Einstein’s famous photoelectric effect has turned into the most direct and powerful method of uncovering the momentum-dependent electronic structure of a solid, with the recent advent of using lasers in the method further improving its capabilities. In particular, laser-ARPES allows us to dramatically improve the momentum and energy resolution, as well as increasing bulk sensitivity and reducing backgrounds [1]. With this we obtain the intrinsic spectral lineshapes, scattering rates, and mean free paths, as well as their temperature dependences [1,2]. Strong coupling to the phonon degrees of freedom is fingerprinted by the means of isotope substitution [3,4], and the origin of the “waterfalls” in the dispersion is uncovered [5].