ABSTRACT We have studied the fibrillogenesis of synthetic amyloid β-protein-(1–40) fragment (Aβ) in 0.1 M HCl. At low pH, Aβ formed fibrils at a rate amenable to detailed monitoring by quasi-elastic light-scattering spectroscopy. Examination of the fibrils with circular dichroism spectroscopy and electron microscopy showed them to be highly similar to those found in amyloid plaques. We determined the hydrodynamic radii of Aβ aggregates during the entire process of fibril nucleation and growth. Above an Aβ concentration of ~0.1 mM, the initial rate of elongation and the final size of fibrils were independent of Aβ concentration. Below an Aβ concentration of 0.1 mM, the initial elongation rate was proportional to the peptide concentration, and the resulting fibrils were significantly longer than those formed at higher concentration. We also found that the surfactant n-dodecylhexaoxyethylene glycol monoether (C12E6) slowed nucleation and elongation of fibrils in a concentration-dependent manner. Our observations are consistent with a model of Aβ fibrillogenesis that includes the following key steps: (i) peptide micelles form above a certain critical Aβ concentration, (ii) fibrils nucleate within these micelles or on heterogeneous nuclei (seeds), and (iii) fibrils grow by irreversible binding of monomers to fibril ends. Interpretation of our data enabled us to determine the sizes of fibril nuclei and Aβ micelles and the rates of fibril nucleation (from micelles) and fibril elongation. Our approach provides a powerful means for the quantitative assay of Aβ fibrillogenesis.

Alzheimer disease is a progressive, neurodegenerative disorder characterized by amyloid deposition in senile plaques in the cerebral parenchyma and vasculature (1). These plaques are composed primarily of fibers of the amyloid β-protein fragment Aβ-(1–40) (Aβ) (1). Aβ is derived by proteolytic processing of the 110- to 130-kDa β-protein precursor (βPP) (2) within an acidic intracellular compartment such as the early endosome or distal Golgi complex (3, 4). Aβ is a normal constituent of human plasma and cerebrospinal fluid (5, 6) and, in culture, is secreted by a variety of cells, including primary neuronal and nonneuronal cells (7, 8). In vivo, senile plaques containing dense cores of fibrillar Aβ are intimately associated with areas of neuronal loss, dystrophic neurites, and gliosis (1). A number of studies have provided information on factors affecting fiber formation. Electron microscopy (EM) of amyloid plaques has revealed straight or slightly curved fibers 6–10 nm in diameter and of indeterminate length (9, 10). X-ray diffraction studies have demonstrated that these fibers have a cross-β-pleated-sheet structure (11). Synthetic Aβ peptides form fibers ultrastructurally indistinguishable from those isolated from the brain (12). Circular dichroism (CD) and Fourier-transform IR spectroscopic analyses of these synthetic fibers have confirmed their β-sheet secondary structures (13, 14). The ability of synthetic Aβ to form amyloid fibrils in vitro has been utilized to examine how a variety of parameters, including temperature, pH, solvent composition, peptide concentration, and peptide sequence influence the final fibril state (14–17). What is substantially less understood, however, is the kinetics of Aβ fibril growth.

Quantitative kinetic studies of Aβ fibrillogenesis have been complicated by the fact that fibril formation typically occurs very rapidly and is sensitive to variations in the method of preparation of the initial Aβ stock solutions (18–20). Although recent work has demonstrated that exogenous proteins and chemicals can affect Aβ fibrillogenesis in vitro, the nature of these effects is not entirely clear. For example, apolipoprotein E4 and α1-antichymotrypsin both have alternately been reported to “promote” (21, 22) and to “inhibit” or destabilize (23–25) amyloid fibril formation.

Fibrilization of many proteins [for example, of actin (26–28)], is controlled by two kinetic parameters: the nucleation rate and the growth rate. Consequently, simple terms such as “inhibition” or “promotion” are inadequate and even misleading descriptors of the effect of external agents on fibrillogenesis. For example, conditions inhibiting nucleation could be interpreted both as “inhibiting” fibrillogenesis, since the total number of fibers will be small, and as “promoting” it, since longer fibrils will be formed. Similarly, conditions promoting nucleation could be interpreted as “promoting” fibrillogenesis because fibers will be more numerous and as “inhibiting” it because shorter fibers will be formed. It has been suggested that these considerations also apply to Aβ polymerization (29). Therefore, a complete characterization of Aβ fibrillogenesis must include quantitation of both fibril concentration and fibril dimensions throughout the polymerization process.

Previous efforts (12–14, 23) to investigate the kinetics of Aβ fibrillogenesis have had methodological limitations. CD and Fourier-transform IR spectroscopies, turbidity, or thioflavin T binding could not provide direct information on fibril size, while EM, which could elucidate fibril dimensions, was not appropriate for real-time kinetic studies. In contrast, quasi-elastic light-scattering spectroscopy (QLS) was long recognized as a powerful tool for the study of aggregation kinetics (30). However, since Aβ fibrillogenesis occurs very rapidly at neutral pH, previous applications of QLS to the Aβ problem

Abbreviations: Aβ, amyloid β-protein-(1–40) fragment; C12E6, n-dodecylhexaoxyethylene glycol monoether; QLS, quasi-elastic light-scattering spectroscopy.

Present address: Seoul National University, Seoul, Republic of Korea.

To whom reprint requests should be addressed.

Present address: Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854.
Materials and Methods

Peptide Synthesis and Characterization. Aβ [Aβ(1–40)] was synthesized on an automated peptide synthesizer (Applied Biosystems model 430A) by 9-fluorenlymethoxycarbonyl-based methods. The identity and purity of the final product was confirmed by quantitative amino acid analysis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and reverse-phase high performance liquid chromatography.

QLS. Measurements were performed at 25°C with a 144-channel Langley Ford model 1097 correlator and either a Spectra-Physics model 164 argon laser (488 nm) or a Spectra-Physics model 127 helium–neon laser (633 nm). The scattering angle was 90°. Lyophilized Aβ was solubilized in 0.1 M HCl, gently mixed, and centrifuged at 5000 g for 30 min to sediment any dust particles. Immediately after centrifugation and continuing for 20–50 hr, the intensity and the autocorrelation function of the scattered light were automatically measured for periods of 5–30 min. By 50 hr, fibril growth was typically finished. Some samples were kept at room temperature for periods of 5–30 min. By 50 hr, fibril growth was reproducible and sufficiently slow to allow detailed temporal monitoring by QLS (see below). Importantly, the morphology of the fibers produced under these conditions was highly similar to that observed in Alzheimer plaque amyloid (Fig. 1). The fibers were unbranched, straight, or slightly curved and had a diameter of 8 nm. Analysis of protein secondary structure by CD (data not shown) showed that the Aβ fibrils were composed predominantly (>90%) of parallel and antiparallel β-strand elements, including β-turns. Static light-scattering data (not shown) could be fit accurately by using the structure factor for rigid rods. Fibril length, L, was found to agree within an error of 20% with L determined by QLS analysis (see below). Fibril linear density, λ, was found to be 6.8 kDa/nm (1.6 Aβ monomers per nm), assuming a specific refractivity of Aβ peptide of 0.19 ml/g.

QLS Spectroscopy. To examine the concentration dependence of Aβ fibrillogenesis by QLS, 10 different initial peptide concentrations, C0, in the range of ~0.02–2.0 mM (~0.08–8.0 mg/ml) were studied. In each case, fibril formation manifested itself as a temporal increase in the observed hydrodynamic radius, Rh, and in the intensity of the scattered light. The intensity grew proportionately to Rh, consistent with a fibrillar structure for the aggregates.

The kinetic evolution of fibrils exhibited two distinct patterns, depending on the concentration of the peptide. For C0 > 0.1 mM, which we have designated the critical concentration, Cc, this evolution was independent of concentration (Fig. 2). Immediately after peptide dissolution, a structure with Rh ~ 7 nm was observed (Fig. 2 Inset). This structure was most evident at higher peptide concentration. As time proceeded, the hydrodynamic radius began to increase. The elongation rate remained nearly constant for ~10 hr and then gradually was then treated with 0.5% glutaraldehyde for 1 min, rinsed with water, and negatively stained for 2 min with 2% uranyl acetate. After drying, the grids were examined in a JEOL 1200 EX electron microscope at 120 kV. Fibril dimensions were determined by using tropomyosin paracrystals (provided by C. Cohen, Brandeis University).

CD Spectroscopy. Measurements were made at room temperature on an Aviv model 62 DS spectrometer using a 0.1-cm cuvette and a spectral range of ~190–250 nm. The program CDANAL v. 1.0 (36) was used to determine the relative amounts of individual secondary structure elements.

Results

Structure of Fibers Formed at Low pH. In aqueous 0.1 M HCl, fibrillogenesis was highly reproducible and amenable to detailed temporal monitoring by QLS (see below). Importantly, the morphology of the fibers produced under these conditions was highly similar to that observed in Alzheimer plaque amyloid (Fig. 1). The fibers were unbranched, straight, or slightly curved and had a diameter of 8 nm. Analysis of protein secondary structure by CD (data not shown) showed that the Aβ fibrils were composed predominantly (>90%) of parallel and antiparallel β-strand elements, including β-turns. Static light-scattering data (not shown) could be fit accurately by using the structure factor for rigid rods. Fibril length, L, was found to agree within an error of 20% with L determined by QLS analysis (see below). Fibril linear density, λ, was found to be 6.8 kDa/nm (1.6 Aβ monomers per nm), assuming a specific refractivity of Aβ peptide of 0.19 ml/g.

QLS Spectroscopy. To examine the concentration dependence of Aβ fibrillogenesis by QLS, 10 different initial peptide concentrations, C0, in the range of ~0.02–2.0 mM (~0.08–8.0 mg/ml) were studied. In each case, fibril formation manifested itself as a temporal increase in the observed hydrodynamic radius, Rh, and in the intensity of the scattered light. The intensity grew proportionately to Rh, consistent with a fibrillar structure for the aggregates.

The kinetic evolution of fibrils exhibited two distinct patterns, depending on the concentration of the peptide. For C0 > 0.1 mM, which we have designated the critical concentration, Cc, this evolution was independent of concentration (Fig. 2). Immediately after peptide dissolution, a structure with Rh ~ 7 nm was observed (Fig. 2 Inset). This structure was most evident at higher peptide concentration. As time proceeded, the hydrodynamic radius began to increase. The elongation rate remained nearly constant for ~10 hr and then gradually
decreased. The final asymptotic size of 32 ± 2 nm (Fig. 2, dashed line) occurred after ~4 days. This value of \(R_0 \) corresponds to rigid rods of length ~240 nm, assuming a diameter of 8 nm.

A different kinetic pattern was evident for \(C_0 < 0.1 \) mM (Fig. 3). Under these conditions, the rate of fibril growth increased with concentration. Extrapolation of the data from each of the four different Aβ concentrations back to \(t = 0 \) produced identical initial \(R_0 \) values of ~4 nm. Indeed, for fibers formed when \(C_0 > 0.1 \) mM, extrapolation of data from the time domain in which the fiber elongation rate was constant back to \(t = 0 \) also yielded the same value of 4 nm (Fig. 2).

Though the initial growth rate of the fibrils for \(C_0 < c^* \) was smaller than that found for concentrations greater than \(c^* \), the final asymptotic size was significantly larger than 32 nm. We converted values for the hydrodynamic radius, \(R_0 \), into fibril length, \(L_f \), and calculated the initial growth rate, \(dL_f/dt \) (Fig. 4 Upper). This rate was independent of concentration for \(C_0 > c^* \) but decreased linearly with concentration as \(C_0 \) fell below \(c^* \). The final fibril length, when \(C_0 > c^* \), was 240 ± 20 nm but was significantly greater when \(C_0 < c^* \) (Fig. 4 Lower).

QLS-Based Fibrillogenesis Assay. To assess the usefulness of QLS in detecting and monitoring alterations of the kinetics produced by exogenous solutes, we examined the effect of the surfactant C12E6 on Aβ fibrillogenesis (Fig. 5). At a C12E6/Aβ ratio of 1:2.5, C12E6 had a negligible effect on the initial growth rate. However, the final \(R_0 \) in this case was >50 nm, compared with 32 nm in the absence of C12E6. At a ratio of 1:1, we observed a nearly 50% reduction in the initial elongation rate. This reduction became even more prominent as the surfactant/Aβ ratio rose to 20:1. These data suggest that the QLS method could serve as an effective tool in the search for reagents that alter Aβ aggregation.

DISCUSSION

Our data indicate that the process of Aβ fibrillogenesis is different depending on whether the initial protein concentration, \(C_0 \), is less than or greater than a critical concentration, \(c^* \). We propose that a different mechanism of fibril nucleation predominates in each concentration domain (Fig. 6). In our model, the key factor in fibrillogenesis for \(C_0 > c^* \) is the spontaneous self-assembly of Aβ monomers into micelles. Micelle formation is typical of surfactant solutions (37); in fact, surfactant properties of Aβ have been demonstrated in surface tension studies (38). We propose that \(c^* \) is the critical micelle concentration (cmc) of Aβ. When \(C_0 > c^* \) (Fig. 6A), a reversible equilibrium between monomers and micelles is rapidly established. Since micelles are regions of high peptide concentration, we assume they serve as sites for the nucleation of Aβ fibrils. We denote the rate at which one nucleus emerges from one micelle as \(K_n \) (sec\(^{-1}\)). Alternative pathways, including heterogeneous nucleation (seeding on impurities), may also exist for the formation of fibril nuclei. When \(C_0 < c^* \), no micelles are formed, and these alternative nucleation pathways predominate (Fig. 6B). Regardless of the mechanism of nucleation, our model posits that the fiber elongation rate is proportional to the solution monomer concentration, \(C \), and has a rate constant \(K_c \). Thus, each fibril grows at a rate of \(K_c C \).
Thus, the micelle pool is exhausted at time $T = C_0/K_c e^{-*}N_t$. N_t is determined by the number of nuclei formed from micelles during period T and is approximately equal to $K_c T C_0/m$, where m is the number of monomers per micelle and C_0/m, therefore, is the initial concentration of micelles. Substituting this expression for N_t into the equation for T, we find that $T = (K_c e^{-*}K_m/m)^{1/2}$, which is independent of the initial concentration C_0. Thus, the final length of fibrils is also independent of concentration and given by $L_f = (K_c e^{-*}/K_m)^{1/2}$. The total number of fibrils is then given by $N_t = C_0(K_m/mK_c e^{-*})^{1/2}$. These results show that when nucleation is fast and elongation is slow, numerous short fibrils are formed. Conversely, when nucleation is slow and growth fast, the result is a small number of long fibrils.

We now can determine the numerical values of the parameters of our model. These parameters fall into two groups. The first group comprises the equilibrium and kinetic parameters c^*, K_m, and K_c. The second group describes geometrical features: the diameter, d, and the linear density, L, of the fibril and the number of monomers per micelle, m. We have taken $d = 8$ nm and $\lambda = 1.6$ monomers per nm (see Results). This estimation of λ is consistent with the value 7.0 kDa/nm found previously for fibrils formed by α-helix (1–39) at neutral pH (19). An accurate estimate of m is difficult to obtain; however, geometrical packing considerations and analysis of data in Fig. 4 suggest that $15 < m < 70$.

To determine c^* and K_m, we need to examine the crossover between the domains where the initial growth rate is proportional to the initial concentration ($dL/dt = K_c C_0/\lambda$) and where it is independent of the initial concentration ($dL/dt = K_c e^{-*}/\lambda$). From Fig. 4 Upper, we find that $K_c e^{-*}/\lambda = 14.7$ nm/hr, $c^* = 0.1$ mM, and consequently $K_m = 65 M^{-1} \text{sec}^{-1}$. The remaining parameter, K_c, can be determined from the concentration-independent final size observed in experiments with $C_0 > c^*$ (Fig. 4 Lower). For $L_f = 240$ nm, $K_c (m^2/2) = 2.6 \times 10^{-4}$ (nm/hr)$^{-1}$. By taking $\lambda = 1.6$ nm$^{-1}$ and $m = 25$, $K_c = 1.1 \times 10^{-6}$ sec$^{-1}$, which corresponds to the emergence of one fiber nucleus per micelle in 9 days.

A central feature of our model is the formation of α-helix micelles that stabilize monomer concentration and provide sites for nucleation. We propose that these micelles correspond to the particles of $R_0 = 7$ nm detected prior to significant fibril growth when $C_0 > c^*$ (Fig. 2). We also propose that the 4-nm hydrodynamic radius obtained by extrapolation to $t = 0$ corresponds to that of a fibril nucleus (Fig. 3). This would represent the first physical description of such a structure.

Micelles, in effect, control the conditions of fibril growth, permitting reproducible and precise QLS measurements that reveal the underlying features of α-helix fibrillogenesis. This suggested that our method could be used as an in vitro assay of the effects of solution additives or α-helix modifications on the parameters K_m, K_c, and c^*, which control α-helix fibrillogenesis. We demonstrated this assay potential in our study of the effect of C_12E6 (Fig. 5). At the lowest C_12E6 concentration, the final hydrodynamic radius was comparable to the value found in pure α-helix solutions when $C_0 < c^*$. In terms of our model, this behavior suggested that incorporation of C_12E6 into α-helix micelles suppressed their ability to generate fibril nuclei to the point that heterogeneous nucleation dominated the nucleation process. Nevertheless, the initial growth rate was approximately equal to that found in the absence of C_12E6, suggesting that c^* remains, at least initially, unaffected by C_12E6. On the other hand, as the $C_{12}E6$/α-helix molar ratio approached unity, the initial growth rate decreased substantially. This was consistent with a mechanism in which $C_{12}E6$ micelles sequestered α-helix and thereby reduced the monomer concentration.

Self-assembly of α-helix in vivo occurs in a biologic milieu characterized by dynamic equilibrium among processes of production, elimination, sequestration, and fibrillization of α-helix monomers. Regardless of this complexity of conditions, fibril-
logenesis must be controlled by the concentration of αB and by kinetic factors analogous to those described above. For example, homogeneous fibril nucleation is unlikely to occur in the plasma or cerebrospinal fluid because the concentration of αB in these compartments is very low. However, this may not be the case within lysosomes in which αB-(1–42) accumulates (39). Nucleation of αB fibrils might also be enhanced through association with apolipoprotein E4 (40) or with other molecules. Once nuclei are formed, fiber elongation proceeds at a rate proportional to the concentration of αB monomers. In Down syndrome patients with Alzheimer disease (40), for example, the relatively large senile plaques observed could result from increased production of αB. Other considerations relevant to αB fibrillogenesis include whether αB exists as a monomer or is complexed with other proteins and whether new fibril ends are created through enzymatic action within the plaque.

Clearly, the factors influencing the nucleation of fibrils and the rate of fibril growth in vivo are complex and numerous, yet the model we have presented provides a basis for examination of the precise roles of each of these factors in fibrillogenesis. We have shown here that the kinetic parameters describing αB fibrillogenesis can readily be deduced from data obtained by QLS. We thus now possess the theoretical and experimental tools with which to investigate systematically the underlying molecular mechanisms of αB fibrillogenesis.

We thank Ms. Margaret Condon and Ms. Karen Szumowski for expert technical assistance and Drs. Dominic Walsh and Eddie Koo for critical comment. This work was supported by an Alzheimer’s Association Zenith Award (to D.A.K.) and by National Institutes of Health Grants NIH-NIAAG 08572 (to D.A.K.) and NIH-5-R37-EYO5127 (to E.K.).