
.

DOI 10.1002/bies

1) Channing Division o
Brigham and Wome
Medical School, Bos

2) Department of Electr
of Southern Californ

3) Chu Kochen Honors
Electrical Engineerin
Hangzhou, Zhejiang,

4) Department of Phys
Ramat-Gan, Israel

5) Center for Cancer S
Farber Cancer Institu

*Corresponding auth
Yang-Yu Liu
E-mail: yyl@channing.h

Abbreviations:
FMT, fecal microbio
operational taxonomic

Bioessays 39, 2, 1
Insights & Perspectives
T
h
in
k
a
g
a
in
Inferring human microbial dynamics
from temporal metagenomics data:
Pitfalls and lessons

Hong-Tai Cao1)2)3), Travis E. Gibson1), Amir Bashan1)4) and Yang-Yu Liu1)5)*
The human gut microbiota is a very complex and dynamic ecosystem that plays

a crucial role in health and well-being. Inferring microbial community structure

and dynamics directly from time-resolved metagenomics data is key to

understanding the community ecology and predicting its temporal behavior.

Many methods have been proposed to perform the inference. Yet, as we point

out in this review, there are several pitfalls along the way. Indeed, the

uninformative temporal measurements and the compositional nature of the

relative abundance data raise serious challenges in inference. Moreover, the

inference results can be largely distorted when only focusing on highly

abundant species by ignoring or grouping low-abundance species. Finally, the

implicit assumptions in various regularization methods may not reflect reality.

Those issues have to be seriously considered in ecological modeling of human

gut microbiota.
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Introduction

We coexist with trillions of microbes
that live in and on our bodies [1].
Those microorganisms play key roles
in human physiology and diseases [2].
Propelled by metagenomics and next-
generation DNA sequencing technolo-
gies, many scientific advances have
been made through the work of
large-scale, consortium-driven meta-
genomic projects [3, 4]. Despite these
technical advances that help us
acquire more accurate organismal
compositions and metabolic func-
tions, little is known about the under-
lying ecological dynamics of our
www.bioPeriodicals, Inc.
microbiota. Indeed, the microbes in
our guts form very complex and
dynamic ecosystems, which can be
altered by diet change, medical inter-
ventions, and other factors [5–7]. The
alterability of our microbiota not only
offers a promising future for practical
microbiome-based therapies [7, 8],
such as fecal microbiota transplanta-
tion (FMT) [9, 10], but also raises long-
term safety concerns. Careless inter-
ventions could shift our microbiota to
an undesired state with unintended
health consequences due to its high
complexity. Consequently, there is an
urgent need to understand the under-
lying ecological dynamics of our
microbiota; in the absence of this
knowledge we lack a theoretical
framework for microbiome-based ther-
apies in general.

Measured temporal data, reason-
able dynamical models, and objective
criterion for model selection are the
key elements in successfully inferring
the system dynamics [11]. In the
context of human gut microbiota,
the measured temporal data are the
time-series of microbe abundances,
typically measured from the stool
samples of a few individuals. Different
dynamical models have been used to
describe the dynamics of microbial
ecosystems, for example linear mod-
els [12]; nonlinear models such as
different variations of the Generalized
Lotka-Volterra (GLV) model [13–18];
and other models [19]. Among these
models, GLV is a very popular one due
to its simplicity. Given the measured
temporal data and a dynamical model
essays-journal.com 1600188 (1 of 12)
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with many unknown parameters, we
need to identify those parameters that
yield the best model estimation
according to certain criteria (e.g.
minimum estimation error).

There are many methods that infer
the microbial dynamics and reconstruct
the ecological network from temporal
metagenomics data based on the GLV
model [20–23]. An overview of the
workflow is depicted in Fig. 1. We apply
certain perturbations to the systems (for
example the administration of antibi-
otics or prebiotics) and measure the
species abundances as a function of
time using DNA sequencing technolo-
gies. The unknown underlying micro-
bial dynamics can be parameterized in a
population dynamics model with vari-
ous model parameters such as intrinsic
growth rates, inter- and intra-species
interactions in the GLV model. In
particular, the inter-species interactions
can be captured by an ecological
network and visualized as a directed
graph shown in Fig. 1C. If the data are
“rich” or informative enough, then we
can reconstruct the ecological dynamics
by identifying all the model parameters.
The model parameters can then be used
in turn to predict the temporal behavior
of the microbial ecosystem, an ultimate
goal of ecological modeling of human
gut microbiota.

Yet, this is just an ideal case. In
reality, there are many pitfalls along the
way. For example, the temporal data
could be uninformative due to either
low sampling rate or “unexcited” sys-
tem dynamics. The compositionality
nature of the relative abundance data
will cause fundamental limitations in
inference. And overlooking low-abun-
dance but strongly interacting species
might lead to erroneous model param-
eters. They can seriously affect the
inference results if they are not dealt
thoughtfully. In this work, we system-
atically study those pitfalls and point
out possible solutions. Note that, here,
we aim to reconstruct the ecological
dynamics and the corresponding di-
rected inter-species interaction net-
work, rather than constructing any
undirected microbial association net-
work using similarity-based techniques,
for example Pearson or Spearman
correlations for abundance data or the
hypergeometric distribution for pres-
ence absence data. The construction of
1600188 (2 of 12)
microbial association networks has its
own pitfalls, as discussed with detail
in [24].
Dynamics inference
requires model, data, and
methods

Choose a proper dynamics
model for the microbial
ecosystem

One of the key elements in system
identification is choosing a reasonable
dynamics model. Recently, population
dynamics models, especially the classi-
cal GLV model, have been used for
predictive modeling of the intestinal
microbiota [16, 20–23]. Consider a
collection of n microbes in a habitat
with the population of microbe i at time
t denoted as xi(t), the GLV model
assumes that the microbe populations
follow a set of ordinary differential
equations (ODEs):

_xi tð Þ ¼ xi tð Þ ri þ
Xn

j¼1
aijxj tð Þ

� �
; ð1Þ

i¼ 1, . . ., n, here ri is the intrinsic growth
rate of microbe i, aij (when i 6¼ j)
accounts for the impact that microbe j
has on the population change of
microbe i, and the terms aiix

2
i are

adopted according to Verhulst’s logistic
growth model [25]. Both ri and aij are
assumed to be time-invariant, that is,
they are constant regardless of how the
system evolves over time. By collecting
the individual populations xi(t) into a
state vector x tð Þ ¼ x1 tð Þ; � � � ; xn tð Þð ÞT
2 ℝn

�0, Equation (1) can be represented
in a compact form

_x tð Þ ¼ diag x tð Þð Þ r þ Ax tð Þð Þ; ð2Þ
where r ¼ r1; � � � ; rnð ÞT 2 ℝn is a column
vector of the intrinsic growth rates, A ¼
aij
� � 2 ℝn�n is the inter-species interac-
tion matrix, and diag generates a
diagonal matrix from a vector.

The original GLV model, equa-
tion (2), excludes all the external
perturbations applied to the system.
For a class of asymptotically stable
microbial ecosystems that follow this
deterministic model and without any
external perturbations, the microbe
abundance profile will asymptotically
approach a unique steady state [15].
Bioessays 39, 2, 16
However, time-series data of the steady
state display little about its underlying
dynamics, which is a bad scenario for
system identification.

To excite the system and get
“richer” or more informative time-
series data, we apply external pertur-
bations to drive the system and mea-
sure its response. In fact, we have to
wisely design drive-response experi-
ments to infer the underlying dynam-
ics [19, 26]. Recently, an extended GLV
model has been proposed to explicitly
consider the impact of various external
stimuli or perturbations ui tð Þ

0
s on the

system dynamics [21, 23]:

_x tð Þ ¼ diag x tð Þð Þ r þ Ax tð Þ þ Cu tð Þð Þ;
ð3Þ

where u tð Þ ¼ u1 tð Þ; � � � ; ut tð Þð ÞT 2 ℝl is
the perturbation vector at time t, C ¼
ciq
� � 2 ℝn�l is the susceptibility matrix
with ciq representing the stimulus
strength of perturbation uq(t) on
species i. This mimics realistic pertur-
bations from antibiotics or prebiotics,
which can inhibit or benefit the growth
of certain microbes. The presence or
absence of the antibiotics or prebiotics
is evaluated as a binary perturbation u
(t) (Fig.1A) and the overall influences
on the microbial species can be repre-
sented by the sum of products of
susceptibility C and species abun-
dance. We can then infer the microbial
system under this particular drive-
response scheme.

Besides the binary perturbation
scheme, there is another type of
drive-response experiment, which
does not require us to introduce the
susceptibility matrix C into the GLV
model at all. This driving perturbation
is implemented by setting up different
initial conditions for the microbial
ecosystem. For each initial condition
change (which mimics the immediate
result of an FMT), the system will
respond by displaying certain tran-
sient behavior before it reaches the
equilibrium (steady) state. We can
treat the initial conditions as jumps
or finite pulses and then concatenate
several perturbed time-series
corresponding to different initial
conditions. By construction, the
concatenated time-series data contain
various transient behavior of the
system corresponding to different
00188,� 2016 WILEY Periodicals, Inc.



Figure 1. Overview of the workflow inferring microbial dynamics from time-series data. Given
suitable perturbations (A) on a microbial ecosystem, and the corresponding time-series of
microbe abundances (B), we aim to infer the microbial dynamics and reconstruct the underlying
microbe-microbe interaction network (C) by using classical population dynamics models, e.g.
the Generalized Lotka-Volterra (GLV) model, and various standard system identification
techniques (D). In the ideal case, the reconstructed microbe-microbe interaction network
(E) captures all the key features of the original network (C), and the predicted time-series
(F) agrees well with the original measurement (B). Yet, as pointed in this paper, there are many
pitfalls in inferring the microbial dynamics from time-series data. In both (C) and (E), positive (or
negative) interactions are shown in blue (or red) arrows, respectively. The absolute interaction
strengths are proportional to the arrow widths and the microbiota growth rates are represented
by circle colors. NRMSE represents the normalized root mean square error.
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finite pulses, which could be very
informative and help us infer the
underlying system dynamics. Further
comparisons between the above two
drive-response experiments are
discussed later (see Supplementary
Fig. S1).
Bioessays 39, 2, 1600188,� 2016 WILEY
Collect informative data to
identify model parameters

Prior to the era of high-throughput
DNA sequencing, microbiology studies
heavily relied on cultivating microbes
from collected samples. Yet, this
Periodicals, Inc.
process is rather tedious and time-
consuming. Thanks to the develop-
ment of next generation sequencing,
we can now study microbiomes by
direct DNA sequencing. In particular,
the 16S ribosomal RNA (rRNA) gene
targeted amplicon sequencing is a
popular approach. In this approach,
part of the 16S rRNA gene, which is the
most ubiquitous and conserved marker
gene of the bacterial genome, is
sequenced [27]. Due to its simplicity,
relatively low cost and availability of
various developed analysis pipelines,
this approach has become routine for
determining the taxonomic composi-
tion and species diversity of microbial
communities [28]. By filtering spurious
reads and carefully clustering/group-
ing the remaining reads into the so-
called Operational Taxonomic Units
(OTUs) based on sequence similarity,
one can obtain reliable and informa-
tive counts from 16S rRNA gene
sequences. Indeed, as working names
of groups of related bacteria, OTUs are
intended to represent some degree of
taxonomic relatedness. One can then
assign a frequency to each distinct
OTU within the microbial community
describing their relative abundances
within the population.

Note that comparing microbial
composition between two or more
populations on the basis of OTUs in
their corresponding samples is totally
different from comparing the absolute
abundance of the taxa in the microbial
ecosystems from which the samples
are collected. As the total taxa abun-
dance of the entire microbial ecosys-
tem is unknown, it is only reasonable
to draw inferences regarding the rela-
tive abundance of a taxon in the
ecosystem using its relative abundance
in the collected sample. In short, the
microbial community can be described
in terms of which OTUs are present and
their relative abundances. The intrin-
sic compositionality of the relative
abundance data will cause trouble in
inference.

To reveal the pitfalls in inference,
we generate synthetic time-series data
of microbe abundances using the
classical GLV model in this work.
Although there are already human
microbial time-series data available
[29, 30], we find in our previous work
[15] that the time series data are not
1600188 (3 of 12)
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“rich” enough to infer the human
microbial dynamics. Indeed, the in-
ter-species interaction matrix A recon-
structed from the real time-series data
is almost the same as that recon-
structed from the randomly shuffled
time-series data, where temporality is
completely removed (see Figs. S13–S15
in [15]). Another reason for using
synthetic data are that we can control
the “richness” of data and quantify the
error between the inferred results and
the ground truth.

As there is no closed-form solution
to the ODEs of the GLV model in
equation (3), we solve them at prede-
termined time points. Many numerical
integration methods such as explicit
Runge-Kutta formula [31, 32], Adams-
Bashforth-Moulton method [33] and
Gear’s method [34, 35] can be used to
approximate the solutions of equation
(3). In this work, we choose the
frequently used Runge-Kutta method.
The total number of the synthetic data
points are obtained by dividing the
integral interval by the step-size. Note
that the integral interval [0,t] in numer-
ical integration can be mapped to any
length of time in reality, such as several
weeks, days, or hours. To assign a
realistic time unit to the synthetic data,
we leverage two observations: (i) in our
simulations (with the model parameters
and initial conditions chosen as de-
scribed in Supporting Information), the
GLV systems typically reach equilibrium
state at around t¼ 1; (ii) human micro-
bial ecosystems relax to the equilibrium
state in about 10 days after small
perturbations [16, 20, 23, 36]. Hence,
we map the integral interval [0,t] in the
simulation to [0,10t] days in real time.
For example, if we run the numerical
integration from t¼0 to 10, this is
equivalent to collecting the time-series
data from day 0 to day 100. We
emphasize that all the results presented
in this work do not depend on the
details of the time unit chosen in our
simulations.
Inference methods are applied
under various assumptions

Let xi(tk) be the population of the i-th
microbial species or OTU and uq(tk) be
the q-th external perturbation at time
point tk. Here k ¼ 0; 1; � � � ;T . The
1600188 (4 of 12)
synthetic temporal data are generated
based on the intrinsic growth rate
vector r, the inter-species interaction
matrix A, and the susceptibility matrix
C. We need an inference method to
identify all the model parameters in r,
A, and C, based on the time-series data
xi tkð Þ;uq tkð Þ� �

:
Move xi tð Þ of equation (3) to the left

hand side and then integrate both sides
over the time interval tk; tkþ1½ �, yielding
lnxi tkþ1ð Þ � lnxi tkð Þð Þ

¼ ri þ
Xn

j¼1
aijxj tkð Þ þ

Xl

q¼1
ciquq tkð Þ

� �
tkþ1 � tkð Þ þ ei tkð Þ; ð4Þ
where we have assumed that xi tð Þ and
uq tð Þ are roughly constant over
t 2 tk; tkþ1½ �, tk � 0. Here ei tkð Þ repre-
sents the corresponding error arising
from the approximation of the integral
by holding the integrand constant over
the time interval.

Define the scaled log-difference

matrix Y¼{yik}¼{yi(tk)}2 ℝn�T where
yi(tk)¼ (lnxi(tk+1)� lnxi(tk))/(tkþ1�tk),

the parameter vector uTi ¼[ri,ai1,. . .,ain,

ci1,. . .,cil]
T2 ℝ1þnþl, and the vector

fk¼(1,x1(tk),. . .,xn(tk),u1(tk),. . .,

ul(tk))
T2 ℝ1þnþl, then the discretized

GLV model in equation (4) can be
represented by a system of linear
algebraic equations:

Y ¼ QFþ E

tkþ1 � tk
: ð5Þ

Here Q ¼ col uif g ¼ uT1 ; u
T
2 ; � � � ; uTn

� �T ¼
r;A;Cð Þ 2 ℝn� 1þnþlð Þ is the parameter

matrix that needs to be identified. E 2
ℝn�T represents the corresponding ap-
proximation error matrix. F ¼ row fkf g
¼ f0;f1; � � � ;fT�1ð Þ 2 ℝ 1þnþlð Þ�T . Equa-
tion (5) is often called the identification
function that can be used to solve for the
unknown parameter matrix Q.

Given any time-series data x tkð Þ and
u tkð Þ of the GLV model, Q should be a
solution of the identification function
(5). Yet, Q usually cannot be exactly
solved, as equation (5) is usually under-
determined because of the limited
available data. Indeed, the number of
equations n� T is typically less
than the number of unknowns
n� 1þ nþ lð Þ. Q can be approximately
solved by optimization methods. There
are many algorithms to obtain an
Bioessays 39, 2, 16
approximate solution, though. We dis-
cuss those methods as follows.
Least square

Mathematically, Q can be estimated as
Q̂ by solving the following optimization
problem:

min
Q̂

jjY�Q̂Fjj2F; ð6Þ

where jjZjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

Xn

j¼1
z2ij

q
is the

Frobenius norm of matrix

Z ¼ zij
� � 2 ℝm�n. The solution Q̂ can

be obtained by the classical least-square
regression method:

Q̂ ¼ YFT FFT
� �†

; ð7Þ

where FFT
� �†

represents the pseudo-

inverse matrix of FFT. Note that

FFT
� �† ¼ FFT

� ��1
when FFT is non-

singular.
Regularizations

In statistic regressions, the least-square
solution (without any penalty) in equa-
tion (7) can be biased and cause over-
fitting. Regularization methods can
reduce the over-fitting issue by adding
different penalty terms (e.g. based on
ℓ1- or ℓ2-norm) to the regression. In
particular, lasso regularization [37–39],
which uses ℓ1-norm penalties, solves
the regression problem in the form of

min
bi ;û i

1

2T

XT

k¼1
yik � fk û

T

i

� �2 þ bi
X1þnþl

j¼1
û ij
		 		 !

;

ð8Þ
where û ij is the j-th element in û i and
i ¼ 1; 2; � � � ;n. Lasso regression esti-
mates the unknown parameters in the
i-th row of Q̂. There are several
algorithms solving this optimization
problem, such as truncated singular
value decomposition, l-curve, cross
validation and so on. Detailed algo-
rithms and discussions can be found in
[40]. In this work, we use the k-fold
cross validation method and let k ¼ 5 in
lasso regularization.

Different from the lasso regulariza-
tion that uses ℓ1-norm penalties,
Tikhonov regularization, as known as
ridge regression in statistics, uses
ℓ2-norm penalties:
00188,� 2016 WILEY Periodicals, Inc.
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min
bi ;û i

1

2T

XT

k¼1
yik � fk û

T

i

� �2
þ bi

2
jjû ijj2


 �
;

ð9Þ
where jj � jj represents the ℓ2-norm and
i ¼ 1; 2; � � � ;n. Similar to lasso regres-
sion, the above penalty terms bi can also
be determined by cross validation. There
are n different bi

0s penalizing all the
model parameters.

Linear combinations of ℓ1- and
ℓ2-norm penalties in equations (8) and
(9) result in the so-called elastic net
regularization method [41]:

min
bi ;û i

1

2T

XT

k¼1
yik � fk û

T

i

� �2
þ biPm û

T

i

� �
 �
;

ð10Þ
where

Pm û
T

i

� �
¼ 1�m

2 jjû ijj2 þ m
X1þnþl

j¼1
û ij
		 		,

and m 2 0; 1½ � is a predetermined pa-
rameter for the optimization. The
elastic net regularization becomes the
Tikhonov (or lasso) regularization when
m ¼ 0 (or 1), respectively.

All the regularization methods
(lasso, Tikhonov and elastic net) use
penalty terms to regularize the least-
square regression. The penalty terms
make the absolute values of estimation
smaller and suppress the unimportant
parameters to 0. Unimportant parame-
ters in ui will be forced to be 0 in lasso
regularization in equation (8) due to the

presence of penalty terms bi

X1þnþl

j¼1
û ij
		 		.

Therefore lasso is a kind of sparse
regression that implicitly assumes the
interaction matrix A in the GLVmodel is
sparse (which is of course not necessar-
ily true). Although these regularization
methods reduce the norm of estimation
and aim to make the results more
realistic, it does not mean the results
are getting close to the ground truth.
Pitfalls in current dynamic
inference

Accurate time-series prediction
does not imply accurate
inference

As the ground truth is typically un-
known in real world system identifica-
tion problems, the identified system
parameters are usually verified by
Bioessays 39, 2, 1600188,� 2016 WILEY
simulating the model dynamics and
comparing the predicted time-series
with the measured one. This is suitable
for simple systems but not for complex
microbial systems. Indeed, accurate
temporal predictions are possible even
if the identified interactions look totally
different from the actual ones [42].

To demonstrate the above point, we
set up a synthetic microbial system with
eight species, following the GLV
dynamics with three binary perturba-
tions. It is a microbial system with
homogeneous interaction strengths
among all species with mean degree
6.4 in the underlying ecological net-
work. The abundance of a certain
species is increased when its suscepti-
bility is positive and the binary pertur-
bation is turned on. The population of
all the species in the microbial systems
are simulated from t ¼ 0 to 10, which is
mapped to 100 days. The sampling rate
is set to be once per day, which means
there are total 100 data points for this
data set, where the time interval
between two adjacent data points is
one day.

Comparing A2 and A3 of Fig. 2, we
find that we can accurately predict the
temporal behavior of microbial popu-
lation, given the same initial conditions
and the time-series perturbation data
(Fig. 2A1). Yet, the identified inter-
species interaction network (Fig. 2B2)
looks drastically different from the
ground truth (Fig. 2B1). For example,
some strong interactions (e.g. 2 ! 1)
are lost, and some unessential inter-
actions are inferred as dominant inter-
actions (e.g. 6 ! 5). In fact, all the
identified model parameters are quite
different from the ground truth (see
Fig. 2C1–C3). Their differences are
measured in terms of normalized root
mean square error (NRMSE) and details
are provided in Supplementary. The
above result clearly demonstrates that
accurate temporal prediction could be
just due to over-fitting, and the identi-
fied model parameters could be far
from the ground truth.
Sampling rate really matters

Different sampling rates capture differ-
ent resolutions of the dynamics of the
microbial system [43]. The inferred
microbial networks from time-series
Periodicals, Inc.
data can be misleading if the microbial
system is sampled at an improper
frequency. Unfortunately, there are no
simple rules like Nyquist frequency for
the GLV model, and the ideal sampling
rate depends on the particular microbial
system of interest [6, 43]. Results
presented in Fig. 1 (sample 100 times
per day) and Fig. 2 (sample once per
day) clearly suggest that sampling rate
is really an important factor determin-
ing the performance of inference, as
discussed below in details.

The sampling rate is crucial as it
bridges the measured discrete time-
series data and the original continu-
ous-time microbial system. Obviously,
higher sampling rate makes the inter-
polated discrete time-series data better
approximate the continuous-time dy-
namics of the original system. It
should be pointed out the scaled log
difference yik in equation (4) repre-
sents the linearized approximation of
the GLV. As tkþ1 � tk increases linearly,
yik changes nonlinearly, which results
in a nonlinear ei tkð Þ. Sampling rate
becomes substantial because of this
nonlinear behavior of the approxima-
tion error. Though we can arbitrarily
increase the sampling rate for syn-
thetic data, it is rather costly in real
data collection and even not feasible
for human gut microbial systems.
Hence, it would be more desirable if
the time-series data can approximate
the original microbial dynamics with
higher accuracy at a low sampling
rate.

The binary perturbation scheme
helps us excite the system to get more
informative time-series data, but the
extended GLV model in equation (3)
introduces more model parameters
(which consist of the whole suscepti-
bility matrix C) that bring new approx-
imation error into ei tkð Þ and require
more available data points. In reality,
the finest longitudinal data of human
gut microbiota are actually sampled
just on a daily basis for hundreds of
days due to many limitations and the
data set is still limited. Hence, we
prefer the perturbation scheme that
using concatenated time-series with
different initial conditions. Indeed,
we find that this initial-condition-
perturbation scheme is much better
than the binary perturbation scheme in
terms of smaller number of unknowns.
1600188 (5 of 12)



Figure 2. Perfect time-series prediction does not imply accurate network reconstruction.
A1: Time-series of binary perturbations. A2: Synthetic time-series of species abundances
generated from a GLV model. Both perturbation and abundance data are sampled once per
day. A3: Predicted time-series of species abundances calculated from the inferred GLV
model. B1: Original inter-species interaction network. B2: Reconstructed inter-species
interaction network. Here in both B1 and B2 only the top-10 strongest interactions are
shown. Circle colors represent growth rates. C1: Inferred interaction strengths versus true
interaction strengths. C2: Inferred growth rates versus true growth rates. C3: Inferred
susceptibilities versus true susceptibilities.
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It also provides more accurate inferring
results comparing to the binary exter-
nal perturbations (see Supplementary
Fig. S1).
1600188 (6 of 12)
We choose four sampling rates: weekly,
every two days, daily, and twice a day, as
shown in Fig. 3, to evaluate the impacts of
sampling rate on the performance of
Bioessays 39, 2, 16
inference with the initial-condition-per-
turbation scheme. All results are obtained
by the same regression method under
different time steps, that is tkþ1 � tkð Þ are
7, 2, 1, and 0.5days respectively. (In the
numerical integration, the time steps are
0.7, 0.2, 0.1, and 0.05 respectively.) They
lead to different approximation errors.
Results show that higher sampling rate
with smaller approximation error leads to
better inference results. Even when
the data are sampled every 2 days, the
inferred interactions are much more
00188,� 2016 WILEY Periodicals, Inc.



Figure 3. Impact of sampling rates on inferring microbial dynamics. Row-1: Time-series of
species abundances generated from a GLV model with different sampling rates: (A1): once a
week; (B1): every two days; (C1): daily; and (D1): twice a day. Row-2: Predicted time-series
of species abundances calculated from the corresponding inferred GLV model. Row-3: True
interaction strengths versus inferred interaction strengths from time-series data of different
sampling rates. Row-4: True growth rates versus inferred growth rates from time-series data
of different sampling rates.
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reliable than the results with weekly
sampling rate. In reality, this scheme
can be implemented by fecal microbiota
transplantation, which immediately
changes the abundances of multiple
species (or even introduces some new
species). In the rest of this paper, we will
focus on this type of perturbation.
Bioessays 39, 2, 1600188,� 2016 WILEY
Compositionality raises serious
challenges

Microbial communities can be typi-
cally described in terms of member-
ships and relative abundances of
OTUs. Using relative abundance data
instead of the original time-series data
Periodicals, Inc.
is actually the limitation of available
data as the total population is
unknown. The compositionality of
relative abundance data will not
significantly alter the original data
only when the total population is
roughly time-invariant, which is not
necessarily true. Even the relative
abundance data can approximate
the original data, a time-invariant
total population will be linearly cor-
related with the constant row in F,
which will introduce linear correla-
tions of rows of F and lead to the rank
deficiency of FFT. Hence, a roughly
time-invariant total population will
1600188 (7 of 12)



Figure 4. Compositionality of relative abundance data impedes the inference of microbial
dynamics. Column-1: using absolute abundance data. A1: Time-series of absolute
abundances; A2: Predicted time-series of absolute abundances; A3: True interaction
strengths versus inferred interaction strengths; A4: True growth rates versus inferred growth
rates. Column-2: using relative abundance data. B1 Time-series of relative abundances;
B2: Predicted time-series of relative abundances; B3: True interaction strengths versus
inferred interaction strengths; B4: True growth rates versus inferred growth rates. Inference
results from relative abundances are far from the ground truth. The time-series prediction of
relative abundances also differs significantly from that of the original relative abundances.
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cause FFT to be almost singular,
drastically reducing the numerical
stability of the inverse and worsening
the inference results.

In addition to rank deficiency,
compositionality will cause a more
serious issue: distorting the original
dynamics when the total population
is time variant. We normalize the
original synthetic data to mimic the
limitation of real metagenomic data.
Results are shown by the top (blue)
curves in A1 and B1 of Fig. 4. The first
jump is a positive jump in the original
data (A1), representing an increase in
absolute abundance of this species.
Yet, it becomes negative after nor-
malization (B1), indicating a decrease
in the relative abundance of this
species. Hence, using relative abun-
dance data is not reliable as it can’t
represent the original data in this
case. One promising solution to
resolve this issue is to measure
overall microbial biomass over time
in the ecosystem via the quantitative
PCR technique [20, 21, 23].
Grouping or ignoring low-
abundance species lacks
justification

Sincethenumberofequations is typically
much smaller than the number of
unknowns, many previous works group
those low-abundance species together
and treat them as a pseudo-species
[16, 22, 23]. This approach sounds ratio-
nal in reducing the number of unknowns
(i.e. model parameters). Yet, we do not
knowif it indeedworksasweexpected. In
case the low-abundance species are also
strongly interacting species (i.e. they
interact strongly with their interacting
partners), they can easily drive the
microbial ecosystem to different steady
states [15]. Simply grouping all the low-
abundance species together might gen-
erate distorted interaction networks. To
test this approach, we systematically
study the impact of grouping low-
abundance species in inferences.

We define high-abundance species
to be those species that account up to
90% of the total abundance or more in
the sampled time-series data. We
compare three different scenarios:
(i) we infer the interactions using the
entire time-series data without
00188,� 2016 WILEY Periodicals, Inc.



Figure 5. Ignoring or grouping low-abundance species impedes the inference of microbial dynamics. Column A: Without ignoring or
grouping of low-abundance species, the inference results are acceptable, and the predicted time-series agrees well with the original time-
series data, provided the sampling rate is high enough. Column B: After ignoring the low-abundance species, the inference results are much
worse, despite the predicted time-series still agrees well with the original time-series data. Column C: If we group the low-abundance species
together and regard them as a new species, the inference results are still not comparable to the results of using original data. In generating
these figures, we consider a system of n¼15 species with a heterogeneous inter-species interaction network with mean degree
< k>¼11.2.
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Figure 6. Inappropriate regularization impedes the inference of microbial dynamics.
Column A: Without any regularization, we can perform the inference using the least-
square method (i.e. no penalty terms). The inference results are not acceptable.
Column B: With Tikhonov regularization (also known as ℓ2-regularization or ridge
regression), the inference results are still bad. Column C: With lasso regularization
(also known as ℓ1-regularization), the inference results are slightly better. Column D:
With elastic net regularization, which uses a linear combination of ℓ1- and ℓ2-norm
penalty terms (with m ¼ 0:5 in equation (10)), the inference results are as good as tha
of using lasso only. Note that in all the four cases, the predicted time-series agrees
well with the original time-series data. In generating these figures, we consider a
microbial ecosystem of n ¼ 30 species with a homogeneous inter-species interaction
network and mean degree hki ¼ 23:2.
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grouping low-abundance species. (ii)
We simply remove the low-abundance
species in the temporal data, and focus
only on the remaining species. (iii) We
group all the low-abundance species as
a new species, and then perform the
inference. Inspired by [15], we deliber-
ately generate a microbial system with
interaction strength heterogeneity. The
inferred results for the above three
scenarios are shown in Fig. 5. Note that
when all the species are considered, the
00188,� 2016 WILEY Periodicals, Inc.
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identified interactions are accurate.
Yet, ignoring or grouping low-abun-
dance species leads to poor inference
results.

We emphasize that grouping low-
abundance species is not a solution to
the underdetermined problem. Even the
microbial interaction network is as-
sumed to be homogeneous, recon-
structed network obtained by
grouping some low-abundance species
can be misleading, because grouping
can create false interactions between
the grouped species and highly abun-
dant species.
Regularizations need to be
done with care

As the identification function of equa-
tion (5) is typically under-determined,
regularization methods such as in
equations (8)–(10) are preferred to the
least-square regression method (no
regularization) in equation (7). To
determine which of the methods:
least-square regression (no regulariza-
tion), Tikhonov (with ℓ2-norm penalty),
lasso (with ℓ1-norm penalty) and elastic
net (with a linear combination of ℓ1- and
ℓ2-norm penalties), works the best, we
apply them to the same time-series data
(Fig. 6).

We find that least-square regression
does not identify the model parameters.
To our surprise, Tikhonov regulariza-
tion does not work well either. This is
partially due to the fact that it penalizes
the norm of unknowns, rather than the
absolute values of the unknowns as
lasso regularization does. If the
unknowns have orders of magnitude
differences, then Tikhonov regulariza-
tion is doomed to failure. By contrast,
lasso regularization shrinks the abso-
lute values of the unknowns to avoid the
over fitting problem. Hence it works
very well even if the unknowns could
have orders of magnitude differences.
Although lasso implicitly assumes the
interaction matrix A is sparse, its
performance does not change signifi-
cantly when the mean degree of the
interaction network changes (see Sup-
plementary Fig. S2). Although elastic
net regularization combines both ℓ1-
and ℓ2-norm penalties and benefits
advantages of both lasso and Tikhonov
regularizations [41], there is no
Bioessays 39, 2, 1600188,� 2016 WILEY
significant improvement in the infer-
ence results, as shown in Supplemen-
tary Fig. S3.
Conclusions and
prospects

Inferring microbial dynamics from tem-
poral metagenomics data is a very
challenging task. Existing methods
work well in predicting the population
evolution of microbial systems. Yet, the
identified model parameters might be
totally different from their ground-truth
values. Without direct experimental
validation, it is hard to conclude that
the inferred dynamics represents the
true underlying microbial dynamics.
New inference methods that can lever-
age some prior knowledge of the growth
rates or/and inter-species interactions
need to be developed.

Note that in this work, we do not
focus on some other issues in dealing
with real microbiome data, for example
measurement noise, which of course
will also affect the inference. Instead,
we focus on synthetic data generated
from GLV model. We point out that
even with “clean” time-series data,
current technological limitations and
common practices can lead to poor
system identification. Some of these
pitfalls can be overcome with more
information, that is the measurement
of total bacterial biomass present in the
samples using qPCR techniques. Other
pitfalls are more difficult to deal with.
New inference methods that can take
full advantage of existing microbiome
data sets still need to be developed.
In particular, Bayesian inference algo-
rithms could be very useful in practice,
because they not only estimate error in
inferences of dynamical systems pa-
rameters but also perform statistical
modeling of temporal metagenomics
data [20].
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