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A spin system is studied, with simultaneous permutation-symmetric Potts and spin-rotation-
symmetric clock interactions, in spatial dimensions d = 2 and 3. The global phase diagram is
calculated from the renormalizaton-group solution with the recently improved (spontaneous first-
order detecting) Migdal-Kadanoff approximation or, equivalently, with hierarchical lattices with the
inclusion of effective vacancies. Five different ordered phases are found: conventionally ordered
ferromagnetic, quadrupolar, antiferromagnetic phases and algebraically ordered antiferromagnetic,
antiquadrupolar phases. These five different ordered phases and the disordered phase are mu-
tually bounded by first- and second-order phase transitions, themselves delimited by multicritical
points: inverted bicritical, zero-temperature bicritical, tricritical, second-order bifurcation, and zero-
temperature highly degenerate multicritical points. One rich phase diagram topology exhibits all of
these phenomena.

I. INTRODUCTION: TWO MODELS MERGED

The q-state Potts models, ever since the establishment
of their quantitative relevance to surface phase transi-
tions [1] and of the intricate renormalization-groupmech-
anism for their changeover from second- to first-order
phase transitions [2, 3], have held high interest in sta-
tistical physics. The q-state clock models, ever since
the establishment of their algebraic ordering in relation
to the XY model [4], have also held high interest. In
the current work, we merge the two models into the q-
state Potts-clock models and solve, in spatial dimensions
d = 2 and d = 3, with the recently improved Migdal-
Kadanoff approximation [5] or, equivalenty, exactly on
hierarchical lattices [6–9], obtaining algebraically [10–13]
and conventionally ordered multistructured multicitical
global phase diagrams. This merged model has been re-
cently studied [14] on the square lattice for q = 6 for
positive couplings J and K (see below) by the corner
transfer matrix renormalization-group method, showing
the ferromagnetic phase with a single phase transition
from the disordered phase for the Potts limit and with a
narrow intermediate BKT phase in the clock limit.

The Potts and clock models, by themselves, have a
lower-critical dimension above which a low-temperature
ordered phase occurs. In the antiferromagnetic case,
the low-temperature phase is algebraically ordered when
ground-state entropy occurs, as in all Potts models and
the clock models with an odd number of states q. For fer-
romagnetic Potts models, the phase transitions are sec-
ond order only for low d and low q. All of these prop-
erties are obtained by position-space renormalization-
group methods, as used in this study.[2, 3, 5, 10, 11, 13]
For the ferromagnetic q = 5 clock model on the square
lattice, the phase transition occurs with a narrow inter-
mediate BKT phase. [14]

The merged model is defined by the Hamiltonian

−βH =
∑

〈ij〉

[J δ(~si, ~sj) +K~si · ~sj ], (1)

where β = 1/kBT , at site i the spin ~si can point in
q different directions θi = 2πni/q in the xy plane, with
ni = 0, 1, ..., q−1 providing the q different possible states,
the delta function δ(~si, ~sj) = 1(0) for ~si = ~sj(~si 6= ~sj),
and the sum is over all interacting pairs of spins. We
independently vary the Potts interaction strength J and
the clock interaction strength K of the merged Potts-
clock model, to obtain the multistructured multicritical
global phase diagram.

II. METHOD: MIGDAL-KADANOFF

APPROXIMATION, IMPROVED, AND

HIERARCHICAL LATTICES

The Migdal-Kadanoff approximation [15, 16] renders a
non-doable renormalization-group transformation doable
by a physically motivated approximate step, is very eas-
ily calculated, flexibly applicable to large number of sys-
tems, highly used and highly successful. For example
(Fig. 1a), an exact renormalization-group transforma-
tion cannot be applied to the cubic lattice. Thus, as an
approximation, some of the bonds are removed. How-
ever, this weakens the connectivity of the system and, to
compensate, for every bond removed, a bond is added to
the remaining bonds. This whole step is called the bond-
moving step and constitutes the approximate step of the
renormalization-group transformation. At this point, the
intermediate sites can be eliminated by an exact summa-
tion over their spin values in the partition function, which
yields the renormalized interaction between the remain-
ing sites. This is called the (exact) decimation step and
completes the renormalization-group transformation.
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FIG. 1. (a) The Migdal-Kadanoff approximate
renormalization-group transformation on the cubic lat-
tice. Bonds are removed from the cubic lattice to make the
renormalization-group transformation doable. The removed
bonds are compensated by adding them to the remaining
bonds: before, after, or partially before partially after. In
each of (b-d), a hierarchical model is constructed by self-
imbedding a graph into each of its bonds, ad infinitum.[6] The
exact renormalization-group solution proceeds in the reverse
direction, by summing over the internal spins shown with
the dark circles. Shown in (b-d) are the most used, so called
”diamond” hierarchical lattices [6–8]. The length-rescaling
factor b is the number of bonds in the shortest path between
the external spins shown with the open circles, b = 3 in
these cases. The volume rescaling factor bd is the number
of bonds replaced by a single bond, bd = 27 in these cases,
so that d = 3. In the renormalization-group solutions, in
(b), bd−1 bond moving is done after summing over (namely
decimating) the internal spins along a length-rescaling line of
b bonds. In (d), bd−1 bond moving is done before decimation
over b bonds. In (c), the fraction f of the bond moving is
done before and the remaining fraction 1 − f is done after
the decimation.

As acceptable as the procedure just described, the re-
moved bonds can be compensated by adding the appro-
priate number of bonds to the result of the decimation,
this being the number of decimated bonds that the re-
moved bonds would have given. Alternately, a certain
fraction f of the removed bonds could be compensated
before decimation and the remaining fraction 1−f could
be compensated after the decimation. The choice of
0 ≤ f ≤ 1 is left to us.
Furthermore, as shown in Figs. 1b-c, the

renormalization-group recursion relations of the Migdal-
Kadanoff approximation are identical to those of an ex-
actly solved hierarchical model [6–9], making the Migdal-
Kadanoff approximation a physically realizable approx-
imation, as used in polymers, electronic systems, and
turbulence, respectively in Refs. [17–20], and there-
fore a robust approximation. Hierarchical models [6–
9] are exactly solvable microscopic models that are cur-
rently widely used.[21–30] The construction of hierarchi-
cal models is illustrated in Fig. 1. Each line segment in
Fig. 1 represents a nearest-neighbor spin-spin interaction
J δ(~si, ~sj) +K cos(~si·~sj) as given in Eq.(1). In each of (b-
d), a hierarchical model is constructed by self-imbedding

a graph into each of its bonds, ad infinitum.[6] Figs. 1b-c
show hierarchical lattices for bond-moving before (Fig.
1b), after (Fig. 1d), or a combination as explained above
(Fig. 1c). The exact renormalization-group solution pro-
ceeds in the reverse direction, by summing over the in-
ternal spins shown with the dark circles.
In the current study, our calculation corresponds to

the hierarchical model in Fig.1(c), with the factor f
chosen so that our calculation yields the exact transi-
tion temperature of the model with q = 2, namely the
Ising model. This choice was used previously, e.g., in
the quantum mechanical renormalization-group study of
high-temperature superconductivity in the tJ model of
electronic conduction.[31, 32] Thus, in the current study,
the exact critical temperatures [33, 34] of 1/(J/2+K) =
2.26918531 and 4.51152785 are obtained, in d = 2 and
3, with f = 0.5459793 and 0.1775492, respectively. Note
that for q = 2, both the Potts and clock terms in Eq.(1)
reduce to the Ising model, with combined interaction con-
stant J/2 +K.
The above can be rendered algebraically in the most

straightforward way by writing the transfer matrix be-
tween two neighboring spins, for example for q = 4,

Tij ≡ e−βHij =









eJ+K 1 e−K 1
1 eJ+K 1 e−K

e−K 1 eJ+K 1
1 e−K 1 eJ+K









, (2)

and for q = 5,

Tij ≡ e−βHij =












eJ+K e0.31K e−0.81K e−0.81K e0.31K

e0.31K eJ+K e0.31K e−0.81K e−0.81K

e−0.81K e0.31K eJ+K e0.31K e−0.81K

e−0.81K e−0.81K e0.31K eJ+K e0.31K

e0.31K e−0.81K e−0.81K e0.31K eJ+K













, (3)

where −βHij is the part of the Hamiltonian between the
two spins at the neighboring sites i and j. An important
degeneracy difference between these two transfer matri-
ces, with important phase diagram consequences, will be
discussed below.
The bond-moving step of the Migdal-Kadanoff approx-

imate renormalization-group transformation consists in
taking, before decimation, the power of fbd−1 of each el-
ement in this matrix and in taking, after decimation, the
power of (1−f)bd−1 of each element in this matrix. Here
b is the length-rescaling factor of the renormalization-
group transformation, namely the renormalized nearest-
neighbor separation in units of unrenormalized nearest-
neighbor separation. The decimation step consists in
matrix-multiplying b transfer matrices. The flows, under
this transformation, of the transfer matrices determine
the phases, the phase transitions and all of the thermo-
dynamic densities of the system, as illustrated below.
An important aspect of an occurring phase transition

is the order of the phase transition. The q-state Potts
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models have a second-order phase transition for q ≤ qc
and a first-order phase transition for q > qc.[35–37] In
renormalization-group theory, this has been understood
and reproduced as a condensation of effective vacancies
formed by regions of disorder.[2, 38] The above has been
included [5] as a local disorder state into the two-spin
transfer matrix of Eq.(2). Inside an ordered region of a
given spin value, a disordered site does not significantly

contribute to the energy in Eq.(1), but has a multiplic-
ity of q − 1. The substraction comes from the fact that
the disordered site cannot be in the spin state of its sur-
rounding ordered region. This is equivalent to the expo-
nential of an on-site energy and, with no approximation,
is shared on the transfer matrices of the 2d incoming
bonds. The transfer matrix becomes, for example for
q = 4,

Tij ≡ e−βHij =













eJ+K 1 e−K 1 (q − 1)1/2d

1 eJ+K 1 e−K (q − 1)1/2d

e−K 1 eJ+K 1 (q − 1)1/2d

1 e−K 1 eJ+K (q − 1)1/2d

(q − 1)1/2d (q − 1)1/2d (q − 1)1/2d (q − 1)1/2d (q − 1)1/d













. (4)

III. GLOBAL PHASE DIAGRAMS

Phase diagram predictions can be made from the a

priori examination of the Hamiltonian of the Potts-clock
model in Eq.(1). For the q = 4 model (and in gen-
eral for all even q Potts-clock models), for interaction
ratio J/K = −2, a cancellation occurs between the Potts
and clock terms and the energies are equal for the com-
pletely aligned (ni = nj) and completely antialigned
(|ni − nj| = q/2) interacting pairs of spins. Thus, along
this line on the phase diagram, all phases must be in-
variant under π rotation of any individual spin. In fact,
only the quadrupolar [39] and disordered phases are seen
along this line in our calculated phase diagrams (Figs.
2,3). Indeed, in the quadrupolar phase, the neighbor-
ing spins are, randomly, either aligned or π-antialigned.
For the q = 5 model (and in general for all odd q Potts-
clock models), the energies are equal for the two most
antialigned (but cannot be completely antialigned due
to odd q) pairs of spins (|ni − nj | ± 1/2 = q/2), so that
for interactions favoring antialignment, there is a ground-
state energy degeneracy. Thus, fluctuations will occur no
matter how low the temperature, leading to a nonzero-
temperature sink fixed point if an ordered phase occurs,
making the latter algebraically ordered.[10, 11] This is in
fact what is seen, with the algebraic antiferromagnetic
and algebraic antiquadrupolar phases in our calculated
phase diagrams (Figs. 2,3).

Under repeated renormalization-group transforma-
tions, the phase diagram points of the ordered phases
of the Potts-clock model flow to the sinks shown in Ta-
ble I. The sink values of the transfer matrix elements
epitomize the whole basin of attraction of the completely
stable fixed point that is the sink. For example, in the
ferromagnetic phase the spins are aligned along one of
the q spin directions, in the antiferromagnetic phase the
spins up-down alternate along a spatial direction, in the
quadrupolar phase the spins align, randomly, in a spin

direction and its opposite direction. The algebraically
ordered phases are discussed further below. The disor-
dered phase has two sinks, one sink with the lower-right
(q + 1) × (q + 1) element of the transfer matrix equal
to 1 and the rest zero, another sink with all elements in
the upper-left q× q block equal to one and the rest zero.
Analysis at the unstable fixed points attracting the phase
boundaries give the order of the phase transition.[1] Our
calculated phase diagrams are shown in Figs. 2,3.

For q = 4 (Figs. 2,3), ferromagnetic and antiferro-
magnetic phases, with intervening quadrupolar [39] and
disordered phases, are seen. The quadrupolar phase in-
tervenes between the ferromagnetic and antiferromag-
netic phases, up to a second-order bifurcation point P
in d = 2 and up to an inverted bicritical [40, 41] point B
in d = 3. The bicritical points are inverted, namely, their
first-order stem is on the high-temperature side (Fig. 3),
whereas in previously studied bicritical points the first-
order stem extends towards low temperature. All other
phase transitions are second order. A highly degenerate
multicritical point S occurs at 1/J = 0,K/J = −0.5
(Fig. 3), due to the degeneracy discussed at the be-
ginning of this Section. The ferromagnetic, quadrupo-
lar, antiferromagnetic phases meet at this single zero-
temperature multicritical point [41] in both d = 2 and
3.

For q = 5 (Figs. 2,3), in d = 3, an algebraically ordered
antiferromagnetic phase or the algebraically ordered anti-
quadrupolar phase and the ferromagnetic phase are sep-
arated by a narrow disordered phase terminating at a
zero-temperature bicritical point. In both cases, at the
phase boundaries at higher temperatures on each side of
the phase diagram, a tricritical point separates first- and
second-order transition lines (Fig. 3). In d = 2, second-
order phase transitions separate the ferromagnetic and
disordered phases. It is seen from Table I that the sinks of
the q = 5 antiferromagnetic and antiquadrupolar phases
have a temperature scale, namely that all elements of
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Sinks of the Ordered Phases of the (q=4)-state Potts-Clock Model

[0,0,1,0] [1,0,1,0] [1,0,0,0]

Antiferromagnetic Quadrupolar Ferromagnetic

Sinks of the Ordered Phases of the (q=5)-state Potts-Clock Model

[0,1/3,1,1,1/3] [0,1,1/3,1/3,1] [1,0,0,0,0]

Algebraic Antiferromagnetic Algebraic Antiquadrupolar Ferromagnetic

TABLE I. Under repeated renormalization-group transformations, the phase diagram points of the ordered phases of the Potts-
clock model flow to the sinks shown on this Table. Only the top row of the sink transfer matrix is shown here. The subsequent
rows are obtained by cyclically rotating the elements. The last row and last column of the transfer matrix, corresponding to
the effective vacancies, have all elements zero at the ordered sinks and are not given here.

the sink transfer matrix are not 1 or 0. In general, at a
renormalization-group fixed point, the system is scale-
invariant, so that the correlation length ξ is zero (at
disordered or conventionally ordered phase sinks), which
cannot be if there is a temperature scale, or infinity (at
fixed points attracting critical systems).[42, 43] Thus, in
the present case the entirety of these antiferromagnetic
and antiquadrupolar phases are critical.[10–12]. The cor-
relation length ξ is infinite throughout these phases and,
having no length scale, the phases are algebraically or-
dered. In the d = 2, the algebraically ordered phases
are not seen. Previous work has consistently shown for
both Potts [10, 11] and odd-q clock [13] models, that the
algebraically ordered phases occur for d = 3, but not
for d = 2, where the disordered phase persists to zero
temperature.

For K = 0 and J = 0, the model reduces to the Potts
and clock models respectively. For q = 4 (Figs. 2,3),
the expected second-order phase transitions are seen for
both Potts and clock models in d = 2, but in d = 3 the
expected Potts first-order phase transition is narrowly
missed in the proximity of a bicritical point. For q = 5
(Figs. 2,3), the expected first-order phase transition is
not seen for Potts in d = 2, and the expected Potts first-
order phase transition is narrowly missed, in the proxim-
ity of a tricritical point, in d = 3. Similarly, in d = 2,

the narrow intermediate BKT phase [14] is missed for the
clock model.

IV. CONCLUSION

The much-used Potts models and clock spin models
have been merged into a simple but complex Potts-
clock model and solved by renormalization-group the-
ory. The resulting global phase diagram contains a dis-
ordered phase and five different ordered phases, namely
conventionally ordered ferromagnetic, quadrupolar, and
antiferromagnetic phases; algebraically ordered antiferro-
magnetic and antiquadrupolar phases. These six differ-
ent phases are separated by first- and second-order phase
boundaries, themselves delimited by multicritical points:
inverted bicritical, zero-temperature bicritical, tricritical,
second-order bifurcation, and zero-temperature highly
degenerate multicritical points. A rich sequence of phase
diagram topologies thus obtains from a simple model.
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[26] A. V. Myshlyavtsev, M. D. Myshlyavtseva, and S. S. Aki-
menko, Classical Lattice Models with Single-Node Inter-
actions on Hierarchical Lattices: The Two-Layer Ising
Model, Physica A 558, 124919 (2020).

[27] M. Derevyagin, G. V. Dunne, G. Mograby, and A.
Teplyaev, Perfect Quantum State Transfer on Diamond
Fractal Graphs, Quantum Information Processing, 19,
328 (2020).

[28] S.-C. Chang, R. K. W. Roeder, and R. Shrock, q-Plane
Zeros of the Potts Partition Function on Diamond Hier-
archical Graphs, J. Math. Phys. 61, 073301 (2020).

[29] C. Monthus, Real-Space Renormalization for Disordered
Systems at the Level of Large Deviations, J. Stat. Mech.
- Theory and Experiment, 013301 (2020).

[30] O. S. Sarıyer, Two-Dimensional Quantum-Spin-1/2 XXZ
Magnet in Zero Magnetic Field: Global Thermodynamics
from Renormalisation Group Theory, Philos. Mag. 99,
1787 (2019).

[31] A. Falicov and A. N. Berker, Finite-Temperature Phase
Diagram of the tJ Model: Renormalization-Group The-
ory, Phys. Rev. B 51, 12458 (1995).

[32] M. Hinczewski and A.N. Berker, Finite-Temperature
Phase Diagram of Nonmagnetic Impurities in High-
Temperature Superconductors using a d=3 tJ Model
with Quenched Disorder, Phys. Rev. B 78, 064507
(2008).

[33] L. Onsager, Crystal Statistics. I. A Two-Dimensional
Model with an Order-Disorder Transition, Phys. Rev. 65,
117 (1944).

[34] A. L. Talapov and H. W. J. Blöte, The Magnetization of
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FIG. 2. Calculated phase diagrams of the q = 4 and 5 state Potts-clock models in d = 2 and 3, in terms of the respective
interactions J and K. First- and second-order phase transition lines are shown with dashed and full lines, respectively. The
disorder line, occurring in q = 4, is shown with a dotted line. Two types (namely, bordered by different phases) of inverted
(see Fig. 3) bicritical points B, two types of second-order bifurcation points P , three types of tricritical points t are seen. As
seen in the insets (bottom two panes), the narrow disordered phase, between the algebraically ordered ferromagnetic phase or
the algebraically ordered quadrupolar phase and the ferromagnetic phase, narrowly extends to two types of zero-temperature
(see insets) bicritical points Z (Fig. 3). We recall that our calculation is a numerically exact solution of the models on a
hierarchical lattice, so that the phase boundaries are obtained beyond the accuracies of the thickness of the lines in the figures,
as seen in the insets here. Both in d = 2 and 3, the conventionally ordered quadrupolar phase (q = 4) non-narrowly extends to
zero-temperature highly degenerate multicritical point S, given in Fig. 3. Thus, a qualitatively very different picture emerges
for even and odd number of states q.
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FIG. 3. Calculated strong-coupling behaviors in d = 2 and d = 3, in terms of the temperature variables 1/J or 1/K and the
ratio of the Potts-clock interactions K/J or J/K. First- and second-order phase transitions are shown with dashed and full
lines, respectively. Top row: The q = 4 state Potts-clock models. The disorder line is shown with a dotted line. Both in
d = 2 and 3, the conventionally ordered quadrupolar phase non-narrowly extends to the zero-temperature highly degenerate
multicritical point S. Bottom row: The q = 5 state Potts-clock model in d = 3. As also seen in the insets, the narrow
disordered phase, between the algebraically ordered ferromagnetic phase or the algebraically ordered quadrupolar phase and
the ferromagnetic phase, narrowly extends to two types (namely, bordered by different phases) of zero-temperature (see insets
of Fig. 2) bicritical points Z. As also seen in Ref. [10, 11], the algebraically ordered phases do not occur in d = 2. Two different
types of tricritical points t occur in each pane of the figure.


