Despite its role in assembly, methionine 35 is not necessary for amyloid β–protein toxicity

Panchanan Maiti,* Aleksey Lomakin,† George B. Benedek‡ and Gal Bitan*§¶

*Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
†Materials Processing Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
‡Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
§Brain Research Institute, University of California, Los Angeles, California, USA
¶Molecular Biology Institute, University of California, Los Angeles, California, USA

Abstract
An important component of the pathologic process underlying Alzheimer’s disease is oxidative stress. Met35 in amyloid β-protein (Aβ) is prone to participating in redox reactions promoting oxidative stress, and therefore is believed to contribute significantly Aβ-induced toxicity. Thus, substitution of Met35 by residues that do not participate in redox chemistry would be expected to decrease Aβ toxicity. Indeed, substitution of Met35 by norleucine (Nle) was reported to reduce Aβ toxicity. Surprisingly, however, substitution of Met35 by Val was reported to increase toxicity. Aβ toxicity is known to be strongly related to its self-assembly. However, neither substitution is predicted to affect Aβ assembly substantially. Thus, the effect of these substitutions on toxicity is difficult to explain. We revisited this issue and compared Aβ40 and Aβ42 with analogs containing Met35 → Nle or Met35 → Val substitutions using multiple biophysical and toxicity assays. We found that substitution of Met35 by Nle or Val had moderate effects on Aβ assembly. Surprisingly, despite these effects, neither substitution changed Aβ neurotoxicity significantly in three different assays. These results suggest that the presence of Met35 in Aβ is not important for Aβ toxicity, challenging to the prevailing paradigm, which suggests that redox reactions involving Met35 contribute substantially to Aβ-induced toxicity.

Keywords: Alzheimer’s disease, amyloid β-protein, oxidative stress, neurotoxicity, structure–activity relationship.

Alzheimer’s disease (AD) is a progressive, age-related neurodegenerative disorder, which gradually impairs cognitive abilities, causes difficulties in execution of routine tasks, and finally leads to dementia and death (Selkoe 2001; Cummings 2004). Amyloid plaques, neurofibrillary tangles, neurite dystrophy, synapse loss, and neurodegeneration in the cerebral cortex and hippocampus are pathologic hallmarks of AD (Selkoe 2001). Genetic, physiologic, and biochemical data indicate that self-assembly of amyloid β-protein (Aβ) initiates the disruption of interneuronal communication in AD (Roher et al. 1993; Hardy and Selkoe 2002; Roychaudhuri et al. 2009). Though initially Aβ fibrils, the pre-dominant component of amyloid plaques, were thought to be the culprit, now soluble Aβ oligomers are believed to be the major neurotoxic species in AD (Dahlgren et al. 2002; White et al. 2005; Haass and Selkoe 2007; Tomic et al. 2009). Plaque formation is thought to be an attempt of the brain to sequester the toxic oligomers in a less harmful fibrillar structure (Bravo et al. 2008; Josephs et al. 2008; Reiman et al. 2009), though plaques also may serve as reservoirs of oligomeric Aβ (Koffie et al. 2009).
The C-terminal region of Aβ plays a key role in controlling Aβ oligomerization and aggregation (Jarrett et al. 1993; Bitan et al. 2003a,c). Within this region, oxidation of Met35 to sulfoxide has been reported to alter substantially Aβ radicals, which may initiate, or participate in, the oligomerization (Hou et al. 2002, 2004; Palmblad et al. 2002; Bitan et al. 2003b) and neurotoxicity (Váradarajan et al. 1999, 2000, 2001; Barnham et al. 2003; Ciccotosto et al. 2004). The sulfoxide form of Aβ has been found in cerebral tissue extracts derived from patients with AD and transgenic mice (Näslund et al. 1994; Kuo et al. 2001). Whether these findings point to a causative effect of oxidation of Aβ to the sulfoxide in AD or are merely a result of the oxidative environment in the AD brain, or a protein-extraction-induced artifact, is an open question.

Redox reactions in the AD brain generate highly reactive free radicals (Butterfield 2002; Halliwell 2006). To regain stability, these radicals abstract electrons or hydrogen atoms from neighboring molecules or groups, leading to perturbation of the chemical structure, and destruction of biologic molecules (Butterfield et al. 2007). Free radicals normally form in a controlled manner in the mitochondrial respiratory chain during oxidative phosphorylation when molecular oxygen is reduced to water (Halliwell 2006). During this process, two reactive oxygen species (ROS) form: superoxide anion (O₂⁻) and hydrogen peroxide (H₂O₂). In addition, O₂⁻ or H₂O₂ may be generated by multiple other enzymatic and non-enzymatic cellular mechanisms (Halliwell 1989). H₂O₂ may further form hydroxyl radicals via Fenton chemistry (Markesbery and Lovell 1998; Halliwell 2006). When the control mechanisms that maintain these and other ROS are compromised, as happens in AD, the result is oxidative damage, including lipid peroxidation, protein carbonylation, and other modifications of essential biomolecules (Markesbery and Lovell 1998; Halliwell 2006; Butterfield et al. 2007; Crouch et al. 2008).

Under the highly oxidative environment in the AD brain, oxidation of Met35 in Aβ may lead to formation of Met-sulfuranyl radicals, which may initiate, or participate in, the destructive chemistry described above. Thus, oxidation of Met35 in Aβ has been postulated to be directly involved in Aβ toxicity. Alternatively, neurotoxic mechanisms caused by Aβ oligomers, including disruption of Ca²⁺ homeostasis and excitotoxicity (Piacentini et al. 2008), may cause oxidative stress that would, among other things, oxidize Met35 in Aβ, as a result, not cause, of Aβ toxicity.

If Met35 oxidation causes Aβ toxicity, substitution of Met35 by aliphatic residues that lack sulfur, do not form radicals easily, and are not substrate for ROS, would be expected to suppress Aβ toxicity. In line with this hypothesis, substitution of Met35 by Nle has been reported to decrease Aβ toxicity (Varadarajan et al. 1999; Yatin et al. 1999; Butterfield and Kanski 2002; Clementi et al. 2006). Surprisingly, however, substitution of Met35 by Val had the opposite effect (Ciccotosto et al. 2004). Complicating matters further, Ciccotosto et al. reported that [Val35]Aβ42 produces similar amounts of H₂O₂ as Aβ42, whereas Murray et al. found that [Val35]Aβ42 showed reduced lipid peroxidation relative to Aβ42 (Murray et al. 2005).

Because Met35 resides in the middle of the hydrophobic C-terminus of Aβ, and because Met, Nle, and Val all are hydrophobic residues, the Met35 → Nle or Met35 → Val substitutions are not expected to have a strong effect on Aβ assembly. Indeed, substitution of Met35 by Nle had little effect on the oligomer size distribution of Aβ (Bitan et al. 2003b).

Because substantial efforts have been dedicated to understanding the role of Met35 in Aβ in AD, we felt that the discrepancy between previous studies using similar strategies to answer the same question merited a re-examination. Here, we addressed this discrepancy by investigating the effect of substituting Met35 in Aβ40 and Aβ42 by either Nle or Val. We describe a systematic, side-by-side comparison of each substituted Aβ analog using assays for oligomer size distribution, conformational change, assembly size, fibril morphology, and toxicity in primary neurons.

Materials and methods

Chemicals and supplies
Silver-staining kit, 10–20% gradient Tris-tricine gels, penicillin/streptomycin, and APO-5-bromo-2-deoxyuridine (BrDU) apoptosis detection kit were purchased from Invitrogen (Carlsbad, CA, USA). Tris(2,2′-bipyridyl) ruthenium dichloride, ammonium persulfate, glutaraldehyde, uranyl acetate, cytosine arabinofuranoside, and poly d-lysine were from Sigma (St. Louis, MO, USA). 1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) was from TCI America (Portland, OR, USA). Trypsin-EDTA solution, Dulbecco’s Modified Eagle’s Medium, Leibovitz’s L-15 medium, and fetal bovine serum were from ATCC (Manassas, VA, USA). Electron microscopy (EM) grids were purchased from Electron Microscopy Science (Hatfield, PA, USA). Cover slips and 96-well black and white plates were from Fisher scientific (Tustin, CA, USA). CytoTox-ONE™ Homogeneous Membrane Integrity Assay kits and 2,5-diphenyltetrazolium bromide were from Promega (Madison, WI, USA).

Animals
All experiments were performed in accordance with the National Research Council Guide for the Care and Use of Laboratory Animals and were approved by the UCLA Institutional Animal Care Use Committee. Pregnant, E18, Sprague-Dawley rats were purchased from Charles River laboratory (Wilmington, MA, USA).

Peptides synthesis
Aβ40, [Nle35]Aβ40, [Val35]Aβ40, Aβ42, [Nle35]Aβ42, and [Val35]Aβ42 were synthesized, purified and characterized by the UCLA Biopolymers Laboratory as described previously (Lomakin et al. 1996). Briefly, peptides were synthesized on an automated peptide synthesizer (Model 433A, Applied Biosystems, Foster City, CA, USA) using 9-fluorenylmethoxycarbonyl chemistry and purified by reverse-phase HPLC. Quantitative amino acid analysis and mass spectrometry were used to characterize the expected compositions and molecular masses, respectively, for each peptide.
Preparation of peptide solutions
Purified peptides were stored as lyophilized powders at −20°C. Before use, peptides were treated with HFIP and stored as dry films at −20°C as described previously (Rahimi et al. 2009). For biophysical measurements, immediately before use, films were dissolved in 60 mM NaOH at 10% of the desired volume. The solution then was diluted to 50% of the desired volume with deionized water (18.2 MΩ produced by a Milli-Q system, Millipore, Bedford, MA, USA) and sonicated for 1 min. Then, the solution was diluted with 20 mM sodium phosphate, pH 7.4, to the final peptide concentration, which was 10 μM unless stated otherwise. For toxicity experiments, peptides were diluted with cell-culture media after initial dissolution in 10% NaOH, and then sonicated for 1 min.

Photo-cross-linking and SDS–PAGE analysis
The experimental protocol was described previously (Vollers et al. 2005; Bitan 2006; Rahimi et al. 2009). Briefly, peptide solutions were centrifuged at 14 000 × g for 10 min. The supernates were subjected to photo-induced cross-linking of unmodified proteins (PICUP) (Fancy and Kodadek 1999). For each cross-linking reaction, 2 μL of 1 mM tri(2,2′-bipyridyl) ruthenium dichloride and 2 μL of 20 mM ammonium persulfate were added to 18 μL of peptide solution. The mixtures were irradiated with visible light for 1 s and the reaction was quenched immediately with 10 μL of Tricine sample buffer (Invitrogen) containing 5% β-mercaptoethanol. The cross-linked peptides were boiled for 5 min and analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), silver stained, and subjected to densitometric analysis using Image J (NIH software, http://rsb.info.nih.gov). The data are an average of six independent experiments.

Circular dichroism spectroscopy (CD)
Samples were incubated at 25°C with continuous agitation using an orbital shaker at 200 rpm. Spectra were recorded every 2 h during the first 12 h, and then at 24, 48, and 72 h, using a J-810 spectropolarimeter (Jasco, Easton, MD, USA) equipped with a thermostable sample cell at 25°C using 1-mm path-length cuvettes. Spectra were collected from 190 to 260 nm with 1-s response time, 50-nm/min scan speed, 0.2-nm resolution and 2-nm bandwidth, and averaged after background subtraction. The data are representative of three independent experiments.

Dynamic light scattering (DLS)
Samples were prepared as described above, filtered immediately before the first measurement through 20-nm cutoff, Anotop filters (Whatman, Florham Park, NJ, USA), and incubated at 22°C without agitation. Measurements were performed using an in-house-built system with a He-Ne laser model 127 (wavelength 633 nm, power 60 mW, Spectra Physics lasers, Mountain View, CA, USA). Light scattered at 90° was collected using image transfer optics and detected by an avalanche photodiode built into a PD4047 multiax correlator (Precision Detectors, Bellingham, MA, USA). The size distribution of scattering particles was reconstructed from the correlation function of the scattered light using PrecisionDeconvolve (Precision Detectors) based on the regularization method by Tikhonov and Arsenin (Tikhonov, 1977). The data are representative of two independent experiments.

Electron microscopy (EM)
Samples were incubated at 25°C with continuous agitation using an orbital shaker at 200 rpm. Eight-μL aliquots were applied to glow-discharged, carbon-coated Formvar grids for 20 min. The solution was wicked gently with filter paper. Then the samples were fixed with 5 μL of 2.5% glutaraldehyde for 4 min and stained with 5 μL of 1% uranyl acetate for 3 min. The solution was wicked off and the grids were air-dried. The morphology was visualized using a CM120 (FEI, Philips, Hillsboro, OR, USA) transmission electron microscope.

Cell culture
Primary neurons were prepared from E18 rat embryos as described previously (Segal and Manor 1992). Briefly, E18 pregnant rats were killed with CO2 and the pups were collected immediately. The brains were dissected in chilled Leibovitz’s L15 medium in the presence of penicillin/streptomycin (1 μg/mL). The tissue was incubated with 0.25% trypsin-EDTA solution for 30 min and then mechanically dissociated in a small volume of Leibovitz’s L15 media using a fire-polished Pasteur pipette. The cells were suspended in Dulbecco’s Modified Eagle’s Medium containing 10% heat-inactivated fetal bovine serum and penicillin/streptomycin (1 μg/mL), and plated in poly-n-lysine (0.1 mg%)-coated 96-well plates (CORNING, Corning, Lowell, MA, USA) at a density of 3 × 10^3 cells/mL. The cultures were maintained at 37°C in a humidified atmosphere of 5% CO2 for 6 days before treatment with peptides. Twenty-four hours after plating, the medium was replaced with fresh medium supplemented with 5 μM cytosine β-n-arabinofuranoside to inhibit the proliferation of glial cells.

MTT assay
Cells were treated with freshly prepared Aβ analogs for 48 h. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell-metabolism assay, as described previously (Fradinger et al. 2008). Briefly, following treatment, 15 μL of MTT were added to each well and incubated for 4 h at 37°C. Then, stop solution was added and kept overnight at 25°C. The optical density was measured using a Synergy plate reader (Bio-TEK instruments, Winooski, VT, USA). The cell viability results of three independent experiments (6 wells per condition) were normalized to the medium control group and expressed as mean ± SEM.

Lactate dehydrogenase (LDH) assay
Neurons were incubated with freshly prepared Aβ analogs for 48 h and cell death was assayed by measuring the release of LDH using CytoTox-ONE™ Homogeneous Membrane Integrity Assay kit (Promega) according to the manufacturer’s instructions. Data from three independent experiments (6 wells per condition) were normalized to medium control and expressed as mean ± SEM.

TUNEL assay
Neurons were grown on poly n-lysine-coated cover slips and treated with freshly prepared Aβ analogs for 48 h. The cells were then washed with phosphate-buffered saline and fixed with 4% paraformaldehyde. Cover slips then were treated with ethanol for 30 min at −20°C, followed by 3 × 5 min washes with the ‘wash buffer’ supplied in the kit, and incubated with terminal deoxynucleotidyl...
transferase dUTP nick end labeling (TUNEL) DNA labeling solution for 1 h at 37°C. The cells were washed and treated with an anti-BrdU antibody for 30 min at 25°C in the dark. Cover slips then were washed with the ‘rinse buffer’ supplied in the kit and counter-stained with 1% propidium iodide for 15 min in the dark, washed with deionized water, dehydrated, cleared, and mounted on glass slides using glycerol. Fluorescent signals were visualized using a Nikon Eclipse E400 microscope (Nikon Instruments Inc., Melville, NY, USA) at $\lambda_{ex} = 480$ nm and $\lambda_{em} = 530$ nm. Images were merged using the bundled software ‘Picture Frame’ (Optronics, Goleta, CA, USA). Images were taken from multiple fields in at least three independent experiments and the number of TUNEL-positive cells divided by the total number of counted cells was expressed as percentage apoptotic death (mean ± SEM).

Data analysis

Data were analyzed using a one-way ANOVA with Tukey’s pair-wise comparison test as a post hoc test using Prism 5.0b (GraphPad, La Jolla, CA, USA).

Results

Effect of substitution of Met35 by Nle or Val on Aβ oligomerization

A possible explanation of the different effects of substitution of Met35 by Nle or Val on Aβ toxicity is that the substitutions have a profound effect on Aβ assembly. Though this would be unexpected given the similar hydrophobic nature of all three-side chains, we felt that it was an important hypothesis to examine.

To test the effect of substituting Met35 by Nle or Val on the oligomer size distribution of Aβ, the wild-type (WT) and substituted Aβ40 and Aβ42 analogs each were cross-linked using PICUP, fractionated by SDS–PAGE and silver-stained (Fig. 1a). Uncross-linked WT and substituted analogs of Aβ40 migrated as monomers, whereas Aβ42 analogs migrated as a combination of monomer and a broad and smearable trimer/tetramer band (data not shown) as described previously (Bitan et al. 2003a,b,c). Substitution of Met35 by Nle or Val in Aβ40 had little effect on the oligomer size distributions obtained using PICUP (Fig. 1a and b). All three peptides had comparable abundance of monomer through trimer, followed by a lower abundance of tetramer (Fig. 1a), similar to data reported previously (Bitan et al. 2001, 2003a).

Aβ42 analogs showed high abundance of pentameric and hexameric paranuclei as described previously (Bitan et al. 2003a) (Fig. 1a). Substitution of Met35 by Nle or Val yielded lower abundance of dimer and trimer and higher abundance of tetramer, pentamer, and hexamer (Fig. 1a and c). These differences, particularly the decrease in dimer and increase in tetramer abundance, were subtle for [Nle35]Aβ42 and more pronounced for [Val35]Aβ42. Statistical analysis of densitometric data showed that the differences between WT Aβ42 and [Val35]Aβ42 were significant at the p < 0.05 level.
and [Val35]Aβ42 were statistically significant for monomer and all the oligomers except heptamer (Fig. 1c). The difference between WT Aβ42 and [Nle35]Aβ42 was significant only for dimer, trimer, and hexamer.

Effect of substitution of Met35 by Nle or Val on β-sheet formation

We used CD spectroscopy to study the effect of substituting Met35 by Nle or Val on conformational changes during Aβ assembly (Fig. 2). In all cases except [Val35]Aβ42, the initial spectrum was characterized by a minimum at 196–200 nm, suggesting that the peptide conformation was pre-dominantly a statistical coil. With incubation, in all cases the minimum at 196–200 nm was replaced by a maximum at 198–199 nm and, in the spectra of Aβ42 analogs, was accompanied by formation of a minimum at 215–217 nm, which is indicative of formation of β-sheet. A similar minimum typically is observed for Aβ40 analogs at higher peptide concentrations (Kirkitadze et al. 2001). We chose to keep the concentration consistent across all assays and therefore did not observe the typical minimum at 215 nm for Aβ40 analogs here.

Substitution of Met35 by Nle slightly increased, whereas substitution by Val slightly decreased the kinetics of conformational change in Aβ40. The kinetics of conformational transition in [Nle35]Aβ42 was slightly increased relative to WT Aβ42, whereas β-sheet formation by [Val35]Aβ42 was apparent already at the first time point (~5 min after dissolution) and was faster than the kinetics of conformational change in [Nle35]Aβ42 or WT Aβ42 (Fig. 2). These observations correlated with the trends observed in the PICUP experiments, i.e., higher abundance of larger oligomers correlated with faster kinetics of β-sheet formation.

Effect of substitution of Met35 by Nle or Val on assembly size

We used DLS to monitor the initial assembly size distribution of the Aβ analogs and the progressive growth of aggregation size. In our experience, unlike Aβ42, which shows formation of intermediate particle sizes during aggregation, in DLS experiments, Aβ40 initially shows only particles of \(R_H \approx 1–2 \) nm and following incubation (typically ≥1 week), very large particles appear, without accumulation of intermediate size particles (Bitan et al. 2003a). Based on this experience and because the effect of substitution by Nle or Val on Aβ40 found using PICUP or CD was relatively small, we did no expect DLS experiments with Aβ40 to add useful information and studied only Aβ42 analogs by DLS. We measured both the change in particle size and the frequency of intensity spikes that occur when very large particles cross the laser beam. For aggregating peptides, the frequency of intensity spikes can be used to estimate the rate of fibril formation (Fradinger et al. 2008).

Initially the WT and substituted Aβ42 analogs formed pre-dominantly particles of hydrodynamic radius \(R_H = 100–200 \) nm (Fig. 3) and no intensity spikes. This situation was unchanged after 24 h of incubation and remained stable for several days. After 7 days, the same distribution and no intensity spikes still were observed for WT Aβ42, whereas particles of \(R_H = 100–200 \) nm appeared for both substituted analogs, which also displayed occasional intensity spikes, indicating the beginning of fibril formation. By 14 days of incubation, particles of \(R_H = 100–200 \) nm were observed also for WT Aβ42. At the same time, particles of \(R_H = 1000–2000 \) nm were detected for the two substituted analogs. The faster kinetics of [Nle35]Aβ42 and [Val35]Aβ42 relative to WT Aβ42 correlated with the PICUP and CD data.

It is important to note that because in DLS measurements the intensity is proportional to the square of the mass, the populations of larger particles are highly over-represented in Fig. 3. Particles of \(R_H = 10–15 \) nm still existed at all time.
points in all cases but they were over-shadowed by the intensity of larger particles.

The overall slower kinetics of aggregation in the DLS experiments compared with CD and EM (see below) reflects the different preparation and incubation conditions. Samples measured by DLS must be filtered to remove dust particles and are incubated without agitation. Without these measures, large particles render the measurements useless already at the very early time points.

Effect of substitution of Met³⁵ **by Nle or Val on morphology**

The morphology of the WT and substituted peptides was examined by EM immediately after preparation and after 72 h (Aβ40) or 24 h (Aβ42) of incubation (Fig 4). All the peptides initially had non-fibrillar morphology and showed structures consistent with oligomers. Following 72 h of incubation, the morphology of Aβ40 and [Nle³⁵]Aβ40 did not change. The behavior of [Val³⁵]Aβ40 was less consistent. In some experiments, this peptide showed a mixture of oligomers and fibrils whereas in others, its morphology was similar to Aβ40 and [Nle³⁵]Aβ40 (Fig 4). Aβ42 and both its substituted analogs showed abundant fibrils after 24 h of incubation. Quasi-spherical oligomers still could be observed in all cases (Fig 4).

Taken together, the results of most of the biophysical experiments show that substitution of Met by Nle or Val increases the tendency of Aβ to self-assemble. This tendency correlates with the higher hydrophobicity of Nle and Val relative to Met.

Effect of substitution of Met³⁵ **by Nle or Val on Aβ neurotoxicity**

To study the structure – activity relationships of substituted Aβ analogs, we treated rat primary cortical or hippocampal neurons with WT, Nle-, or Val-substituted Aβ40 or Aβ42 and measured neurotoxicity using the MTT reduction, LDH release, and TUNEL staining assays. We used these three different assays because each measures a different aspect of cell viability: The MTT assay measures mitochondrial activity of viable cells (Wang et al. 2006), the LDH assay signifies membrane integrity and is a direct measurement of cell death (Decker and Lohmann-Matthes 1988), and the TUNEL assay indicates DNA fragmentation and denotes apoptosis.

Because Aβ42 is substantially more toxic than Aβ40, we performed full dose-response analysis (at 1–100 μM) for Aβ42 analogs using both the MTT and LDH assays, whereas the toxicity of Aβ40 analogs was assessed at a single concentration—10 μM, for comparison with Aβ42 analogs and to facilitate correlating the data with the results of the biophysical measurements described above.

Using the MTT assay, the concentrations at which 50% of the maximal toxicity (EC₅₀) was observed were 10 ± 2 μM, 11 ± 3, and 9 ± 1 for Aβ42, [Nle¹⁵]Aβ42, and [Val¹⁵]Aβ42, respectively (Fig. 5a). The EC₅₀ values measured using the LDH assay were 11 ± 5, 11 ± 5, and 12 ± 8 for Aβ42, [Nle¹⁵]Aβ42, and [Val¹⁵]Aβ42, respectively (Fig 5b). Comparison of the neurotoxicity at 10 μM showed that the toxicity of the substituted analogs was similar to that of the WT peptides for both Aβ40 and Aβ42 alloforms using both the MTT (Fig. 5c) and LDH (Fig 5d) assays. In all cases, the only statistically significant differences were found between Aβ42 and Aβ40 analogs, whereas the differences between the substituted analogs and the corresponding WT Aβ alloforms were small and statistically insignificant. Cortical and hippocampal neurons showed similar sensitivity to Aβ analogs in most experiments.

Similar results were obtained using the TUNEL assay, which showed that all the Aβ analogs induced apoptosis.
Aβ42 analogs were significantly more toxic than Aβ40 analogs yet no significant differences were found between the Nle- or Val-substituted analogs and the WT peptides (Fig 6).

Discussion

Substitution of Met\(^{35}\) in Aβ by redox-unreactive, aliphatic groups has been reported to both decrease, in the case of Nle (Varadarajan *et al.* 1999; Butterfield and Boyd-Kimball 2005; Clementi *et al.* 2006; Piacentini *et al.* 2008), and increase, in case of Val (Ciccotosto *et al.* 2004) Aβ neurotoxicity, with no satisfactory explanation for these contradictory observations. The toxicity findings also were not correlated directly with the assembly properties of the substituted analogs. To re-evaluate these data, we compared the Nle- and Val-substituted and WT analogs of both Aβ40 and Aβ42 using multiple biophysical and cytotoxicity assays.

Using four different biophysical assays, we found that substituting Met\(^{35}\) by Nle or Val tended to increase Aβ assembly. The substitutions effect on the oligomer size distribution (Fig. 1a) or conformational change kinetics (Fig. 2) of Aβ40 was modest relative to the effect on Aβ42. In particular, substitution of Met\(^{35}\) by Val was found to accelerate the aggregation kinetics of Aβ42 (Figs 2 and 3), which correlated with a shift in the oligomer size distribution towards higher order oligomers (Fig. 1a and c). A similar, yet more subtle effect on acceleration of aggregation (Fig. 3) and a shift in oligomer size distribution (Fig. 1c) was observed for [Nle\(^{35}\)]Aβ42. Overall, the tendency to increase self-assembly was more pronounced in Aβ42 than in Aβ40 and correlated with the somewhat higher hydrophobicity of Nle and Val relative to Met. These data support a central role for the C-terminus in the assembly of Aβ42 and less so for Aβ40, in agreement with previous reports (Bitan *et al.* 2003a; Urbanc *et al.* 2004; Yun *et al.* 2007; Yang and Teplov 2008; Bernstein *et al.* 2009).

We note that the DLS data obtained for the Aβ42 analogs are comparable qualitatively but not quantitatively with the CD results because of the differences in samples preparation. Using different preparation protocols was necessary because of the fundamental differences between the two methods. Unlike CD, which is an averaging technique, DLS over-emphasizes large particles, as discussed above. Therefore,
DLS samples must be filtered prior to measurement to exclude dust particles and cannot be agitated because formation of even a few large particles as a result of agitation would lead to skewed results. Nevertheless, the capability of DLS to measure assembly dynamics non-invasively and with high sensitivity provides useful, complementary information to the CD and EM measurements.

The correlation we observed between formation of higher order oligomers and increased β-sheet formation concords with recent data showing a similar correlation in isolated Aβ40 oligomers (Ono et al. 2009). These data also are in agreement with the acceleration of β-sheet formation by [Val35]Aβ42 compared with WT Aβ42 in the presence of lipid vesicles and Cu2+ ions observed by Ciccotosto et al. using CD (Ciccotosto et al. 2004). Compared with the latter study, our data reveal that the faster conformational transition of the Val-substituted peptide likely results from the substitution itself rather than from presence of vesicles or Cu2+ ions.

Whereas Ciccotosto et al. (2004) reported that at 5 μM both Aβ42 and [Val35]Aβ42 showed non-fibrillar morphology both initially and after 72 h of incubation at 37°C (Ciccotosto et al. 2004), we found fibrillar morphology for all three Aβ42 analogs after 24 h of incubation. These morphological variations likely result from the difference in experimental setup. We used 10 μM concentration and incubated the peptides at 25°C with continuous agitation, whereas Ciccotosto et al. used 5 μM and incubated at 37°C without agitation.

Despite the differences in assembly kinetics and in contrast to previous reports, we found very similar levels of toxicity for the WT and substituted analogs of both Aβ40 and Aβ42 using three different assays, MTT, LDH, and TUNEL, in both cortical and hippocampal primary neurons.

Dose-response analysis for Aβ42 and its analogs showed nearly identical values in both the MTT and LDH assays (Fig. 5). When the toxicity of Aβ40 and Aβ42 analogs measured by all three assays was compared at 10 μM, the same concentration used in the biophysical studies, the only significant difference found was between the Aβ40 and Aβ42 groups, but not among the WT and substituted analogs within each group (Figs 5 and 6).

Differences in experimental settings likely explain the difference between our data and those reported by other groups. One obvious possibility is the source of the peptides used. However, in our experience, the differences in biophysical and biologic behavior between Aβ analogs prepared by the UCLA Biopolymers Laboratory and those from commercial sources are not bigger than typical batch-to-batch variation. Moreover the toxicity of WT Aβ in our study was comparable that observed by the other laboratories (Varadarajan et al. 1999; Yatin et al. 1999; Ciccotosto et al. 2004), suggesting that the peptide source did not contribute significantly to the observed results.

More likely explanations include differences in the peptide preparation methods and cell types used. For example, Varadarajan et al. used [Nle35]Aβ40 that was pre-incubated for 24 h before addition to culture and measured the effect of this peptide after 6 h of incubation with cells (Varadarajan
et al. 1999). Similarly, Yatin et al., used \([\text{Nle}35]\alpha\beta42\), which was dissolved in water at 1 mg/mL, and incubated for 24 h before addition to cells (Yatin et al. 1999). In neither case were the peptides treated to remove aggregates prior to their dissolution. In contrast, we treated all the peptides with HFIP to obtain aggregate-free starting conditions, prepared solutions in cell culture media, and added these solutions to the cells immediately after preparation. It is therefore plausible that we observed toxicity of \([\text{Nle}35]\alpha\beta42\) oligomers, which likely were not present in the former studies because of the 24 h pre-incubation step.

In different studies, Clementi et al. (Clementi et al. 2006) and Piacentini et al. (Piacentini et al. 2008) found little or no toxicity for \([\text{Nle}35]\alpha\beta42\) using IMR-32 cells. Though neither group used a pre-incubation step, they diluted the peptides from stock solutions prepared in dimethylsulfoxide directly into the cell culture medium. Thus, the differences between their results and the ones presented here may stem both from the higher sensitivity of primary neurons to \(\alpha\beta\)-induced toxicity relative to IMR-32 cells and from the differences in the preparation protocols used.

The higher toxicity of \([\text{Val}35]\alpha\beta42\) relative to WT \(\alpha\beta42\) reported by Ciccotosto et al. (Ciccotosto et al. 2004), which we did not observe, also may be because of differences in experimental protocols. They prepared their peptides without HFIP treatment and adjusted the concentration based on measurement of absorbance at 214 nm, a method we found to produce results that are inconsistent with amino acid analysis data (G. Bitan, unpublished).

Ciccotosto et al. suggested that \([\text{Val}35]\alpha\beta42\) has higher affinity for lipid membranes than \(\alpha\beta42\), which may be linked to increased toxicity, although both \(\alpha\beta42\) and \([\text{Val}35]\alpha\beta42\) were reported to produce similar amount of \(\text{H}_2\text{O}_2\) (Ciccotosto et al. 2004). A different view was suggested by Murray et al., who found that substitution of Met\(^{35}\) by Val decreased lipid peroxidation (Murray et al. 2005). Because we did not study lipid peroxidation, our data are not directly comparable with those of Murray et al. Nevertheless, our results suggest that the presence of Met\(^{35}\) in \(\alpha\beta\) is not an important factor in \(\alpha\beta\)-induced toxicity.

Our conclusion is consistent with a recent elegant study by Butterfield et al. (Butterfield et al. 2009) who used a variant of the V717F amyloid \(\beta\)-protein precursor transgenic mouse model of AD (Masliah et al. 1996), containing an M631L mutation in the amyloid \(\beta\)-protein precursor-encoding gene, which leads to substitution of Met\(^{35}\) in \(\alpha\beta\) by Leu. The study showed that Met\(^{35}\) was required for observation of markers of oxidative stress, such as protein carbonylation and lipid peroxidation in the brains of the mice, yet the substitution of Met\(^{35}\) by Leu had no effect on the learning and memory impairment of the mice assessed using the Morris Water Maze (Butterfield et al. 2009). The reasons for this apparent discrepancy are not understood and may be related to differences in deposition patterns between WT and \([\text{Leu}^{15}]\alpha\beta\) or to involvement of toxic amyloid \(\beta\)-protein precursor fragments other than \(\alpha\beta\), as suggested by the authors (Butterfield et al. 2009). As is the case with most mouse models of AD, the impairment of learning and...
memory observed by Butterfield et al. was not associated with neuronal loss (Morrisette et al. 2009). Nonetheless, if one accepts the assumption that the results of the learning and memory tests measured in vivo correlate with our neurotoxicity measurements in primary cultures, these results support our conclusion that the presence of Met35 is not important for Aβ toxicity.

Acknowledgments

This work was supported by Alzheimer’s Association Grant IIRG-07-5833 (GB) and NIH/NIA grant AG027818 (GB and GBB). We thank Margaret M. Condon for peptide synthesis and amino acid analysis, Dr. David Teplow for the use of his CD spectrometer, and Drs. Farid Rahimi and Huiyuan Li for valuable advice and critical discussion of the manuscript.

References

