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By quenched-randomly mixing local units of different spatial dimensionalities, we have studied
Ising spin-glass systems on hierarchical lattices continuously in dimensionalities 1 ≤ d ≤ 3. The
global phase diagram in temperature, antiferromagnetic bond concentration, and spatial dimension-
ality is calculated. We find that, as dimension is lowered, the spin-glass phase disappears to zero
temperature at the lower-critical dimension dc = 2.431. Our system being a physically realizable
system, this sets an upper limit to the lower-critical dimension in general for the Ising spin-glass
phase. As dimension is lowered towards dc, the spin-glass critical temperature continuously goes
to zero, but the spin-glass chaos fully sustains to the brink of the disappearance of the spin-glass
phase. The Lyapunov exponent, measuring the strength of chaos, is thus largely unaffected by the
approach to dc and shows a discontinuity to zero at dc.

I. INTRODUCTION: SPIN-GLASS

LOWER-CRITICAL DIMENSION

The lower-critical dimension dc of an ordering system,
where the onset of an ordered phase is seen as spatial di-
mension d is raised, has been of interest as a singularity
of a continuous sequence of singularities, the latter being
the phase transitions to the ordered phase which change
continuously as d is raised from dc. The lower-critical
dimension of systems without quenched randomness has
been known for some time as dc = 1 for the Ising-type
(n = 1 component order-parameter) systems, dc = 2 for
XY, Heisenberg, ... (n = 2, 3, ..) systems, highlighted
with a temperature range of criticality at dc = 2 of the
XY model [1, 2]. In systems with quenched randomness,
a marvelous controversy on the lower-critical dimension
of the random-field Ising system has settled for dc = 2.[3–
10] Quenched bond randomness affects the first- versus
second-order nature of the phase transition into an or-
dered phase that exists without quenched randomness
(such as the ferromagnetic phase), rather than the di-
mensional onset of this ordered phase.

The situation is inherently different with an ordered
phase that is caused by the quenched randomness of com-
peting ferromagnetic-antiferromagnetic (and more re-
cently right-left chirality or helicity [11]) interactions,
namely the Ising spin-glass phase. Replica-symmetry-
breaking mean-field theory yields dc = 2.5,[12] this being
of immediate high interest as the first known example of
a non-integer lower-critical dimension. Numerical fit to
spin-glass critical temperatures [13] and free energy bar-
riers [14] for integer dimensions also suggests dc = 2.5.
Numerical fits to the exact renormalization-group solu-
tions of two different families of hierarchical lattices with
a sequence of decreasing dimensions yield dc = 2.504
(Ref.[15, 16]) and dc = 2.520 (Ref.[17]), which are of fur-
ther interest by being non-simple fractions. The strength
of hierarchical lattice approaches is that they present ex-
act (numerical) solutions [18–20], but they involve non-

FIG. 1. Local graphs with d = 2 (bottom) and d = 3 (top)
connectivity. The cross-dimensional hierarchical lattice is ob-
tained by repeatedly imbedding the graphs in place of bonds,
randomly with probability 1−q and q for the d = 2 and d = 3
units, respectively.

unique continuations between integer dimensions, being
based on different families of fractal graphs. However,
in the hunt for the lower-critical dimension, since each
hierarchical lattice constitutes a physical realization, cal-
culating a finite-temperature spin-glass phase at d auto-
matically pushes the lower-critical dimension to dc < d,
which is an important piece of information.

The exact numerical renormalization-group solution of
hierarchical lattices, used in the current study, has been
fully successful in all aspects of lower-critical-dimension
behavior mentioned in the first paragraphs of this Sec-
tion. Whereas previous studies with hierarchical lattices
have used in each calculation a lattice with the same di-
mensionality at every locality (these include but are not
confined to hierarchical lattices that are simultaneously
approximate solutions [21, 22] for hypercubic and other
Euclidian lattices), we quenched randomly mix units with
local dimensionality d = 2 and d = 3. By varying the rel-
ative concentration of these two units, we continuously
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FIG. 2. Calculated exact global phase diagram of the Ising spin glass on the cross-dimensional hierarchical lattice, in temperature
1/J , antiferromagnetic bond concentration p, and spatial dimension d. The global phase diagram being symmetric about
p = 0.5, the mirror image portion of 0.5 < p < 1 is not shown. The spin-glass phase is thus clearly seen, taking off from zero
temperature at dc = 2.431.

span from d = 2 to d = 3. In this physically real-
ized system, we find dc = 2.431, lower than previously
found values and thus setting an upper limit to the ac-
tual lower-critical dimension of the Ising spin-glass phase.
Furthermore, as our spin-glass phase disappears at zero-
temperature at dc = 2.431, it is fully chaotic, with a
calculated Lyapunov exponent of λ = 1.56 (this expo-
nent equals 1.93 at d = 3), which is in sharp contrast
to the disappearance, as frustration is microscopically
turned off, of the spin-glass phase to the Mattis-gauge-
transformed ferromagnetic phase, where the Lyapunov
exponent (and chaos) continuously goes to zero.[23] In
the current work, we also obtain a global phase diagram
in the variables of temperature, antiferromagnetic bond
concentration, and spatial dimensionality.

II. MODEL AND METHOD: MOVING

BETWEEN SPATIAL DIMENSIONS THROUGH

LOCAL DIFFERENTIATION

The Ising spin-glass system has Hamiltonian

− βH =
∑

〈ij〉

Jijsisj (1)

where β = 1/kT , at each site i of the lattice the spin
si = ±1, and 〈ij〉 denotes summation over all nearest-
neighbor site pairs. The bond Jij is ferromagnetic +J >
0 or antiferromagnetic −J with respective probabilities
1 − p and p. This Hamiltonian is lodged on the hier-
archical lattice constructed with the two graphs shown

in Fig. 1. The lower graph has a length rescaling fac-
tor (distance between the external vertices) of b = 3 and
a volume rescaling factor (number of internal bonds) of
bd = 9. Thus, self-imbedding the lower graph into its
bonds ad infinitum results in a d = 2 spatial dimensional
lattice that is numerically exactly soluble. The upper
graph similarly yields d = 3. Other graphs have been
used to systematically obtain intermediate non-integer
dimensions [17].

FIG. 3. Constant dimensionality d cross sections of the global
phase diagram in Fig. 2. The cross sections are, starting from
high temperature, for d = 3, 2.9, 2.8, 2.7, ..., 2.1, 2. It is seen
that, as the dimensionality d approaches dc = 2.431 from
above, the spin-glass phase disappears at zero temperature.

For recent exact calculations on hierarchical lattices,
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FIG. 4. Zero-temperature phase diagram of the Ising spin-
glass system on the cross-dimensional hierarchical lattice, in
antiferromagnetic bond concentration p and and spatial di-
mension d. The lower-critical dimension of dc = 2.431 is
clearly visible.

see Refs.[24–32]. Thus, previous works have generally
used a hierarchical lattice generated by a single graph
and spatial dimensionality that is microscopically uni-
form throughout the system. By contrast, we mix the
two graphs with local d = 2 and d = 3 in frozen ran-
domness and definite proportionality: Starting with ei-
ther graph (in the thermodynamic limit, this choice does
not matter), each bond is replaced by the d = 2 or
d = 3 graph, with probability 1 − q and q, respec-
tively. This random imbedding is repeated ad infinitum.
Thus, the dimensionality of the macroscopic system is
(1− q)× 2 + q × 3 = 2 + q.

The exact renormalization-group solution of this sys-
tem works in the opposite direction from the lattice con-
struction just described. As described after Eq.(1), we
start with the double-valued distribution of +J or −J
bonds, with probabilities 1 − p and p respectively, on
a d = 2 or d = 3 unit with probabilities 1 − q and q
respectively. The local renormalization-group transfor-
mation proceeds by bd−1 bond-movings followed b = 3
(to preserve the ferromagnetic-antiferromagnetic sym-
metry) decimations, generating a distribution of 500

new interactions, which is of course no longer double
valued.[32] (In fact, for numerical efficiency, these op-
erations are broken down to binary steps, each involv-
ing two distributions of 500 interactions.) In the dis-
ordered phase, the interactions converge to zero. In
the ferromagnetic and antiferromagnetic phases, under
renormalization-group, the interaction diverges to strong

coupling as the renormalized average J ′ ∼ by
F

RJ , where
the prime refers to the renormalized system and yFR > 0
is the runaway exponent of the ferromagnetic sink of
the renormalization-group flows. In the spin-glass phase,
under renormalization-group, the distribution of inter-
actions continuously broadens symmetrically in ferro-
magnetism and antiferromagnetism, the absolute value
of the interactions diverging to strong coupling as the

renormalized average |J | ′ ∼ by
SG

R |J |, where ySG
R > 0

is the runaway exponent of the spin-glass sink of the
renormalization-group flows. The runaway exponents yFR
and ySG

R are given below as a function of dimensionality
d.

III. TRANSITIONAL DIMENSIONAL GLOBAL

PHASE DIAGRAM AND FULL CHAOS EVEN AT

SPIN-GLASS DISAPPEARANCE

Figure 2 shows our calculated global phase diagram
in the variables of temperature 1/J , antiferromagnetic
bond concentration p, and spatial dimensionality 2 ≤
d ≤ 3. In addition to the high-temperature disordered
phase, ferromagnetic, antiferromagnetic (the phase di-
agram being ferromagnetic-antiferromagnetic symmetric
about p = 0.5, the mirror-image antiferromagnetic part
of p > 0.5 is not shown; however, see Figs. 3 and 4), and
spin-glass ordered phases are seen. As dimensionality d
is lowered, the spin-glass phase disappears at zero tem-
perature at the lower-critical dimension of dc = 2.431.
Constant-dimension d cross sections of the global phase
diagram are in Fig. 3, where the gradual temperature-
lowering of the spin-glass phase, as the lower-critical di-
mension dc = 2.431 is approached from above, is seen.
However, such gradual disappearance is not the case for
the chaos [33–35] inherent to the spin-glass phase, as seen
below.
Fig. 4 shows the calculated zero-temperature phase di-

agram in the variables of antiferromagnetic bond concen-
tration p and spatial dimensionality 1 ≤ d ≤ 3. For this
Figure, the calculation is continuously extended down to
d = 1 by again quenched-randomly mixing our d = 2
graph (Fig. 1) and a linear 3-segment strand. The
smoothness of the boundaries at d = 2 validates our
method. The independence of dc from p is noteworthy.
An inherent signature of the spin-glass phase is the

chaotic behavior [33–40] of the interaction at a given lo-
cality as a function of scale change, namely under consec-
utive renormalization-group transformations. This chaos
is shown in Fig. 5 for a variety of dimensions, including
the lower-critical dimension dc = 2.431. For each chaos,
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FIG. 5. The chaotic renormalization-group trajectory of the
interaction Jij at a given location < ij >, for various spatial
dimensions between the lower-critical dc = 2.431 and d = 3.
Note that strong chaotic behavior, as also reflected by the
shown calculated Lyapunov exponents λ, nevertheless contin-
ues as the spin-glass phase disappears at the lower-critical
dimension dc, as also seen in Fig. 6.

the Lyapunov exponent

λ = lim
n→∞

1

n

n−1
∑

k=0

ln
∣

∣

∣

dxk+1

dxk

∣

∣

∣

(2)

where xk = J(ij)/|J | at step k of the renormalization-
group trajectory, measures the strength of the chaos, and
is calculated and shown for the spatial dimensions in Fig.
5. It is seen that the system shows strong chaos (posi-
tive Lyapunov exponent λ = 1.56) even at dc = 2.431,
namely at the brink of the disappearance of the spin-glass
phase, after an essentially slow numerical evolution from
the d = 3 value of λ = 1.93. This is in sharp contrast with
the disappearance of the spin-glass phase, into a Mattis-
gauge-transformed ferromagnetic phase, as frustration is

FIG. 6. Spin-glass critical temperature TSG
C at p = 0.5, spin-

glass chaos Lyapunov exponent λ, spin-glass-phase runaway
exponent ySG

R and ferromagnetic-phase runaway exponent yF
R ,

as a function of dimension d. Note that the ferromagnetic
phase runaway exponent yF

R correctly tracks d− 1.

gradually turned off microscopically, where chaos gradu-
ally disappears and the Lyapunov exponent continuously
goes to zero, as seen in Fig. 6 of Ref. [23]. As seen in
Fig. 6, the Lyapunov exponent, shown continuously as
a function of dimension, is essentially unaffected by the
disappearance of the spin-glass phase and thus shows a
discontinuity at dc. The runaway exponent of the spin-
glass phase, on the other hand, correctly goes to zero
at dc, as is expected by the renormalization-group flow
structure. Also seen in Fig. 6 is the spin-glass critical
temperature going to zero at dc.

IV. CONCLUSION: LOWER LOWER-CRITICAL

DIMENSION AND LYAPUNOV

DISCONTINUITY

By quenched-randomly mixing local units of different
spatial dimensionalities, we have studied Ising spin-glass
systems on hierarchical lattices continuously in dimen-
sionalities 1 ≤ d ≤ 3. We have calculated the global
phase diagram in temperature, antiferromagnetic bond
concentration, and spatial dimensionality. We find that,
as dimension is lowered, the spin-glass phase disappears
at zero temperature at dc = 2.431. Our system being a
physically realizable system, this sets an upper limit to
the lower-critical dimension of the Ising spin-glass phase.
As dimension is lowered towards dc, the spin-glass crit-
ical temperature continuously goes to zero. The Lya-
punov exponent, measuring the strength of chaos, is on
the other hand largely unaffected by the approach to dc
and shows a discontinuity to zero at dc.
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