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Balancing Incentives in Pharmaceutical Research  
 
 
 ABSTRACT 
 
 

When effort is multi-dimensional, firms will optimally “balance” the provision of incentives. 

 Setting high-powered incentives along one dimension raises the returns to providing high-powered 

incentives along other dimensions which compete for the worker’s effort and/or attention 

(Holmstrom and Milgrom, 1991).  We test for this effect in the context of for-profit pharmaceutical 

laboratories using detailed data on individual research programs.  Consistent with this 

complementarity hypothesis, there is both cross-sectional and time-series evidence that firms 

providing strong promotion-based incentives for scientists to invest in basic research are more likely 

to provide strong incentives to supply effort towards applied research.   

 

JEL Classification Numbers: L2, L65, O32. 
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I. INTRODUCTION 

Recent research has described firms both as systems of complementary activities (Milgrom 

and Roberts, 1990; Ichniowski, Shaw and Prennushi, 1997) and as systems of complementary 

incentives (Holmstrom and Milgrom, 1991, 1994; Baker, Gibbons, Murphy, 1994, 2001). This 

research suggests that in many contexts, complementarities between organizational practices may 

arise from the contracting problems inherent in a multi-task agency setting. For example, when 

output is generated by workers (or work groups) exerting effort across two or more different tasks, 

the firm will optimally “balance” incentives across these tasks.  If it does not, workers will 

inefficiently allocate too much effort towards those tasks with the highest marginal return to them. 

Indeed in some circumstances it may be optimal to pay nothing but a fixed wage to avoid this 

problem (Holmstrom and Milgrom, 1991, henceforth “H&M”).  This idea provides valuable insight 

into the observation that adopting a specific organizational practice in isolation often fails to pay off.  

Despite the importance of these ideas for our understanding of the theory of the firm, 

empirical characterizations of multi-dimensional incentive systems are surprisingly scarce.  In part, 

this may be because in internal organizational settings where multiple dimensions of effort matter, 

measuring comparable incentive instruments across firms and over time requires detailed firm-level 

data that is difficult to obtain and interpret.     

Anderson and Schmittlein (1984) provide an early study of how the incentives of sales agents 

relates to factors such as the degree of monitoring and whether the salesperson is a long-term 

employee.  More recent cross-sectional studies explicitly test for complementarity in incentives 

across firm boundaries (Baker and Hubbard, 2002; Slade, 1996; Brickley, 1999).  In a study of 

gasoline retailers, Slade (1996) provides evidence that differences in non-gasoline service offerings, 

such as a convenience store, influence the incentives provided by gasoline wholesalers.   In the study 

most closely related to ours, Baker and Hubbard (2004) also exploit a shock to monitoring 

technology (for truck drivers) to test for the presence of a multi-task incentive system; however, 

whereas Baker and Hubbard exploit a literal shift in the monitoring technology (resulting from the 

diffusion of novel information technology), our approach is based on observing a shift in the nature 

of the activities undertaken by pharmaceutical research firms which resulted in a more precise 

monitoring technology. 
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In particular, this paper models and tests the complementarity hypothesis within firm 

boundaries in the context of pharmaceutical research.  Using a detailed dataset compiled from 

extensive fieldwork and the internal records of a sample of nine representative firms over 15 years 

we move beyond cross-sectional approaches common to prior studies to evaluate the 

complementarity hypothesis by exploiting variation both within and across firms in our sample. 

Pharmaceutical research provides a particularly interesting setting in which to explore  multi-

task agency problems. In the first place, although the question of exactly how incentives are 

provided for basic and applied research has important implications for the rate of technological 

innovation (Romer, 1990; Lazear, 1996), there is little systematic empirical evidence about how 

such incentives are provided in industrial laboratories (Hauser, 1998). Cohen and Levinthal, (1989), 

for example, suggest that a firm's ability to invest in absorptive capacity may have important 

implications for research productivity, but we know little about how firms might motivate their 

researchers to make these kinds of investments.  For IO and organizational economists, 

understanding how firms provide incentives to internal researchers (who relinquish intellectual 

property claims on discoveries made during their employment) is important for understanding the 

conditions under which R&D will take place in the confines of an integrated firm (Holmstrom, 1989; 

Aghion and Tirole; 1994; Lerner and Merges, 1998; Gans and Stern, 2000). 

The long-run level of research productivity in pharmaceutical drug discovery depends on the 

level of effort devoted towards two distinct activities: short term, "applied" effort devoted to the 

discovery and synthesis of chemical compounds, and longer term, more "basic" effort devoted to 

improving the scientific competencies of the firm and the odds that any particular chemical 

compound might become a profitable drug. 

Effort devoted to short terms, or applied, research has always been relatively easy to measure 

since it can be approximated by the number of patented compounds generated by a research group. 

Historically, however, it has been difficult to measure effort devoted to longer term, more "basic" 

research, and prior to the late 1970s, firms in consequence avoided the use of high powered 

incentives, rewarding their researchers largely through the use of fixed salaries. Starting in the late 

1970s, however, the pharmaceutical industry experienced a significant exogenous shock to the 

technology of drug discovery which made monitoring of effort towards long-term activities more 

effective (and may have also changed the absolute level of returns to the long term research 
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component).  In particular, during this period, it became feasible to use a monitoring system based 

on the provision of incentives to publish in the scientific research literature as a signal for effort 

devoted to the development of long-term research competencies. 

Pharmaceutical research thus transitioned from a world in which firms needed to reward two 

competing activities (short term applied and longer term basic), only one of which could be 

measured with any precision, to a world in which two mutually complementary activities continued 

to be important but in which not only the first but also the second could be approximately measured. 

Firms responded heterogeneously to this “shock”: while some firms quickly adopted a research 

organization which provided high-powered promotion-based incentives designed to encourage 

efforts in basic research, other firms were much slower to do this, eschewing internal incentives 

based upon basic research outputs (such as scientific publications) well into the 1990s. We use this 

heterogeneity among firms and over time to evaluate whether firms offering high-powered 

incentives for basic research were more likely to provide higher-powered incentives for applied 

research.  As such, we are evaluating an important implication of the multi-task model: in response 

to an exogenous shock which shifts the ability to measure effort exerted along one dimension, do 

firms increase the incentive intensity for other tasks competing for workers’ time? 

Using data from nine firms over fifteen years we establish three results.  First, we 

demonstrate substantial variation among firms and across time in the intensity with which they 

provide incentives for basic or long term research. The primary mechanism used to do this appears  

to have been the internal labor market of the firm.  By actively taking advantage of the monitoring 

capabilities of the public research community, and rewarding research workers’ participation in 

“open science” through practices such as using publication in the refereed literature as a criteria in 

promotion decisions, some firms provided powerful incentives to supply effort along this dimension. 

Other firms did not use these practices, or applied them less intensively.  Second, we find evidence 

for significant variation in the provision of high-powered incentives to do applied research: some 

firms rewarded research teams with substantially higher budgets following better-than-expected 

(important) patent output, while in others this effect was much more muted.  Third, we find evidence 

in a variety of “cuts” of the data for a quantitatively and statistically significant positive association 

between the use of these two instruments. 

The correlation between the incentives for short and long term research subsequent to the 
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transition to “rational” drug design, may, of course, be due to factors unrelated to the firm’s response 

to the multitask agency problem.  Rather than rely on a single argument for identification (for 

example, by simply assuming the exogeneity of certain instruments), our approach is to identify the 

most likely sources of bias and to provide direct controls for these effects.  For example, after 

showing the presence of a positive correlation in the context of a pooled data analysis, we 

demonstrate an even stronger positive correlation in a more demanding “differences-in-differences” 

estimator, including fixed effects for each individual research program along with time trends for 

each therapeutic area.  While the limited number of firms in our sample makes us cautious about 

over interpreting these results, we view them as supporting the H&M hypothesis about the role of 

“balance” in the provision of research incentives. 

The paper begins with a discussion of the nature of drug discovery research, the change 

that occurred in the 1970s and its implications for the management and organization of 

pharmaceutical research. Section III reviews the H&M multitask agency model and derives 

empirical implications. Section IV discusses our data and some of the reduced form properties of 

the data set. Section V reviews our empirical findings, and Section VI concludes.  A supporting 

appendix discuss the construction of each of the incentive measures in greater detail. 

 

II. EFFORT & INCENTIVES IN PHARMACEUTICAL RESEARCH 

The process of drug discovery and development is complex and extends over several years.  

In the “research” phase, also referred to the drug discovery process, researchers attempt to find 

compounds that may plausibly be developed into drugs by demonstrating their therapeutic effects in 

animals.  In the second, or “development” phase, these compounds are tested in humans and undergo 

rigorous review by the Food and Drug Administration. The two phases require distinct skills and 

knowledge and are nearly always carried out by quite different people.  In this paper, we focus only 

on the research phase.  

For much of this century, the technology of drug research was dominated by a technique 

commonly described as “random” drug discovery.  Under this regime, large numbers of candidate 

compounds would be tested for pharmaceutical activity in an “animal model” or a relatively crude 

cell culture or assay.  For example, a search for hypertensive therapies might involve injecting large 

numbers of candidate compounds into hypertensive dogs to explore the degree to which they 
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reduced blood pressure, while a search for therapies effective against anxiety might involve 

administering compounds to rats and then observing their behavior in stressful situations.1   

Molecules showing pharmaceutical activity would then be subjected to further testing, and modified 

to improve their pharmacological properties.  In most cases, the “mechanism of action” — the 

specific biochemical and molecular pathways responsible for a compound’s therapeutic effect — 

was not well understood. While random drug discovery was not entirely divorced from more 

fundamental scientific research conducted within the public sector, in general it was not critical that 

pharmaceutical researchers be active players in the community of public science.  

While given the name “random” (largely by those seeking to pioneer the next generation of 

drug discovery technology), this method of drug discovery was neither unproductive nor 

unscientific. Many powerful drugs were discovered using this set of techniques, and it continues to 

be employed, particularly in those cases in which the biochemical or genetic mechanisms underlying 

a disease are not well understood. Effective “random” drug discovery is neither automatic nor 

unskilled. It requires, first, the development of the “applied” or “short term” ability to generate 

plausible candidates and to elaborate their chemical structure. (An effective group, for example, on 

finding a compound that appears to show some activity in an animal screen, will devote a great deal 

of effort to synthesizing related compounds that might show the same or better activity but that 

might also have superior pharmacological profiles.) This kind of activity can often be localized to 

particular research groups, and approximately measured by the number of patentable compounds 

that they generate. It also requires, however, a deep knowledge of medicinal chemistry (the ways in 

which particular chemical structures were metabolized and reacted to by the human body), and of 

both animal and clinical models and their interpretation. For example, a recent story in the WSJ 

explains how a Japanese researcher was able to identify a particularly promising compound by 

observing that it changed the way in which a rat’s whiskers twitched (WSJ ref, 2003). This skill, 

while not “basic” or "fundamental” in the classic sense of university research, nevertheless shares 

many of its characteristics. Its impact tends to be long term in nature, and to be difficult to localize. 

Knowledge in medicinal chemistry, in clinical pharmacology, and in the nature of animal models 

 
1   For example, one test involved throwing rats into buckets of water and observing how long they continued to 

struggle. 
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may be useful across the firm in unpredictable ways. It is also extraordinarily hard to measure, being 

largely embedded in the tacit knowledge shared by experienced chemists and drug developers.  

The need to encourage researchers to invest in both kinds of activity presented the 

pharmaceutical firms with a classic incentive design problem. In the ideal case one would of course 

wish to reward researchers on the basic of their real output – or in this case on the degree to which 

they discover highly profitable drugs. Unfortunately using drug profitability as a metric is 

problematic. It typically takes between 10-15 years to develop a new drug, and successful drug 

introductions are a classic problem in team production, drawing deeply on a wide range of 

"downstream" skills, including clinical trial design, statistics, manufacturing regulatory affairs and 

sales and marketing, so that drug profitability is inevitably a very noisy (and very delayed) measure  

of research effort.  

The degree to which a research group generates patentable compounds is a reasonable 

measure of short term effort, but the vast majority of patented compounds prove to be worthless 

– current industry estimates are that only 2% of promising leads become marketed drugs, let 

along profitable drugs – and thus patent output alone, while a reasonable measure of the effort 

devoted to short term, applied research, is an unsatisfactory measure of what the firm would 

really like to measure – “excellent research” – or the appropriate balance of long and short term 

research. 

In principle, pharmaceutical firms might have been able to address this dilemma by 

allocating the tasks of “basic” and “applied” work to different groups within the firm, with 

incentives tailored to each task, as H&M suggest.  Hoffman-La Roche, for example, created the 

“Roche Institute” to pursue fundamental research in biological systems.  However our fieldwork 

suggests that this approach had significant drawbacks, and it was not widely pursued. Such groups 

tended to degenerate into “ivory towers” – producing a large number of scientific papers but 

contributing little to the process of drug discovery.  Effective adoption of “rational” drug discovery 

seems to depend on a tight integration between basic and applied research (Gambardella, 1995; 

Henderson and Cockburn, 1996).  The dominant means used to accomplish this integration was to 

organize researchers into small teams (4-7 PhDs), responsible both for staying at the leading edge of 

their particular disciplines and for working together to translate this fundamental knowledge into 
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promising compounds.2  

We believe that this organizational design creates exactly the kinds of tension that are 

captured in the H&M model. Managers of these research groups have to encourage workers to 

supply effort in both short and long term research activities.  They cannot easily condition incentives 

on a useful measure of output, and their employees must optimally engage in two, complementary 

activities that compete for researchers’ time. Under the “random” drug discovery regime it was 

particularly difficult to measure the degree to which researchers were engaging in “longer term” or 

“more basic” activity, and to our knowledge the vast majority of firms used low powered incentives, 

(largely salary and subjective promotion benefits), as H&M would predict. 

This changed in the late 1970s.  In 1978, Squibb announced the discovery of the anti-

hypertensive drug Captopril. This marked a watershed in the technology of drug discovery, since it 

was the first drug to be discovered through the use of an in-vitro (literally "in glass" as opposed to 

in-vivo, or "in life") screen that duplicated a particular mechanism of action, rather than through the 

use of an animal model.4 

 This technology, commonly called “rational” or “mechanism based” drug discovery, offered 

a powerful new research tool, and was gradually adopted across the industry over the course of the 

next fifteen years. Research-oriented pharmaceutical companies began to make substantial 

investments in basic research in disciplines such as biochemistry or cell biology, and to invest much 

more heavily in understanding and accessing publicly funded science. 

This change is critically important for our purposes here because it made it much easier to 

measure the degree to which drug researchers were engaging in “longer term” or “more basic” 

research activities. As research switched away from a model in which the important long term 

knowledge was largely idiosyncratic, tacit knowledge about animal models and the complexities of 

human physiology to a model in which the important long term knowledge was of much more of a 

 
2 There are, of course, exceptions to this generalization. For example many pharmaceutical firms currently 

maintain small groups of researchers charged with the development of expertise in genomics, a new area of science that 
will probably have a very significant impact on the drug discovery process. 
 
4 For a fuller discussion of the discovery of Captopril, see Henderson (1994). Note that researchers had used 
speculation about drugs’ mechanism of action as a research tool long before the discovery of Captopril. Sir James 
Black, for example, discovered the first of the beta-blockers in the early 1960s by exploiting his hypothesis that 
blocking the heart's beta receptors would lower blood pressure. But he did not make this discovery by screening 
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classically “scientific” nature – knowledge of fundamental genetics and biochemistry – so firms 

were able to take advantage of the community of public science to monitor their researchers much 

more effectively. Evaluating the quality of basic research is prohibitively difficult for managers who 

are not themselves at the cutting edge of the relevant science.  Pharmaceutical firms attempting to 

provide incentives to perform this kind of basic research rely instead on the set of institutions that 

have evolved to evaluate publicly funded biomedical researchers.   

The reward system of “open science” is based on publication, peer review and priority, with 

a clearly established public rank hierarchy in most disciplines. (Merton, 1973; Dasgupta and David, 

1994; Stephan, 1996; Stern, 1999).  Firms who encourage their research workers to participate in 

“open science” can benefit from this system in two ways. First, they can use worker’s success in 

publishing in peer-reviewed journals and in garnering respect from their scientific peers as 

informative signals of the level of effort devoted towards basic research. Second, the rank order 

tournament aspects of this reward system translate straightforwardly into the tournament internal to 

the firm.  By promoting researchers on the basis of their publication record and on their standing in 

the public rank hierarchy of their field, or on the criteria used by the publicly funded scientific 

community, a firm could provides high-powered incentives to supply effort directed towards this 

particular kind of long term or basic research. 

For an individual researcher, effort devoted towards understanding fundamental biological 

principles is a substitute for short term or applied effort devoted towards translating scientific 

knowledge into the discovery of potential drugs.  Staying at the leading edge of a scientific 

discipline requires devoting substantial effort to publication, basic laboratory work and to remaining 

connected to the wider research community.  Translating this knowledge into the discovery of 

potentially commercializable new drugs, however, requires devoting effort to working in an 

interdisciplinary applied research team. Rewarding researchers solely on the basis of their ability to 

work as part of this team and to generate immediate output increases the risk that the researchers will 

fail to make the time-consuming effort intensive actions required to be at the leading edge of 

fundamental science, or that they will attempt to free ride on the scientific work of others. Similarly, 

only rewarding effort devoted to basic research might lead researchers to focus solely on advancing 

their own careers at the expense of effort that might be productively invested in the search for new 

 
compounds against isolated beta receptors. 
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drugs. We argue, therefore, that the adoption of rational drug discovery provides an intriguing 

setting natural experiment that allows us to test H&M’s hypothesis. 

 

III. A MODEL OF INCENTIVES IN PHARMACEUTICAL RESEARCH 

Theoretical work on incentive contracting has generated a number of important propositions 

about the structure of contracts between principals and agents in situations where the agent is 

required to perform multiple tasks (Holmstrom and Milgrom, 1991, 1994; Baker, 1992).5  One of the 

most salient propositions is that in these multitask agency settings the optimal incentive regime is 

“balanced” — the degree to which high-powered incentives can  be offered on any single dimension 

will be a function of the precision with which effort on every other important dimension can be 

measured, so that the degree to which  high-powered incentives will be offered along any one 

dimension will be correlated with whether high-powered incentives are offered along other relevant 

dimensions.  To see this more clearly, we briefly review the H&M model, adapting their general 

framework to the specific setting of long and short term research in pharmaceutical drug discovery. 

We begin with a simple model of the provision of incentives for research workers in an 

employment relationship (i.e., one in which the firm hires the workers and owns the output of their 

research).  Consider an environment where the firm’s profits are dependent on two distinct research 

activities, “short term” and “long term” research. For each dimension of effort i (S=short term, 

L=long term), the researcher chooses an effort level, ei, yielding output Y(eS ,eL) with Y increasing in 

eS, and eL.  Assume that, in each period, the firm observes two contractible signals:6 

 xS = eS, + ηS 

xL = eL + ηL, where η ~N(O,σ)    

Both short-term and long-term research can only be measured with error, and so the firm implements 

an incentive contract to maximize (joint) surplus taking into account the level of precision of the 

vector of signals.  For simplicity, we assume that the signals are independent of each other. 

Simply put, the firm’s problem is to offer incentives according to the vector of observed 

signals to elicit the optimal (feasible) level of effort.  By placing structure on the agent’s preference 

 
 5 We owe an enormous debt to Bengt Holmstrom for the discussion that follows. Needless to say, he is not 
responsible for any errors that it may contain. 

6 Importantly, we assume that the signal vector is observable, contractible and unbiased.  In a model which 
allows for subjective signals or incorporates the role of reputation, the relationship between signals and optimal 



function (specifically on the cost function for supplying effort), it is possible to solve for the firm’s 

optimal incentive scheme. Following H&M, assume that the (risk-averse) agent trades off expected 

income against the cost of effort, that effort is costly (ci >0), and that the cost function is 

supermodular for effort along each dimension  (cij > 0, ∀ i≠j) .1 If the compensation contract 

specifies a wage of w(x), then the agent’s expected utility is assumed to take the form: 

u(CE) = E{u[w(x) – C(eS,eL)]} 

Where  

u(w) = -e-r(w) and CE denotes the agent’s “certainty equivalent“ money payoff. The 

coefficient r measures the agent’s risk aversion. The principal is assumed to be risk neutral. We 

further assume that the incentive scheme imposed by the firm takes the form of a linear reward 

structure relating the agent’s wage to the observable signals7: 

w = α0 + αS xS + αL xL 

where αS and αL are the incentive intensities implemented by the firm for short term/applied and long 

term/basic research, respectively and αO is the fixed component of salary. The agent’s certainty 

equivalent, CE, is then: 

 CE = α0 + αS xS + αL xL - C(eS,eL)- ½ r αL
2 σL

2- ½ r αH
2 σH

2 

Expected gross benefits for the firm, Y (eS, eL) are: 

 Y (eS, eL) = pS eS + pL eL 

Then, following Holmstrom and Milgrom, total surplus, TS, is given by: 

 TS (αS, αL) = Y (eS, eL) + CE 

Or by:  

 TS (αS, αL) = pS eS + pL eL - α0 + αS xS + αL xL - C(eS,eL)- ½ r αL
2 σL

2- ½ r αH
2 σH

2 (1) 

TS (αS, αL; θ) is supermodular if: 

 
LS

TS
δαα

δ
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2

∂
  0,  ≥

δθα
δ

,

2

S

TS
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 ≥  0,  
δθα

δ
,

2

L

TS
∂

 ≥  0,     (2) 

 

 

                                                                                                                                                             
incentives will be more subtle, and empirical predictions more difficult to come by (Baker, et al, 2001). 

7 Rather than following the detailed (and familiar) derivation under which linearity is in fact optimal 
(Holmstrom and Milgrom, 1987) , we assume linearity to focus on the relationship among incentive instruments.  
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Note that  
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 + (pL – αL)
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If the cost function C(eS,eL) is quadratic, then  

 
LS

Se
αα∂

∂ 2

 = 
LS

Le
αα∂

∂ 2

= 0 

and if effort supply function is supermodular in αS and αL, so that the marginal cost of effort along 

one dimension is increasing in the level of effort along the other dimension,  

 
L

Se
α∂
∂

= 
S

Le
α∂
∂

> 0 so 
LS

TS
δαα

δ
,

2

∂
>0,  

For our purposes, however, the more interesting question is whether a shock to the firm’s ability to 

measure effort will lead to correlated movements in incentive intensities, i.e. whether  

 
δθα

δ
,

2

S

TS
∂

  0,  ≥
δθα

δ
,

2

L

TS
∂

  0 ≥

for the case when θ = - σL . (Increasing measurement precision of the long-term research effort 

activity means that the error with which the signal is measured, σL , falls.) 

 

Notice, first, that an exogenous shock that raises the “importance” of one of the activities (if, for 

example, θ = pL, pL increases), incentive intensities will not, in general move together. To see this, 

note that: 

 
LS p

TS
δα

δ
,

2

∂
 = 

S

Le
α∂
∂

 < 0, while 
LL p

TS
δα

δ
,

2

∂
 = 

L

Le
α∂
∂

 > 0 

Thus if the transition to rational drug discovery meant only that basic research became an 

increasingly important factor in the "production function" of research, we would not, in general, 

expect the intensity of incentive instruments to move together. Indeed, if effort devoted to basic 

research cannot be measured, then it may become even more important to rely on fixed salaries to 

compensate researchers, and the weight given to effort devoted to short term research might well 

fall. 

However an exogenous shock to measurement precision, σL will increase the returns to the 

firm of increasing incentive intensity along both dimensions.  To see this formally, note that: 
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2

S

S L

e
α σ
∂
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 = 
2

L

S L

e
α σ
∂
∂

= 0 by first order conditions. 

Or, for the case that θ = - σL , TS (αS, αL; θ) is supermodular. These predictions have important 

empirical implications. Note that in a broad class of models the conditions for complete 

supermodularity do not hold, and we would not expect incentive instruments to be complements to 

each other. However in the case on which we focus here, in which the “shock” is an improvement in 

measurement productivity, then the system is supermodular, and we can expect αS and αL to be 

positively correlated with each other (Holmstrom and Milgrom, 1991; Athey and Stern, 1998)8  

Notice too that if returns to long term effort are increasing over the period, (pL increasing) our test 

for supermodularity will  be conservative.10  

 Of course, in order to argue that positive covariation between incentive elements implies 

complementarity requires that we address potential alternative statistical sources of positive 

covariation -- namely positive correlation among the factors driving the adoption of each incentive 

element (Arora, 1996; Athey and Stern, 1998).  To do so, we note that, under the complementary 

hypothesis, this covariation test should be robust to conditioning on other observable factors which 

may be associated with the adoption process for each incentive element.  As such, rather than 

imposing exclusion restrictions (Arora, 1996) or estimating a full structural model of adoption 

(Athey and Stern, 1998), our empirical approach is to evaluate the covariation test using several 

different “cuts” of the data, each chosen to control for the most likely alternative sources of positive 

correlation between the two incentive instruments.   

 

                                                 
8 More generally, the incentive intensities will be positively correlated if the stochastic shocks are 

statistically associated (a strong form of positive correlation). 
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 10  This prediction depends only on the supermodularity of the effort supply function (i.e., different tasks are 
substitutes in effort), and on linearity in the incentive scheme (i.e., there is no interaction between signals in the contract).  
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IV. DATA SOURCES AND CONSTRUCTION 

 Our empirical task is thus to measure αS  and αL and to explore the correlation between them, 

making plausible the hypothesis that any correlation we observe is not a function of other plausible 

sources of correlation.  

 Recall that pharmaceutical researchers are organized into small groups. A key empirical issue 

is thus whether to measure αS and αL at the group or individual level. We argue here that 

pharmaceutical firms implement αS at the group level, and that they implement αL at the individual 

level, largely because xS  is measured at the group level, whereas xL can be measured at the level of 

the individual. Long term or basic research is usually conducted primarily by individuals, and the 

structures of public science allow each individual's effort level to be monitored.11 In contrast, as we 

noted above, successful new drugs are typically the result of the joint effort of a research team 

composed of 4-7 PhD scientists.12 Since in general the firm cannot observe the separate contribution 

of each member of these teams, it may optimally choose to provide a “group-level” incentive, or a 

“bonus” to the group’s overall budget.  Nonetheless, this may still provide powerful incentives for 

individuals: team members can then allocate this bonus among themselves, within the constraints 

established by the internal procedures of each firm choosing to increase wages, to hire new 

researchers or to purchase expensive capital equipment.  Since the teams are so small, the firm can 

ameliorate the problem of rewarding team production by providing rewards for successful applied 

research at the group level, giving each research group discretion in how to allocate this “bonus” 

(Holmstrom, 1982) while at the same time remaining confident that the small size of the group will 

prevent any significant free riding by individual researchers who might otherwise seek to maximize 

the effort that they devote to basic research at the expense of the group. 

Our results are obtained from a unique data set built from the detailed internal records of a 

sample of nine research-oriented pharmaceutical companies who, taken together, spend about 25% 

of the total amount of privately funded pharmaceutical research conducted worldwide13. Data on 

 
11 Modern biology is increasingly conducted in large labs, and in these kinds of projects it may be difficult 

to identify the contribution of the individual. However in the period covered by our data this was not yet a major 
concern. 

12 The mean level of funding for a single therapeutic area is $1.6m (1985 $). The detailed headcount data 
that we obtained from a few of the firms in our sample suggest that this is roughly sufficient to employ 4-7 PhD level 
researchers, when overhead and support costs are factored in. 

13 The data are provided under guarantees of strict confidentiality and anonymity so we can discuss the 
makeup of the sample only in broad terms.  The sample is relatively representative of the industry as whole, in terms 
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individual research programs expenditures are supplemented by patent data and a  measure of the 

degree to which the firm provides incentives for basic research in its promotion policies. (Cockburn 

and Henderson (1994) and Henderson and Cockburn (1994; 1996) discuss the construction of this 

data set in greater detail.  

Measuring the incentive to do basic or long term research To measure the intensity with 

which firms provide incentives to engage in “fundamental” research  (i.e., αL), we use a variable, 

PROPUB, that is derived from over a hundred interviews with senior managers and scientists at our 

sample of pharmaceutical firms.  In order to minimize the problem of retrospective bias, the 

interviews designed to construct a comprehensive history of the development of cardiovascular 

drugs at each firm.14 Each respondent was questioned in detail about the ways in which research was 

organized over time, but the questions were linked to specific events in the history of the firm (e.g., 

who worked on the development of this beta-blocker? what happened? were they rewarded? why or 

why not?).  PROPUB was then constructed by assigning each firm in each year a value on a 5-point 

Likert scale based on the degree to which the firm’s promotion policies were based on a researcher’s 

standing in the external scientific community, where a value of 1 indicates that the firm placed no 

value at all on a researcher’s reputation in the external community in rewarding his or her efforts and 

a value of 5 indicates that it was a central criteria in such decisions.  

 PROPUB has been found to discriminate effectively among firms in terms of their R&D 

productivity and is also correlated with several alternative measures of a firm’s commitment to the 

world of public science and of its rate and extent of scientific publication activity (Henderson and 

Cockburn, 1996; Cockburn, Henderson, and Stern, 2000).  However since the use of a subjectively 

constructed Likert scale will always raise questions, we also employ an alternative measure  

(“HIGH” PROPUB DUMMY) which is equal to 1 after a firm has increased its PROPUB level and 

is zero otherwise.  While this measure exploits less of our qualitative information than PROPUB, it 

provides a more unambiguous index of the changing incentives for basic research within each firm 

 
of size, technical or commercial performance, and geographic distribution (with firms headquartered in both the 
United States and Europe). 

14 The data are provided under guarantees of strict confidentiality and anonymity so we can discuss the 
makeup of the sample only in broad terms.  The sample is relatively representative of the industry as whole, in terms 
of size, technical or commercial performance, and geographic distribution (with firms headquartered in both the 
United States and Europe). 
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in the sample.15 Our results are robust to the use of either measure. 

Across firms, differences in PROPUB reflect significant differences in the promotion policies 

of the firm (ranging from strong restrictions on scientific publishing and the active discouragement 

of basic research initiatives to the use of a promotion system not dissimilar to that of a university 

biology department – promotion based on publication record and external recommendation letters 

from leading scientific researchers in the public sector).  Within a firm, “switches” in the PROPUB 

regime reflect a significant change in the firm’s use of promotion incentives to encourage basic 

research.  Over the sixteen year and nine firm sample, there were five “switches” from a lower to a 

higher regime are observed, so that there are fourteen distinct “firm / basic research incentive level” 

regimes.16 

  

Applied Research Incentives 

To assess the internal incentives provided to supply effort towards applied research, we look 

to the firms’ internal capital market, and to research funding decisions.  Internal capital markets can 

play an important role as a reward mechanism for workers, ameliorating agency problems within the 

firm (Hart, 1995; Stein, 1997).  In the context of pharmaceutical firms, we observe drug discovery 

teams in different therapeutic areas competing with one another for resources, with variation in 

project funding decisions interpretable as a highly visible reward for success. (A “therapeutic area” 

is a sub-market within the pharmaceutical industry. For example depression, anxiety and 

hypertension are all separate therapeutic areas.) By varying a research team’s budget in response to 

observed output, a firm provides incentives for the team’s workers to supply effort to generate 

positive signals.  

We measure the intensity of incentives to supply effort in applied research by estimating the 

sensitivity of drug discovery team research budgets to observed success in producing “applied” 

 
15 In other work, we explore several alternatives, such as PUBFRAC (the percentage of patent authors who 

also publish in the referred literature).  Though less subjective, these quantitative measures suffer from two 
limitations.  First, they measure outcomes rather than incentive policies, and, second, they cannot be constructed for 
the full period covered by our detailed R&D investment data. 

16 Since adopting a higher level of PROPUB may take time, for firms in which we observe a switch from a 
lower to a higher level of PROPUB, we allow for a “transition” period during the first year of implementation by 
excluding these “switching” periods from our sample. All of the results presented in Section V are robust to various 
different treatments of the adjustment process, such as creating a one-year “band” around the switching dates 
(including the year before and after) and ignoring the adjustment process altogether. 
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output in the form of potentially marketable compounds, where we measure this output  in terms of 

the number of “important” patents applied for in a given year. To ensure comparability across firms, 

we restrict ourselves to a measure of “important” patent counts, that is inventions for which patent 

applications were filed in at least two of  three major jurisdictions (the U.S., Europe, and Japan.) 

This controls for variation across firms in their propensity to patent “marginal” discoveries or in 

their national environment (patent counts based on single country grants will tend to be biased 

towards domestic firms).1 We define a patent as important if it was subsequently granted in two of 

the three major patent jurisdictions (the USA, Europe and Japan). Important patents provide a 

particularly useful measure of applied output in this setting since the pharmaceutical industries is 

one of the few industries in which patents both correspond to particular products (a drug is a single 

patentable molecule) and in which they are central to competitive advantage (Levin, et al, 1987; 

Cohen, et al, 2000).17 We assume that the timing of the firm’s patent filings is a good measure of the 

time at which decision-makers acquire objective information about a research group’s recent 

production of potentially commercializable compounds. Finally, we match these patents to 

underlying research expenditures using a classification scheme based on standard therapeutic class 

codes (such as the IMS Worldwide Therapeutic Classification Scheme) modified to reflect the 

organizational structure of the firms in the sample.18  All patents are counted by earliest world-wide 

priority date of the invention.  

We estimate this sensitivity by constructing a simple model of R&D investment at the 

research program level, which allows the team’s research budget (and thus observed expenditures) to 

be driven both by the need to provide incentives and by technological opportunity.  The key 

assumption of the model is that changes in the research budget for a given drug discovery team from 

 
17   Derwent’s World Patent Index compiles comprehensive data on international patent filings, allowing us to 

identify those granted in multiple jurisdictions.  Application costs rise roughly proportionately with the number of 
jurisdictions, and firms rarely file in all possible jurisdictions, let alone all major markets (e.g. all OECD countries.)  By 
excluding inventions where the firm does not file in at least two out of three major jurisdictions, we are therefore left with 
a count of “important” patents.  Derwent's database goes back to 1962, though much less comprehensive data is available 
before 1970. 

Advances in molecular biology have spawned a number of developments that are "basic" in the sense of being 
fundamental to advances in science, but that have nonetheless proved to be patentable. However during the time covered 
by our sample, only a small share of total research expenditures were devoted to such areas. For example, although the 
average firm in our sample produced several hundred US patents per year, Kaplan, Murray and Henderson (2001) 
estimate the average pharmaceutical firm produced less than five biotechnology patents through 1990. 

18   Where we were not confident about this matching, research programs and patents are assigned to a 



year t-1 to year t reflect both a “bonus” payment reflecting the team’s “excess” productivity over and 

above the expected level of applied research output in year t 1,,,,,
~

−= tjisStji xI α  where  is the 

“shock” to applied research productivity by a research team in year t-1, and changes that reflect 

“efficient” investment insofar as the firm adjusts its research expenditures according to “news” from 

period t-1 about underlying technological and market opportunities (Pakes, 1981; Abel, 1984), 
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where Xi,j,t-1 is the shock to technological opportunity realized by program i in firm j in period t-1, 

Zi,j,t-1 are opportunity shocks external to this program but observed by the firm, and I*
i,j,t-1 is the 

optimal level of expenditure in the prior period. 

In addition, we assume that the firm’s internal measure of technological opportunity cannot 

be distinguished from the signal it receives about the team’s applied research output shock (i.e., 

 and that Zi,j,t-1 can be partitioned into “news” observable to both the firm and 

econometrician (zi,j,t-1) and a shock observable to the firm but not to the econometrician (ζi,j,t-1).  

Subtracting I*
i,j,t-1 from both sides and modeling total investment  yields an 

expression for the overall change in expenditure after accounting for both the group-based incentive 

payment and the firm’s response to technological opportunity: 
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Under this model, data on research program investment and applied research output can be 

used to estimate , the sensitivity of research program budgets to the prior period’s 

unanticipated applied research output.19 Notice that since any increases stemming from individual 

promotions go into the level of the group's budget and we are here focusing on changes, we can 

separately identify the two instruments.  

x
S
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To estimate (4), we must derive a measure for , the observed shock to applied 1,,, −tjisx

                                                                                                                                                             
“Misc/NEC” class and not used in the analysis. 

19   Overall, the sign and magnitude of  γS are ambiguous theoretically since, while we expect αS, the firm’s 
optimal investment response to applied research output shocks depends on whether there are increasing or diminishing 
returns to effort in a particular therapeutic area.   In applying this model to data , we must ensure that the  estimate of γS 
controls for unobserved factors correlated with applied research output  “shocks” and increases in R&D funding problem, 
which we largely address through the use of a differences-in-differences estimator with firm-program fixed effects.  We 
describe the empirical strategy in detail in Section V. 
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research output for a given therapeutic program in a given year. The details of our derivation are 

provided in Appendix A, but essentially, we first calculate the expected level of patents (our measure 

of applied research output) for each team for each year by  regressing the level of patents as a 

function of the historical patent production rate of the team and Ii,j,t-1 .We then use the fitted values 

from this regression as our measure of the “predicted” level of patents for that team for that year.  

Finally, we define PATENT SHOCK as the difference between the observed and predicted level of 

patenting for that research program and SHOCKi,j,t as: 
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which is PATENT SHOCK adjusted for the scale of the research program. Since this 

measure is observed by the firm when choosing the research team’s budget for year t, the firm is able 

to implement the investment equation (4). 

Funding Variables.   Our data on research investment are taken from a database on research 

expenditures for several hundred individual research programs conducted by firms in this sample 

between 1975-1990.   These data were assembled from confidential internal records, and great care 

was taken to treat data consistently across firms and over time.  Pharmaceutical research takes place 

in two distinct phases: pre-clinical (or “discovery” research) and clinical (i.e., development); here we 

focus exclusively on the former.20 RESEARCH is thus the level of expenditures on pre-clinical 

discovery research in a given firm-program-year, deflated to 1986 dollars by the NIH biomedical 

research deflator.  We measure the “bonus” to the research budget, ∆RESEARCH, as the first 

difference of RESEARCH.  Similarly, FIRM RESEARCH is just the sum of RESEARCH over all 

observed programs of a firm in a given year. 

Sample selection. With a complete, balanced data set (all firms participating in all programs 

in all years from 1975-1990), the data set would consist of 7040 firm-program-year observations.  

The data set is unbalanced, however, affecting the size of the sample.  First, and most importantly, 

firms initiate and discontinue research programs throughout the sample.  We only include 
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20 By focusing exclusively on the discovery phase of pharmaceutical research, we avoid the complexities 
of modeling the multi-year multi-stage development phase whereby individual drugs are moved through clinical 
development and testing for regulatory approval.  Also note that external research grants and licensing or joint-
venture payments are sometimes included in the data (as appropriate); however, these types of funding arrangement 
represent a very small share of the total during the period of our sample 



observations for which a research program is “active” in the sense that the firm actively engaged in 

at least some research in a particular therapeutic area (resulting in the loss of 2319 potential 

observations).  As well, some firms are involved in mergers and some firms’ discovery spending is 

not observed continuously between 1975-1990 (resulting in a net loss of 978 observations).  Further, 

1164 observations are removed because both ∆RESEARCH and PATENT SHOCK*RESEARCHt-1 

are equal to 0.  Finally, since we are interested in whether firms who have a given level of PROPUB 

tend to be more responsive to applied research outputs shocks in their capital budgeting, we allow a 

one-year “adjustment” for those firms who switch PROPUB during the sample period, resulting in 

the loss of 139 observations.  Taken together, these sampling rules result in a final data set of 2417 

observations which we use throughout our empirical analysis.  

Table 1 provides variable definitions, and Table 2 reports the summary statistics). On 

average, each firm in the sample has just above 10 distinct drug discovery teams spending $1.58 

million per year (in constant 1986 dollars) and obtaining 3.30 important patents per year (Table 2). 

On average, program receive a modest “boost” over time; however, ∆RESEARCH varies widely 

across programs and over time. Although some programs produce more than 15 patents per year, no 

patents are produced in 30 percent of program-years, and, for 76% of the annual observations, fewer 

than five patents are produced. 

While the promotion policy variable PROPUB is centered around the mean of the 5-point 

Likert scale, there exists substantial variation along these dimensions both across firms and across 

time (ANOVA reveals that the variance is evenly divided across the within-firm and between-firm 

dimensions).  The measure capturing the presence of a “switch” in PROPUB (“HIGH” PROPUB 

DUMMY) captures more than one quarter of the sample. 

 

V. CORRELATION OF BASIC AND APPLIED RESEARCH INCENTIVES 

Recall that our key equation is equation (4) 
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where  is the firm's budgetary response to unanticipated changes in research 

output, and our key empirical question is that of the degree to which αS is correlated αL. 

x
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Table 3 presents an estimate of γS obtained by estimating (4) using data on annual research 
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expenditures and patents at the level of the individual research program. We regress the first 

difference of research expenditures ∆Ii,j,t or ∆RESEARCHi,j,t against (a) our measure of the applied 

research output “shock” (i.e.,  represented as SHOCK), (b) our measures of external 

technological opportunity shocks, (i.e., zi,j,t-1) and (c) controls for an overall time trend, the scale of 

the program (Ii,j,t-1, or RESEARCHi,j,t-1) and “momentum” in the research funding process (∆Ii,jt-1, or 

∆RESEARCHi,j,t-1). Since zi,j,t-1, is difficult to measure directly, we use “news” in the patent 

applications of related research programs both inside the firm and at a sample of competitor firms to 

proxy for changes in technological opportunity.21  It-1 is included as a control for size and to capture 

any higher-order time series properties. 

1,,, −tjisx

 The very high variance of the dependent variable (and the starkness of our investment 

model) is reflected by the low R2 for the regression,22 but our main variable of interest, the “shock” 

to observed applied research output has a positive coefficient, as expected, and is strongly 

significant. The magnitude of this coefficient is sensible: it implies that a one-standard-positive-

deviation “surprise” in SHOCK has about a $140,000 (or approximately 9%) impact on the budget 

of the average program. Finally, there is a great deal of variation in γS both across firms and across 

basic research incentive “regimes” within a firm (recall that our measure of basic research incentives 

is a categorical variable with specific “switch” dates for individual firms): we can conclusively reject 

homogeneity of γS along each of these dimensions  (these results are available from the authors upon 

request).  This result holds with or without the other covariates in the model, and whether or not 

their coefficients are allowed to be regime-specific, or are constrained to be equal across sub 

samples.   

These results suggest that firms do indeed respond heterogeneously to unexpected shocks. 

Recall, however, that γS = αS + βx.  The firm’s budgetary response to unexpected shocks reflects both 

its rewards to effort and its responsiveness to technological opportunity.  The remainder of the paper 

is devoted to evaluating whether this variation in γS can be tied to the provision of basic research 

incentives (i.e., to the level of PROPUB).  In other words, is αS correlated with αL, or with 
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21 The control measures for competitors’ patents are drawn from a broader cross-section of 29 leading 

worldwide pharmaceutical firms.  
22 Another way to think of this is to recognize that research program budgets are highly auto correlated. 

While firms do adjust these expenditures, either through marginal changes to program budgets or by opening or 
closing programs, year-on-year the average changes are quite small. (See Cockburn and Henderson, 1994). 



PROPUB? 

We begin with two very simple reduced-form summary analyses. The goal of these 

preliminary exercises is to explore whether a correlation between basic and applied research 

incentives can be found even using relatively crude measures and quite aggregate data, and so to 

motivate the more nuanced panel data analysis that follows.   

In Table  4, we compute the average change in research funding for individual firm-program-

years depending on whether the firm-program receives a positive or negatively signed applied 

research output shock (SHOCK > or <  0) and on whether the firm is associated with a “HIGH” or 

“LOW” PROPUB regime.  The differences are dramatic: in low PROPUB regimes, a positive 

SHOCK is associated with a budget “boost” of $180,000 relative to a negative SHOCK. In contrast, 

in high PROPUB regimes, the budget boost almost doubles, to over $350,000 (the conditional means 

in all four boxes are statistically significant from each other at the 1% level).  In other words, drug 

discovery programs operating in a high PROPUB regime are associated with a much higher 

sensitivity to patent output shocks. 

 A second method for evaluating the overall presence of a correlation between γS and 

PROPUB involves a simple two-step procedure.  In the first stage,  we estimate the budget’s 

sensitivity to SHOCK for each of our firm-basic research “regime” combinations (recall that there 

are a total of 14 “regimes” across the sample); or in other words, following (9), we estimate 14 

individual γS estimates, one for each firm across the span of time over which that firm maintains a 

constant level of basic research incentives.  We then evaluate the correlation between this regime-

specific estimate of the sensitivity to research outputs shocks and PROPUB.23 Though there are only 

14 distinct regimes, the results are encouraging: the Pearson correlation coefficient between 

PROPUB and is 0.499 (significant at 5%).   In Table 5, we present two simple regressions of   

on PROPUB; even after controlling for a time trend, PROPUB has a positive coefficient (significant 

at the 10% level).1   

Sγ̂ Sγ̂

These results are highly suggestive, and are certainly consistent with our core hypothesis: 

 
 23 

                                                 
 23 Note that if βx were a constant, so that variation in reflected variation in αS, this would provide a 
clean test of the H&M hypothesis. 

Sγ̂

24   Of course, because both of these variables are measured with substantial error (a problem we address below), 
the estimated coefficient is likely downward-biased. 



under high PROPUB regimes, firms offer more aggressive incentives for the generation of applied 

output.  However, our analysis so far has not accounted for the potential impact of unobserved 

heterogeneity on the correlation between PROPUB and γS.  If the levels of these variables are jointly 

determined by an unobserved factor (or if the factors determining each variable are correlated with 

each other), then the correlation among incentive intensities may be due to unobserved heterogeneity 

rather than to complementarity.  At the same time, if these unobserved factors are independent of 

each other, this will introduce “noise” into the observed correlation of incentive intensities, and so 

weaken the power of a correlation test for inferring complementarity among incentive instruments. 

For example, suppose that the intensity of incentives for applied research is determined by factors 

unrelated to the intensity of incentives for basic research (e.g., because of corporate culture or 

liquidity constraints), then the observed correlation between them will provide a downward-biased 

estimate of the importance of complementarities in the provision of incentives. 

To address these concerns, we exploit the panel structure of our data to estimate the 

conditional correlation between basic and applied research incentives under several alternative 

assumptions about the nature of unobserved heterogeneity within our sample.  Specifically, the 

remainder of the analysis is conducted at a more disaggregated level – taking the “firm-program-

year” as the unit of observation.  This allows us to take advantage of the full richness of our research 

program data and to introduce controls for both potential changes in Xβ  and for possible alternative 

drivers of correlation between basic and applied research incentives. 

To understand this empirical strategy more precisely, recall that we defined γS to be the total 

response of the research budget (of research program i in firm j in year t) to the “surprise” in applied 

research output: .  We test for correlation between αS,i,j,t  and αL,i,j,t by letting αS,i,j,t be a 

function of αL,i,j,t  (i.e. αS,i,j,t= ρ0 + ρS,L αL,i,j,t ) yielding: 
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Substituting back into (4) results in an empirical model to test for the presence of correlation using 

firm-program-year data: 
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where the test for complementarity is simply ρS,L.  As discussed above, the key challenge in 

estimating this parameter (and therefore performing a consistent test for complementarity) is 
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accounting for the impact of variation in Xβ  . 

To begin, we assume that Xβ is unobservable and is uncorrelated with αL,i,j,t.  Under this 

assumption, we can implement (11) by using PROPUB as a measure of αL,i,j,t and regressing 

∆RESEARCH on SHOCK and interactions of SHOCK with PROPUB.  As in Table 3, we also 

include a time trend and controls for technological opportunity and other drivers of ∆RESEARCH.  

Table 6 reports these results.  In model (6-1) we reconfirm our results from Table 3, with a 

regression showing a significant relationship between ∆RESEARCH and SHOCK.  Model (6-2) 

provides our first detailed evidence that the overall sensitivity to SHOCK is positively associated 

with the level of PROPUB.  Not only does the inclusion of a PROPUB interaction decrease the 

quantitative and statistical importance of  SHOCK, but the coefficient suggests that the impact of 

PROPUB is quite large.  Whereas a one-standard deviation in SHOCK is associated with less than a 

5% increase in investment when PROPUB is at its lowest level, this same shock is associated with 

over a 19% increase when PROPUB is at its highest level.  In (6-3), we include several controls 

associated with zi,j,t-1 – two measures of information about technological opportunity (“NEWS” in 

COMPETITOR PATENTS and “NEWS” in RELATED PATENTS) as well as measures to account 

for the scale of the research program (RESEARCHt-1) and potential serial correlation in the 

dependent variable (∆RESEARCHt-1).  Though these additional regressors enter significantly, their 

inclusion does not change our key result: the coefficient on SHOCK*PROPUB remains positive, of 

a similar magnitude, and with a similar standard error.  In (6-4), we replace the time trend with year 

fixed effects, each  interacted with SHOCK.  These are jointly significant and result in a modest 

increase in the estimated parameter on SHOCK*PROPUB.25 These results are consistent with the 

findings from Tables 4 and 5, and provide evidence consistent with the presence of complementarity 

between basic and applied research incentives.   

However this interpretation is conditional on our assumption that variation in Xβ  is 

                                                 
25 We also have explored several robustness checks on these relatively “sparse” specifications  (available from the 
authors). These include: using therapeutic class-specific fixed effects, incorporating several controls for changes in 
the firm’s management structure (such as changes in the CEO, R&D Vice President, or changes in the process used 
in the capital budgeting process, and introducing additional lags of the dependent variable into the specification.  As 
well, as discussed in Appendix B, we have explored specifications calculating SHOCK with alternative models of 
the firm’s expectations process and using the “levels” version of SHOCK rather the percentage version used in Table 
6.  While several of these additional results contribute modestly to the regression’s explanatory power, none is 
associated with a substantial change in either the magnitude or statistical significance of the SHOCK*PROPUB 
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uncorrelated with PROPUB.  We therefore turn to more detailed analyses which control for the 

likely sources of correlation between Xβ  and PROPUB across programs, firms, and time.  Three 

alternatives stand out.  First, as discussed above, spurious correlation would be introduced if the use 

of both incentive instruments simply increased over  time.  Between the late 1970s and early 1990s, 

the use of promotion-based basic research incentives diffused widely throughout the pharmaceutical 

industry.  The results in Table 6 indicate that overall changes over time are statistically significant, 

whether captured by a time trend or by year fixed effects.  Although these variables have little or no 

impact on the coefficient of interest, we continue to include them in subsequent regressions in order 

to control for any omitted trends over time industry-wide variables.   Second, there may be 

heterogeneity across therapeutic classes.  It is possible, for example, that firms with higher levels of 

PROPUB are concentrated in therapeutic areas which tended to increase their sensitivity to SHOCK 

at a faster rate than the average.  For example, the benefits from providing incentives for basic 

research seems to have increased especially rapidly in hypertension (Henderson, 1994; Cockburn, 

Henderson, and Stern, 2000).  To the extent that patents (or a “surprise” in patenting) in these 

therapeutic areas also became more informative about applied research effort and technological 

opportunity, the correlation between PROPUB and the level of applied research incentives will 

reflect heterogeneity among firms in terms of their participation in different therapeutic areas.  

Third, it is possible that high PROPUB regimes are associated with firms and research programs 

which have “intrinsically” higher sensitivity to patents in the research budgeting process.  For 

example, perhaps firms with higher levels of PROPUB have more “active” R&D managers who also 

tend to be more sensitive to applied research output in capital budgeting, or who simply have a taste 

for high powered incentives.  In such an environment, exploiting the cross-sectional variation in the 

data will confound evidence of complementarity with evidence of a “taste” for incentives.   

We address each of these concerns by including controls that directly account for each 

factor.26 Specifically, we interact xS,i,j,t-1 with firm-program fixed effects, a time trend for each 

                                                                                                                                                             
coefficient 
 26 This approach can be contrasted with more “structural” solutions, such as imposing cross-equation 
restrictions regarding adoption drivers (Arora, 1996) or the estimation of a simultaneous equations model integrating 
the adoption and performance implications of complementarity (Athey and Stern, 1998) 
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research program, yielding a richer specification: 
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Interacting xS,i,j,t-1 with a firm-program fixed effect controls for any cross-sectional variation in the 

“intrinsic” sensitivity of different research programs to applied research output.  For example, if 

patents in a particular hypertension program are inherently more informative than patents in a 

particular depression program, (12) will control for these effects.  As well, these fixed effects will 

control for the potential variation among managers in their “taste” for providing high-powered 

incentives.  Controlling for changes over time, including year-specific and therapeutic class/year-

specific dummies and interactions with xS,i,j,t-1, nets out both an overall and class-specific trend in 

unobserved components of Xβ .  In other words, in (12), ρS,L  is the correlation between changes in 

the sensitivity to xS,i,j,t-1 and changes in the level of PROPUB relative to the trend.  This estimator is 

essentially a differences-in-differences estimator.  However, in contrast to the classic differences-in-

differences estimator, the hypothesis tested here concerns an interaction effect and so we require 

each of the individual effects to be interacted with xS,i,j,t-1 

Table 7 reports the results.  In all of these regressions, we include a complete set of firm-

program fixed effects and interactions of these with SHOCK.  These interaction effects are jointly 

significant and substantially increase the explanatory power of the regression, indicating a high 

degree of heterogeneity among firm-programs in their average investment response to applied 

research output.  To be consistent with a differences-in-differences estimator, these specifications 

rely exclusively on within-program variation in PROPUB and the presence of “switches” in the 

incentives provided for basic research.  In this table, rather than using the Likert scale variable 

PROPUB, we use the “HIGH” PROPUB dummy,  which is equal to one only for those years after 

the firm has “switched” from a lower level of PROPUB to a higher level of PROPUB, and is 

otherwise set equal to zero.27 This measure is equal to one for a little more than one quarter of the 

sample, suggesting that it may be possible to identify our test exclusively on the “within” dimension.  

                                                 
27 All of the results in Table 7 are robust to using the five-point PROPUB variable instead of  this differenced 

version. 
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This more stringent test provides further support for the “balance” hypothesis.   After 

accounting for individual firm/program-specific interactions and program-specific time trend 

interactions with SHOCK, the magnitude of ρS,L (our key parameter) increases substantially and 

remains at a similar level of statistical significance (p < 0.01 for all specifications).  According to the 

“richest” specification, (7-4), for an average-sized program which realizes a one standard deviation 

SHOCK, there is a $390,000 incremental  “boost” in the research budget after the firm switches to a 

higher level of PROPUB.  This amount is more than 25% of the size of the average research 

program.  In other words, after accounting for several sources of potential spurious correlation, the 

estimated  relationship between basic and applied research incentives is stronger than in pooled data 

analysis conducted in Table 6. 

Indeed, our evidence in favor of the complementarity hypothesis is somewhat strengthened 

when we consider the results from Tables 6 and 7 in concert.  Recall that the key concern about the 

pooled analysis was the possible presence of a positive correlation between , ,
X

i j tβ and PROPUB.  

However, in Table 7, after controlling for several sources of heterogeneity, we find that the 

magnitude on our key parameter increases and that a substantial share of the overall variation in 

∆RESEARCH is associated with firm program-specific fixed effects.  As such, the evidence from 

Table 7 is consistent with the hypothesis that the coefficient on PROPUB*SHOCK in Table 6 is, if 

anything, underestimated.  If there was unobserved heterogeneity which was strongly and positively 

correlated with PROPUB, then either the “within” estimate of the coefficient in Table 7 would be 

much smaller in magnitude, or the fixed effects would have to account for a only a small fraction of 

the total variance.   

For our result to be biased by any omitted independent variables driving incentive intensities, 

these would have to have a significant explanatory power above and beyond firm-program fixed 

effects and therapeutic class-specific trends.  Meeting this challenge weakens the appeal of 

alternative interpretations of this result, since they must hold true both in the “pooled” or “between” 

dimensions of the data, and in the “within” dimension.  Suppose, for example, that PROPUB and 

were driven by a common general organizational response to science-driven drug discovery, with 

changes in PROPUB reflecting the outcome of “doing science” in terms of actual tasks performed by 

workers, and the nature of human capital employed by the firm, and changes in the sensitivity of 

Sγ̂
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research budgets to patent signals reflecting higher quality inventions, or a “science driven” capital 

budgeting process.  This would certainly result in PROPUB and being correlated in the cross-

section.  But for the same to be true in the “within” dimension of the data there would have to be 

both (a) enough heterogeneity at the research program level in these effects that their “true” 

variation would not be accounted for by the fixed effects and therapeutic class-specific trends, and 

(b) sufficient co-movements over time in the “true” residual impact of adopting science-driven drug 

discovery on PROPUB and  (as opposed to just noise) to generate a strongly positive association 

in the data.  Absent effective instruments for the adoption of science driven drug discovery as 

distinct from pro-publication incentives we cannot definitively reject this hypothesis, but nonetheless 

we believe it to be unlikely. By and large, while firms adopted uniform incentive policies, the rate at 

which they adopted the particular techniques of science-driven drug discovery varied significantly 

across programs and thus we think it is very unlikely that the second condition holds in these data.  

Sγ̂

Sγ̂

 

VI. CONCLUDING THOUGHTS 

The principal finding of this paper is the presence of a positive correlation between measures 

of the use of promotion-based incentives for basic research and of team-based incentives for applied 

research.  This correlation is both economically and statistically significant in a variety of different 

“cuts” of a panel dataset on R&D investment behavior of pharmaceutical companies.  As in 

Ichniowski, Shaw and Prennushi (1997), our empirical strategy has been to exploit the full range of 

variation contained within a micro-level dataset to rule out a variety of potential sources of 

unobserved heterogeneity.  The positive correlation between basic and applied research incentives 

exists whether we aggregate the data into a small number of distinct firm-regimes, exploit cross-

sectional variation among individual research programs, or subject the hypothesis to a differences-

in-differences test using only within-program variation over time. 

This result is consistent with a key proposition of modern agency theory – that when a 

principal prefers agents to balance their effort across multiple tasks, if monitoring technology 

changes such that it is now possible to monitor effort devoted to two complementary tasks, incentive 

intensity will be "balanced" and increases in incentive intensity on one dimension will be associated 

with increases in incentive intensity on competing dimensions.  Our interpretation of our results as 
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providing novel empirical support for this “complementarities” proposition is, however, tempered by 

our inability thus far to obtain data which would allow us to directly identify incentive intensity 

choices, and to rule out other potential explanations. 

An interesting aspect of our investigation is the degree to which the types of incentives 

discussed in the abstract in contract theory are embedded in the design of the firm’s internal 

organizational processes.  We do not discount the efficacy of unidimensional monetary incentive 

schemes in environments where output is easily monitored and there is opportunity for 

specialization.  But, to understand incentives in a complex environment such as an R&D laboratory, 

our results suggest that it is critical to account both for the possibility that incentives may be 

multidimensional, and for the firm’s ability to provide these incentives through mechanisms such as 

the operation of its internal labor and capital markets.  Aligning agency theory with the use of 

incentives in real organizations is likely to require quite careful tailoring of the empirical content of 

contract theory to concrete organizational and institutional settings. 



APPENDIX A: ESTIMATING THE APPLIED RESEARCH OUTPUT SHOCK 
 

“Surprises” in patenting play a key role in this paper as signals of effort supplied by research 
workers in applied research. This section discusses a variety of possible methods for constructing 
this “surprise” variable.  Our measure of applied research output is “important patents” attributed to 
the research program. Pharmaceutical firms file patent applications on discoveries which show 
commercial promise promptly, and we believe that at least in this context they are a good measure of 
successful outcomes in applied research projects.1  Using time series on each research group’s 
patenting (PATENTS), one could construct a simple measure of the applied research output “shock” 
as the difference between the research group’s observed and expected patenting rate, 

 
, , , , , ,

PATS

i j t i j t i j tPATENT SHOCK PATENTS µ= −   (A1)  
 
where µPATS

  is an estimate of expected patent output from program i in firm  j in year t.  Two issues 
arise in adapting this formula to the investment sensitivity equation estimated in Section IV.  First, 
this measure must be made comparable across programs, and so we need to take account of 
systematic technological differences across programs in the number of patents generated by a given 
amount of research spending. These differences may be large: a million dollars spent on screening 
for antibiotics may generate as much as five times as many patentable candidate compounds as a 
similar level of resources devoted towards cancer research.  As well, programs vary widely in terms 
of their absolute size, and we need to adjust our shock measure so that the “budget sensitivity” 
parameter implies a proportional impact on the budget for programs of different size.  Consequently, 
though the results do not depend on whether we control for these two “proportionality” problems, 
we address these issues in the empirical work by expressing the applied research output shock as: 
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To use (B2), we require a consistent estimate of µPATS, the expected level of patenting for a 

given firm-program-year.  Obviously, the econometrician cannot construct an exact measure of this 
expectation; each firm has access to richer information about its own programs than outside 
                                                 

28   We recognize that patents may be filed on discoveries which are quite far from commercial application: in 
this context, putting a candidate compound into clinical trials. There is also the possibility that strategic considerations 
may lead firms to delay filing applications, or to pursue large numbers of otherwise insignificant applications in an effort 
to construct a protective “thicket” around a core discovery. However prior work with these data, as well as interviews 
with firm personnel lead us to believe that these problems are unlikely to be a serious source of systematic bias. Note also 
that we count only “important” patents filed in two out of three major jurisdictions worldwide, and we date applications 
by their worldwide priority date. 
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observers.  However, it is feasible to attempt to estimate the firm’s expectation of patent output by 
making assumptions about what the firm pays attention to in this process.  Here we discuss three 
alternatives, which attempt to “span the space” of reasonable models. Results presented in the body 
of the paper use only the third (most sophisticated) of these expectations models. 

 
In the first, most naive, of these models, we assume that the firm’s expectation is simply the 

level of patenting in the immediate prior year (i.e., annual patent counts follow a first-order Markov 
process): 

 
, , , , 1
M
i j t i j tPATENTSµ −=    (A3) 

 
This measure has obvious shortcomings, since it assumes that decision makers have only a very 
limited “memory” and are basing decisions on an extraordinarily limited information set. To 
construct our second measure, we model the firm’s expectations about each research group’s 
performance as being based on the assumption that patent counts follow a Poisson process whose 
rate parameter, µPOISSON can be estimated from past realizations of patent output.  Specifically,  
µPOISSON is just the mean number of patents per period over all observed periods to date, 
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While data are only available for the period 1975-1990 for some of our other variables, we 

have much longer time series on the patent output of each research program, and µPOISSON is 
constructed from as many as 30 years of data on patent counts. However while it incorporates the 
historical trend in patenting in the research program, µPOISSON takes no account for the level of 
funding provided to each research program. It is reasonable to suppose that managers base their 
expectations about the level of patent output on both the history of patenting and the amount of 
resources currently available. To allow for this, we compute a third measure of expected patents, 
µADAPTIVE based on the notion that manager’s expectations are updated adaptively in response to both 
of these factors. µADAPTIVE is constructed using a two-stage procedure based on a regression-based 
weighting of the  µPOISSON measure and RESEARCHt-1, the level of funds provided to the research 
program in the previous period.  To do this, we first compute  µPOISSON, and then in the second stage 
run a Poisson regression of observed patenting on the level of research by each research group and  
µPOISSON (this amounts to estimating the regression with a distributed lag on the dependent variable). 
 µADAPTIVE  is thus the fitted value of the level of patenting resulting from this Poisson regression, 

 
0 1

ˆ ˆ ˆexp( )A P
t P t R RESEARCHµ λ λ µ λ− −= + + 1t  (A5).  

 
Of course, it would be possible to extend the logic of µADAPTIVE  to take the fitted value from 

any model of the drivers of patenting productivity. Though  µADAPTIVE is a marked improvement over 
just using past realizations of the patenting process, the data we have available is only a small subset 
of the information available to the decision-maker in reality. However, we are reluctant to impose an 
overly sophisticated model (e.g., a vector autoregression model which minimizes ex-post forecasting 
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error) for two reasons.  In the first place, it is simply counterfactual. Research managers can and do 
use sophisticated quantitative tools (Nichols, 1994), but a considerable body of research has 
demonstrated that practicing managers rely extensively on heuristics and rules of thumb. In the 
second place, an overly specified model is actually unhelpful in this context: a fully saturated 
statistical model will result in “shocks” which contain less and less “signal” about unanticipated 
performance and more and more true random noise!  Consequently, µADAPTIVE is our preferred 
measure of expectations, since we believe that it incorporates a realistic amount of information. 
While we doubt that research managers would update expectations without taking into account the 
amount of funds that had been invested in a program, we are skeptical that they account (in a 
consistent way) for factors such as the size or structure of the firm’s overall research activities.  

 
In Table A1 we present the results of estimating the Poisson regression which forms the basis 

for  µADAPTIVE .  The dependent variable is the count of patents applied for, and the explanatory 
variables are  µPOISSON and the log of RESEARCH. Estimated coefficients on both variables are 
highly significant and have the anticipated positive sign. 

 
Table A2 summarizes the three alternative measures of expected patents. Note again that 

they are calculated from much longer time series on patenting and research expenditures than the 
sample used in the regressions in the body of the paper.  For the MARKOV and POISSON  
measures, calculation is based only on years for which the program is “alive” i.e., the MARKOV 
measure is missing for those programs which were not at least minimally active in the immediately 
prior year, and the POISSON measure requires that the firm-program  is minimally active in at least 
one year in the past.  The final column of reports the sample statistics for the ADAPTIVE measure. 
In all cases, the reported descriptive statistics are for the sample of 2417 observations used in the 
main regressions. It is useful to note that the expectation for these three measures are similar though 
not identical (the average MARKOV expectation is 3.11, the average POISSON expectation is a 
lower value of 2.43, and the average ADAPTIVE expectation lies in between at 2.89).  
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TABLE 1 
VARIABLES AND DEFINITIONS 

 
 

Variable Name 
 

Definition 

 
Unit of 

Observation 

 
FUNDING VARIABLES 

 
RESEARCHi,j,t 
 
 

 
Annual expenditure on drug discovery in program i 
by firm j in year t in $M 1986, excluding clinical 
development 

 
program-firm-
year 
 
 

 
∆RESEARCHi,j,t 

 
RESEARCHi,j,t - RESEARCHi,j,t-1 

 
program-firm-

ear y
 
FIRM RESEARCHj,t 
 

 
Annual overall expenditure on drug discovery by 
firm j in year t in $M 1986, excluding clinical 
development 

 
firm-year 
 
 

 
PATENTING VARIABLES 

 
PATENTSi,j,t 
 
 

 
Annual number of patent applications in year t 
granted in at least two of U.S., Japan, EU; by 

orldwide priority date w

 
program-firm-
year 
 
  

FIRM PATENTSj,t 
 
 

 
Annual overall number of patent applications in 
year t granted in at least two of U.S., Japan, EU; 
by worldwide priority date 

 
firm-year 
 
 

 
ORGANIZATIONAL DESIGN VARIABLES 

 
PROPUBj,t 
 

 
Likert scale variable between 1 and 5, where higher 
values indicate that the firm promotes individuals on 
the basis of their standing in the scientific 
ommunity c

 
firm-year 
 

 
“HIGH” PROPUB DUMMYj,t 

 
Dummy equals 1 for firm j for all years after 
“switch” to higher level of PROPUB by firm j, 0 else 

 
firm-year 

 
MEASURES OF SHOCK TO APPLIED RESEARCH OUTPUT 

 
PATENT SHOCKi,j,t 

 
i, j,t 1 i, j,t 1

i, j,t 1

PATS E[PATS ]
E[PATS ]

− −

−

−
 

 
program-firm-

ear y
 
SHOCK (xS)i,j,t 

 
i, j,t i, j,t 2PATENT SHOCK *I −  

 
program-firm-
year 

 
MEASURES OF TECHNOLOG CAL ACTIVITY I 
COMPETITOR PATENTSi,j,t 
  

 
Annual number of patent applications granted to 29 
ompetitor firms c

 
program-firm-

ear y 
RELATED PATENTSi,j,t 
 

 
Annual number of patent applications granted in 
classes related to a given program 

 
program-firm-
year 
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TABLE 2 
MEANS AND STANDARD DEVIATIONS 

  
Variable 

 
   N 

 
Mean 

 
Standard Deviation  

RESEARCH BUDGET VARIABLES  
RESEARCH  

2417 
 

1.58 
 

3.07  
∆RESEARCH  

2417 
 

0.10 
 

1.03  
FIRM RESEARCH 

 
2417 

 
38.20 

 
26.86  

# OF RESEARCH 
ROGRAMS P

 
2417 

 
10.10 

 
4.37  

PATENTING VARIABLES  
PATENTS  

2417 
 

3.30 
 

4.60  
FIRM PATENTS 

 
2417 

 
90.56 

 
60.29  

ORGANIZATIONAL DESIGN VARIABLES  
PROPUB  

2417 
 

3.35 
 

1.46  
“HIGH” PROPUB DUMMY 

 
2417 

 
0.26 

 
0.44  

MEASURES OF SHOCK TO A PLIED RESEA CH OUTPUT P R 
PATENT SHOCK 

 
2417 

 
0.08 

 
1.30  

SHOCK (xS) 
 

2417 
 

0.26 
 

3.22  
MEASURES OF TECHNOLOGICAL OPPORT NITY U 
COMPETITOR PATENTS 

 
2417 

 
40.79 

 
40.79  

RELATED PATENTS 
 

2417 
 

7.58 
 

7.58 
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TABLE 3 
SENSITIVITY OF RESEARCH BUDGETS TO 
APPLIED RESEARCH OUTPUT SHOCKS (xA) 

 
 

DEPENDENT VARIABLE = ∆RESEARCH 
 
YEAR 

 
0.011 

(0.005) 
 
SHOCK 

 
0.043 

(0.007) 
 
TECHNOLOGICAL OPPORTUNITY CONTROLS 
 
COMPETITOR PATENTS 

 
0.008 

(0.008) 
 
RELATED PATENTS 

 
-0.007 

(0.012) 
 
SCALE & MOMENTUM CONTROLS 
 
RESEARCHt-1 

 
-0.018 

(0.008) 
 
∆RESEARCHt-1 

 
0.122 

(0.022) 
 
CONSTANT 

 
-0.789 

(0.380) 
 
N 

 
2417.00 

 
R-squared 

 
0.04 

 
H0: γi,j = γi,j for all i,j 
F(13, 2396) = 8.23, rejected at 1% level 

 



TABLE 4 
RESEARCH FUNDING CHANGE 

BY PATENT SHOCK & BASIC RESEARCH INCENTIVE INTENSITY 
 

 
 

 
LOW PROPUB 

(PROPUB = 1, 2, or 3) 

 
HIGH PROPUB 

(PROPUB = 4 or 5) 
 
PATENT SHOCK < 0 

 
-0.02 

 
0.03 

 
PATENT SHOCK > 0 

 
0.16 

 
0.38 

 
“Boost” in Research Funding for  
Positive Shock 

 
0.18 

 
0.35 

 
Difference in “Boost” by 
Organizational Form 

 
.17  = 94% 

 
 
 

TABLE 5 
 Aγ AND PROPUB  

THE “REGIME” LEVEL 
 
 

 
DEPENDENT VARIABLE =  Aγ̂   

N=14 
 
 (5-1) (5-2) 
 
PROPUB 

 
0.034 

(0.016) 

 
0.034 

(0.019) 
 
YEAR 

 
 

 
-0.0006 
(0.0065) 

 
CONSTANT 

 
-0.092 
(0.058) 

 
-0.138 
(0.489) 
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TABLE 6 
RESEARCH BUDGET SENSITIVITY TO APPLIED RESEARCH OUTPUTS SHOCKS: 

INTERACTION WITH  PROPUB 
PROGRAM-FIRM-YEAR “POOLED” SAMPLE 

 
 

DEPENDENT VARIABLE = ∆RESEARCH 
N=2417 

 
 

 
(6-1) 

 
(6-2) 

 
(6-3) 

 
(6-4) 

 
SHOCK 

 
0.059 

(0.020) 

 
0.006 

(0.025) 

 
0.008 

(0.025) 

 
 

 
SHOCK INTERACTION TERMS 
 
SHOCK*PROPUB (ρS,L) 

 
 

 
0.015 

(0.004) 

 
0.015 

(0.004) 

 
0.017 

(0.005) 
 
SHOCK* YEAR 

 
-0.001 
(0.002) 

 
-0.001 
(0.002) 

 
-0.001 
(0.002) 

 
 

 
SHOCK*[Year Fixed Effects] 

 
 

 
 

 
 

 
Significant 

 
DIRECT EFFECTS OF PROPUB AND YEAR 
 
PROPUB 

 
 
 

 
0.018 

(0.014) 

 
0.021 

(0.015) 

 
0.021 

(0.015) 
 
YEAR 

 
0.011 

(0.004) 

 
0.0092 

(0.0047) 

 
0.0087 

(0.0048) 

 
 

 
[Year Fixed Effects] 

 
 

 
 

 
 

 
Significant 

 
TECHNOLOGICAL OPPORTUNITY CONTROLS 
 
COMPETITOR PATENTS  

 
 

 
 

 
0.009 

(0.008) 

 
0.008 

(0.008) 
 
RELATED PATENTS  

 
 

 
 

 
-0.007 
(0.012) 

 
-0.010 
(0.012) 

 
PROGRAM SCALE AND MOMENTUM CONTROLS 
 
RESEARCHt-1 

 
 

 
 

 
-0.020 
(0.008) 

 
-0.009 
(0.008) 

 
∆RESEARCHt-1 

 
 

 
 

 
0.122 

(0.022) 

 
0.112 

(0.022) 
 
CONSTANT 

 
-0.028 
(0.050) 

 
-0.070 
(0.062) 

 
-0.048 
(0.062) 

 
-0.033 
(0.056) 

 
R-Squared 

 
0.022 

 
0.028 

 
0.041 

 
0.071 
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TABLE 7 
RESEARCH BUDGET SENSITIVITY TO APPLIED RESEARCH OUTPUTS SHOCKS: 

INTERACTION WITH  PROPUB.  PROGRAM-FIRM FIXED EFFECTS 
 

DEPENDENT VARIABLE = ∆RESEARCH      N=2417 
 
   

 
(7-1) 

Program-Firm 
FEs and 
Controls 

 
(7-2) 

(7-1) w/ 
PROPUB 
CHANGE 

 

(7-3) 
Program-Firm 
FEs, Program-
specific trends, 
and PROPUB 

CHANGE 

 
(7-4)  

(7-3) w/ 
Controls 

 
[Program-Firm FE] 

 
Insignificant 

 
Insignificant 

 
Insignificant 

 
Insignificant 

 
SHOCK INTERACTION TERM  S 
SHOCK*[Program-Firm FE] 

 
Significant 

 
Significant 

 
Significant 

 
Significant 

 
SHOCK*HIGH PROPUB 
DUMMY (ρS,L) 

 
 

 
0.151 

(0.040) 

 
0.115 

(0.045) 

 
0.121 

(0.044) 
 
SHOCK* YEAR 

 
0.001 

(0.002) 

 
-0.004 

(0.003) 

 
 

 
 

 
SHOCK*YEAR*[Program FE] 

 
 

 
 

 
Significant 

 
Significant 

 
DIRECT EFFECTS OF PROPUB AND YEAR 
“HIGH” PROPUB DUMMY 

 
 
 

 
0.007 

(0.088) 

 
-0.113 

(0.089) 

 
-0.012 

(0.088) 
 
YEAR 

 
0.022 

(0.005) 

 
0.023 

(0.007) 

 
 

 
 

 
[Year Fixed Effects] 

 
 

 
 

 
Significant 

 
Significant 

 
TECHNOLOGICAL OPPORTUNITY CONTROLS 
COMPETITOR PATENTS  

 
0.013 

(0.012) 

 
0.013 

(0.012) 

 
 

 
0.015 

(0.012) 
 
RELATED PATENTS  

 
-0.004 

(0.015) 

 
-0.002 

(0.015) 

 
 

 
-0.008 

(0.014) 
 
PROGRAM SCALE AND MOMENTUM CONTROLS 
RESEARCHt-1 

 
-0.156 

(0.016) 

 
-0.159 

(0.016) 

 
 

 
-0.171 

(0.016) 
 
∆RESEARCHt-1 

 
0.145 

(0.024) 

 
0.138 

(0.024) 

 
 

 
0.131 

(0.024) 
 
CONSTANT 

 
0.701 

(0.957) 

 
0.656 

(0.956) 

 
0.572 

(1.027) 

 
0.191 

(1.000) 
 
R-Squared 

 
0.291 

 
0.296 

 
0.289 

 
0.331 

 



TABLE A1 
“ADAPTIVE” MODEL FOR EXPECTED PATENT PRODUCTION 

 
Poisson regression:  
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t1 10ln ( ) ln( )P

t P t RE PATENTS RESEARCHλ λ µ λ
− −

= ++  

Where P

tµ  is given by 
0

1

0

1 t
P

t s
s T

PATENTS
t T

µ
−

=

=
−

∑  

 
 

DEPENDENT VARIABLE= PATENTSt     N=3446 
 

1

P

tµ −
 

 
0.146 

(0.002) 
 
ln(RESEARCHt-1) 

 
0.121 

(0.007) 
 
CONSTANT 

 
0.666 

(0.017) 
 
Log-Likelihood 

 
-8511.30 

 
 

TABLE A2 
SUMMARY STATISTICS FOR ALTERNATIVE MEASURES OF  

EXPECTED PATENTS 
 

 
Expected Patent Production 
Measure 

 
M
tµ  

 
P
tµ  

 
A
tµ  

 
Definition 

 
 

PATSt-1 

 
1

0

1

t

s
s

PATS

t

−

=

−

∑
 

 
0 1

ˆ ˆ ˆ ln( )P
P t R tRESEARCHeλ λ µ λ− −+ + 1  

 

 
Mean Expectation: 

 
3.11 

 
2.43 

 
2.89 

 
Std. Deviation of 
Expectation 

 
4.34 

 
2.95 

 
3.47 

 
N 

 
2417 

 
2417 

 
2417.00 

 
 
 


