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Abstract— Variabilities in the coastal ocean environment span
a wide range of spatial and temporal scales. From an acoustic
viewpoint, the limited oceanographic measurements and today’s
ocean modeling capabilities can’t always provide oceanic-acoustic
predictions in sufficient detail and with enough accuracy. Adaptive
Rapid Environmental Assessment (AREA) is a new adaptive sam-
pling concept being developed in connection with the emergence
of the Autonomous Ocean Sampling Network (AOSN) technology.
By adaptively and optimally deploying in-situ measurement
resources and assimilating these data in coupled nested ocean
and acoustic models, AREA can dramatically improve the ocean
estimation that matters for acoustic predictions and so be
essential for such predictions. These concepts are outlined and
preliminary methods are developed and illustrated based on
the Focused Acoustic Forecasting-05 (FAF05) exercise. During
FAF05, AREA simulations were run in real-time and engineering
tests carried out, within the context of an at-sea experiment
with Autonomous Underwater Vehicles (AUV) in the northern
Tyrrhenian sea, on the eastern side of the Corsican channel.

I. INTRODUCTION

In coastal regions, wind driven flows, tidal currents, river

outflows, internal waves, solitary waves, fronts, eddies, thermal

changes etc are some of the commonly dominant oceano-

graphic processes. These processes make the coastal ocean-

acoustic environment highly variable in time and space [1]–[8].

In the water column, the temperature profile, salinity profile,

plankton distribution profile etc can vary in complex dynam-

ical ways, driven by the variety of coastal oceanographic

processes and their coupling. Current flows also strongly

interact with the littoral bottom topography which can be

highly variable. In the seabed, bathymetric profiles vary in

time and space too, which in turn make the dynamics of the

water column extremely complex. The properties of the seabed

are also variable, which impact acoustic predictions.

Variabilities in the coastal ocean environment span a wide

range of spatial and temporal scales [7], [9]. Conventional

oceanographic measurement can not provide the ability to

synoptically observe all those dynamically interlocking, patchy

and intermittent processes in coastal ocean, especially for

sub-meso-scales short in time and space [10]. Consequently

the coastal environment will be always under-sampled at

these small and fast scales. Oceanographic forecasting by

modeling and data assimilation such as the Harvard Ocean

Prediction System with Error Subspace Statistical Estimation

(HOPS/ESSE) can produce 4-D oceanographic field estimates

and their associated uncertainties [11], [12]. However, the spa-

tial and temporal grids used in computation are limited by the

available computational resources, and the initial conditions

can be relatively unknown due to the environmental under-

sampling [13]. So, even using nested computational grids,

spatial scale smaller than hundred meters in the horizontal,

and meters in the vertical cannot be modeled deterministically

over large coastal regions (see Fig. 1).

Modern modeling and assimilation frameworks have a ca-

pability of representing the smaller, sub-grid-scale variability

statistically [13], [14]. From an acoustic viewpoint, very small

scale variabilities are averaged out by the acoustic wave

length; while the sub-meso scale variabilities of the order

of the acoustic wavelength make the coastal ocean acoustic

environment largely unknown with many uncertainties in terms

of imperfect sound velocity, depth of the thermocline etc.

Such uncertainties can be responsible for a large part of

the acoustic prediction uncertainty [1], [15]. The uncertainty

of the acoustic predictability is critical to the dB-budget of

classical sonar systems by directly affecting the detection and

false alarm probabilities. It is also one of the major obstacles

to adapting new model-based sonar processing frameworks,

such as matched field processing (MFP) [16], to the coastal

environment. The acoustic uncertainty associated with the

spatially and temporarily varying sound speed and the random

characteristics of the bottom are also of critical influence to

acoustic communication systems, which with the integration

of new Autonomous Ocean Sampling Network (AOSN) [17]

concept in the operational Navy are becoming of increasing

tactical significance.

To determine the environmental variability of the critical

sub-meso scales and short temporal scales, a rapid in-situ

measurement capability has long been recognized as a tactical

need [1]. However, its implementation is being constrained

by limited resources. Consequently, the limited availability

of high-resolution in-situ measurement data for assimilation

into the modeling framework may severely limit the useful-

ness of the forecasts to the acoustic environment prediction.

Acknowledging that the size of the ocean area relevant to an

acoustic problem is usually as large as tens of kilometers, the

acoustic-purposed coastal environmental assessment is facing

the classical conflict between resolution, needed to capture

the fine scale variability and coverage, needed for the large

scale environmental phenomena. Thus, the Rapid Environ-

mental Assessment (REA) resources available must focus on

the environmental uncertainties critical to the specific acoustic

system. A quantitative and adaptive approach is necessary.
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Fig. 1. Multi-scale environmental assessment. The typical sonar systems per-
formance is dependent on acoustic environment variability over a wide range
of scales. Optimal environmental assessment will therefore be a compromise
between conflicting requirements of coverage and resolution. By targeting
areas of high sensitivity to the sonar system through in-situ measurements,
the deterministic assessment range will be shifted towards smaller scales.

Adaptive Rapid Environmental Assessment (AREA) — a new

adaptive acoustical-environmental sampling approach based on

coupled oceanic-acoustic forecasts is currently being devel-

oped in connection with the emergence of the new Autonomous

Ocean Sampling Network (AOSN) technology [18]. In princi-

ple AREA is a probabilistic approach to the adaptive sampling

problem of littoral REA and envisioned as a real time tactical

tool for not only capturing, but also minimizing the acous-

tic uncertainty of significance to specific sonar systems. In

AREA, with ocean forecasting providing large-scale coverage,

identifying regions and features with strong uncertainty such

as coastal fronts, the limited high-resolution tactical resources

can be deployed in a manner which is optimal to the acoustic

forecasting [11], [19]. Consequently, the limit of deterministic

characterization may be shifted significantly towards smaller

scales; a much finer resolution can be obtained in the ocean

forecasting without sacrificing coverage and this will make the

acoustic forecasting uncertainty minimized (see Fig. 1).

The AREA framework can also be used to minimize oceanic

uncertainties, biological uncertainties etc [19], [20], or to

objectively evaluate the performance of new REA concepts,

such as Acoustically Focused Ocean Sampling (AFOS) [18]

and Acoustic Data Assimilation (ADA) [8], [21].

II. AREA

Fig. 2 shows the structure of the AREA system and con-

nections with ocean environmental models. Via data assim-

ilation, the HOPS/ESSE and the Geographic & Geological

modeling produce an ensemble of environmental realizations

for the water column and the seabed respectively. The acoustic

measurement and inversion methods can be utilized to improve

the ocean environmental predictions and uncertainties. The

quantitative uncertainty-maps provide guidance for locating

large uncertainties and so guide the sampling plans that are

computed by AREA. Compared with sound velocity in the

water column, the variabilities in bathymetry are less rapid

and can be captured by a side- scan/sub-bottom profiling AUV,
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Fig. 2. AREA wiring diagram. Fore- and now-casts of the local oceanography
and geology are producing spatial and temporal environmental statistics in
the form of realization ensembles. These ensembles are then used as input to
environmental acoustic models to provide associated realizations for the sonar
performance, e.g. in the form of probability of detection and false alarms. To
minimize the uncertainty of the acoustic prediction and therefore improve the
probability of detection to false alarm ratio, the realization ensemble of ocean-
acoustic environment and the operational constraints are used to determine an
optimal deployment strategy for the REA resources. The REA data are then
objective analyzed based on the forecast spatial scales. The resulting reduced
uncertainty now-casts are then used for the acoustic prediction.

water depth detection etc. Thus, AREA presently focuses more

on the water column and treats bathymetry deterministically. In

the acoustic modeling, the Range-dependent Acoustic Model

(RAM PE Code) — a popular wave-theory technique for

solving range-dependent propagation problems in the ocean

is used [22]. By coupling the ocean, seabed and acoustic

models, acoustic prediction uncertainties can be generated via

Monte Carlo simulations. The weighted sum of the acoustic

prediction uncertainties is the objective function in the AREA

optimization algorithm which aims to select the sampling

plan that reduces these integrated predicted uncertainties. This

optimization is an important focus of the present manuscript.

Under operational REA, the optimization generates an

optimal plan for allocating the REA resources, such as an

optimal AUV path, in real-time. Thereafter, REA resources

are deployed according to this optimal plan and in-situ mea-

surement data focusing on the most critical uncertainties are

collected and passed back to the oceanographic model and

seabed model in a short time. Those new local data are rapidly

assimilated in the models [8], [11], and ocean environmental

and acoustic predictions for the next day are generated. This

is the Daily AREA Cycle, which updates the optimal REA

resources allocation pattern everyday.

This Daily AREA Cycle constitutes a first level of adaptivity

in AREA. In addition to the static optimal REA, the optimiza-

tion problem can be treated as a Sequential Decision Making

Problem and modeled in the Dynamic Programming frame-

work, in which the REA resources allocation pattern is not

predetermined but generated on-board. An optimal adaptive

sampling strategy is then produced, as a function of the data

sampled by the autonomous data-collecting platforms, instead

of a predetermined optimal sampling pattern. As indicated by



the red lines in Fig. 2, the dynamic optimization algorithm

only outputs the optimal sampling pattern for the next step;

after the local data in the next step is collected and rapidly

mapped by objective analysis or assimilated in real-time, a

new ocean prediction is computed to optimize the subsequent

sampling pattern. The whole optimal REA resources allocation

pattern is adaptively generated step by step on-board. This is

the second level of adaptivity.

This second level of adaptivity in AREA involves dynamic

programming (DP). However, it is known that a DP problem is

usually NP hard [23]. Determining an optimization approach

for the adaptive sampling strategy that can be computed

on-board can thus be extremely difficult. However in some

particular cases, this difficult problem can be solved by in-

direct methods (see Section III).
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Fig. 3. FAF05 experiment site, Pianosa, Italy.

An integrated Adaptive Rapid Environmental Assessment

Simulation Framework (AREASF) is created to search for

the (sub)-optimal sampling patterns and/or sampling strategies,

and test the optimization effects before costly on-site exper-

iments [19]. The AREASF can also be used to observe how

AREA will work and test if real-time adaptive sampling is

feasible. Some new AOSN techniques such as Autonomous

Sensor Platforms, MOOS-IvP Autonomy Architecture etc

have been recently developed at MIT [24]. From 7/17/2005

to 7/26/2005, the Focused Acoustic Forecasting-05 (FAF05)

experiment was held off Pianosa, Italy (Fig. 3), within the

northern Tyrrhenian sea, on the eastern side of the Corsican

channel. The AREA concept was tested for two weeks within

the AREASF, including connections to ocean and seabed

models. AOSN techniques were tested at sea but the complete

AREA framework was only carried out in simulations, based

on real ocean data collected at sea within the AOSN exercises.

III. FAF05 REAL-TIME AREA SIMULATIONS

The Real-time AREA Simulations in FAF05 were initiated

for developing methodologies and engineering tests [25]. The

objectives included:

• Develop new algorithms and software for initiating the

coupling of the Harvard real-time ocean environmental

modeling, uncertainty prediction and adaptive sampling

methodologies with the MIT AREA and acoustic predic-

tions schemes.

• Develop optimization algorithms and software for gener-

ating (sub)-optimal adaptive sampling strategies.

• Test and improve those algorithms and softwares in real-

time.

• Issue physical-acoustical adaptive sampling recommen-

dations every day based on 1-to-2 days environmental

forecasts of fields and uncertainties.

The vertical slice along the red arrow line shown in Fig. 3 was

the main experiment area for the real-time AREA simulations.

A CTD (Conductivity-Temperature-Depth) carried by an AUV

was the REA source.

A. Ocean-Acoustic Modeling

a) Ocean Modeling: HOPS was run daily for 13 days,

forced by a combination of Aladin atmospheric forcing (from

DHMZ Croatia) and FNMOC atmospheric forcing. The ocean

model of HOPS was set-up in stand-alone, one-way- and

two-way- nested modeling configurations, in 2 domains: (i)

a high-resolution mini-HOPS domain along the eastern coast

of Pianosa (the region of MIT-FAF05 operations) and (ii) a

coarser resolution domain south of Elba and east of Pianosa

(see Fig. 4). The model resolutions and domain sizes are given

in TABLE I. The 100m resolution is designed to capture some

sub-mesoscale dynamics relevant to acoustic propagation.

(a) (b)

Fig. 4. HOPS 2-way nested domains: a) Pianosa domain, b) Elba domain.

TABLE I

TWO-WAY NESTED OCEAN DOMAIN RESOLUTION AND SIZES.

Mini-HOPS Elba

Resolution 100m 300m
Size nx × ny × nz 89 × 114 × 21 106 × 126 × 21

Extent 8.8 × 11.3km 31.5 × 37.5km

Fig. 5 illustrates the HOPS daily simulations and forecasts

of the ocean environment. The ocean model assimilated the

satellite sea surface temperature (SST) snapshots as available.

The 1-day forecasts of the temperature and current fields at

20m depths (near the main depth of the thermocline) are

shown in the Pianosa (Fig. 5(a) 5(b)) and Elba (Fig. 5(c) 5(d))

domains. Effects on the circulation of the two islands and of

the horizontal temperature gradients are clearly visible.
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Fig. 5. HOPS 2-way nested forecasts for the morning of July 25, 2005 (local
time), issued on July 24. (a) and (b): Temperature and total velocity overlaid
with current vectors at 20m depth in the Pianosa domain; (c) and (d): as (a)
and (b) for the Elba domain.

b) Acoustic Modeling: It was assumed that a 100Hz

continuous-wave sound source was located at r = 1950m,

z = 35m and the transmission loss (TL) at 5m depth was

chosen as the acoustic signal which mattered in the AREA

objective (see Fig. 6). To implement acoustic simulations

and optimization in real-time, the RAM code was carefully

configured so that TLs could be computed as fast as possible

with sufficient precision. For coupled ocean-acoustic computa-

tions, a preliminary data-transformation interface was created

to connect the HOPS/ESSE output with the RAM code, and so

allow rapid and RAM-compatible extraction of the acoustic-

related data from the HOPS/ESSE output. After setting up

the HOPS/ESSE oceanographic model, seabed model, RAM

code and coupling them together, a pipeline was created with

sound velocity profile (SVP) and SST data as input, TLs at

the receiver’s depth as output.

B. Yoyo Control

At the site of the FAF05 experiment, the depth of the ther-

mocline often leads to the main SVP uncertainties. Therefore,

the adaptive sampling strategy that aims to capture the vertical

variability of the thermocline due to fronts, eddies, internal

waves, etc. can often capture the dominant SVP feature and

its uncertainties and so also minimize the TL uncertainty. To

track the vertical variability of the thermocline, a thermocline-

oriented AUV path control was researched, by which an AUV

can be given guidance about the depths of the thermocline

and move around these depths. Since the thermocline is the

region where the sound speed changes rapidly with depth, a

simple criterion determining the relative position between the

AUV and the thermocline is to compare the absolute value of

local vertical gradient of sound speed
∣

∣

∂c

∂z

∣

∣ with a threshold.

By doing so, the AUV can estimate whether it is above, inside

of or below the thermocline.
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Fig. 6. Illustration of the acoustic configuration (source: red star. Target TL
depth: blue dashed line) and of the thermocline-oriented AUV yoyo track.

It is assumed that at the beginning of the mission, the AUV

stays on the surface. While it is diving, its CTD collects data

every second. The
∣

∣

∂c

∂z

∣

∣ is estimated via Linear Least Squares

Fitting method based on every p CTD data. If at the beginning,
∣

∣

∂c

∂z

∣

∣ ≤ γ, where γ is the threshold, and then
∣

∣

∂c

∂z

∣

∣ becomes

greater than γ, and after that
∣

∣

∂c

∂z

∣

∣ becomes lower than γ again,

then the criterion will indicate that the AUV is now below the

thermocline and it will turn around upwards. Thereafter while

the AUV is going up, if
∣

∣

∂c

∂z

∣

∣ becomes greater than and then

lower than γ again, the criterion indicates that the AUV is now

above the thermocline and it will turn around downwards. An

upper bound and a lower bound on the depth range of the

AUV were also set up. Should the AUV have crossed the

thermocline or not, once the lower bound or upper bound is

reached, the AUV has to turn around to avoid reaching too

deep depths or getting off the surface. This path control will

lead the AUV to carry an up-and-down yoyo track (Fig. 6).

C. Optimization

In the AUV yoyo control, there are two parameters to be

optimized: p and γ. p is the number of sampling points used

to compute
∣

∣

∂c

∂z

∣

∣; γ is the threshold used to compare with
∣

∣

∂c

∂z

∣

∣. The γ defines how rapidly the sound speed changes with

depth can be linked to the thermocline. The control parameters

optimization problem can be formulated as:

min f (p, γ) (1)

s.t. γ ≥ 0, p is a positive integer, (2)

where the objective function

f (p, γ) = E
{

tr
(

var (TLOA)
)}

. (3)

TLOA is the stochastic-deterministic TL vector associated

with the posterior ocean estimation and its error field, after

applying the yoyo control in the principal ocean prediction and

assimilating the in-situ measurements via objective analysis.



var (TLOA) is the covariance matrix of TLOA. Since the

CTD noise may influence the estimation of the thermocline

depth and thus change the AUV track, an expectation over all

possible CTD noise is needed.

This optimization problem is essentially a mixed-integer

non-linear programming problem. The objective function is

only defined on integer-valued p, so it can’t be solved by

relaxation. Additional real-time challenges arise because of

the time required to compute the objective function via Monte

Carlo simulations prior to resolving this optimization problem.

In FAF05, a small size enumeration method was imple-

mented. By repeated runs of AREASF, the objective function

was computed every day for 7 potential yoyo control parameter

pairs listed below, which were carefully selected. The one

associated with the minimum objective function value was

selected as the optimal yoyo control parameter set for the next

day.

1 2 3 4 5 6 7

p 20 20 20 30 30 30 30
γ 0.1 0.5 1 0.1 0.5 1 1000

D. Daily Protocol

The real-time AREA simulations were implemented from

7/17/2005 to 7/26/2005. Each day, the ocean-acoustic en-

vironmental fields were predicted by HOPS/ESSE with the

associated uncertainties. The data used for initialization and

assimilation were satellite sea surface temperature snapshots

and historical profiles of ocean temperature and salinity. To

estimate ocean uncertainties, various scenarios were computed

daily as a function of different initial condition estimates, as-

similation procedures, modeling domains, numerical/physical

model parameters and time of day. The various sound speed

field predictions (in time and 3D space) were interpolated

along several characteristic vertical sections and used for

acoustic predictions with RAM. The ensemble of sound-speed

sections and the corresponding ensemble of acoustic trans-

mission loss fields were utilized as input to an optimization

algorithm that estimated the optimal parameters of the AUV

sampling pattern’s for the next day(s). These optimal sampling

parameter estimates and the corresponding ocean and acoustic

predictions were emailed daily to the FAF05-MIT team at-

sea aboard the R/V Leonardo. They provided the basis for

coupled physical-acoustical adaptive sampling by the MIT

AUVs, aiming for optimal surveillance in the region.

The daily operational optimization procedure was:

1) The HOPS/ESSE generates 1-to-2 days environmental

forecasts of fields and uncertainties.

2) Couple these forecasts with AREASF.

3) Implement the AUV yoyo control with the ith parame-

ters pair in AREASF. Output objective function value.

4) Repeat step 3 for m times (m=10). Calculate the average

objective function value.

5) If i < 7, then i = i + 1 and go to step 3; otherwise,

find the parameters pair associated with the minimum

average objective function value and plot AUV track.

E. Some Results

A typical daily result is shown in Fig. 7, which corresponds

to forecasts for the morning of 7/23/2005. In this case, p =
30, γ = 1000 were the optimal parameters. Analysis on the

AUV yoyo control shows that when p becomes larger, the

thermocline-oriented criterion is be less sensitive to the CTD

noise; while γ becomes larger, the thermocline is estimated to

be weaker by the criterion. If γ is very large such as γ = 1000,

no thermocline is found and the AUV simply goes up-and-

down between the upper and lower bound. In contrast, if p

and γ become smaller, the criterion is more sensitive and thus

the AUV’s track is a more complex zigzag.

In FAF05, the horizontal oceanic correlation length was set

to Lr = 1 or 2 km and the vertical correlation length to Lz =
5m. Since the Lr can be almost as long as the total horizontal

span of experiment area, a few sampling points per depth can

dramatically reduce the SVP uncertainties at that depth for

a relatively large range. If the AUV can explore the deepest

depths, it can very likely capture most of the SVP and TL

uncertainties. On many days, the choice of bounding values

for p and γ, i.e. p = 30, γ = 1000, which make the AUV

go up-and-down between the upper and low bound gave the

optimal results. However, if the experiment area had spanned

an area larger than Lr, the choice p = 30, γ = 1000 will not

often be the optimal solution.

Fig. 8 shows some interesting phenomena on 7/21. For

both the morning and afternoon forecasts, p = 30, γ = 0.1
was the optimal parameter pair. In this case, the AUV didn’t

go from upper to lower bound, but focused on tracking the

vertical variabilities of the sound velocity. In the morning,

the optimized AUV captured the main thermocline along its

path, back and forth. However, in the afternoon, the AUV

automatically aimed to capture the so-called ‘afternoon effect’

on the surface thermocline, i.e. the warming of the upper ocean

layers due to the strong day-light sun, when it came back.

IV. CONCLUSION

The principle of AREA and its preliminary computational

structure were described in this paper. New algorithms and

software for initiating the coupling of the HOPS/ESSE with

AREASF were initiated. An adaptive sampling strategy and

the associated optimization algorithm and software were de-

veloped. In FAF05, those algorithms and softwares were tested

in real-time for 2 weeks. Physical-acoustical adaptive sam-

pling recommendations based on 1-to-2 days environmental

forecasts of fields and uncertainties were issued everyday.

The associated analysis of the results were explained and the

outcomes were encouraging.
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