Physics Spotlight  
At left: A single crystal compound of gadolinium, platinum, and bismuth made with naturally occurring elements. At right, a single crystal of this material made with isotopically enriched gadolinium for neutron scattering experiments. Both crystals are approximately 1 mm in size.

Images courtesy of the researchers.At left: A single crystal compound of gadolinium, platinum, and bismuth made with naturally occurring elements. At right, a single crystal of this material made with isotopically enriched gadolinium for neutron scattering experiments. Both crystals are approximately 1 mm in size.
Images courtesy of the researchers.

Mixing topology and spin

MIT-led team demonstrates paired topology and intrinsic magnetism in compound combining gadolinium, platinum, and bismuth.

Materials Processing Center
July 19, 2016

In the pursuit of material platforms for the next generation of electronics, scientists are studying new compounds such as topological insulators (TIs), which support protected electron states on the surfaces of crystals that silicon-based technologies cannot. Dramatic new physical phenomena are being realized by combining this field of TIs with the subfield of spin-based electronics known as spintronics. The success within spintronics of realizing important magnetic technologies such as the spin valve have increased the expectations that new results in TIs might have near-term applications. However, combining these two research threads has relied on “shoehorning” magnetism by forcing magnetic atoms to partially occupy elemental positions in TIs or by applying a conventional magnetic field. Realizing an integrated material that is both intrinsically magnetic and has a topological character has proven more challenging. 
Read full story >>