Global Phase Diagram of the Spinless Falicov-Kimball Model in d=3: Renormalization-Group Theory

Ozan S. Sarıyer¹, Michael Hinczewski^{2,3}, and A. Nihat Berker^{4,5}

¹Department of Physics, Koç University, Sarıyer 34450, Istanbul, Turkey,

²Feza Gürsey Research Institute, TÜBİTAK - Bosphorus University, Çengelköy 34680, Istanbul, Turkey,

³Department of Physics, Technical University of Münich, Garching 85748, Germany

⁴Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı, Tuzla 34956, Istanbul, Turkey, and

⁵Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

The global phase diagram of spinless Falicov-Kimball model in d=3 spatial dimensions has been obtained by renormalization-group theory. This global phase diagram exhibits five distinct phases. Four of these phases are τ phases, in which the electron hopping strength diverges under repeated renormalizations. In the other (δ) phase, the hopping strength vanishes under repeated renormalizations. The phase boundaries are second order, except for an intermediate temperature regime, where a first-order phase boundary between two τ phases occurs. The cross-sections of the global phase diagram with respect to the chemical potentials of the localized and mobile electrons, at various fixed temperatures and hopping strengths, exhibit five distinct topologies.