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Abstract

The addition of atomic hydrogen to the set of gases in which Bose-Einstein condensation can be observed expands
the range of parameters over which this remarkable phenomenon can be studied. Hydrogen, with the lowest atomic
mass, has the highest transition temperature, 50 pK in our experiments. The very weak interaction between the
atoms results in a high ratio of the condensate to normal gas densities, even at modest condensate fractions. Using
cryogenic rather than laser precooling generates large condensates. Finally, two-photon spectroscopy is introduced
as a versatile probe of the phase transition: condensation in real space is manifested by the appearance of a high
density component in the gas, condensation in momentum space is readily apparent in the momentum distribution,
and the phase transition line can be delineated by following the evolution of the density of the normal component.
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1. Introduction

When our MIT group began studying spin-
polarized atomic hydrogen in 1976 it was thought
to be the only gas in which there was even a remote
chance of obtaining Bose-Einstein condensation.
Using a quantum theory of corresponding states
Hecht [1] had argued in 1959 that, due to its very
light mass and weak interactions, spin-polarized
atomic hydrogen would remain a gas down to
absolute zero. Interest in hydrogen was revived
in 1976 with the publication of many-body cal-
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culations [2] confirming that the ground state of
spin-polarized atomic hydrogen was indeed a gas.
It was also noted that even if there were a way
to keep other elements in the gaseous state, hy-
drogen, being the lightest, would have the highest
transition temperature at a given atomic density.
Spin-polarized hydrogen was first stabilized by
Silvera and Walraven [3] in 1980 at Amsterdam. In
subsequent years groups at British Columbia, Cor-
nell, Harvard, Moscow, and Turku, as well as our
own, used spin-polarized atomic hydrogen to study
many interesting physical phenomena from colli-
sion processes to spin-waves [4]. The observation
of BEC remained a long range and elusive goal.
When BEC in a gas was finally observed in 1995
it was in alkali-metal vapors [5-7]. The reasoning



of 1976, although true, proved to be irrelevant. The
ground state of the alkali-metals is certainly a solid.
Yet the density in the alkali experiments was so
low that the three-body collisions leading to nucle-
ation did not seriously limit the lifetime of the gas.
At a gas density of 10'4 atoms/cm? the transition
temperature in sodium is 1.5 puK, 23 times lower
than it would be in atomic hydrogen. However, the
development of laser cooling of atoms allowed the
alkali vapors to be pre-cooled to temperatures low
enough that evaporative cooling could be used to
take them into the sub-uK realm.

Since 1995, many fruitful experiments have been
performed using alkali gases, greatly expanding the
field of BEC physics. The study of Bose-condensed
hydrogen may lead to unique contributions. Hydro-
gen possesses special attractions in that it affords
relatively weak interactions between atoms, the
possibility of condensing large numbers of atoms
for long periods of time, and atomic states whose
energies can be calculated with exquisite accuracy.

2. Trapping and Cooling

The hyperfine diagram of the 15 state of atomic
hydrogen is shown in Fig. 1. The lowest two states,
a and b, are high field seeking states. They can not
be confined in a static magnetic trap because it is
not possible to have a maximum in the magnitude
of the magnetic field in a source free region. Most
of the early experiments on spin-polarized hydro-
gen were carried out on these states confined by a
combination of magnetic fields and liquid helium
covered walls. Ultimately, however, recombination
into molecules — due to adsorption on the walls
at low temperatures or three-body recombination
in the gas at high densities — precluded achiev-
ing conditions necessary for BEC. Attention then
turned to confining the low field seeking states, ¢
and d, in pure magnetic traps having a local mini-
mum in the field. (Recently Safonov et al. [8] used
changes in the surface three-body recombination
rate to detect the formation of a quasicondensate
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Fig. 1. Hyperfine diagram for the ground state of atomic
hydrogen.

in a two-dimensional layer of b state atoms.)

The experiments described here were carried out
on the doubly polarized d state confined in a trap
of the Ioffe-Pritchard form. Near the bottom of
such a trap the potential rises parabolically from
a finite minimum (a bias field is necessary to pre-
vent the spin of the atom from flipping when pass-
ing through a zero in the field); thus surfaces of
constant magnetic field are ellipsoids of revolution
about the vertical axis. A unique feature of our
trap is its high aspect ratio of 400:1, the ratio of
the major (vertical) axis to the minor axis. The
loading of the trap from a low temperature atomic
discharge source is described elsewhere [9]. Imme-
diately after loading, the trap contains about 104
atoms at a temperature of 40 mK.

The subsequent cooling of the atoms by three
orders of magnitude is carried out by evaporation
[10]. The most energetic atoms are allowed to es-
cape from the trap at a rate slow enough that the
remaining atoms can continuously readjust their
energy distribution to lower temperatures through
collisions. A competing mechanism causes heating
by removing some of the least energetic atoms from
the high density region at the bottom of the trap
by two-body spin relaxation. The temperature is
determined by a balance between these two mecha-
nisms and comes to steady state at a fraction of the
trap depth varying from 1/12 at 40 mK to about
1/7 at 40 uK.

Initially we allow the atoms to escape by lower-
ing the confining potential at one end of the trap
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Fig. 2. Sketches of potential energy versus position demon-
strating evaporative cooling of hydrogen by (a) lowering a
trapping field, or (b) by RF ejection of atoms.

as shown in Fig. 2a. This method becomes ineffi-
cient below about 100 4K when atoms promoted to
high energy states near the center of the trap have
a high probability of losing that energy in a colli-
sion before being able to reach the end of the trap
and escape [11]. To solve this problem we use RF
ejection of the atoms [12] below a temperature of
120 K. RF ejection was first applied to the evap-
orative cooling of alkali-metal vapors [13]. An RF
magnetic field flips the spins of atoms in that region
of the trap having a particular value of the trapping
magnetic field (see Fig. 2b). Atoms whose spins are
reversed are no longer confined. By starting with
an RF field resonant with the highest fields in the
trap, then slowly lowering the frequency, succes-
sively lower energy atoms can be expelled. Since
all the atoms on a specific energy surface in the
trap are affected, the process is more efficient than
evaporation through one end, particularly in a trap
as long and thin as ours. It was the application of
RF ejection to the hydrogen that finally allowed us
to achieve the conditions necessary for BEC.
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Fig. 3. Two-photon spectroscopy of the 15-2S transition
in hydrogen.

We monitor the temperature by three different
techniques: measuring the shape of the energy dis-
tribution as the atoms are rapidly dumped from
the trap [14], using the known relation between the
temperature and the trap depth, and (at low den-
sities) measuring the time of flight broadening of
the Doppler-free part of the two-photon spectrum
[15]. The density is determined by measuring the
two-body dipole decay rate. The densities quoted
in this paper are the maximum densities, those at
the bottom of the trap.

3. Two-photon Spectroscopy

We use two-photon spectroscopy of the 15-25
transition to study the trapped hydrogen atoms
[15]. When illuminated with photons of energy ex-
actly half the 15 to 25 level spacing, the atoms
are promoted to the 25 state by the absorption of
two photons (see Fig. 3). This differs from the one
photon processes used to manipulate and study
the alkali-metals in two important ways. First, the
resonance is extremely narrow allowing it to be
used for very high resolution spectroscopy. Second,
the absorption is so weak that we can not detect
the resonance by a decrease in the amplitude of
the transmitted beam. Instead, we apply an elec-
tric field to the atoms which mixes the long lived
2S5 state with the short lived 2P state. The atom
then returns to the ground state by the emission
of a Lyman-a photon. We detect the resonance by
recording the Lyman-a production as a function
of the frequency of the illuminating beam.
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Fig. 4. Features of the two-photon spectrum in a standing
wave. For hydrogen the recoil shift referenced to the 243 nm
excitation radiation is 6.7 MHz. The Doppler width in this
schematic would be appropriate to a temperature of about
50 puK, but the Doppler-free line would be much taller and
narrower than indicated.

In our experiment a laser beam at 243 nm is re-
flected back on itself by a mirror at the bottom
of the cell creating a standing wave in the trap.
Atoms that absorb two co-propagating photons
produce a recoil shifted and Doppler broadened
feature in the spectrum (see Fig. 4). The shape of
the Doppler line gives the momentum distribution
in the gas and thus provides another measure of
the temperature. Atoms that absorb two counter-
propagating photons transfer no momentum to the
atoms. The width of the resulting feature in the
spectrum could, in principle, be determined only
by the natural lifetime of the 2.5 state. In our ex-
periments, however, the width of this feature is
limited to 1 kHz (or one part in 1012) by the finite
coherence time of our laser source.

In 1996 Jamieson, Dalgarno and Doyle [16]
pointed out that the interactions between the
atoms cause a density dependent mean field shift
of each of the hydrogen energy levels. They calcu-
lated that the resulting shift in the 15-2S tran-
sition frequency would be negative, proportional
to the density, and of a magnitude which would
be observable in our experiments. We measured
the shift [17] by studying the Doppler-free com-
ponent in normal hydrogen and found Avyg 25 =
2AV243nm = XN, where n is the atomic density and
X = —3.84 0.8 x 1071 MHz cm?®. Since there is a
distribution of densities in the trap, the Doppler-

free component is broadened as well as shifted by
the interaction. The Doppler-sensitive component
is broadened and shifted by similar amounts, but
these effects are small compared to the Doppler
broadening and recoil shift.

4. Bose-Einstein Condensation

Two-photon spectroscopy allowed us to identify
three characteristic features of Bose-Einstein con-
densation: condensation in real space, condensa-
tion in momentum space, and the phase diagram
[18].

If a non-interacting Bose gas were to be cooled
below the transition temperature, a finite fraction
of the atoms would fall into the lowest energy sin-
gle particle quantum state. For a harmonic trap
such as that used here, the lowest energy eigenstate
is that of a three dimensional harmonic oscillator.
This gives rise to a condensation in real space since
the spatial extent of the ground state wavefunc-
tion is much smaller that that of the normal gas.
Consequently the density of atoms would become
extremely high over a narrow region at the bottom
of the trap. This effect is evident in Fig. 5 which
shows the Doppler-free portion of the two-photon
spectrum of a gas cooled just below its transition
at a temperature of 50 K and a density of 2 x 104
cm 3. The strong sharp peak on the right is due
to the non-condensed (normal) component and is
shifted to the red of the free atom resonance by an
amount determined by its density. The weak broad
feature, which appears only below the transition,
is due to the condensate. Note that a red shift of
0.8 MHz corresponds to a density of 4 x 10'® cm ™3,
20 times higher than the density of the normal gas.

The total number of atoms represented in Fig. 5
is 2 x 10'°, determined from the density and the
known effective volume of the trap. The fraction of
the atoms in the condensate can be determined by
examining the ratio of the areas under the conden-
sate and normal features of the spectrum, taking
into account the fact that the laser beam illumi-
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Fig. 5. Doppler-free spectrum of the condensate (broad
feature) and the normal component (narrow feature).

nates all of the condensate but only a fraction of
the normal gas. We estimate the condensate frac-
tion to be about 5%, corresponding to a total of
10° condensate atoms.

If 102 atoms were to be put in the single particle
ground state of this particular trap, the condensate
density would be about 200 times greater than the
measured value. The observed density is the result
of a mean field repulsion or spreading pressure due
to the interactions between the atoms. Since the
condensate density is substantially higher than
that of the coexisting normal gas, we can treat
the condensate using a zero-temperature Thomas-
Fermi approximation (a mean field model which
neglects the kinetic energy terms). The dashed
curve in Fig. 5 shows the Thomas-Fermi density
profile for an interacting gas in a parabolic trap
with a maximum condensate density of 4.8 x 10*°
cm 3. The resulting condensate is 15 pm in di-
ameter and 5 mm in length. This should be com-
pared with the 3 um diameter which would result
from the single particle ground state if there were
no interactions. As a self-consistency check one
can calculate the condensate fraction from the
Thomas-Fermi model using as input parameters
the s-wave scattering length, a15_15 = 0.0648 nm
[19], the measured maximum condensate density,
the temperature of the normal component, and
the trap geometry. The calculated condensate
fraction is 6%, in good agreement with the value
determined by spectral weights [20].

Atom|m (amu) |Te (uK)|a (nm)| a/Ar Ne¢

H 1 50 0.06 |2.7 x10~4|10°

Li 7 0.3 -1.5 |-1.2 x10~3]103

Na 23 2.0 2.8 |1.1 x10=2|107

Rb 87 0.7 5.4 (2.4 x1072|106
Table 1

Typical values of mass, transition temperature, scattering
length, perturbation parameter and number of atoms in
the condensate for the atomic species that have been Bose
condensed.

A quantitative measure of the interactions in
low temperature gases is the ratio of the scatter-
ing length to the deBroglie wavelength, a/Ar. As
shown in Table 1 this ratio is substantially smaller
in hydrogen than in the other BEC gases. It is the
weakness of the interactions in hydrogen which al-
lows the ratio of the condensate density to the nor-
mal density to be very large, even at modest con-
densate fractions. Note that the density ratio of
24:1 for the data in Fig. 5 would, for a homoge-
neous gas, only be reached at a reduced temper-
ature T'/T, = 0.12. Thus for many purposes our
condensates are nearly pure and can be treated by
zero-temperature models.

Textbook treatments of Bose-Einstein conden-
sation in a homogeneous gas emphasize condensa-
tion in momentum space. A drastic reduction in
momentum also occurs for condensate atoms in
a trap since the momentum spread is determined
only by the uncertainty principle and the spatial
extent of the condensate. Therefore a very nar-
row feature should appear in the Doppler-sensitive
portion of the two-photon spectrum accompany-
ing the formation of the condensate. In our case,
where the condensate has a length of about 5 mm
along the propagation direction of the photons,
the Doppler width would be about 100 Hz. Note
that this is narrower than would be the case for
non-interacting atoms in the single particle ground
state. Although this intrinsic width is obscured
in our experiments by the distribution of density
shifts in the condensate, the resulting width is still
much narrower than the Doppler width of the nor-
mal component. (Stenger et al. [21] have recently
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Fig. 6. Condensate feature sitting on top of the much
broader contribution from the normal component in the
Doppler-sensitive portion of the two-photon spectrum.
Times are measured from the end of forced evaporative
cooling. The number of atoms in the condensate is about
the same as in Fig. 5, but the trap volume is larger result-
ing in a lower condensate density.

used two-photon Bragg scattering to measure the
intrinsic momentum distribution in a Na conden-
sate.) Figure 6 shows the condensate feature in
the Doppler-sensitive part of the two-photon spec-
trum, plotted relative to the recoil shifted reso-
nance and fit to a Thomas-Fermi density profile.

The atoms giving rise to the feature displayed
in Fig. 6, those excited from the condensate by
the absorption of two co-propagating photons, pick
up enough momentum to be ejected from the trap
with a divergence angle of the order of 1073. They
are expected to form a narrow, intense beam of co-
herent atoms. Although we did not have the instru-
mentation to detect this beam in our initial exper-
iments, we believe that much interesting physics
can be done with this beam in future experiments.
Kozuma et al. [22] have used a related process, op-
tically induced Bragg diffraction, to couple sodium
atoms out of a Bose-Einstein condensate into co-
herent wave packets with sharply defined momen-
tum.

If one were to add atoms to a non-interacting
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Fig. 7. Density of the normal component of the gas as the
trap depth is reduced. The lines (dashed, solid, dot-dashed)
indicate the BEC transition line assuming sample temper-
atures of (%th7 éth7 %th) the trap depth.

Bose gas held at a fixed temperature the density
would increase until it reached a critical value
n.(T) = 2.612(2rmkpT)?/?/h3. If more atoms
were added they would condense into the lowest
single particle energy eigenstate. The density of
the normal component would remain constant.
Thus n.(T'), which is virtually unchanged by the
presence of a weak interaction, can be regarded as
a phase transition line in a plot of the density of
the normal component versus temperature. Since
the two-photon spectroscopy allows us to deter-
mine the densities of the condensate and normal
gas separately, we are able to plot our cooling
results in exactly this manner.

During cooling by RF evaporation the shape of
the magnetic trap is held constant. Although the
total number of atoms in the trap decreases, the
density of remaining atoms increases since they
lose energy and settle deeper into the potential well
(see Fig. 7). Once we cool below a certain temper-
ature — determined by the number of atoms in
the trap — the density of the normal component
decreases along a line consistent with n.(T).

A plot such as Fig. 7 shows the temperature and
the density of the normal component. It does not
indicate the size of the condensate under those con-
ditions. That could vary, depending on the number
of atoms remaining in the trap. In our experiments
the size of the condensate is determined by a bal-
ance between the rate at which the atoms leave the
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Fig. 8. Time evolution of the peak density in the conden-
sate. The solid curve was generated from a model of the
loss mechanisms.

trap due to two-body spin relaxation (primarily in
the condensate) and the rate at which the conden-
sate is replenished by atoms from the normal com-
ponent. As Hijmans et al. have pointed out [23], the
weakness of the interaction between the hydrogen
atoms limits how far below the transition temper-
ature hydrogen can be taken in an equilibrium sit-
uation. The small s-wave scattering length leads to
an elastic scattering rate in the thermal cloud well
below that in the alkali-metals, thus limiting the
evaporative cooling rate. In addition, the weak in-
teraction leads to a high density in the condensate
which greatly increases the loss rate. Consequently
the condensate fractions that can be obtained in
hydrogen are limited to a few percent.

Since the condensate contains only a small frac-
tion of the atoms, the normal gas acts as a large
reservoir that continually replenishes the conden-
sate as atoms are lost through dipolar relaxation.
This replenishment dramatically increases the ap-
parent lifetime of the condensate. We studied the
process by obtaining spectra at various hold times
after the end of the forced evaporative cooling cy-
cle. The time evolution of the condensate is dis-
played in Fig. 8 by plotting the peak condensate
density, n,, as a function of the hold time (here
the sample is held without exposure to the probe
laser). The peak condensate density decreases by
a factor of two (corresponding to a population de-
crease of 2°/2 ~ 6) in 15 s. This should be com-

pared to the characteristic condensate decay time

due to dipolar relaxation, 74 . = 7/(2gn,), where
g = 1.2 x 10715 ecm3/s is the dipolar decay rate

constant. For n, = 2 x 10% ¢m~3

s Tdip,e = 1.5 s.
The 15 s lifetime of the condensate thus indicates
feeding of the condensate from the thermal cloud.

The number of atoms fed into the condensate
roughly matches the number lost during the 15 s
shown in Fig. 8. Estimates of the total trap pop-
ulation at ¢ = 0 then set an upper limit on the
number lost, which scales as n;/ ? [24]. This strong
dependence provides a useful consistency check on
the determination of the peak condensate density
from the observed spectral shift. For example, if
n, were actually a factor of two larger than stated
here [20], then the entire normal gas would be ex-
pended after the 15 s observation. This is clearly
not the case since a large condensate is still present
after 15 s.

A simple model [24] of the trapped gas has been
used to quantitatively test our understanding of
the system. The dynamics are dictated by losses
due to dipolar relaxation in the condensate and
normal gas, and evaporation from the normal gas.
Equilibrium between the normal gas and conden-
sate is assumed. The expected behavior of the con-
densate is shown by the solid line in Fig. 8. The
agreement with experiment indicates a good un-
derstanding of the system.

The large reservoir of normal atoms could be
useful in the creation of a bright, sustained, CW
atom laser. Apparently, in our system 10° atoms
per second are being condensed out of the nor-
mal component. Efficient coupling of these atoms
into a coherent beam (instead of losing them from
the trap) could have broad applications ranging
from fundamental measurements enhanced by en-
tangled quantum states to holographic nanolithog-
raphy.

The achievement of BEC in hydrogen has at-
tracted wide attention for several reasons. First,
it represents the first new Bose-condensed species
since the initial alkali experiments. Also, hydrogen
condensates are of considerable interest because
the interatomic interactions can be calculated to
a high degree of accuracy. This may allow preci-



sion tests of not only many-body theories of the
condensate but also the theory of ultra-cold colli-
sions. Furthermore, our experiment was the first to
exploit high resolution spectroscopy for detection
of a condensate. This is noteworthy both for the
demonstration of the technique and because the
spectroscopy of hydrogen has long been a corner-
stone for precision measurements in physics. Great
potential exists for further increases in precision
using cold, trapped hydrogen.
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