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Field-Driven Hysteresis of the d=3 Ising Spin Glass: Hard-Spin Mean-Field Theory
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Hysteresis loops are obtained in the Ising spin-glass phase in d = 3, using frustration-conserving
hard-spin mean-field theory. The system is driven by a time-dependent random magnetic field Hg
that is conjugate to the spin-glass order @, yielding a field-driven first-order phase transition through
the spin-glass phase. The hysteresis loop area A of the @ — Hg curve scales with respect to the
sweep rate h of magnetic field as A — Ag ~ h®. In the spin-glass and random-bond ferromagnetic
phases, the sweep-rate scaling exponent b changes with temperature 7', but appears not to change
with antiferromagnetic bond concentration p. By contrast, in the pure ferromagnetic phase, b does
not depend on T and has a sharply different value than in the two other phases.

PACS numbers: 75.10.Nr, 75.60.Ej, 64.60.Ht, 05.70.Ln

Frustration and non-equilibrium effects induce compli-
cated ordering behaviors that challenge the methods of
statistical physics. Perhaps the most ubiquitous non-
equilibrium effect, hysteresis is the current topic of in-
tense fundamental and applied studies.[l, 12, 13, 4, 5]
In the present study, hard-spin mean-field theory, de-
veloped specifically to respect frustration [6, [7], is used
to study the non-equilibrium behavior of the field-driven
first-order phase transition that is implicit, but to-date
unstudied, in spin-glass ordering. For the Ising spin-
glass on a cubic lattice, the phase diagram is obtained
and the temperature- and concentration-dependent or-
dering of the spin-glass phase is microscopically deter-
mined. The random magnetic field that is conjugate to
this microscopic order is then identified and used to in-
duce a first-order transition and hysteresis loops. We find
qualitatively and quantitatively contrasting scaling be-
haviors in spin-glass, quenched random-bond ferromag-
netic, and pure ferromagnetic phases of the system.

The model is defined by the Hamiltonian
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FIG. 1: Phase diagram from hard-spin mean-field theory for
the d=3 Ising spin glass. All phase boundaries are second
order.
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FIG. 2: (a) Equilibrium spin-glass order parameter Q(O) as a
function of temperature T = J~'. The curves, from top to
bottom, are for p = 0,0.1,0.2,0.3,0.5. The latter two curves
overlap. (b) Equilibrium magnetization M© as a function
of concentration p. The curves, from top to bottom, are for
T =10.5,1.0,1.5,2.0, 2.5, 3.0.

—BH = Z Jijsisi + ZHi(t)Si; (1)

<ij> i

where s; = 1 at each site ¢ of a cubic lattice and < ij >
denotes summation over nearest-neighbor pairs. The
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FIG. 3: Zero-temperature spin-glass order parameter Q(O)
as a function of antiferromagnetic bond concentration p, ob-
tained by averaging over 10 realizations, with the standard
deviation being used as the error bar. The dashed line indi-
cates the transition between the two phases, whose position
is obtained from the phase diagram in Fig.1.

bond strengths J;; are equal to —J with quenched prob-
ability p and +J with probability 1 — p, respectively cor-
responding to antiferromagnetic and ferromagnetic cou-
pling. H;(t) is a linearly swept quenched random mag-
netic field, itself determined, as explained below, by the
spin-glass local order of this system.

For our calculations we use the hard-spin mean-field
theory |6, 7,18, 19,10, 11,112, 13,114, [15, 116, 17, 18, [19, 20],
a method which is nearly as simply implemented as the
conventional mean-field theory but which conserves frus-
tration by incorporating the effect of the full magnitude
of each spin. The self-consistent equation for local mag-
netizations m; in hard-spin mean-field theory is

m; = Z HP (mj,s;) | tanh ZJiij + Hi(t) |
{s;} L J J
(2)

where the sum {s;} is over all interacting neighbor con-
figurations and the sum and the product over j are
over all sites that are coupled to site ¢ by interaction
Jij. The single-site probability distribution P(m;,s;)
is (1 + m;s;)/2. The hard-spin mean-field theory has
been used in time-dependent systems, in the study of
field-cooled and zero-field cooled magnetizations in spin
glasses.|[14]

Equilibrium Phase Diagram - The equilibrium local mag-
netizations mgo) are determined by simultaneously solv-
ing N coupled Egs.(2]) for all N sites ¢ of the system, at
zero external magnetic field, H = 0. For 0 < p < 1,
the system is degenerate, and many local magnetization
solutions exist and are reached by hard-spin mean-field
theory. The phase diagram (Figlll) is obtained from tem-
perature T = J~! and concentration p scans of the equi-
librium spin-glass order parameter Q® = £%;m? and
magnetization M(©) = %Eimi, illustrated in Figl2 ob-
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FIG. 4: The top-row figures are from a hysteresis loop in
the ferromagnetic phase with quenched random antiferromag-
netic bonds, T = 1.5,p = 0.15, h = 0.005. The middle-row
figures are from a hysteresis loop in the spin-glass phase,
T = 15,p = 04,h = 0.005. Left: calculated equilibrium
local magnetizations mz(-o) in a cross-section of the three-
dimensional system. A hysteresis loop is started from these
systems. Middle: local magnetizations m;(¢) at the first can-
cellation point, M(t) = 0 (top row) and Q(t) = 0 (middle
row), of the first hysteresis loop. Left: local magnetizations
at the first reversal point, M (t) = —M(0) and Q(t) = —Q(0),
which occurs when the first hysteresis half-loop is completed.
The bottom cross-section shows the vanishing equilibrium lo-
cal magnetizations everywhere in the paramagnetic phase, to
be contrasted with the spin-glass cross-section immediately
above it: the global magnetization M© =0 in both cases.

tained by averaging over 20 realizations for a N = 203
spin system. The results do not change if a larger sys-
tem is used. In the resulting phase diagram shown in
Figlll the transition temperatures are gauged by com-
paring Tc at p = 0: The precise value [21] is 4.51, the
ordinary mean-field value is 6, the value obtained here is
5.06 . Thus, the transition temperatures are exaggerated
as expected from a mean-field theory, but considerably
improved over ordinary mean-field theory. Our obtained



FIG. 5: Hysteresis loops for different values of the sweep rate
h for (a) the pure ferromagnetic phase, p = 0, (b) the fer-
romagnetic phase with quenched random antiferromagnetic
bonds, p = 0.15, (c) the spin-glass phase, p = 0.4, all at
T = 1.5. The loops are, from outer to inner, for sweep rates
h = 0.05,0.02,0.01, 0.005.

transition concentrations between the ferromagnetic and
spin-glass phases are p = 0.22, in excellent agreement
with the precise value of p = 0.23 [22].

Figl3l shows the zero-temperature spin-glass order pa-
rameter Q(¥) as a function of antiferromagnetic bond con-
centration p. It seen that, as soon as frustration is in-
troduced via the antiferromagnetic bonds, order does not
saturate at zero temperature, both in the ferromagnetic
and spin-glass phases, the latter of course showing more
unsaturation. Moreover, the left column of Figll shows
the equilibrium local magnetizations m; in a cross-section
of the system, in the ferromagnetic and spin-glass phases.
These magnetization cross-sections are remarkably simi-
lar to the renormalization-group results |23] and are con-
sistent with the chaotic rescaling picture of the spin-glass
phase [24].

Spin-Glass Hysteresis Loops - The quenched random
magnetic field that is conjugate to the microscopic order

is H;(t) = HQ(t)ml(-O) in Eq.(d), where the ml(-o) are the
equilibrium local magnetizations obtained with Eq.(2) for
a given T,p . Hysteresis loops in the spin-glass order
Qt) = x+Tim; (t)mgo) are obtained in the ordered
phases, spin-glass or ferromagnetic, by cycling Hq(t) at
constant T, p, via a step of magnitude h for each time
unit. Thus, at time ¢t = 0, Q(t = 0) = Q) the equilib-
rium spin-glass order parameter. A time unit is N updat-
ing of Eq.(2)) at randomly selected sites. Thus, h is the
sweep rate of the linearly driven [3, 4, 5] magnetic field.
The resulting hysteresis curves are illustrated in Figs[Bl
After one cycling, the subsequent hysteresis loops for a
given sweep rate coincide, and are shown in Figs/l and
used in the scaling analysis further below.

Cycling Effect of a Uniform Magnetic Field on Spin-
Glass Order - As a contrast to the hysteretic effect of
the conjugate quenched random magnetic field Hg(¢) in-
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FIG. 6: Spin-glass order parameter Q(¢) and uniform magne-
tization M (t) curves obtained when, in the spin-glass phase,
the uniform magnetic field H(t) is turned on and then off with
sweep rate h = 0.005. In this figure, p = 0.4, 7 = 1.5.

troduced above, Figldl shows the effect on the spin-glass
phase of turning on and then off a uniform magnetic field
H(t) at a sweep rate h. As expected, the spin-glass order
Q(t) starts at a finite value and returns to zero, while the
uniform magnetization M (t) = + X;m;(t) starts at zero
and returns to a finite value.
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FIG. 7: The hysteresis area A — Ao versus sweep rate h scal-
ing curves for T' = 1.0(e), 1.5(A), 2.0(#) at different concen-
trations p.

Spin-Glass Hysteresis Area Scaling - The energy dissipa-
tion of a first-order phase transition is obtained from the
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FIG. 8: The sweep-rate scaling exponent b versus concentra-
tion p for T' = 1.0,1.5,2.0. These results are obtained by
averaging over 10 realizations, with the standard deviation
being used as the error bar.

T|p=0p=01 |p=02 |[p=03 |p=04 | p=05

1.0] 0.64 |0.49£0.06|0.4720.04]|0.49£0.04 | 0.5120.03]0.50£0.02
T.5| 0.64 |0.4420.02|0.48+0.04]0.450.03 |0.4520.03 | 0.47£0.03
2.0] 0.64 |0.4120.03]0.41£0.02|0.3820.01 | 0.39+0.02|0.3820.01

TABLE I: The sweep-rate scaling exponents b at different
temperatures and concentrations in the ferromagnetic and
spin-glass phases.

hysteresis area A of the Q — Hg curve: A = ¢ QdHg.
At fixed T,p, the loop area A decreases with decreas-
ing sweep rate h and finally reaches a value of Ag. The
area can be scaled as A = Ay + f(T)h".[5] The (A — Ap)
versus sweep rate h scaling curves are shown in Figs/[T,
for the pure ferromagnetic, quenched random-bond ferro-
magnetic, and spin-glass phases for various temperatures,
where Ay is fitted. The resulting sweep-rate exponents
b are given in Fig[8 and Table I. From these results, we
deduce that in the pure ferromagnetic phase, p = 0, the
exponent b is independent of temperature, as found pre-
viously [5]. However, the value of b = 0.64 that we find
here, under hard-spin mean-field dynamics, is distinctly
different from that of b = 2/3 found in Ref.|5] under or-
dinary mean-field dynamics, thereby constituting a dif-
ferent dynamic universality class. By contrast, in the
quenched random-bond ferromagnetic phase and in the
spin-glass phase, the value of b is distinctly smaller than
that in the pure ferromagnetic phase, and dependent on
temperature. Across both of these two phases, there ap-
pears to be no dependence of b on concentration.
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