Physics Spotlight  
Artist’s conceptions of the most-distant supermassive black hole ever discovered, which is part of a quasar from just 690 million years after the Big Bang. It is surrounded by neutral hydrogen, indicating that it is from the period called the epoch of reionization, when the universe's first light sources turned on.

Image: Robin Dienel (Courtesy of the Carnegie Institution for Science) Artist’s conceptions of the most-distant supermassive black hole ever discovered, which is part of a quasar from just 690 million years after the Big Bang. It is surrounded by neutral hydrogen, indicating that it is from the period called the epoch of reionization, when the universe's first light sources turned on.
Image: Robin Dienel (Courtesy of the Carnegie Institution for Science)

Scientists observe supermassive black hole in infant universe

Findings present a puzzle as to how such a huge object could have grown so quickly.

Jennifer Chu | MIT News Office
December 6, 2017

A team of astronomers, including two from MIT, has detected the most distant supermassive black hole ever observed. The black hole sits in the center of an ultrabright quasar, the light of which was emitted just 690 million years after the Big Bang. That light has taken about 13 billion years to reach us — a span of time that is nearly equal to the age of the universe.

The black hole is measured to be about 800 million times as massive as our sun — a Goliath by modern-day standards and a relative anomaly in the early universe.

“This is the only object we have observed from this era,” says Robert Simcoe, the Francis L. Friedman Professor of Physics in MIT’s Kavli Institute for Astrophysics and Space Research. “It has an extremely high mass, and yet the universe is so young that this thing shouldn’t exist. The universe was just not old enough to make a black hole that big. It’s very puzzling.”
Read full article >>