims an arbitrary edge. Using this strategy, it is evident
that τ(PH , n) ≤ m, where m is the smallest integer such that, during the first m rounds,
every 1 ≤ i ≤ n is offered at least ∆(H) times. Using (2) and Lemma 2.5, a straightforward
calculation shows that m = (1 + o(1))n log n.

Note that τ(P, n) = O(n) holds for every property P we considered in this paper. This
observation has led Noga Alon to ask us the following question.

Question 6.2. Is there a graph H on n vertices with bounded maximum degree such that
τ(PH , n) = ω(n)?

Another possible direction of future research is the study of natural variations of our
process. These include the following:

A digraph process. Consider the same semi-random graph process, except that whenever
Builder claims an edge, he must orient it from the vertex he was offered to the vertex he
chose. His goal now is to build a digraph which satisfies some predetermined increasing
property as soon as possible. Consider for example the aim of building a directed Hamilton
cycle. Let H be an undirected cycle on n vertices and let D1 and D2 be orientations of
H such that in D1 the out-degree of every vertex is 1 and in D2 the out-degree of every
vertex is either 0 or 2 (assume for convenience that n is even). It is not hard to see that
τ ′(PD1 , n) = τ(PD1 , n) = (1 + o(1))n log n. Both equalities follow from the fact that Builder
can construct D1 as soon as every vertex is offered at least once but not sooner. Indeed, if
some vertex is never offered, then its out-degree in Builder’s graph will be 0 (both in the
offline and in the online games). On the other hand, in the online game, Builder can play
as follows: for every 1 ≤ i ≤ n, the first time vertex i is offered, Builder connects it to
vertex (i mod n) + 1; in any other round he plays arbitrarily. This proves the first equality.
Using (2) and Lemma 2.5, a straightforward calculation proves the second equality. In light
of (7) and (8), this shows that, in general, the digraph process behaves very differently than
the graph process. Now, consider constructing D2. Similarly to the case of an undirected
Hamilton cycle, one can show that τ ′(PD2 , n) = Θ(n). This shows that (at least in the offline
case) the digraph process in which Builder aims to build some digraph D might really depend
on D and not just on its underlying undirected graph. As for the online case, the following
question seems plausible.

Question 6.3. Is it true that for every ε > 0 there exist constants C and n0 such that
τ(PD, n) ≤ Cn holds for every n ≥ n0 and every orientation D of the n-cycle H in which the
number of vertices of out-degree 0 is at least εn?

Non-uniform sampling. In the process we studied in this paper, the vertex Builder was
offered in every round was chosen u.a.r. One could also study a similar process where the
vertices Builder is offered are chosen according to some other probability distribution (which
can differ between rounds). For example, consider the following random process which was
studied in [18, 19, 20]. For a positive integer d, the random d-process {Gi}Ni=0, where N =
bnd/2c, is defined as follows. G0 is the empty graph on n vertices and, for every i ≥ 0,
Gi+1 = Gi ∪ ei+1, where ei+1 = uv is chosen u.a.r. from the set of all non-edges of Gi for
which max{dGi(u), dGi(v)} < d. While we cannot use our process as is to approximate the
random d-process, we can easily do so if the vertices Builder is offered in every round are
chosen u.a.r. from the set of all vertices whose degree is strictly smaller than d. Another
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example of a random graph process we can approximate by offering Builder vertices according
to an appropriate probability distribution is the min-min random graph process [6]. One can
of course consider various probability distributions for the aforementioned digraph process as
well.

Delaying increasing graph properties. In this paper, we studied τ(P, n) (and, similarly,
τ ′(P, n) for the offline game) which is the smallest number of rounds in the online game
Builder needs in order to build a graph on n vertices which satisfies the increasing graph
property P. Instead, we can have Builder try to avoid satisfying P for as long as possible.
Formally, we define T (P, n) (and, similarly, T ′(P, n) for the offline game) to be the largest
number of rounds in the online game for which Builder can maintain a graph on n vertices
which does not satisfy the increasing graph property P. Note that in order for this to make
sense, we can no longer allow Builder to create loops or multiple edges. Consider for example
the property Pt of containing a connected component on at least t vertices. It is trivial that
τ(Pt, n) = τ ′(Pt, n) = t − 1. On the other hand, studying T (Pt, n) (and to some extent also
T ′(Pt, n)) seems to have merit, especially with relation to the phase transition in the size of
the largest component. Another interesting example is the property P∆ of being triangle-
free. The problem of determining T (P∆, n) and T ′(P∆, n) is related to classical problems in
extremal graph theory and to other restricted random graph processes (see, e.g., [3, 5, 8]).
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