
Deleting and Testing Forbidden Patterns in Multi-Dimensional

Arrays

Omri Ben-Eliezer∗ Simon Korman† Daniel Reichman‡

March 27, 2017

Abstract

Understanding the local behaviour of structured multi-dimensional data is a fundamental
problem in various areas of computer science. As the amount of data is often huge, it is
desirable to obtain sublinear time algorithms, and specifically property testers, to understand
local properties of the data.

We focus on the natural local problem of testing pattern freeness: given a large d-dimensional
array A and a fixed d-dimensional pattern P over a finite alphabet Γ, we say that A is P -free if
it does not contain a copy of the forbidden pattern P as a consecutive subarray. The distance
of A to P -freeness is the fraction its entries that need to be modified to make it P -free. For any
ε ∈ [0, 1] and any large enough pattern P – other than a very small set of exceptional patterns
– we design a tolerant tester that distinguishes between the case that the distance is at least ε
and the case that it is at most adε, with query complexity and running time cdε

−1, where ad < 1
and cd depend only on the dimension d. For the 1-dimensional case, we provide a linear time
algorithm for computing the distance from P -freeness.

To analyze the testers we establish several combinatorial results, including the following d-
dimensional modification lemma, which might be of independent interest: for any large enough
d-dimensional pattern P over any alphabet (excluding a small set of exceptional patterns for
the binary case), and any d-dimensional array A containing a copy of P , one can delete this
copy by modifying one of its locations without creating new P -copies in A.

Our results address an open question of Fischer and Newman, who asked whether there
exist efficient testers for properties related to tight substructures in multi-dimensional structured
data. They serve as a first step towards a general understanding of local properties of multi-
dimensional arrays.

1 Introduction

Pattern matching is the algorithmic problem of finding occurrences of a fixed pattern in a given
string. This problem appears in many settings and has applications in diverse domains such as
computational biology, computer vision, natural language processing and web search. There has
been extensive research concerned with developing algorithms that search for patterns in strings,
resulting with a wide range of efficient algorithms [13, 26, 21, 15, 28, 27]. Higher-dimensional
analogues where one searches for a d-dimensional pattern in a d-dimensional array have received

∗Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel omrib@mail.tau.ac.il
†Computer Science Department, University of California at Los-Angeles simon.korman@gmail.com
‡Electrical Engineering and Computer Science, University of California at Berkeley daniel.reichman@gmail.com

1

attention as well. For example, the 2D case arises in analyzing aerial photographs [7, 8] and the
3D case has applications in medical imaging.

Given a string S of length n and a pattern P of length k ≤ n, any algorithm which determines
whether P occurs in S has running time Ω(n) [14, 31] and a linear lower bound carries over to
higher dimensions. For the 2D and 3D case, when an n× n image is concerned, algorithms whose
run time is O(n2) are known [8]. These algorithms have been generalized to the 3D case to yield
running time of O(n3) [20]. Finally it is also known (e.g., [23]) that for the d-dimensional case
it is possible to solve the pattern matching problem in time O(d2nd logm) (where the pattern is
an array of size md). It is natural to ask which tasks of this type can be performed in sublinear
(namely o(nd)) time for d-dimensional arrays.

The field of property testing [22, 32] deals with decision problems regarding discrete objects
(e.g., graphs, functions, images) that either have a certain property P or are far from satisfying
P . Here, we are interested in deciding quickly whether a given d-dimensional array A is far from
not containing a fixed d-dimensional pattern P . Tolerant property testing [29] is a useful extension
of the standard notion, in which the tester needs to distinguish between objects that are close to
satisfying the property to those that are far from satisfying it.

A d-dimensional k1× . . .×kd array A over an alphabet Γ is a function from [k1]× . . .× [kd] to Γ.
For simplicity of presentation, all results in this paper will be presented for cubic arrays in which
k1 = . . . = kd, but they generalize to non-cubic arrays in a straightforward manner. We consider
the (tolerant) pattern-freeness problem where one needs to distinguish between the case that a given
d-dimensional array A is ε1-close to being P -free for a fixed pattern P , and the case that A is ε2-far
from being P -free, where ε1 < ε2. An (ε1, ε2)-tester Q for this problem is a randomized algorithm
that is given access to an array A, as well as its size and proximity parameters 0 ≤ ε1 < ε2 < 1.
Q needs to distinguish with probability at least 2/3 between the case that A is is ε1-close to being
P -free and the case that A is ε2-far from being P -free. The query complexity of Q is the number
of queries it makes in A.

Our interest in the pattern-freeness problem stems from several applications. In certain scenarios
of interest, we might be interested in identifying quickly that an array is far from not containing
a given pattern. For the one dimensional case, being far from not containing a given text may
indicate a potential anomaly which requires attention (e.g., an offensive word in social network
media), hence such testing algorithms may provide useful in anomaly detection. Many computer
vision methods for classifying images are feature based: hence being far from containing a certain
pattern associated with a feature may be useful in rejection methods that enable to quickly discard
images that do not possess a certain visual property.

Beyond practical applications, devising property testing algorithms for the pattern freeness
problem is of theoretical interest. In the first place, it leads to a combinatorial characterization of
the distance from being P -free. Such a characterization has proved fruitful in graph property testing
[3, 4] where celebrated graph removal lemmas were developed en route of devising algorithms for
testing subgraph freeness. We encounter a similar phenomena in studying patterns and arrays: at
the core of our approach for testing pattern freeness lies a modification lemma for patterns which
we state next. We believe that this Lemma may be of independent interest and find applications
beyond testing algorithms. Later we show one such application: computing the exact distance of a
(one dimensional) string from being P -free can be done in linear time.

For a pattern P of size k × k × . . .× k, any of its entries that is in {0, k − 1} × . . .× {0, k − 1}
is said to be a corner of P . We say that P is almost homogeneous if all of its entries but one are

2

equal, and the different entry lies in a corner of P . Finally, P is removable (with respect to the
alphabet Γ) if for any d-dimensional array A over Γ and any copy of P in A, one can destroy the
copy by modifying one of its entries without creating new P -copies in A. The modification lemma
states that for any d, and any large enough pattern P , when the alphabet is binary it holds that
P is removable if and only if it is not almost homogeneous, and when the alphabet is not binary,
P is removable provided that it is large enough.

Recent works [11, 12] have obtained tolerant testers for visual properties. As observed in
[11, 12], tolerance is an attractive property for testing visual properties as real-world images are
often noisy. With the modification Lemma at hand, we show that when P is removable, the
(relative) hitting number of P in A, which is the minimal size of a set of entries that intersects all
P -copies in A divided by |A|, differs from the distance of A from P -freeness by a multiplicative
factor that depends only on d (and not on P or A). This relation allows us to devise very fast
(5−dε, ε)-tolerant testers for P -freeness, as the hitting number of P in A can be well approximated
using only a very small sample of blocks of entries from A. The query complexity of our tester is
O(Cd/ε), where Cd is a positive constant depending only on the dimension d of the array. Note
that our characterization in terms of the hitting number is crucial: merely building on the fact that
A contains many occurrences of P (as can be derived directly from the modification lemma) and
randomly sampling O(1/ε) possible locations in A, checking whether the sub-array starting at these
locations equals P would lead to query complexity of O(kd/ε). Note that our tester is optimal (up
to a multiplicative factor that depends on d), as any tester for this problem makes Ω(1/ε) queries.

The one dimensional setting, where one seeks to determine quickly whether a string S is ε-far
from being P -free is of particular interest. We are able to leverage the modification Lemma and
show that the distance of a string S from being P -free for a fixed pattern P (that is not almost
homogeneous) is exactly equal to the hitting number of P in A. For an arbitrary constant 0 < c < 1,
this characterization allows us to devise a ((1 − c)ε, ε)-tolerant tester making Oc(ε

−1) queries for
this case. For the case of almost homogeneous patterns, and an arbitrary constant c > 0 , we
devise a ((1/16 + c)ε, ε)-tolerant tester that makes Oc(1/ε) queries. Whether tolerant testers exist
for almost homogenous patterns of dimension larger than 1 is an open question.

Moreover, the characterization via the hitting number implies an O(n + k) algorithm that
calculates (exactly) the distance of A from being P -free where P is an arbitrary pattern (that may
be almost homogeneous). We are not aware of a previous algorithm for the distance computation
problem. Unlike the one-dimensional case, in d dimensions we do not know of a clean combinatorial
description of the distance to being P -free for higher dimension. Furthermore, it can be shown via
a direct reduction from covering problems in the plane [19], that for dimension d > 1 there exists
patterns P for which calculating the distance to P -freeness is NP-hard.

2 Related Work

The problem of testing pattern freeness is related to the study of testing subgraph-freeness (see,
for example, [1, 4]). This line of work examines how one can test quickly whether a given graph G
is H-free or ε-far from being H-free, where H is a fixed subgraph. In this problem, a graph is ε-far
from being H-free if at least an ε-fraction of its edges and non-edges need to be altered in order to
ensure that the resulting graph does not contain H as a (not necessarily induced) subgraph. A key
component in these works are removal lemmas: typically such lemmas imply that if G is ε-far from
being H-free, it necessarily contains a “large” number of copies of H. Perhaps the best example for

3

this phenomena is the triangle removal lemma which asserts that for every ε ∈ (0, 1), there exists
δ = δ(ε) > 0 such that if an n-vertex graph G is ε-far from being triangle free, then G contains at
least δn3 triangles (see e.g., [6] and the reference within).

Alon et. al. showed [3] that regular languages over {0, 1} are strongly testable. Testing pattern-
freeness (1-dimensional, binary alphabet, constant pattern length k) is a special case of the former,
since the language of all strings avoiding a fixed pattern is regular. The query complexity of their
tester is O

(
c
ε · ln

3(1
ε)
)
, where c is a constant that depends on the minimal size of a DFA AL, that

accepts the regular language L. It is shown in [3] that c can be taken to be O(s3) where s is the
size of AL. In the case of the regular language considered here a simple pumping-lemma inspired
argument shows that s ≥ Ω(k). Hence the upper bound on testing pattern freeness implied by their

algorithm is O
(
k3

ε · ln
3(1
ε)
)

. Our 1D tester solves a very restricted case of the problem the tester

of [3] deals with, but it achieves a better query complexity of O(1/ε) in this setting. Moreover, our
tester is much simpler and can be applied in the more general high dimensional setting, or when
the pattern length k is allowed to grow as a function of the string length n.

The problem of testing submatrix freeness was investigated in [16, 17, 5, 18, 2]. As opposed to
our case, which is concerned with tight submatrices, all of these results deal with submatrices that
are not necessarily tight (i.e. the rows and the columns need not be consecutive). Quantitatively,
the submatrix case is very different from our case: in our case P -freeness can be testable using
O(ε−1) queries, while in the submatrix case, for a binary submatrix of size k × k a lower bound of
ε−Ω(k2) on the needed number of queries is easy to obtain, and in the non-binary case there exist
2× 2 matrices for which there exists a super polynomial lower bound of εΩ(log 1/ε).

The 2D part of our work adds to a growing literature concerned with testing properties of
images [30, 33, 11]. Ideas and techniques from the property testing literature have recently been
used in the fields of computer vision and pattern recognition [24, 25].

3 Notation and definitions

With slight abuse of notation, for a positive integer n we let [n] denote the set {0, . . . , n− 1} and
we write [n]d = [n]× . . .× [n].

Recall that a d-dimensional (cubic) array A over an alphabet Γ is a function from [k]d to Γ.
The x = (x1, . . . , xd) entry of A, denoted by Ax, is the value of the function A at location x. Let
P be a (k, d)-array over an alphabet Γ of size at least two. We say that a d-dimensional array A
contains a copy of P (or a P -copy) starting in location x = (x1, . . . , xd) if for any y ∈ [k]d we have
Ax+y = Py. Finally, A is P -free if it does not contain copies of P .

A property P of d-dimensional arrays is simply a family of such arrays over an alphabet Γ. For
an array A and a property P, the absolute distance dP(A) of A to P is the minimal number of
entries that one needs to change in A to get an array from P. The relative distance of A to P is
δP(A) = dP(A)/|A|, where clearly 0 ≤ δP(A) ≤ 1 for any nontrivial P and A. We say that A is
ε-close (ε-far) to P if δP(A) ≤ ε (≥ ε).

In this paper we will consider the property of P -freeness, which consists of all P -free arrays.
The absolute and relative distance to P -freeness will be denoted by dP (A) and δP (A), respectively.

For an array A and a pattern P we will call a set of entries in A whose modification can turn it
to be P -free a deletion set and therefore it is natural to call dP (A) (the absolute distance of A to
P -freeness) the deletion number, since it is the size of a minimal deletion set. In a similar manner,
for a given set of entries in A, if every P -copy in A contains at least one of these entries, we call

4

it a hitting set and we call the size of a minimal hitting set the hitting number, denoted by hP (A).
For all notations here and above, in the 1-dimensional case we will replace A by S (for String).

We will need several definitions from [29] as well. Let P be a property of arrays and let
h1, h2 : [0, 1] → [0, 1] be two monotone increasing functions. An (h1, h2)-distance approximation
algorithm for P is given query access to an unknown array A. The algorithm outputs an estimate δ̂
to δP (A), such that with probability at least 2/3 it holds that h1(δP (A)) ≤ δ̂ ≤ h2(δP (A)). Finally,
for a property P and for 0 ≤ ε1 < ε2 ≤ 1, an (ε1, ε2)-tolerant tester for P is given query access to
an array A. The tester accepts with probability at least 2/3 if A is ε1-close to P, and rejects with
probability at least 2/3 if A is ε2-far from P. In the ‘standard’ notion of property testing, ε1 = 0.
Thus, any tolerant tester is also a tester in the standard notion. Finally, we define the additive
(multiplicative) tolerance of the tester above as ε2 − ε1 (ε2/ε1 respectively).

4 Main Results

The modification lemma result is central in the study of minimal deletion sets. It classifies the
possible patterns into ones that are removable and ones that are not. The result that the vast
majority of patterns are removable is used extensively throughout the paper in the design and
proofs of algorithms for efficient testing of pattern freeness (in 1 and higher dimensions) as well as
for the exact computation of the deletion number in 1-dimension.

Our 1-dimensional modification lemma (Lemma 9) gives the following full characterization of
1-dimensional patterns (i.e. strings). A binary pattern is removable if and only if it not almost
homogeneous, while any pattern over a larger alphabet is removable. The multidimensional version
of the lemma (Lemma 9) makes the exact same classification, but for (k, d)-arrays for which k ≥ 3·2d.

The fact that most patterns are removable is very important for analyzing the deletion number
(which is the distance to pattern freeness). As an example, a simple observation is that a removable
pattern appears at least dP (A) times (possibly with overlaps) in the array A, which implies an ε-
tester that can simply check for the presence of the pattern in 1/ε random locations in the array
at a sample complexity of O(k/ε).

Another important part of our work makes explicit connections between the deletion number
and the hitting number for both 1 and higher dimensions. These are needed in order to get improved
testers (e.g. for getting rid of k in the sample complexity) in d-dimensions as well as for linear time
computation of the distance (deletion number) in 1-dimension.

For the 1-dimensional case we show that the deletion number dP (S) equals the hitting number
hP (S), which leads to an exact computation of dP (S) in time O(n + k) (Theorem 12) as well as
a tolerant testers for Pattern Freeness: An (ε1, ε2)-tolerant tester for any 0 ≤ ε1 < ε2 ≤ 1 at a
complexity of O(ε22/(ε2 − ε1)3) (Theorem 22) as well as an ((1 − τ)ε, ε)-tolerant tester for a fixed
τ > 0 and any 0 < ε ≤ 1 at a complexity of O(ε−1τ−3) (Corollary 13).

For higher dimensions, we show (Lemma 11) that hP (A) ≤ dP (A) ≤ αdhP (A) ≤ αdk
−d, a

bound that relates the hitting number hP (A) and the deletion number dP (A) through a constant
αd = 4d+2d that depends only on the dimension d. This bound enables a ((1−τ)dα−1

d ε, ε)-tolerant
tester making Cτ ε

−1 queries, where Cτ = O(1/τd(1− (1− τ)d)2) (Theorem 15).
In the 1-dimensional setting we also provide dedicated algorithms to handle the almost homo-

geneous (non-removable) patterns, achieving an O(n) algorithm for computing the deletion number
(Theorem 23) as well as a (ε/(16 + c), ε)-tolerant tester, for any constant c > 0, at a complexity of
αcε
−1 queries, where αc depends only on c (Theorem 24).

5

Finally, we provide a lower bound of Ω(1/ε) (Theorem 27, Appendix D) for any tester of pattern
freeness. Unlike the previous lower bound of Ω(1/ε) [3] on testing regular languages, ours extends
to dimensions higher than 1 and applies to the case where k may depend on n.

Our main results are summarized in Table 1.

dim. template type
deletion number

modification lemma
tester query

computation tolerance complexity

1D
general O(n+ k) removable for any k 1/(1− τ) O(1/ετ3)
almost homog. O(n+ k) not removable for any k (16 + c) αc/ε

2+D
general NP-Hard removable for k > 3 · 2d (1− τ)−dαd βd,τ/ε
almost homog. − not removable for any k − −

Table 1: Summary of results. 0 < τ < 1 and c > 0 are arbitrary constants. αc is a constant that
depends only on c. βd,τ is a constant that depends only on d and τ . ’modification lemma’ specifies
if patterns are classified as removable or not. the ’tester tolerance’ is multiplicative

5 Modification Lemma

Theorem 1 (Modification Lemma). Let d > 1 and let P be a (k, d)-array over the alphabet Γ
where k ≥ 3 · 2d.

1. If |Γ| = 2 then P is removable if and only if it is not almost homogeneous.

2. If |Γ| ≥ 3 then P is removable.

Remark. Theorem 1 states that any large enough binary pattern which is not almost homogeneous
is removable. The requirement that the pattern is large enough is crucial, as the 2× . . .×2 pattern
P satisfying Px = 0 for any x = (x1, . . . , xd) with x1 = 0 and Px = 1 otherwise is not removable
even though it is not almost homogeneous. To see this, consider the following 4× . . .× 4 array A:
Mx = 0 if either x1 = 0, or x1 = 1 and xi ∈ {1, 2} for any 2 ≤ i ≤ d, or x1 = 2 and xi ∈ {0, 3}
for some 2 ≤ i ≤ d. For any other value of x, Mx = 1. Note that A contains a copy of P
starting at (1, . . . , 1), but flipping any bit in this copy creates a new P -copy in A. Still, the size
of the counterexample is only 2 × . . . × 2 while in the statement of Theorem 1, the dependence is
exponential in d. It will be interesting to understand what is the correct order of magnitude of the
dependence of k on d.

Proof of Theorem 1. The second statement of the theorem can be easily derived from the first
statement; If P does not contain all letters in Γ then it is clearly removable, as changing any of
its entries to any of the missing letters cannot create new P -copies. Otherwise, we can reduce
the problem to the binary case: let σ1, σ2 be the letters in Γ that appear the smallest number of
times in P . Consider the following (k, d)-array P ′ over {0, 1}: P ′x = 0 if Px ∈ {σ1, σ2} and P ′x = 1
otherwise. Observe that P ′ is not almost homogeneous, implying that it is removable. It is not
hard to verify now that P is removable as well.

In what follows, we will prove the first statement. If P is binary and almost homogeneous then
it is not removable: Without loss of generality P(0,...,0) = 1 and Px = 0 for any x 6= (0, . . . , 0).
Consider a (2k, d)-array A such that M(0,...,0) = M(1,...,1) = 1 and A = 0 elsewhere. Clearly,
modifying any bit of the P -copy starting at (1, . . . , 1) creates a new copy of P in A, so P is not
removable.

6

The rest of the proof is dedicated to the other direction. Suppose that P is a binary (k, d)-array
that is not removable. We would like to show that P must be almost homogeneous. As P is not
removable, there exists a binary array A containing a copy of P that such that flipping any single
bit in this copy creates a new copy of P in A. This copy of P will be called the template of P in A.

Clearly, all of the new copies created by flipping bits in the template must intersect the template,
so we may assume that A is of size (3k − 2)d and that the template starts in location k = (k −
1, . . . , k − 1).

For convenience, let I = [k]d denote the set of indices of P . For any x ∈ I let x̄ = x + k; x̄ is
the location in A of bit x of the template.

Roughly speaking, our general strategy for the proof would be show that there exists at most
two ”special” entries in P such that when we flip a bit in the template, creating a new copy of P
in A, the flipped bit usually plays the role of one of the special entries in the new copy. We will
then show that in fact, there must be exactly one special entry, which must lie in a corner of P ,
and that all non-special entries are equal while the special entry is equal to their negation. This
will finish the proof that P is almost homogeneous.

Definition 2. Let i ≤ d and let δ be positive integers. Let x = (x1, . . . , xd) and y = (y1, . . . , yd)
be d-dimensional points. The pair (x, y) is (i, δ)-related if yi − xi = δ and yj = xj for any j 6= i.
An (i, δ)-related pair (x, y) is said to be an (i, δ)-jump in P if Px 6= Py.

Figure 1: Illustration for Lemma 3.
A 2-dimensional example, where i is the
vertical coordinate: Flipping the bit (of
the template P) at location ā creates
the P -copy Qa at location m(a). Sim-
ilarly, the copy Qb is created at location
m(b). Note that the pair of points (x̄, ȳ)
(which is (x, y) in P) and the copy loca-
tions pair (m(a),m(b)) are both (i,∆i)-
related. The values Px and Py (Mx̄ and
Mȳ) must be equal.

Lemma 3. For any 1 ≤ i ≤ d there exists 0 < ∆i < k/3 such that at most two of the (i,∆i)-related
pairs of points from I are (i,∆)-jumps in P .

Proof. Recall that, by our assumption, flipping any of the K = kd bits of the template creates
a new copy of P in A. Consider the following mapping m : I → [2k − 1]d. m(x1, . . . , xd) is the
starting location of a new copy of P created in A as a result of flipping bit x = (x1, . . . , xd) of the
template (which is bit x̄ of A). If more than one copy is created by this flip, then we choose the
starting location of one of the copies arbitrarily.

Observe that m is injective, and let S be the image of m, where |S| = K. Let 1 ≤ i ≤ d and
consider the collection of (one-dimensional) lines

Li =
{
{x1} × . . .× {xi−1} × [2k − 1]× {xi+1} × . . .× {xd} | ∀j 6= i : xj ∈ [2k − 1]

}
.

7

Clearly
∑

`∈Li |S ∩ `| = K. On the other hand, |Li| =
∏
j 6=i(2k − 1) < 2d−1

∏
j 6=i k = 2d−1K/k, so

there exists a line ` ∈ Li for which |S ∩ `| > k/2d−1 ≥ 6. Hence |S ∩ `| ≥ 7. Let α1 < . . . < α7

be the smallest i-indices of elements in S ∩ `. Since α7 − α1 < 2k − 1 there exists some 1 ≤ l ≤ 6
such that αl+1 − αl < k/3. That is, S contains an (i,∆i)-related pair with 0 < ∆i < k/3. In other
words, there are two points a, b ∈ I such that flipping ā (b̄) would create a new P -copy, denoted
by Qa (Qb respectively), which starts in location m(a) (m(b) respectively) in A, and (m(a),m(b))
is an (i,∆i)-related pair.

The following claim finishes the proof of the lemma and will also be useful later on.

Claim 4. For a and b as above, let (x, y) be a pair of points from I that are (i,∆i)-related and
suppose that y 6= ā−m(a) and that x 6= b̄−m(b). Then Px = Py.

Proof. The bits that were flipped in A to create Qa and Qb are ā, b̄ respectively. Since y+m(a) 6= ā,
the copy Qa contains the original entry of A in location y + m(a). Therefore, Py = My+m(a) (as
My+m(a) is bit y of Qa, which is a copy of P). Similarly, since x+m(b) 6= b̄, we have Px = Mx+m(b).
But since both pairs (x, y) and (m(a),m(b)) are (i,∆i)-related, we get that m(b)−m(a) = y − x,
implying that x+m(b) = y +m(a), and therefore Px = Mx+m(b) = My+m(a) = Py, as desired.

Clearly, the number of (i,∆i)-related pairs that do not satisfy the conditions of the claim is at
most two, finishing the proof of Lemma 3.

Let ∆ = (∆1, . . . ,∆d) where for any 1 ≤ i ≤ d, we take ∆i that satisfies the statement of
Lemma 3 (its specific value will be determined later).

Definition 5. Let x ∈ I. The set of ∆-neighbours of x is

Nx =
{
y ∈ I

∣∣ ∃i : (x, y) is (i,∆i)-related or (y, x) is (i,∆i)-related
}

and the number of ∆-neighbours of x is nx = |Nx|, where d ≤ nx ≤ 2d. We say that x is a ∆-corner
if nx(∆) = d and that it is ∆-internal if nx(∆) = 2d. Furthermore, x is (∆, P)-isolated if Px 6= Py
for any y ∈ Nx, while it is (∆, P)-generic if Px = Py for any y ∈ Nx.

When using the above notation, we will sometimes omit the parameters (e.g. simply writing
isolated instead of (∆, P)-isloated) as the context is usually clear.

The definition imposes a symmetric neighborhood relation, that is, x ∈ Ny holds if and only if
y ∈ Nx. If x ∈ Ny we say that x and y are ∆-neighbours. Note that a point x = (x1, . . . , xd) ∈ I is
a ∆-corner if xi < ∆i or xi ≥ k−∆i for any 1 ≤ i ≤ d, and that x is ∆-internal if ∆i ≤ xi < k−∆i

for any 1 ≤ i ≤ d.

Claim 6. Two (∆, P)-isolated points in I cannot be ∆-neighbors.

Proof. Suppose towards contradiction that x = (x1, . . . , xd) and y = (y1, . . . , yd) are two distinct
(∆, P)-isolated points and that (x, y) is (i,∆i)-related for some 1 ≤ i ≤ d. Since ∆i < k/3, at least
one of x or y participates in two different (i,∆i)-related pairs: if xi < k/3 then yi+∆i = xi+2∆i < k
so y is in two such pairs, and otherwise xi ≥ ∆i, meaning that x participates in two such pairs.
Assume without loss of generality that the two (i,∆i)-related pairs are (t, x) and (x, y), then Pt 6= Px
and Px 6= Py as x is isolated. By Lemma 3, these are the only (i,∆i)-jumps in P .

Choose an arbitrary j 6= i and take v = (v1, . . . , vd) where vj = ∆j and vl = 0 for any l 6= j.
Recall that ∆j < k/3, implying that either xj + vj < k or xj − vj ≥ 0. Without loss of generality
assume the former, and let x′ = x+ v and y′ = y + v. Since x and y are (∆, P)-isolated, and since

8

x′ ∈ Nx and y′ ∈ Ny, we get that Px′ 6= Px 6= Py 6= Py′ , and thus Px′ 6= Py′ (as the alphabet is
binary). Therefore, (x′, y′) is also an (i,∆i)-jump in P , a contradiction.

Illustration for Definition 7. Recall
that flipping a bit ā in A creates a new
P -copy Qa (which contains ā), located
at the point m(a) in the coordinates of
A. The bits x and a are mapped to y
and f(a) respectively.

Definition 7. For three points x, y, a ∈ I, we say that x is mapped to y as a result of the flipping
of a if x̄ = m(a) + y. Moreover, define the function f : I → I as follows: f(x) = x̄ −m(x) is the
location to which x is mapped as a result of flipping x.

In other words, x is mapped to y as a result of flipping the bit a if bit x̄ of A ”plays the role”
of bit y in the new P -copy Qa that is created by flipping a. Note that

• If x̄−m(a) /∈ I then x is not mapped to any point. However, this cannot hold when x = a,
so the function f is well defined.

• For a fixed a, the mapping as a result of flipping a is linear: if x and y are mapped to x′ and
y′ respectively, then y−x = y′−x′. In particular, if (x, y) is (i,∆i)-related for some 1 ≤ i ≤ d
then (x′, y′) is also (i,∆i)-related.

• If x is mapped to y as a result of flipping a and x 6= a, then Px = Py.

• On the other hand, we always have Px 6= Pf(x).

• If x is ∆-internal and (∆, P)-generic, then f(x) must be (∆, P)-isolated.

The first four statements are easy to verify. To verify the last one, suppose that x is internal
and generic and let z ∈ Nf(x); we will show that Pf(x) 6= Pz. Since x is internal, there exists
y ∈ Nx such that y − x = z − f(x). Then y is mapped to z as a result of flipping x, since
ȳ = y+ k = z+ (x+ k)− f(x) = z+ x̄− f(x) = z+m(x). Therefore Py = Pz. On the other hand,
Px = Py as x is generic and Px 6= Pf(x), and we conclude that Pz 6= Pf(x).

Lemma 8. There is exactly one (∆, P)-isolated point in I.

Proof. Let S be the set of isolated points; our goal is to show that |S| = 1. Consider the set

C = {(x, y) : x, y ∈ I, (x, y) is an (i,∆i)-jump for some 1 ≤ i ≤ d}.

Clearly, each point in S is contained in at least d pairs from C. By claim 6 no pair of isolated points
are ∆-neighbours and therefore every pair in C contains at most one point from S. By Lemma 3,
|C| ≤ 2d which implies that |S| ≤ 2. On the other hand we have |S| ≥ 1. To see this, observe
that the number of (∆, P)-internal points in I is greater than

∏d
i=1 k/3 ≥ 2d

2
, while the number

of non-∆-generic points is at most 2|C| ≤ 4d, implying that at least 2d
2 − 4d > 0 of the internal

9

points are generic. Therefore, pick an internal generic point z ∈ I. As we have seen before, f(z)
must be isolated.

To complete the proof it remains to rule out the possibility that |S| = 2. If two different
(∆, P)-isolated points a = (a1, . . . , ad) and b = (b1, . . . , bd) exist, each of them must participate in
exactly d pairs in C. This implies that both of them are ∆-corners with d neighbors. It follows
that every ∆-internal point z must be generic (since an internal point and a corner point cannot
be neighbours), implying that either f(z) = a or f(z) = b.

Let 1 ≤ i ≤ d and define δi > 0 to be the smallest integer such that there exists an (i, δi)-
related pair (x, y) of generic internal points with f(x) = f(y). For this choice of x and y we have
m(y) −m(x) = ȳ − f(y) − (x̄ − f(x)) = ȳ − x̄ = y − x, so (m(x),m(y)) is also (i, δi)-related. In
particular, we may take ∆i = δi (Recall that until now, we only used the fact that ∆i < k/3, without
committing to a specific value). Without loss of generality we may assume that f(x) = f(y) = a.
By Claim 4, any pair (s, t) of (i,∆i)-related points for which s 6= ȳ − m(y) = f(y) = a and
t 6= x̄ −m(x) = f(x) = a is not an (i,∆i)-jump. Since b is not a ∆-neighbour of a, it does not
participate in any (i,∆i)-jump, contradicting the fact that it is (∆, P)-isolated. This finishes the
proof of the lemma.

Finally, we are ready to show that P is almost homogeneous. Let a = (a1, . . . , ad) be the single
(∆, P)-isolated point in I. Consider the set

J = {x = (x1, . . . , xd) ∈ I : ∆i ≤ xi < ∆i + 2d for any 1 ≤ i ≤ d}

and note that all points in J are ∆-internal. Let 1 ≤ i ≤ d and partition J into (i, 1)-related pairs of
points. There are 2d

2−1 ≥ 4d pairs in the partition. On the other hand, the number of non-generic
points in J is at most 2|C| − (d− 1) < 4d (to see it, count the number of elements in pairs from C
and recall that a is contained in at least d pairs). Therefore, there exists a pair (x, y) in the above
partition such that x and y are both generic. As before, f(x) and f(y) must be isolated, and thus
f(x) = f(y) = a, implying that ∆i = δi = 1. We conclude that ∆ = (1, . . . , 1).

Claim 4 now implies that any pair (s, t) of (i, 1)-related points for which s 6= ȳ−m(y) = f(y) = a
and t 6= x̄−m(x) = f(x) = a is not an (i, 1)-jump. That is, for any two neighbouring points s, t 6= a
in I, Ps = Pt, implying that Px = Py for any x, y 6= a (since ∆ = (1, . . . , 1), a ∆-neighbour is a
neighbour in the usual sense). To see this, observe that for any two points x, y 6= a there exists a
path x0x1 . . . xt in I where xj and xj+1 are neighbours for any 0 ≤ j ≤ t − 1, the endpoints are
x0 = x and xt = y, and xj 6= a for any 0 < j < t. Since a is isolated, it is also true that Pa 6= Px
for any x 6= a.

To finish the proof that P is almost homogeneous, it remains to show that a is a corner.
Suppose to the contrary that 0 < ai < k − 1 for some 1 ≤ i ≤ d and let b, c ∈ I be the unique
points such that (a, b) and (c, a) are (i, 1)-related, respectively. Clearly f(b) = a, so a is mapped
to ā −m(b) = ā − b̄ + f(b) = c − a + a = c as a result of flipping b, which is a contradiction - as
Pa 6= Pc and b 6= a, c. This finishes the proof.

The above proof only works when the dimension is bigger than one, though it can be adapted
to the one-dimensional case. However, we present here another proof for the one-dimensional case,
which is simpler than the general proof above and works for any pattern which is not almost
homogeneous (as opposed to the proof above, that required the forbidden pattern to also be large
enough). The main strategy here is to consider the longest streaks of zeros and ones in the pattern
- a strategy that cannot be used in higher dimensions.

10

Theorem 9 (1D Modification Lemma). A one-dimensional pattern is removable if and only if it
is almost homogeneous.

Proof of Theorem 9. The reduction from a general alphabet to a binary one and the negative
example for almost homogeneous patterns which were presented in the proof of Theorem 1 also hold
here. It remains to prove that any 1-dimensional binary pattern that is not almost homogeneous
is removable.

Let P = P0 . . . Pk−1 be a binary pattern of length k, that is contained in an arbitrary binary
string S. We need to show that one can flip one of the bits of P without creating a new P -copy in
S. We assume that P contains both 0s and 1s (i.e. it is not homogeneous) otherwise flipping any
bit would work. Therefore we can assume from now that k ≥ 3 (since for k = 1, 2 all patterns are
homogeneous or almost homogeneous).

Let us assume also that P starts with a 1, i.e. P0 = 1 and let t ≤ k − 1 be the length of the
longest 0-streak (sub-string of consecutive 0s) in P . Let i > 0 be the leftmost index in which such
a 0-streak of length t begins. Clearly, Pi−1 = 1 and Pi = . . . = Pi+t−1 = 0.

If i+ t ≤ k (i.e. the streak is not at the end of P) then Pi+t = 1 and in such a case if we modify
Pi+t to 0, the copy of P is removed without creating new P -copies in S. To see this, observe that
a new copy cannot start at the bit flip location i + t or within the 0-streak at any of its locations
i, . . . , i+ t− 1 since the bits in these locations are 0 while the starting bit of P is 1. On the other
hand, a new copy cannot start after i + t since it must include the bit flip location or anywhere
before Pi since otherwise it would contain a 0-streak of length t+ 1.

This implies that P contains exactly one 0-streak of length t at its last t locations. In particular,
we have that at the last location Pk−1 = 1, and if we denote by r the length of the longest 1-streak
in P , a symmetric reasoning shows that P begins with its only longest 1-streak of length r.

If P is not of the form 1s0t, it can be verified that flipping Ps (the leftmost 0 in P) to 1
does not create any P -copy. The only case left is P = 1s0t, where s, t ≥ 2 since P is not almost
homogeneous. Consider the bit of the string S that is to the left of P . If it is a 0 then we flip P1

to 0 and otherwise, we flip P0 to 0, where in both cases no new copy is created.

6 Characterizations of the Deletion Number

We use the modification lemmas of Section 5 to investigate several combinatorial characterizations
of the deletion number, which will in turn allow exact (and efficient) computations of the deletion
number in the 1-dimensional case, as well as efficient approximation and testing of pattern freeness
for removable patterns in the d-dimensional case for any d.

In particular, we prove some surprising connections between minimal deletion sets and minimal
hitting sets. The characterizations for almost homogeneous 1-dimensional patterns are given in
Appendix C, along with an optimal algorithm to compute the exact deletion number and an optimal
tester for pattern freeness in that case. The rest of this section deals with removable patterns, for
both the 1-dimensional and multi-dimensional settings.

In the 1-dimensional case, we show that for any removable pattern there exist certain minimal
hitting sets which are in fact minimal deletion sets. These are sets where none of the flips create
new occurrences. Our constructive proof shows how to build such a set and allows for a linear time
algorithm for finding the deletion number. The result is summarized in Theorem 10 and proved in
Appendix A.

11

Theorem 10 (dP (S) equals hP (S); Linear time computation of dP (S)). For a binary string S of
length n and a binary pattern P of length k that is removable, the deletion number dP (S) equals
hP (S) and can be computed in time O(n+ k) and space O(k).

For the multidimensional case, we start by showing that when P is removable, the hitting
number hP (A) of A approximates the deletion number up to a multiplicative constant that depends
only on the dimension d. This is done in two stages, the first of which involves the analysis of a
procedure that proves the existence of a large collection of P -copies with small pairwise overlaps,
among the large set of at least dP (A) P -copies that exist in A. This procedure heavily relies on
the fact that P is removable. The second stage shows the existence of a large hitting set of the
collection with small pairwise overlaps. The result is summarized in Lemma 11 and fully proved in
Appendix A.

Lemma 11 (relation between distance and hitting number). Let P be a removable (k, d)-array
over an alphabet Γ, and let A be an (n, d)-array over Γ. Let αd = 4d + 2d. It holds that: hP (A) ≤
dP (A) ≤ αdhP (A) ≤ αd(n/k)d.

7 Testers for Pattern Freeness

We describe efficient testers for both the one-dimensional and the d-dimensional removable patterns
that have tolerance and query complexity that only depend on d (and not on k; using a completely
naive tester, it can be seen that the tolerance and the query complexity depend on k). The
testers essentially approximate the hitting number, which is related to the deletion number by the
characterizations that were shown in Section 6.

We start by presenting the distance approximation algorithm for P -freeness, which has both
additive and multiplicative errors.

Theorem 12 (Approximating the deletion number in 1-dimension). Let P be a removable string
of length k and fix constants 0 < τ < 1, 0 < δ < 1/k. Let h1, h2 : [0, 1] → [0, 1] be defined as
h1(ε) = (1− τ)ε− δ and h2(ε) = ε+ δ. There exists an (h1, h2)-distance approximation algorithm
for P -freeness with query complexity and running time of O(1/kτδ2).

Note that dP (S) = hP (S) ≤ n/k always holds, so having an additive error parameter of δ ≥ 1/k
is pointless. The proof of Theorem 12 can be adapted to derive (ε1, ε2)-tolerant testers for any
0 ≤ ε1 < ε2 ≤ 1, which we describe in Theorem 22. An immediate corollary is the following
multiplicative tester. The proofs for Theorems 12 and 22 can be found in Appendix B.

Corollary 13 (Multiplicative tolerant tester for pattern freeness in 1-dimension). Fix 0 < τ < 1.
For any 0 < ε ≤ 1 there exists a ((1− τ)ε, ε)-tolerant tester whose number of queries and running
time are O(ε−1τ−3).

For the multidimensional case, our distance approximation algorithm and tolerant tester for
P -freeness are given in Theorems 14 and 15. As their technical details are very similar to those in
the 1D case, we provide in Appendix B only a sketch of the main ideas.

Theorem 14 (Approximating the deletion number in multidimensional arrays). Let P be a re-
movable (k, d)-array and fix constants 0 < τ ≤ 1, 0 ≤ δ ≤ 1/kd. Let h1, h2 : [0, 1]→ [0, 1] be defined
as h1(ε) = (1 − τ)dα−1

d ε − δ and h2(ε) = ε + δ. There exists an (h1, h2)-distance approximation

12

algorithm for P -freeness making at most γ/kdτdδ2 queries, where γ > 0 is an absolute constant,
and has running time ζτ/k

dδ2 where ζτ is a constant depending only on τ .

Theorem 15 (Multiplicative tolerant tester for pattern freeness in multidimensional arrays). Fix
0 < τ ≤ 1 and let P be a removable (k, d)-array. For any 0 < ε ≤ 1 there exists a ((1− τ)dα−1

d ε, ε)-
tolerant tester making Cτ ε

−1 queries, where Cτ = O(1/τd(1 − (1 − τ)d)2). The running time is
C ′τ ε

−1 where C ′τ depends only on τ .

8 Discussion and Open Questions

We have provided efficient algorithms for testing whether high-dimensional arrays do not contain a
fixed pattern P for any removable pattern P . The results suggest several interesting open questions
on the problem of pattern-freeness and more generally, on local properties - where we say that a
property P is k-local if any array A not satisfying P, there exists a consecutive subarray of A of
size at most k × . . .× k which does not satisfy P as well. That is, a property is local if any array
not satisfying P contains a small ‘proof’ for this fact. Note that P -freeness is indeed k-local where
k is the side length of P , and that a property P is k-local if and only if there exists a family F of
arrays of size at most k × . . . × k each, such that A satisfies P if and only if it does not contain
any consecutive sub-array from F . That is, to understand the general problem of testing local
properties of arrays we will need to understand the testing of F-freeness, where F is a family of
forbidden patterns (rather than a single forbidden pattern).

In particular, the problem of approximate pattern matching is of interest. The family of forbid-
den patterns for this problem might consist of a pattern and all patterns that are close enough to
it, and the distance measures between patterns might also differ from the Hamming distance (e.g.,
`1 distance for grey-scale patterns).

Finally, it is desirable to settle the problem of testing pattern freeness for the almost homogenous
case by either finding an efficient tester for the almost homogeneous multi dimensional case, or
proving that an efficient tester cannot exist for such patterns. It is also of interest to examine
which of the [k]d patterns with k < 3 · 2d are removable.

Acknowledgements We are grateful to Swastik Kopparty for numerous useful comments.
We are thankful to Sofya Raskhodnikova for her useful feedback.

References

[1] N. Alon (2002). Testing subgraphs in large graphs, Random structures and algorithms,
21(34):359–370.

[2] N. Alon and O. Ben Eliezer (2016). Removal lemmas for matrices, arXiv preprint 1609.04235.

[3] N. Alon, M. Krivelevich, I. Newman and M. Szegedy (2001). Regular languages are testable
with a constant number of queries, SIAM Journal on Computing, 30, 1842–1862.

[4] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy (2000). Efficient testing of large graphs,
Combinatorica, 20, 451–476.

[5] N. Alon, E. Fischer and I. Newman (2007). Efficient testing of bipartite graphs for forbidden
induced subgraphs, SIAM Journal on Computing, 37.3, 959–976.

13

[6] N. Alon and J. Spencer (2008). The Probablistic Method. Wiley.

[7] A. Amir, G. Benson (1998). Two-Dimensional Periodicity in Rectangular Arrays, SIAM
Journal on Computing, 27, 90-106.

[8] A. Amir, G. Benson, M. Farach (1994). An Alphabet Independent Approach to Two-
Dimensional Pattern Matching, SIAM Journal on Computing, 23, 313-323.

[9] P. Awasthi, M. Jha, M. Molinaro and S. Raskhodnikova (2016). Testing Lipschitz functions
on hypergrid domains. Algorithmica, 74(3), 1055–1081.

[10] Y. Bar-Hillel, M. Perles, and E. Shamir (1964). On formal properties of simple phrase structure
grammars, In Y. Bar-Hillel, editor, Language and Information: Selected Essays on Their
Theory and Application, 116–150. Addison-Wesley, Reading, Massachusetts.

[11] P. Berman, M. Murzabulatov, S. Raskhodnikova (2015). Constant-Time Testing and Learning
of Image Properties, arXiv prepreint 1503.01363.

[12] P. Berman, M. Murzabulatov and Sofya Raskhodnikova (2016). Tolerant Testers of Image
Properties. ICALP, 1–90:14.

[13] R.S. Boyer and J.S. Moore (1977). A fast string searching algorithm, Comm. ACM, 20(10),
762–772.

[14] R. Cole (1991). Tight Bounds on the Complexity of the Boyer-Moore String Matching Algo-
rithm, SODA, 224–233.

[15] C. Maxime, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, and W. Rytter
(1994). Speeding up two string-matching algorithms, Algorithmica, 12, 247–267.

[16] E. Fischer, and I. Newman (2001). Testing of matrix properties, STOC, 286–295

[17] E. Fischer and I. Newman (2007). Testing of matrix-poset properties, Combinatorica, 27(3),
293–327.

[18] E. Fischer, E. Rozenberg, Lower bounds for testing forbidden induced substructures in
bipartite-graph-like combinatorial objects, Proc. RANDOM 2007, 464-478.

[19] R. Fowler, M. S. Paterson and S. L. Tanimoto (1981). Optimal packing and covering in the
plane are NP-complete. Information processing letters, 12(3), 133–137.

[20] Z. Galil, J. G. Park and K. Park. (2004). Three-dimensional periodicity and its application to
pattern matching. SIAM Journal on Discrete Mathematics, 18(2), 362–381.

[21] Z. Galil and J. I. Seiferas (1983). Time-Space-Optimal String Matching, J. Comput. Syst. Sci,
26(3), 280–294.

[22] O. Goldreich, S. Goldwasser and D. Ron (1998). Property testing and its connection to learning
and approximation, JACM, 45, 653–750.

[23] J. Krkkinen and E. Ukkonen (2008). Multidimensional string matching. In Encyclopedia of
Algorithms, 559–562.

14

[24] I. Kleiner, D. Keren, I. Newman, O. Ben-Zwi (2011). Applying Property Testing to an Image
Partitioning Problem, IEEE Trans. Pattern Anal. Mach. Intell, 33(2), 256–265.

[25] S. Korman, D. Reichman, G. Tsur and S. Avidan. Fast-Match: Fast Affine Template Matching,
International Journal of Computer Vision, to appear.

[26] D. E. Knuth, J. H. Morris Jr. and V. R. Pratt (1977). Fast Pattern Matching in Strings, SIAM
J. Comput. 6(2): 323–350.

[27] T. Lecroq (2007). Fast exact string matching algorithms, Information Processing Letters,
102(6), 229-235.

[28] G. Navarro and M. Raffinot (2000). Fast and flexible string matching by combining bit-
parallelism and suffix automata, Journal of Experimental Algorithmics (JEA) 5: 4.

[29] M. Parnas, D. Ron and R. Rubinfeld (2006). Tolerant property testing and distance approxi-
mation. Journal of Computer and System Sciences, 72(6), 1012–1042.

[30] S. Raskhodnikova (2003). Approximate testing of visual properties, RANDOM, 370–381.

[31] R. L. Rivest (1977). On the Worst-Case Behavior of String-Searching Algorithms, SIAM J.
Comput. 6(4): 669–674.

[32] R. Rubinfeld and M. Sudan (1996). Robust characterization of polynomials with applications
to program testing, SIAM J. Comput. 25, 252–271.

[33] G. Tsur and D. Ron (2014). Testing properties of sparse images, ACM Transactions on
Algorithms 4.

[34] A. C. Yao (1977). Probabilistic computation, towards a unified measure of complexity, FOCS,
222–227.

A Characterizations of the Deletion Number: Proofs

Proof of Theorem 10. The main challenge is in proving that dP (S) = hP (S), since then all we need
is an algorithm that computes hP (S), which is relatively standard in template matching: Find the
set O of all P -copies in S; Go though the P -copies in O from left to right, repeating the following:
(i) Let P ∗ be the leftmost P -copy in O; (ii) Increment the hitting set count by 1; (iii) Remove from
O all the (following) P -copies that intersect P ∗ (those whose starting location is not to the right of
the rightmost location in P ∗);. Clearly, the complexity of the algorithm is dominated by the first
step of finding O, which can be done in O(n+ k) using, e.g., the KMP algorithm [26]. Taking the
rightmost location in each of the visited P ∗s creates a hitting set, which is minimal, due to the fact
that the set of P ∗s is independent.

It is trivial that dP (S) ≥ hP (S) and hence we have to show that dP (S) ≤ hP (S). Refer to
Algorithm 1 below that constructs a set of bit flip locations. Note that the choice in Step 3 is
possible using the modification lemma, while the choice in Step 4 is possible, since if h is contained
in only one P -copy P 0 ∈ D, by definition of D there is some P 1 ∈ D such that P 0 and P 1 intersect
at some location x (in particular one of the 2 endpoints of P 0 must be in the intersection). Simply
replace h by x. It is easy to verify that the set of locations F that it computes is a (particular)

15

minimal hitting set of O, and hence |F| = hP (S). It is therefore sufficient to show that flipping
the bit locations in F turns the string S to be P -free. This will be guaranteed, using the fact that
F is a hitting set of O, by Lemma 16 that shows that no bit flip of a location in F creates a new
P -copy. Therefore, he proof of Lemma 16 will complete the proof of Theorem 10.

Algorithm 1

Input: Binary string S of length n and removable binary string P of length k

Output: Minimal set F of flip locations in S that make it P -free (|F | = dP (S))

1. Find the set O of all P -copies in S

2. Divide O into I ∪ D, where I is the subset of P -copies that do not intersect any other
P -copy in O, while D is the subset of P -copies that intersect some other P -copy in O.

3. For each P -copy P ∗ ∈ I add to F a bit location whose flipping removes P ∗ without creating
any other P -copy

4. Find a minimal hitting set H of D such that every location h ∈ H is contained in at least
two P -copies in D.

5. Add H to F
return F

Lemma 16 (Flipping bits in F does not create new P -copies). Let f ∈ F . Flipping the bit at
location f does not create any new P -copy in S.

Proof. Recall that F consisted of bits in I as well as bits in D. Each of the bit flips that are in I
was chosen (step 3 of Algorithm 1) using the modification lemma to be such that no new P -copy
is created.

The main challenge is in showing that the remaining bit flips, i.e. at locations H, do not create
any new P -copies. Notice our requirement that any location h ∈ H is contained in at least two
P -copies. By symmetry considerations, we have the following

Observation 17. [Flipping an arbitrary bit in the intersection of 2 P -copies can create a new
P -copy] ⇐⇒ [Flipping an arbitrary bit in a P -copy can create 2 new P -copies]

By Observation 17, in order to show that bit flips in H do not create new P -copies, one can
prove that an arbitrary bit-flip in a P -copy cannot create more than 1 P -copy, as is stated in the
next lemma.

Lemma 18 (Any bit flip in a pattern P cannot create more than 1 new P -copy). Let x ∈ [k].
Flipping the bit Px can create at most 1 new P -copy in S.

Proof. The proof goes by contradiction, assuming that a bit flip in P has created two new P -copies
P 1 and P 2, and will analyze separately the two possible cases:

case 1: ‘P 1 and P 2 intersect P from different sides’

In this case, flipping the bit location x of P creates a P -copy P 1 shifted t1 locations to the left and

16

a P -copy P 2 shifted t2 locations to the right, where we assume w.l.o.g. that t1 < t2. One can verify
that Px−t2 = P 2

x−t2 6= Px (and similarly that Px 6= P 1
x+t1 = Px+t1). We will assume that Px = 0

and hence Px−t2 = 1. We refer the reader to Figure 2 and its caption for the intuition of the proof.

Figure 2: Illustration for case 1: Our proof
is based on ’skipping’ along a ’path’ from loca-
tion x to location x− t2 in P , while each skip
is done between entries with equal values. A
complete path from x to x− t2 will give a con-
tradiction, since Px−t2 6= Px. The path starts
at x and makes skips of size t1 to the left as
long as it does not pass x − t2, then it makes
a single skip to the right of size t2. It repeats
this traversal until reaching x− t2.

Since the P -copy P 1 was created from P at a left offset of t1 by the flipping at location x, we
can infer that Py = Py+t1 for any y ∈ [k − t1] , y 6= x (or informally that ”P is t1-cyclic except at
x from the right”). Similarly, we know that ”P is t2-cyclic except at x from the left”.

We define a ’path’ of skips that starts from location x, makes skips of size t1 to the left as long
as it does not pass x− t2, then it makes a single skip to the right of size t2. Call this short path a
traversal. The path repeats this traversal until reaching x − t2. It is easy to verify that the path
is always within the open range (x− t2, x+ t1) (except for the last step that reaches x− t2). This
implies in particular that the path does not go from x + t1 to x or from x to x − t2 (i.e. through
the two only ”value switching skips”), and hence the value of P along the path must be 0.

It remains to prove that the path eventually reaches x−t2 and does not continue in some infinite
loop. For each location y that the path goes through we can look at the value y (mod t1). Assume
w.l.o.g. that for the ’target’ location x− t2 we have that x− t2 = 0 (mod t1). This implies for the
’starting’ location x that x = t2 (mod t1) = 0. Now, each skip by t1 does not change the location
(mod t1), while a skip by t2 to the right increases the value by t2 (mod t1). In other words, the
sub-sequence of locations at the beginning of each traversal (before the first left skip) is of the form
` · t2 (mod t1), for ` = 1, 2, 3, This is exactly the subgroup of Zt1 (the additive group of integers
modulo t1) generated by the element t2 and hence must contain the identity element 0 (mod t1).
This proves that the location x− t2 will be reached.

case 2: ‘P 1 and P 2 intersect P from one (the same) side’

Flipping a location x in a P -copy P creates two new P -copies P i (i = 1, 2) that intersect P from
the same side, w.l.o.g. right, at a shift of ti, where t1 < t2. Refer to Figure 3 and its caption for
the intuition of the proof. We ’follow’ the two disjoint ’arrow paths’ shown in the figure that lead
from x in P to x′ := x− t2 in P 1 to reach a contradiction. Formally:

Px = P 1
x = P 2

x−t2+t1 = Px−t2+t1 = P 1
x−t2

Px 6= P 2
x−t2 = Px−t2 = P 1

x−t2

17

Figure 3: Illustration for case 2: All
arrows (ignoring directions) except the
red one represent equality, while the red
arrow represents inequality. The two dis-
joint ’arrow paths’ from x in P to x′

in P 1 imply that both Px = Px′ and
Px 6= Px′ , leading to contradiction.

Proof of Lemma 11. The first inequality follows from the fact that one needs to modify at least
one entry in any P -copy in A. For the third inequality, note that the set {(x1, . . . , xd) ∈ [k]d : ∀1 ≤
i ≤ d, xi ≡ k− 1(mod k)} is a set of size [n/k]d that hits all k× . . .×k consecutive subarrays of A,
and in particular all P -copies. It remains to prove that dP (A) ≤ αdhP (A). We may assume that
the alphabet Γ is binary by applying the standard reduction from non-binary to binary alphabets
presented in Section 5.

We present a procedure on the array A that makes it P -free by sequentially flipping bits in it.
In what follows, we will say that the center of a (k, d) matrix lies in location (bk/2c, . . . , bk/2c)
in the matrix. Let P be the set of all P -copies before A is modified. In Phase 1, the procedure
”destroys” all P -copies in P by flipping central bits of a subset of the original P -copies in A, which
is chosen in a greedy manner. However, these bit flips might create new P -copies in M , which are
removed in Phase 2 using the modification lemma. The procedure maintains sets A,B that contain
the bits flipped in phases 1,2 respectively.

• Let P be the set of all P -copies in A, N ← φ A ← φ, B ← φ.

• Phase 1: While P 6= φ

– Pick Q ∈ P arbitrarily.

– Flip Ax where x is the center of Q.

– Add Q to A and remove all P -copies containing x from P.

– Add all P -copies created by flipping Ax to N .

• Phase 2: While N 6= φ

– Pick Q ∈ N arbitrarily.

– Pick a location x in Q whose flipping does not create new P -copies in A (exists by
modification lemma).

– Flip the bit Ax and add x to B.

For the analysis of the procedure, we say that two P -copies Q,Q′ in A whose starting points are
x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ [n]d respectively are 1/2-independent if |xi − yi| ≥ k/2 for
some 1 ≤ i ≤ d. Note that 1/2-independence is a symmetric relation. A set of P -copies is 1/2-
independent if all pairs of copies in it are 1/2-independent. Denote by iP (A) the maximal size of
a 1/2-indpendent set in A, divided by nd.

For Q and Q′ as above, if Q′ does not contain the center of Q then Q,Q′ are 1/2-independent, as
there is some 1 ≤ i ≤ d for which either yi < xi+bk/2c− (k−1) ≤ xi−k/2+1 or yi > xi+bk/2c ≥
xi + k/2 − 1. In both cases |yi − xi| ≥ k/2, implying the 1/2-independence. Therefore the set A

18

generated by the procedure is 1/2-independent: if Q,Q′ ∈ A are two different P -copies and Q was
added to A before Q′, then Q′ does not contain the center of Q′, so Q and Q′ are 1/2-independent.
Using the following claims, it is not hard finish the proof of the lemma.

Claim 19. iP (A) ≤ 2dhP (A).

The proof of Claim 19 will be given later. For what follows, we say that P has a cycle of size
t = (t1, . . . , td) ∈ Zd, if Px = Py for every pair of locations x = (x1, . . . , xd), y = (y1, . . . , jd) ∈ [k]d

such that xi ≡ yi (mod |ti|) ∀i ∈ [d]. The following claim is straightforward to verify.

Claim 20. [Shifted occurrences imply a cyclic pattern] If M contains two overlapping occurrences
of A, at a relative offset of t ∈ Zd, then P has a cycle of size t.

Claim 21. [Central bit flip creates few new occurrences] Flipping the central bit of a P -occurrence
in A creates at most 2d new occurrences of P in A.

We first show how to use these claims to finish the proof. Consider the sets A,B after the
procedure ends. The procedure flips |A|+ |B| bits in A, so |A|+ |B| ≥ dP (A)nd. On the other hand,
|A| ≤ iP (A)nd ≤ (2n)dhP (A) as A is 1/2-independent. Claim 21 now implies that |B| ≤ 2d|A|, and
we get that

nddP (A) ≤ |A|+ |B| ≤ (2d + 1)|A| ≤ αdndhP (A)

Dividing by nd yields the desired inequality. We now prove the claims.

Proof of Claim 19. Let S be a 1/2-independent set of P -copies in A, which is of size iP (A). We
will show that no point in [n]d is contained in more than 2d copies from S, implying that to hit all
copies of P in A (and in particular, all copies of P in S) we will need at least |S|/2d = iP (A)/2d

entries.
Suppose to the contrary that there are 2d + 1 copies from S that contain the point x =

(x1, . . . , xd) ∈ [n]d. we will say that a copy from S containing x is i-lower if k/2 ≤ xi − yi < k
and i-higher if 0 ≤ xi − yi < k/2 (note that 0 ≤ xi − yi < k must hold). Therefore, there exist
two copies Q,Q′ ∈ S containing x, starting at (y1, . . . , yd) and (y′1, . . . , y

′
d) respectively, such that

for any 1 ≤ i ≤ d, Q is i-higher (i-lower) if and only if Q′ is i-higher (i-lower respectively). But
then, for any i, either 0 ≤ yi, y

′
i < k/2 or k/2 ≤ yi, y

′
i < k, implying that |yi − y′i| < k/2, thus

contradicting the fact that S is 1/2-independent.

Proof of Claim 21. Assume that more than 2d new occurrences are created. Since these occurrences
overlap (at the bit flip location),the same argument as in Claim 19 implies that there must be two
of them, P1 and P2, that are shifted (one from the other) by some vector t ∈ Zd, where |ti| < k/2
∀i ∈ [d].

By Claim 20, P (and hence also P1 and P2) has a cycle of size t. Let x be the point in M of
the (central) flipped bit in P0 and consider the point x′ = x+ t, which is also in P0, since |ti| < k/2
∀1 ≤ i ≤ k. The occurrence P2 overlaps both locations x and x′ (since both new occurrences P1

and P2 overlap the bit flip location x and P2 is shifted by t from P1, which overlaps x).
On one hand we have Mx = Mx′ (before the bit flip), since both locations belong to P0, which

has a cycle of size t. On the other hand, Mx 6= Mx′ , since these locations both belong to P2 and
must be equal after flipping Mx as P2 has a cycle length of t. This leads to a contradiction.

19

B Testers for Pattern Freeness: Proofs

Theorem 22. Let P be a removable string of length k and let 0 ≤ ε1 < ε2 ≤ 1. There exists an
(ε1, ε2)-tolerant tester whose number of queries and running time are O(ε22/(ε2 − ε1)3) where the
constant term does not depend on k.

It is not clear whether this upper bound is tight in general. However, for the important special
case of tolerant testers with multiplicative tolerance of 1 + τ , where τ > 0 is a constant, the above
tester is optimal (up to a multiplicative constant that depends on τ), as is shown by taking ε2 = ε
and ε1 = (1− τ)ε in Theorem 22, leading to the multiplicative tester given in Corollary 13.

Proof of Theorems 12 and 22. Let S be a string of length n ≥ βk, where β = 3/τ . Write ε = δP (S)
and let H ⊆ [n] be a hitting set for P in S whose size is εn. That is, H is a minimal set
of locations that satisfies the following: if S contains a copy of P starting at location l, then
{l, . . . , l + k − 1} ∩H 6= φ.

For i ∈ [n] let Ii denote the “cyclic interval” of length βk starting at i. That is, if i + βk > n
then Ii = {i, . . . , n} ∪ {0, . . . , i+ βk − n− 1} and otherwise Ii = {i, . . . , i+ βk − 1}.

Let the random variable X denote the size of the minimal hitting set Hi for P in the interval
Ii, divided by βk, where i ∈ [n] is chosen uniformly at random. Note that X is computable in time
O(βk), by Theorem 10. Let µ and σ2 denote the expectation and the variance of X, respectively.
By the minimality of Hi, we have that |Hi| ≤ |H ∩ Ii| since the set in the RHS is a hitting set for
P with respect to the interval Ii. Thus, µ ≤ E[|H ∩ Ii|]/βk = ε.

Next we bound µ from below. Since Hi hits all P -copies that lie exclusively inside Ii, and by
the minimality of H, we must have |Hi| > |H ∩ I ′i| where I ′i is the cyclic interval that starts in i+k
and ends in (i + (β − 1)k − 1) mod n. Therefore, µ ≥ E[H ∩ I ′i]/βk = (1 − 2/β)ε ≥ (1 − τ)ε. To
conclude, we have seen that (1− τ)ε ≤ µ ≤ ε.

To compute the variance of X, note that 0 ≤ X ≤ 1/k, as there exist β entries in Ii such that
any subinterval of length k in Ii contains at least one of them. By convexity, the variance satisfies
σ2 ≤ kµ(1/k − µ)2 + (1− kµ)(0− µ)2 = µ(1/k − µ) ≤ ε/k.

Now let Y = 1
t

∑t
j=1Xj where the Xj are independent copies of X and t will be determined

later. Then E[Y] = µ and Var(Y) = σ2/t ≤ ε/kt.
Recall that E[Y] = µ, where (1− τ)ε ≤ µ ≤ ε, so to get the desired approximation, it suffices to

estimate Y with an additive error of no more than δ with constant probability. Chebyshev inequality
implies that it suffices to have V ar(Y) = Θ(δ2). In other words, it will be enough to sample
t = Θ(ε/kδ2) blocks, each of size βk = Θ(k/τ). In total, it is enough to make Θ(kε(1/k− ε)/τδ2) =
O(ε/τδ2) queries.

In the setting of approximation, ε is not known in advance, but ε ≤ 1/k always holds, so
sampling t = Θ(1/k2δ2) blocks would suffice to get the desired additive error. The return value of
the approximation algorithm will be its estimate of Y . The query complexity and running time are
βtk = Θ(1/kτδ2). This finishes the proof of Theorem 12.

Now consider the setting of (ε1, ε2)-tolerant testing. By monotonicity of the tester, we can
assume that we are given a string whose distance from P -freeness is either exactly ε2 or exactly
ε1. Pick ε = ε2, δ = (ε2 − ε1)/4, τ = (ε2 − ε1)/4ε2, and sample t = Θ(ε/kδ2) blocks, with query
complexity and running time Θ(ε/τδ2) = Θ(ε22/ε2 − ε13), as was stated above. If the given string S
is ε2-far from P -freeness, then with probability at least 2/3, after sampling t = Θ(ε/τδ2) samples,
the value of Y will be bigger than (ε2) ∗ (1− τ)− δ = (ε2 + ε1)/2. On the other hand, if S is ε-close

20

then with probability at least 2/3, Y ≤ ε1 + δ < (ε2 + ε1)/2 Therefore, the tester will answer that
the input is ε2-far if and only if Y ≥ (ε2 + ε1)/2. This finishes the proof of Theorem 22.

Proof sketch for Theorems 14 and 15. Take β = 2/τ . Let A be an (n, d)-array where we may
assume that n ≥ βk for a suitable choice of C. Again, the strategy is to take t (to be determined)
independent samples of blocks of size βk × . . . × βk and compute the hitting number of each
sampled block. Note that (as opposed to the one-dimensional case), computing the minimal hitting
set is generally an NP -complete problem, but since the hitting number of each of these blocks
is at most βd = Θ(τ−d), here we may compute it with running time that depends only on τ
and d. As in the 1D case, the expected relative hitting number µ of a sampled block satisfies
(1 − τ)dhP (A) = (1 − 2/β)dhP (A) ≤ µ ≤ hP (A). The variance of the hitting number for a single
sample is no bigger than kd(1/kd − µ)2 + (1 − kdµ)µ2 = µ(1/kd − µ) ≤ µ/kd, so for t samples it
is O(hP (A)/kdt). To get additive error of at most δ with constant probability, we may have (by
Chebyshev inequality) hP (A)/kdt = Θ(δ2), or t = Θ(hP (A)/kdδ2).

Therefore, for an approximation algorithm (in which we don’t know hP (A) in advance, though
we have an upper bound of hP (A) ≤ 1/kd), t = Θ(k−2dδ−2) sampled blocks are enough, and the
total number of samples is O(1/kdτdδ2). For a ((1− τ)dε, ε)-tolerant tester for the hitting number
(which translates to a ((1 − τ)dα−1

d ε, ε)-tolerant tester for the deletion number), as observed in
the 1D case, when deciding on the number of samples we may assume that hP (A) = ε and pick
δ = Θ((1−(1−τ)d)ε) , so t = Θ(ε/kdδ2) = Θ(1/kd(1−(1−τ)d)2ε) sampled block suffice. Since each
block is of size Θ(kd/τd), the total number of queries is O(Cτ ε

−1) where Cτ = 1/τd(1− (1− τ)d)2,
while the running time is C ′τ ε

−1, where C ′τ depends on the time required to compute the hitting
number in a single sampled block.

C Almost Homogeneous Patterns

The testers discussed above only consider removable patterns. However, Theorem 1 states that
almost homogeneous patterns over a binary alphabet are not removable. As the above testers are
not applicable for this case, it is natural to ask whether there exist efficient testers (and in particular
tolerant testers) for pattern freeness when the pattern is almost homogeneous.

In this subsection we partially answer this question, addressing the one-dimensional case; we
do so by describing a simple yet powerful characterization of the distance to P -freeness when P is
almost homogeneous. The characterization is then utilized to get both an optimal 1/(16+c)-tolerant
tester for P -freeness in the one-dimensional case and an efficient exact algorithm for computing the
distance to P -freeness.

Unfortunately, this characterization does not hold in higher dimensions, and the question of
testing and approximating the distance to P -freeness in this case is left open. It is not clear
whether there exist efficient algorithms for computing the exact distance to P -freeness in high
dimensions. It will be interesting to either find such an algorithm or show that the problem is
NP-hard.

Denote the absolute distance of a string S to P -freeness by dP (S). Our main results here are
as follows.

Theorem 23. There exists an algorithm that, given an almost homogeneous binary string P and
a binary string S of length n, compute dP (S) in time O(n) and space O(1) where the constants do

21

not depend on the length of P .

The above algorithm is clearly optimal (up to a multiplicative constant that does not depend
on k) with respect to time and space complexity. Our second result is a 1/(16 + c)-tolerant tester
for P -freeness when P is almost homogeneous.

Theorem 24. Let P be an almost homogeneous binary string and fix a constant c > 0. Then there
exists a 1/(16 + c)-tolerant ε-tester for P -freeness making at most αcε

−1 queries, where αc depends
only on c.

Again, the running time of the above tester is optimal (up to a multiplicative constant). In
particular, it does not depend on the length of the forbidden pattern P or the tested string. We
did not try to optimize the tolerance factor in the above statement.

In the rest of this subsection we will prove the above two theorems. We will start by describing
a characterization of the distance to P -freeness which is easier to work with. Without loss of
generality, in the rest of the subsection assume that P = 10k−1 for some k > 0 and that S is a
string of length n. A pair (i, j) with 0 ≤ i < j ≤ n− k+ 1 is said to be a P -evidence in S if Pi = 1
and Pl = 0 for any j ≤ l ≤ j + k − 2.

Observation 25. S is P -free if and only if there are no P -evidences in S.

Proof. If S contains a P -copy at location i then the pair (i, i + 1) is a P -evidence. On the other
hand, suppose that (i, j) is a P -evidence and let i′ < j be the maximal integer such that Pi′ = 1.
Then Pl = 0 for any i′ < l ≤ j + k − 2, implying that S contains a P -copy starting at i′.

The main technical result of this subsection relates the distance to P -freeness to the maximal
number of non-overlapping P -evidences, where two P -evidences (i, j) and (i′, j′) are non-overlapping
if i 6= i′ and |j − j′| ≥ k − 1. Denote the maximal number of non-overlapping P -evidences in S by
dE(S).

Lemma 26. dP (S) = dE(S).

Proof of Lemma 26. It is clear that dP (S) ≥ dE(S). Indeed, take a set of non-overlapping P -
evidences which is of size dE(S), then by Observation 25 we will need to modify at least one bit
corresponding to any evidence, and in total at least dE(S) bits in S, to make it P -free. Next we
show that dP (S) ≤ dE(S) by showing that there exists a set T of non-overlapping P -evidences in
S with the following property: to make S P -free, it is enough to modify exactly one bit in any
evidence in T .

The construction of T is carried by “marking” entries corresponding to P -evidences in S in
the following manner. Initially, T is empty and no entry of S is marked. We repeat the following
procedure as long as S contains a P -evidence whose entries are unamrked: in each round, we pick
the smallest 0 < j ≤ n − k + 1 for which both Sl is unmarked for any j ≤ l ≤ j + k − 2 and
the set Aj = {i < j : Si is unmarked and equal to 1} is not empty. Pick i = maxAj . Now add
(i, j) to T and mark the entries of S in the k locations i, j, j + 1, . . . , j + k − 2. Consider the set
T = {(i1, j1), . . . , (it, jt)} in the end of the process, where (is, js) was chosen in round s of the
process, and let m be the largest integer such that Sm equals 1 and is not marked (if no such entry
exists, we take m = n). Then T satisfies the following:

• j1 < . . . < jt. This is true by the minimality of j picked in any round. In particular, if Si is
marked before Sj and both entries are zero then i < j.

22

• Let 0 < s ≤ t. If is < is−1 then we must have js = js−1 + k − 1: by the maximality of is, it
must be true that Pl = 0 for any js−1 + k − 1 ≤ l < js. Thus, by the minimality of js, we
must have that js = js + k − 1, as desired.

• On the other hand, if is > is−1 then js = is + 1. Again, this is true by the minimality of js
and the maximality of is with respect to js.

• For any 1 ≤ s ≤ t, either js < m or is > m. This is true by the maximality of is with respect
to js.

We now show how one can modify exactly t bits in S to make it P -free. For any (i, j) ∈ T such
that j < m, we modify Pi to zero. After the modification, Pl = 0 for any l < m, so there cannot
be P -copies in S starting at l < m.

On the other hand, for any (i, j) ∈ T such that i > m, we modify Pj+k−2 to one. It remains
to show that after the modification, S will not contain a P -copy starting at some l ≥ m. By the
third observation and the minimality of j in any round of the process, we cannot have a P -copy
starting in an unmarked entry Sl = 1 - since otherwise, at some point in the above process, we
would have to add the evidence (l, l+ 1) to T , while marking Sl, a contradiction. To complete the
proof, suppose that Sl is marked and equals one after the modification; that is, l = js + k − 2 for
some (is, js) ∈ T with is > m. There are two cases to consider.

• If is+1 < is then, by the second observation above, js+1 = js + k − 1. Therefore, the entry
in location js+1 + k − 2 = l + k − 1 was flipped to one during the modification, so it is not
possible to have a P -copy starting in location l after the modification.

• On the other hand, if is+1 > is then it is not possible to have Pl+1 = Pl+2 = . . . = Pl+k−1 = 0
before the modification, since otherwise we would choose the pair (i′s+1, l+1) satisfying i′s+1 ≥
m in round s+1 of the process instead of choosing (is+1, js+1), as we have l+1 < is+1 < js+1

and by the first observation above.

We conclude that after the modification, S is P -free. Hence dP (S) ≤ |T |. Since obviously |T | ≤
dE(S), we get that dP (S) = dE(S) = |T |, as desired.

Proof of Theorem 23. Consider the following algorithm to compute the distance of a string S of
length n to P -freeness, where P = 10k−1. The idea of the proof is to read S from left to right,
marking P -evidences along the way and keeping track of the following quantities.

• The number of 1’s that were already observed but not yet marked, denoted by a.

• The length of the longest streak of unmarked 0’s lying immediately to our left, denoted by b.

• The number of non-overlapping P -evidences found until now, denoted by c.

We initialize a, b, c = 0. For i running from 0 to n− 1 we do as follows:

• If Si = 1 then a is increased by one.

• If Si = 0 then

– If a = 0 then we do nothing.

23

– if a > 0 then b is increased by one. If we now have b = k− 1 then a new P -evidence was
found - and we update a← a− 1, b← 0, c← c+ 1.

The algorithm returns the value of c after the above loop stops. It is not hard to see that the
algorithm indeed calculates dE(S) = dP (S). Each round of the loop takes O(1) times, so the total
running time is O(n) (with no dependence on k). The space complexity is clearly O(1), as we only
need to keep track of a, b, c.

Proof of Theorem 24. Let S be a string of length n and suppose that P = 10k−1. Given ε > δ > 0
where δ ≤ ε/(16 + c), we will use the following simple tester to distinguish between the case that
S is ε-far and the case that S is δ-close to P -freeness. Since any string S must be 1/k-close to
P -freeness, we may assume that ε ≤ 1/k ≤ 1/2. The tester makes at most m queries, where m will
be determined later. First it chooses uniformly at random and independently (allowing repetitions)
i1, . . . , im/3, j1, . . . , jm/3k. Then, the tester samples single entries Sil for any 1 ≤ l ≤ m/3 and
blocks Sjr , . . . , Sjr+2k−2 for any 1 ≤ r ≤ m/3k. The tester accepts the input if and only if there
are no il < jr such that Sil = 1 and Sj = . . . = Sj+k−1 = 0 for some jr ≤ j ≤ jr + k − 1.

Let T = {(x1, y1), . . . , (xt, yt)} be a maximal set of non-overlapping P -evidences in S. Suppose
first that S is ε-far from P -freeness; then t ≥ εn. The probability that none of the locations
x1, . . . , xt/2 was sampled by the tester as a single entry is at most (1 − ε/2)m/3 ≤ e−εm/6. On the

other hand, the probability that none of the 0k−1-copies starting at locations yt/2+1, . . . , yt is fully

contained in one of the sampled blocks is at most (1− εk/2)m/3k ≤ e−εm/6. In total, the acceptance
probability in this case, i.e. the probability that no P -evidence was found is at most 2e−εm/6.

On the other hand, if S is δ-close to P -freeness then t ≤ δn. Since T is a maximal set of
non-overlapping P -evidences, to find a P -evidence, the tester must either sample at least one of
x1, . . . , xt as a single entry or one of the entries of the form yi + δ, with 1 ≤ i ≤ t and 0 ≤ δk − 1
as part of one of the sampled blocks. The probability that the first event does not occur is at
least (1 − δ)m/3 > e−2δm/3. The probability that the second event does not occur is at least
(1− 3kδ)m/3k > e−2δm. Hence the acceptance probability here, which is the probability that both
events do not occur is at least e−8δm/3 ≥ e−εm/(6+c/8). Clearly, if we pick m = c′/ε for a large
enough constant c′ that depends only on c, we will get that the quantity e−εm/(6+c/8) − 2e−εm/6 is
positive and bounded away from zero; Therefore, with this choice of m the tester accepts δ-close
inputs with probability that is bigger by an absolute constant than the acceptance probability for
any ε-far input. This finishes the proof of the theorem, since one can build a tester that has the
same query complexity (up to a multiplicative constant), in which δ-close inputs are accepted with
probability at least 2/3 while ε-far inputs are rejected with probability at least 2/3, as desired.

D A Lower Bound for Testing Pattern Freeness

Here we show that any tester that makes oε(
1
ε) queries in an attempt to test if a fixed pattern

appears in a string, must err with probability greater than 1/3. While the lower bound of [3]
already entails a lower bound of Ω(1/ε) for testing pattern-freeness (as for any fixed pattern J the
language consisting of all strings not containing J is regular), we give here a self-contained proof
for two reasons. First, our proof extends to the case where k, the length of J , is allowed to depend
on n. Second, it is not hard to adapt the proof to the 2D (or higher dimensions) and demonstrate
a lower bound of Ω(1/ε) on the query complexity of testing pattern freeness of multidimensional
arrays.

24

Theorem 27. [Lower bound of Ω(1/ε) queries] Suppose k is even and consider the pattern
J := 0k/2−110k/2. Any tester that distinguishes with probability at least 2/3 between the case that a
string I is J-free and the case that I is ε-far from being J-free, makes at least 1

13ε queries to I.

Note: we show that the lower bound above applies for wide ranges of possible values for ε:
ranging from ε = On(1/n) to ε = Ωk(1/k). We did not attempt to optimize the constant 1

13 in the
theorem above. Furthermore, to ease readability we avoid using floor/ceiling signs.

Proof. By Yao’s Principle [34], it suffices to construct two distributions B and C over length n
strings where all strings in B are J-free and all strings in C are ε-far from being J-free, with
the property that any deterministic algorithm D making less than 1

13ε queries to I sampled from
A = 1

2B + 1
2C (namely we sample from B with probability 1/2 and from C otherwise), must err

with probability greater than 1/3. We now explain how to construct these distributions.
The distribution B is just the single string 0n sampled with probability 1. For the distribution

C we take the string I = 0n and divide it to n/k disjoint intervals of length k: I1, . . . In/k. Then,
we sample randomly a subset of 2εn of these intervals. For each length k interval in the subset, we
choose one of the last (right side) k/2 locations and flip it to be a 1.

Clearly any string from B is J-free with probability 1, while every string in C contains exactly
2εn occurrences of J . Furthermore, as changing a single location in a string I sampled from C can
remove at most 2 occurrences of J , such a string I is ε-far from being J-free.

Consider a deterministic tester D that performs at most 1
13ε queries to the string I. Since D is

deterministic, in the case that it encounters only zeros during its queries, it has to either declare
the string I as being J-free or not. The first option is that D rejects (declares ’ε-far from J-free’)
when it sees only zeros. In this case D errs with probability 1 if I was chosen from B, hence it errs
with overall probability of at least 1/2. We next handle the second case, where D accepts (declares
’free’) when it sees only zeros. We show that in this case D errs with probability greater than 1/3,
by focusing on the distribution C (i.e. the ε-far case).

Being deterministic, when D sees only zeros it queries a fixed set X of locations, where we chose
|X| = 1

13ε . All we need to show is that under the random process of the distribution C, the fixed
set of locations X does not contain a 1 w.p. > 2/3. This will suffice, since all strings from C (which
is chosen w.p. 1/2) are ε-far from being J-free, and therefore D will fail w.p. > 1/2 · 2/3 = 1/3.

Let Xi = X ∩ Ii be the set of locations from X that are in interval Ii. An interval Ii has k/2
locations where a 1 could be placed (the right half of the interval) and we can assume that the set Xi

is contained in the right half of Ii (since the left half is zero w.p. 1 hence would be pointless to query
by any algorithm). Clearly, Pr[Xi contains a 1] = Pr[Ii contains a 1] · Pr[the 1 is within Xi] =
2εn
n/k ·

|Xi|
k/2 = 4ε|Xi|, leading to Pr[X contains a 1] ≤

∑n/k
i=1 4ε|Xi| = 4ε|X| < 1/3, by union bound.

As noted, Theorem 27 can be generalized to the higher-dimensional settings (details omitted).

25

	Introduction
	Related Work
	Notation and definitions
	Main Results
	Modification Lemma
	Characterizations of the Deletion Number
	Testers for Pattern Freeness
	Discussion and Open Questions
	Characterizations of the Deletion Number: Proofs
	Testers for Pattern Freeness: Proofs
	Almost Homogeneous Patterns
	A Lower Bound for Testing Pattern Freeness

