Faculty

WILLIAM D. OLIVER, Professor of the Practice of Physics; Associate Professor of Electrical Engineering and Computer Science; Lincoln Laboratory Fellow; , Research Laboratory of Electronics Associate Director

WILLIAM D. OLIVER
Professor of the Practice of Physics
Associate Professor of Electrical Engineering and Computer Science
Lincoln Laboratory Fellow
RLE Associate Director

EMAIL: william.oliver@MIT.EDU or oliver@ll.mit.edu

PHONE: (617) 258-6018

OFFICE: 13-3050 and LL-LI-281F

ASSISTANT: Mirabella Pulido (617) 258-6018

RELATED LINKS:

Area of Physics:

Condensed Matter Experiment

Research Interests

  • Quantum information science and technology
  • Superconducting artificial atoms and qubits
  • High-fidelity quantum control and error suppression
  • Precision measurement and quantum-limited amplification
  • High-performance / low-power classical computation (cryoCMOS, SFQ)
  • Quantum optics, atomic physics, and quantum transport in condensed matter systems

Biographical Sketch

William D. Oliver is a Principal Investigator in the Engineering Quantum Systems Group (MIT campus) and the Quantum Information and Integrated Nanosystems Group (MIT Lincoln Laboratory). He provides programmatic and technical leadership targeting the development of quantum and classical high-performance computing technologies. Will’s research interests include the materials growth, fabrication, design, and measurement of superconducting qubits, as well as the development of cryogenic packaging and control electronics involving cryogenic CMOS and single-flux quantum digital logic. Will is a Fellow of the American Physical Society; serves on the US Committee for Superconducting Electronics; is an IEEE Applied Superconductivity Conference (ASC) Board Member; and is a member of IEEE, APS, Sigma Xi, Phi Beta Kappa, and Tau Beta Pi.

Will received his PhD in Electrical Engineering from the Stanford University, the SM in Electrical Engineering and Computer Science from MIT, and a BS in Electrical Engineering and BA in Japanese from the University of Rochester (NY).

Selected Publications

  • J.I-J. Wang, D. Rodan-Legrain, L. Bretheau, D.L. Campbell, B. Kannan, D. Kim, M. Kjaergaard, P. Krantz, G.O. Samach, F. Yan, J.L. Yoder, K. Watanabe, T. Taniguchi, T. P. Orlando, S. Gustavsson, P. Jarillo-Herrero, W.D. Oliver, “Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures,” Nature Nanotechnology 14, 120-125 (2019)
  • D. Rosenberg, D.K. Kim, R. Das, D. Yost, S. Gustavsson, D. Hover, P. Krantz, A. Melville, L. Racz, G.O. Samach, S.J. Weber, F. Yan, J. Yoder, A.J. Kerman, W.D. Oliver, “3D integrated superconducting qubits,” npj Quantum Information 3, 42 (2017)
  • S. Gustavsson, F. Yan, G. Catelani, J. Bylander, A. Kamal, J. Birenbaum, D. Hover, D. Rosenberg, G. Samach, A. P. Sears, S. Weber, J. L. Yoder, J. Clarke, A. J. Kerman, F. Yoshihara, Y. Nakamura, T. P. Orlando, W. D. Oliver, “Suppressing relaxation in superconducting qubits by quasiparticle pumping”, Science 354, 1573 (2016)
  • F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A.P. Sears, D. Hover, T.J. Gudmundsen, D. Rosenberg, G. Samach, S. Weber, J.L. Yoder, T.P. Orlando, J. Clarke, A.J. Kerman, W.D. Oliver, "The flux qubit revisited to enhance coherence and reproducibility", Nature Communications 12964 (2016).
  • C. Macklin, K. O’Brien, D. Hover, M.E. Schwartz, V. Bolkhovsky, X. Zhang, W.D. Oliver, I. Siddiqi, "A near-quantum-limited Josephson traveling-wave parametric amplifier", Science 350, 307-310 (2015).
  • W.D. Oliver and P.B. Welander, "Materials in superconducting quantum bits", MRS Bulletin, 38, 816-825 (2013).
  • F. Yan, S. Gustavsson, J. Bylander, X. Jin, F. Yoshihara, D.G. Cory, Y. Nakamura, T.P. Orlando, and W.D. Oliver, "Rotating-frame relaxation as a noise spectrum analyzer of a superconducting qubit undergoing driven evolution", Nature Communications, 4, 2337 (2013).
  • J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D.G. Cory, Y. Nakamura, J.S. Tsai, and W.D. Oliver, "Noise spectroscopy through dynamical decoupling with a superconducting flux qubit", Nature Physics 7, 565-570 (2011).
  • D.M. Berns, M.S. Rudner, S.O. Valenzuela, K.K. Berggren, W.D. Oliver, L.S. Levitov, and T.P. Orlando, "Amplitude spectroscopy of a solid-state artificial atom", Nature 455, 51-58 (2008).
  • S.O. Valenzuela, W.D. Oliver, D.M. Berns, K.K. Berggren, L.S. Levitov, and T.P. Orlando, "Microwave-induced cooling of a superconducting qubit", Science 314, 1589 (2006).
  • W.D. Oliver, Y. Yu, J.C. Lee, K.K. Berggren, L.S. Levitov, and T.P. Orlando, "Mach-Zehnder interferometry in a strongly driven superconducting qubit", Science 310, 1653 (2005).
  • W.D. Oliver, J. Kim, R.C. Liu, and Y. Yamamoto, "Hanbury Brown and Twiss-type experiment with electrons", Science 284, 299 (1999).

Last updated on July 24, 2019 3:26 PM