On Truth At
Jeffrey C. King
Rutgers University

I. Introduction

A. At least some propositions exist contingently (Fine 1977, 1985)

B. Given this, motivations for a notion of truth on which propositions can be true at worlds according to which they don’t exist.

1. (Fine 1977) Some propositions seem to correctly (partly) characterize worlds in which they don’t exist.
 a. The proposition that Will Ferrell doesn’t exist and a deprived Ferrell-less world.

2. (Adams 1981, King 2007) The following seems true to most of us:
 1. It is possible that Will Ferrell didn’t exist.
 a. But for 1 to be true, the proposition that Will Ferrell doesn’t exist must be true according to some possible world w.

3. (Stalnaker 2009) Possible worlds are maximal, which requires that for any world w and any proposition p, either p or ~p is true according to w.
 a. Consider a proposition p that fails to exist at some world w.
 b. Plausible to think ~p doesn’t exist at w either.
 c. But since w is maximal, either p or ~p is true according to w.

C. I’ll call the notion of truth according to which propositions can be true according to worlds where they don’t exist truth at; I’ll use true in for the notion of truth according to which propositions must exist at worlds to be true there.

D. In King (2007) I defended a novel account of propositions.

1. On the view defended there, it seems likely that all propositions exist contingently.

E. Other theoretical commitments

1. Actualism—the actual world exhausts all that there is.

2. Serious actualism: an entity possesses a property at a world w only if it exists at w

F. The Plan
1. State my account of propositions.

2. Explain why propositions exist contingently on that view.

3. Discuss some features we want truth at to have.

4. Formulate my account of truth at and discuss some of its consequences.

II. A Theory of Propositions

A. Motivation for the theory

1. Perhaps the most common view of propositions is that they are eternal, abstract entities that by their very nature and independently of all minds and languages represent the world as being a certain way and so have truth conditions.

2. I cannot accept this view.

3. Having decided that propositions can’t be the sorts of things that represent/have truth conditions by their very natures and independently of minds and languages, one can either reject propositions altogether or construct an account of propositions on which they were somehow endowed with their representational capacities.

a. Given the many jobs propositions perform in philosophy, I set out to do the latter.

b. I call the resulting account an account of naturalized propositions.

B. Statement of the theory

1. An object possessing a property, n objects standing in an n-place relation, n properties standing in an n-place relation and so on are all facts.

a. If an object o possesses the property P, there is a fact of o possessing P.\(^1\) If not, there is no such fact.

2. I claim propositions are certain kinds of facts.

a. If a proposition is true, it is made true by a fact (or facts) distinct from it.

b. So, for example, the fact that is the proposition that Rebecca swims is distinct from the fact of Rebecca swimming and the latter makes the former true.

\(^1\) I am purposely using this rather unwieldy expression ‘a/the fact of o possessing P’, as I also did in King (2007), to avoid saying ‘the fact that o possesses P’. The latter expression is an expression of ordinary English and it is a substantive claim that the English expressions beginning ‘the fact that…’ designate what I am calling facts here. Hence I don’t want to use these expressions.
3. Let’s call the syntactic relation that the lexical items ‘Rebecca’ and ‘swims’ stand in in the sentence ‘Rebecca swims’ \(R \).

4. Then the proposition that Rebecca swims is (almost) the following fact: there is a context \(c \) and there are lexical items \(a \) and \(b \) of some language \(L \) such that Rebecca is the semantic value of \(a \) relative to \(c \) and the property of swimming is the semantic value of \(b \) relative to \(c \) and \(a \) and \(b \) occur at the left and right terminal nodes (respectively) of the syntactic relation \(R \) that in \(L \) encodes the instantiation function.\(^2\)

a. It should be clear that this fact/proposition is a general “linguistic fact”: it is the fact of there being a context and lexical items of some language such that etc. etc.

C. Why propositions exist contingently on this view

1. It appears that the existence of the fact that is the proposition that Rebecca swims depends on languages existing, lexical items existing and having semantic values (relative to contexts), sentential relations existing and encoding functions and so on.

2. But then it appears that the facts that I claim are propositions exist contingently if it is contingent that languages exist, or that lexical items have semantic values or so on.

III. Truth At and “atomic singular propositions”

A. On the accounts of truth at of Adams (1981) and Stalnaker (2008a, 2008b), possible worlds are understood as maximal consistent propositions or maximal consistent sets of propositions.

1. I have a different account of possible worlds, and so my characterization of truth at will be quite different from theirs.

B. “Atomic Singular Propositions”—such as the proposition that Harry is a fool—should be false at worlds where Harry, and so the proposition in question, don’t exist.

1. The accounts in Adams (1981), King (2007) and Stalnaker (2008a, 2008b) have this feature.

2. Even though these accounts agree that atomic singular propositions about \(o \) are false and their negations are true at worlds where \(o \) doesn’t exist, it is worth asking what reasons there are for thinking this is correct. We’ll return to these reasons below.

\(^2 \) I haven’t explained here what the instantiation function is or what it is for a syntactic relation to encode a function, because these details don’t matter here. See King (2007) pp. 29-41 and 59-61. I say that the proposition that Rebecca swims is almost the fact mentioned because the fact/proposition must also include that what I call the propositional relation encodes the instantiation function. See King (2007) pp. 59-61. Again, this detail is not relevant to present concerns.
a. First, in so far as one finds serious actualism intuitively compelling, one finds it intuitively plausible to think that it is correct to deny that an object possesses a property or stands in a relation at a world according to which it doesn’t exist.

i. This, in turn, suggests that a proposition that denies that an object possesses a property or stands in a relation ought to be true at a world according to which the object doesn’t exist.

ii. And it is plausible to think that Not[Ra₁,…,aₙ] denies that a₁,…,aₙ (in that order) stand in R.

ii. But then it should be true at a world according to which at least one of a₁,…,aₙ fails to exist.

b. Second, intuitively, it just seems as though the propositions that Socrates doesn’t exist, that Socrates isn’t tall and so on are true at worlds where Socrates doesn’t exist.

c. Third, and related to this, counterfactuals such as the following intuitively seem true:

2. If I hadn’t existed, I wouldn’t have been six feet tall.

i. Assuming that the truth of such counterfactuals requires the consequent to be true at (some range of) worlds where the antecedent is, the truth of such counterfactuals seems to require that the proposition that I am not six feet tall is true at worlds according to which I don’t exist.³

IV. Adams on truth at and propositions of the form ♦p or ◊p, where p is a singular proposition about o.

A. Adams claims that any proposition of the form ♦p or ◊p, where p is a singular proposition about o, is false at any world w according to which o doesn’t exist.

1. As Adams himself recognizes, this has many unfortunate consequences.

a. For example, consider the following proposition:

(3) Not[Bush exists]→◊Not[Bush exists]

2. So why does Adams adopt the view that any proposition of the form ◊p or ♦p, where p is a singular proposition about o, is false at worlds where o doesn’t exist?

³ Not to mention requiring that the proposition that I don’t exist is true at worlds according to which I don’t exist, (the counterfactual hardly seems vacuously true!). Note that if this is correct, counterfactuals invoke true at in the sense that for a counterfactual to be true, the proposition expressed by its consequent must be true at (some range of) worlds at which the proposition expressed by its antecedent is true.
B. Adams’ first reason for thinking that propositions of the form $\Box p$ or $\Diamond p$, where p is a singular proposition about o, are false at any world w according to which o doesn’t exist.

1. Adams takes such propositions to ascribe properties to o.

2. Though he doesn’t explicitly say this, I assume he means that a proposition such as

$$(4) \Diamond \Psi(o)$$

where $\Psi(o)$ is a singular proposition about o, attributes to o the property of possibly Ψ-ing.

3. If that’s right, presumably the truth of the proposition at a world w requires o to possess this property there, in violation of serious actualism.

4. Problems with Adams’ first reason for thinking that propositions of the form $\Box p$ or $\Diamond p$, where p is a singular proposition about o, are false at any world w according to which o doesn’t exist.

a. First problem: Adams gives no reason for thinking this is the case, and it is not at all clear what the reason might be. Since, as we have seen, Adams thinks that a proposition of the form

$$(5) \neg[\Psi(o)]$$

where again $\Psi(o)$ is a singular proposition about o, need not ascribe a property to o (and so can be true at worlds where o doesn’t exist), he cannot claim that any proposition consisting of some element (negation, modality) embedding a singular proposition about o ascribes a property to o.

i. So why does he think that propositions of the form (4) do so and those of the form (5) don’t?

ii. Adams gives no reason. But surely a reason is owed here.

b. In response, perhaps it will be claimed that it is obvious that propositions of the form of (4) ascribe to o the property of possibly Ψ-ing.

i. But this really can’t be obvious by Adams’ own lights.

ii. Adams doesn’t think that (5) attributes to o the property of non-Ψ-ing. He apparently thinks there are such properties and he doesn’t think o could possess that property at a

4 Though he comes very, very close to doing so. See pp. 28 (bottom) and 30 (top).
world where it doesn’t exist; but a proposition of the form of (5) where \(\Psi \) is a property (and so \(\Psi(o) \) is atomic) can be true at a world where \(o \) doesn’t exist.

iii. So by Adams’ lights (5) asserts that \(o \) lacks a property rather than ascribing the property of non-\(\Psi \)-ing to \(o \). But then Adams need to explain why (4), unlike (5), does attribute a property (again, presumably the property of possibly \(\Psi \)-ing) to \(o \).

c. Second problem (related to previous point): it is at least a little odd to claim that while propositions of the form (5) need not ascribe properties to \(o \), the results of embedding them under a modal element must:

\[(6) \diamond \text{Not}[\Psi(o)]\]

i. Surely we should be told why the modal element has this effect.

ii. After all, in the case of negation, we do have an explanation of why a complex proposition consisting of negation embedding a singular proposition about \(o \) need not ascribe a property to \(o \). Such a proposition may require for its truth at a world merely that \(o \) fails to possess a property.

iii. But what is the account of why embedding a singular proposition that doesn’t ascribe a property to \(o \) under a modal element yields a proposition that does ascribe a property to \(o \)? Some explanation of this should be given.

C. Adams second reason for thinking that propositions of the form \(\Box p \) and \(\Box p \), where \(p \) is a singular proposition about \(o \), are false at worlds where \(o \) doesn’t exist.

1. Adams thinks that such propositions ascribe properties to the proposition that \(p \).

2. I assume he means that a proposition of the form

\[(4) \Box \Psi(o)\]

where \(\Psi(o) \) is a singular proposition about \(o \), attributes to \(\Psi(o) \) the property of being possible.

3. If that’s right, the truth of the proposition \(\Box \Psi(o) \) at a world \(w \) requires \(\Psi(o) \) to possess this property there, in violation of serious actualism.

4. Problems with Adams’ second reason for thinking that propositions of the form \(\Box p \) or \(\Box p \), where \(p \) is a singular proposition about \(o \), are false at any world \(w \) according to which \(o \) doesn’t exist.

a. Consider again the case of negation and the proposition that Adams doesn’t exist:
(7) Not(Adams exists)

Adams thinks (7) can be true at a world where Adams doesn’t exist.

i. So (7) must not ascribe properties to the proposition that Adams exists.

ii. But then given the structural similarity between (7) and the following proposition, why think that the following does ascribe properties to the proposition that Adams exists:

(8) ◊(Adams exists)

iii. Again, Adams gives no reason for thinking this.

b. In response, perhaps it will be claimed that (8) obviously ascribes a property to the proposition that Adams exists: the property of being possible.

i. But similarly, couldn’t someone think it is obvious that (7) ascribes a property to the proposition that Adams exists: the property of not being the case?

ii. So if one holds that (7) does not ascribe a property to the proposition that Adams exists and so can be true at worlds where the proposition doesn’t exist, one cannot simply take it as obvious that (8) does ascribe a property to the proposition that Adams exists and so cannot be true at worlds where the proposition fails to exist.

iii. One must give a reason for treating the negated singular proposition differently from the modal one. And Adams provides no such reason.

V. Reasons for thinking that propositions of the form ◊p and □p, where p is a singular proposition about o, can be true at worlds where o doesn’t exist.

A. Recall that there were three reasons for thinking that e.g. the proposition that Socrates doesn’t exist can be true at worlds where Socrates and the proposition that Socrates doesn’t exit don’t exist.

1. First, we had an intuitive account of how the truth conditions for the proposition that Socrates doesn’t exist can be met at a world where he doesn’t exist that is consistent with serious actualism (the proposition requires for its truth only that he doesn’t possess a property).

2. Second we took the intuition that the propositions that Socrates doesn’t exist, that Socrates isn’t tall and so on are true at a world where Socrates doesn’t exist to be evidence that they are true at such a world.
3. Third, we took the intuitive truth of counterfactuals like ‘If Socrates hadn’t existed, he wouldn’t have been tall’ to be evidence that the proposition that Socrates isn’t tall is true at worlds where Socrates doesn’t exist.

B. The same three reasons can be given in the present case.

1. First, for the proposition that possibly Socrates exists to be true at w the proposition that Socrates exists must be true at some w’. This doesn’t seem to require Socrates to exist or possess any properties at w at all! Hence, we have an intuitive account of how the proposition that possibly Socrates exists can be true at a world w where Socrates doesn’t exist that is consistent with serious actualism.

2. Second, when we ask whether the proposition that it is possible that Socrates exists is true at worlds where he doesn’t exist, again intuitively the answer is yes. But then, just as in the case of the proposition that Socrates doesn’t exist, this is at least some reason to think that the proposition really is true at such a world.

3. Third, consider the following counterfactual:

9. If Socrates hadn’t existed, it would have (still) been possible that he existed.

Such counterfactuals again strike people as true. But their truth presumably requires the proposition that it is possible that Socrates existed to be true at worlds where Socrates and the proposition that Socrates exists don’t exist. So here again the truth of 9 provides some evidence that the proposition that it is possible that Socrates exists is true at worlds according to which he doesn’t exist.

C. To square the conclusion that the proposition that possibly Socrates exists can be true at a world w where Socrates doesn’t exist with serious actualism, we have to say that this proposition being true at such a world doesn’t require Socrates or the proposition that Socrates exists to possess any properties at w.

1. In particular, it doesn’t require Socrates to possess the property of possibly existing at w and it doesn’t require the proposition to possess the property of being possible at w.

2. But something similar has to be said in the case of the proposition that Socrates doesn’t exist.

a. It can be true at a world w without Socrates possessing the property of nonexistence at w and without the proposition that Socrates exists possessing the property of not being the case at w.

3. Finally, it is worth noting that our intuitions regarding the proposition that Socrates doesn’t exist and the proposition that possibly Socrates exists contrast sharply with our intuitions regarding propositions that do require Socrates or the proposition that Socrates exists to possess properties in order to be true at a world.
a. Intuitively, we think the proposition that Socrates doesn’t exist and the proposition that possibly Socrates exists are true at a world where Socrates doesn’t exist.

b. Intuitively, we do not think the proposition that Socrates is snubnosed or the proposition that Plato believes Socrates exists are true at such a world.

D. In short, the serious actualist who thinks that singular propositions about Socrates don’t exist at worlds where Socrates doesn’t exist should hold that the propositions that Socrates doesn’t exist and that possibly Socrates exists are on par in relevant respects. To the extent that you, like me, think the former should be true at worlds where Socrates doesn’t exist, you should think the latter should be as well.

VI. Preliminaries to the definition of truth at

A. Possible worlds

1. I take merely possible worlds to be uninstantiated, maximal properties that the universe could have had.

 a. The modality here is primitive.

 b. As to maximality, the natural idea is to begin with all properties the universe could have had.

 i. Call these world properties.

 ii. Say that a world property p necessitates a world property q iff it is impossible for p to be instantiated and q not be instantiated. A world property p anti-necessitates a world property q iff it is impossible for p to be instantiated and for q to be instantiated.\(^5\) Again here, the modality is primitive.

 iii. A maximal world property p is one such that for any world property q, p necessitates or anti-necessitates q.

2. The properties that I take to be possible worlds exist uninstantiated in the actual world.

 a. Hence, the existence of possible worlds is compatible with actualism: the uninstantiated properties that are possible worlds exist in the actual world.

\(^5\) The characterizations of world properties necessitating and anti-necessitating other world properties bear an obvious resemblance to Plantinga’s (1976) characterizations of states of affairs including and precluding each other.
b. Of course, propositions exist in the actual world as well.

c. In attempting to characterize a relation between propositions and possible worlds—the truth at relation—we are attempting to characterize a relation that obtains between propositions and worlds in the actual world.

B. I’ll adopt the view that a proposition of the form \([Ra_1, \ldots, a_n]\) (where \(R\) is an \(n\)-place relation) is false, and its negation is true, at a world according to which at least one of \(a_1, \ldots, a_n\) doesn’t exist.

C. As I said in discussing Adams, I’ll also hold that propositions of the form \(\square p\) and \(\Diamond p\), where \(p\) is a singular proposition about \(o\), can be true at worlds where \(o\) doesn’t exist.

D. Worlds \(w\) according to which something is \(F\), though there is no (actual) individual \(o\) such that according to \(w\) \(o\) is \(F\).

1. Though my father Richard has no brother, he might have had one. So according to some possible world \(w\), Richard has a brother.

2. Assume again that nothing in the actual world could have been Richard’s brother.

3. Then the fact that Richard has a brother according to \(w\) cannot be the result of some actual thing having the property of being Richard’s brother according to \(w\).

4. So how is it that Richard has a brother according to \(w\)?

a. On views like Adams’ (1981) or Stalnaker’s (2008a, 2008b), where possible worlds are sets of propositions, it is easy for \(w\) to do this.

b. But how is it that worlds construed as I construe them—as maximal properties the world might have had—are such that according to them Richard has a brother?

c. Let’s say in such a case that the world depicts Richard having a brother.

d. Presumably, worlds depict Richard having a brother by depicting a bunch of properties being jointly instantiated and depicting “the thing” that instantiates these properties as bearing relations to other things.

i. On this picture, worlds depict actual individuals as possessing properties and standing in relations and also depict bunches of properties being jointly instantiated (and represent the “joint instantiater” as bearing relations to other things) without depicting any (actual) object as instantiating these properties (and bearing relations to other things).

ii. For example, a world might depict the properties \(P\), \(Q\) and the relational property \(Ra\) (where \(R\) is a two-place relation) as standing in the relation of joint instantiation.
5. On my view of properties and possible worlds as properties the universe might have had, the properties that are worlds are quite complex and have lots of parts.\footnote{This view of some properties and relations being complex and having other properties and relations as parts is discussed in King (2007), especially Chapter 7.}

a. For example, any world that depicts humans existing has the property of being human as a part; and any world that depicts me as existing has me as a part. Similarly, when a world depicts a nonactual individual as existing by depicting properties as jointly instantiated and relations as obtaining, there is a part of the world that does this depicting (which itself is complex and has the properties it depicts as instantiated and the relations it depicts as obtaining as parts).

b. Call these parts of worlds, whereby nonactual individuals are depicted by depicting properties as jointly instanced, relations as obtaining, etc. **faux individuals**.

c. When a world depicts a faux individual by depicting properties being jointly instantiated and relations obtaining, I’ll say the world depicts the faux individual as possessing the properties and standing in the relations.

d. I assume faux individuals are world bound; no faux individual in one world is the same faux individual as a faux individual in another world.

VII. A definition of truth at

A. Suppose our language contains n-place predicates ('A', 'B', with or without numerical subscripts) for all n>0; individual variables ('x', 'y', with or without numerical subscripts) and names ('a', 'b', 'c', with or without numerical subscripts).

1. Assume our languages also contains the one-place sentential connective ‘~’; the two-place sentential connective ‘&’; the determiners ‘every’ and ‘some’; and the operator ‘possibly’.

2. The syntax is as follows:

1. If δ is a determiner, α is a variable and Σ is a formula containing free occurrences of α [$$\delta\alpha\Sigma$$] is a quantifier phrase.

2. If Π is an n-place predicate and α_1,...,α_n are names or variables, [$$\Pi\alpha_1,...,\alpha_n$$] is a formula.

3. If Ω is a quantifier phrase and Σ is a formula, then [$$\Omega\Sigma$$] is a formula.

4. If Ψ and Φ are formulas, so are $$\neg\Phi$$ and $$\Phi\&\Psi$$.
5. If \(\Phi \) is a formula, so is \(\text{possibly}[\Phi] \).

Sentences are formulae with no free variables.

B. Formulae express propositional frames as follows:

1. The propositional frame expressed by \([\Pi \alpha_1, \ldots, \alpha_n] \) is \([\Pi^* \alpha_1^*, \ldots, \alpha_n^*] \), where \(\Pi^* \) is the n-place relation expressed by \(\Pi \); \(\alpha_i^* \) (\(1 \leq j \leq n \)) is the bearer of \(\alpha_i \) if \(\alpha_i \) is a name, and \(\alpha_i \) itself if \(\alpha_i \) is a variable.

2. The propositional frames expressed by \(\sim \Sigma \) and \([\Sigma \& \Psi] \) are NOT(\(\Sigma^* \)) and [\(\Sigma^* \) AND \(\Psi^* \)], respectively, where NOT and AND are the truth functions expressed by \(\sim \) and \&, respectively; and \(\Sigma^* \), \(\Psi^* \) are the propositional frames expressed by \(\Sigma \) and \(\Psi \), respectively.

3. The propositional frame expressed by \([[(\delta \xi \Sigma)]\Psi] \) (where \(\xi \) is a variable) is \([[(\delta^* \xi \Sigma^*)]\Psi^*] \), where \(\Sigma^* \), \(\Psi^* \) are the propositional frames expressed by \(\Sigma \), \(\Psi \) respectively; and \(\delta^* \) is the semantic value of \(\delta \).

4. The propositional frame expressed by \(\text{possibly}[\Sigma] \) is POSSIBLY(\(\Sigma^* \)), where \(\Sigma^* \) is the propositional frame expressed by \(\Sigma \) and POSSIBLY is a function that maps a proposition \(S \) and world \(w \) to true iff for some \(w' \), \(S \) is true at \(w' \).

5. I call these propositional frames because they include things expressed by formulae containing free variables. Propositions are propositional frames containing no free variable.

D. Assume we have a set \(W \) of possible worlds and for every \(w \in W \), we have the domain \(D_w \) of (non-faux) individuals that exist according to \(w \).

1. Further, assume that for each world \(w \), we have functions that assign individuals in \(D_w \) or faux individuals that exist according to \(w \) to variables and assign individuals to themselves.\(^7\)

2. For a world \(w \), let \(g_w \) be such a function. Also, let \(\Theta, \Xi, \Omega \) be propositional frames, \(R \) be an n-place relation (\(1 \leq n \)), \(e_1, \ldots, e_n \) be individuals or variables, \(\xi \) be a variable, EVERY and SOME be the semantic values of ‘every’ and ‘some’, and POSSIBLY as above.

3. Then \(g_w \) satisfies a propositional frame \(\Xi \) relative to \(w \) iff

\(^7\) Since faux individuals are complex parts of worlds, there is nothing odd about functions assigning them to variables. However, note that \(g_w \) assigns to variables only faux individuals that exist according to \(w \). As I said above, I view faux individuals as world bound and so I don’t try to say under what conditions a faux individual in \(w \) is the same faux individual as a faux individual in another world \(w' \).
1. $\Xi = [R e_1, \ldots, e_n]$: w depicts $g_w(e_1), \ldots, g_w(e_n)$ in that order standing in R.

2. $\Xi = \text{NOT}[\Omega]$: g_w fails to satisfy Ω relative to w.

3. $\Xi = [\Theta \text{ AND } \Omega]$: g_w satisfies both Θ and Ω relative to w.

4. $\Xi = [[\text{SOME } \xi \text{ } \Omega] \Theta]$: some g'_w that differs from g_w at most on what it assigns to ξ satisfies Ω and Θ relative to w. (similar clause for $[[\text{EVERY } \xi \text{ } \Omega] \Theta]$)

5. $\Xi = \text{POSSIBLY}[\Omega]$: for some w' and some $g_{w'}$ that agrees with g_w on all the free variables in Ω, $g_{w'}$ satisfies Ω relative to w'.

Finally, a proposition X is true at w iff every function g_w satisfies X relative to w; otherwise, it is false at w.

VIII. But what about McMichael (1983)?

A. Consider the following sentence:

10. It is possible that Richard King should have had a brother who was a lawyer but might not have been a lawyer.

10a. $\Diamond \exists x (Rx \land Lx \land \Diamond \neg Lx)$

1. On standard semantic approaches, the truth of 10 in the actual world requires there to be a possible world w containing an individual o who is Richard’s brother and a lawyer and for there to be another world w’ in which o fails to be a lawyer.

2. The problem is that for the actualist, there are no merely possible (i.e. possible and non-actual) individuals.

3. Hence, assuming, as before, that no actual person could have been my father’s brother, there is no w that contains an individual o that is a lawyer and Richard’s brother.

4. Of course, on my view, there will be a world that depicts the properties of being Richard King’s brother and being a lawyer as jointly instantiated.

a. And that there is such a world containing such a faux individual makes the following sentence true:

11. It is possible that Richard King should have had a brother who was a lawyer.

8 See previous note. If g_w assigns a faux individual in w to some variable in Ω, then for $w' \neq w$, $g_{w'}$ cannot agree with g_w on all variables in Ω.
5. But for 10 to be true we would have to be able to make sense of the faux individual in w that makes 11 true existing in some w’ (≠ w) and not being a lawyer there.

6. Nothing in the machinery I have sketched does this. Hence, the proposition expressed by 10 is false for all I’ve said to this point.

B. I am inclined to think that the actualist should accept this conclusion.

1. That 10 is false is something we learn when we learn that actualism is true.

2. Though there might have been things that aren’t actual in the sense that merely possible worlds depict properties being jointly instantiated without depicting any actual object instantiating them, it is just false to say that such “things” might have been different from the way such worlds depict them as being.

C. However, one might also try to explain why 10 seems true by claiming that it aims at a true claim in the vicinity.

1. What’s true is that if certain merely possible worlds, say w, had been actual, there would have been individuals who aren’t in fact actual; and had that been so, these individuals might have been different from the way there are in w.