Growth model of hydrogen condensate

Model:

C.W. Gardiner et al. PRL 81, 5266 (1998).

• normal gas is supercooled.

excess population in lower trap levels

- growth rate depends on difference in chemical potential $(\mu_N \mu)$
 - μ_{N} condensate chemical potential
 - μ final equilibrium chemical potential
- rate constant, W^+ , depends on elastic collision rate

$$\dot{N}_{0} = 2 \text{ W}^{+} \{ [1 - \text{Exp}((\mu_{N} - \mu) / k_{B} \text{T})] N_{0} + 1 \} - \gamma \dot{N}_{2,c}$$

N₀ condensate population

W⁺ depends on collision rate

- $\gamma \dot{N}_{2,c}$ describes loss due to dipolar decay in condensate

Agreement with growth rate scaled from Na-BEC (H.-J. Miesner et al., Science 279, 1005 (1998))