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Abstract

Increasingly, more importance is placed on the uncertainty information of data being displayed. This paper focuses

on techniques for visualizing 3D scalar data sets with corresponding uncertainty information at each point which is also

represented as a scalar value. In Djurcilov (in: D. Ebert, J.M. Favre, R. Peikert (Eds.), Data Visualization 2001,

Springer, Berlin, 2001), we presented two general methods (inline DVR approach and a post-processing approach) for

carrying out this task. The first method involves incorporating the uncertainty information directly into the volume

rendering equation. The second method involves post-processing information of volume rendered images to composite

uncertainty information.

Here, we provide further improvements to those techniques primarily by showing the depth cues for the uncertainty,

and also better transfer function selections. r 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Uncertainty representations; Ocean modeling; Volume rendering; Transfer function; Speckle; Noise; Textures

1. Introduction

In all real world data sets, and even in most

simulation data sets, uncertainty is a fact of life. For

example, uncertainty can be found in computational

fluid dynamics (CFD) data sets, bioinformatics data

sets, environmental science or geo-spatial data sets,

intelligence and military data sets, commerce databases,

etc. Uncertainty arise due to a variety of factors such as

problems in the data collection and processing, inability

to completely model the phenomenon under investiga-

tion, lack of precision in instrumentation and/or

calculation, etc. The perceived uncertainty is further

complicated by the fact that is seldom due to a single

source, but rather due to a combination of factors that

may either amplify or reduce the perceived uncertainty.

That is, the manner in which uncertainty is propagated

may itself be subject to uncertainty.

Visualization is a powerful tool for aiding the under-

standing of data sets. These visualization techniques

must be cognizant of the presence of uncertainty in the

data sets in order to be believable. One of the first task in

visualizing data with uncertainty is to categorize the

different definitions, types, and representations of

uncertainty.

Many definitions of uncertainty have been proposed

[2–7]. Uncertainty is a multi-faceted characterization

about data, whether from measurements and observa-

tions of some phenomenon, and predictions made from

them. It may include several concepts including error,

accuracy, precision, validity, quality, variability, noise,

completeness, confidence, and reliability.

Depending on which uncertainty concept is being

used, there may also be more than one way to represent

and quantify the amount or nature of uncertainty. The

manner in which uncertainty is represented is important

for the task of visualizing data with uncertainty.

Without over-simplifying and trivializing the problem,

a large class of uncertainty can be numerically repre-

sented by scalars, pairs or n-tuples, and as distributions

[8].

Scalars are often used to quantify uncertainty

concepts such as confidence levels, errors or differences,

likelihood, etc. Pairs of scalar values on the other hand

are more typical of intervals or ranges, but could also be
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value pairs such as mean and standard deviation. The

next generalization is for n-tuples, for example, to

represent the likelihood for a set of states or values of

membership functions, as well as more elaborate

parametric statistical descriptions. In situations where

sufficient sampling is available, the distribution itself

may represent the uncertainty in the data.

These uncertainty representations call for different

visualization techniques. Obviously, scalars are the

simplest to tackle, with difficulty in both visualization

and feature extraction tasks increasing in direct propor-

tion to the richness in which uncertainty is represented.

Visualizing uncertainty is a recognized challenge in

the visualization community, and recently, more visua-

lization research have focused on this area. For example,

Cedilnik and Rheingans [9] looked at different ways of

imparting uncertainty over 2D fields using procedural

methods to distort overlaid grid lines, Interrante [10]

discussed how one might use natural textures over a map

to show uncertainty, Djurcilov and Pang [11] looked at

different ways of incorporating uncertainty information

in contour lines and isosurfaces of sparse data sets,

Wittenbrink et al. [12] included uncertainty in direction

and uncertainty in magnitude into glyph designs, and

Pang et al. [13] described some general methods for

incorporating uncertainty into visual displays.

The approaches above involve some modification of

how the data is represented, and through this modifica-

tion, impart the uncertainty information. The modifica-

tions are typically applied to geometric primitives and

attributes such as grid lines, contour lines, glyphs, and

textures. Unfortunately, volume rendering does not

produce any intermediate geometric primitives that

could be modified in order to represent uncertainty.

In this paper, we deal primarily with the question of

how to visualize 3D volumetric scalar uncertainty using

direct volume rendering. In [1], we first described two

general means of achieving this task. Here, we propose

further improvements to these areas.

In the following sections, we give a description of the

data set used in this paper, a review of the two general

methods presented in [1], followed by an analysis and

ideas for future improvements.

2. Data with uncertainty

2.1. Ocean data

We use the same data set used in [1] to demonstrate

the ideas in this paper. The data is based on the Middle

Atlantic Bight (MAB) shelfbreak, off the east coast of

the United States (Fig. 1), where it marks a dramatic

change, not only in water depth, but also in the

dynamics of the waters that lie on either side. The shelf

is about 100 km wide, extending from Cape Hatteras to

Canada.

Data collected from the MAB during July and August

of 1996 showed that the dominant dynamical feature in

the MAB consists of a temperature and salinity front,

separating the shelf and slope water masses. These

physical variables, i.e. temperature, salinity, etc. are

dynamically evolved by the numerical ocean model of

the Harvard Ocean Prediction System [14]. Atmospheric

fluxes based on buoy data are imposed in surface.

2.2. Uncertainty forecasts

To dynamically evolve the physical uncertainty, an

error subspace statistical estimation (ESSE) scheme [15]

is employed. This scheme is based on a reduction of the

evolving error statistics to their dominant components

or subspace. Presently, statistics are measured based on

a variance or least-squares criterion [16]: a subspace is

then characterized by the dominant eigen decomposition

of a covariance matrix. The objective is then to

dynamically forecast the principal component decom-

position of the uncertainty of the physical fields.

In the present MAB case, these error principal

components are initialized combining data and

Fig. 1. Satellite sea surface temperature distribution for July

21, 1996 (AVHRR image provided by Mike Caruso). The

100 m isobath, close to the shelfbreak front, is drawn in white.

The white square is the region of intensive data collection. Note

three primary water masses: the Gulf of Maine water southeast

of Cape Cod (on July 21, surface T from 81C to 141C), shelf

water usually north of the 100 m isobath (surface T from 161C

to 201C), and slope water usually south of the 100 m isobath

(surface T from 211C to 251C).
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dynamics. To account for nonlinearities, they are

forecast by an ensemble of Monte-Carlo forecasts.

In the visualizations presented here, only temperature

and salinity uncertainty forecasts are used. For simpli-

city, we use the variance of the Monte-Carlo ensemble as

a scalar representation for uncertainty at each point.

However, it is important to note that since physical

fields are coupled, it is essential to include the effects of

velocity errors in order to obtain accurate estimates of

temperature and salinity errors.

3. Inline approach

The classic volume rendering equation is

Cða; bÞ ¼
Z b

a

EðsÞe�
R s

a
dðxÞ dx

ds; ð1Þ

where Cða; bÞ is the color intensity contributions through
a line from position a to b: E is the color emission

function and d is the differential opacity function. It

calculates an integrated color for each pixel by summing

up opacity weighted emittance values. One form or

another of this equation is used to generate volume

rendered images of 3D scalar fields. Because the data set

generally consists of a single scalar field, the same scalar

field is used to determine both the opacity and the

material emittance values. This is typically achieved by

transfer functions that map the scalar data value to both

opacity and color.

Because our uncertainty (actually variability) is also

represented as a 3D scalar field, we have the opportunity

to map field values to color and uncertainty values to

opacity, and experiment with different transfer func-

tions. We refer to this approach as ‘‘inline’’ in the sense

that the uncertainty information is directly incorporated

into the rendering process. In this section, we describe

two inline experiments.

3.1. 1D transfer functions

In this experiment, we mapped salinity values to E

and uncertainty values to d: We then use a 1D transfer

function to separately map the salinity and uncertainty

values. We experimented with a transfer function that

maps increasing uncertainty to increasing opacity, and

composited the resulting images to a black background

with white grid lines.

As a point of reference, Fig. 2 is a traditional volume

rendering of the mean salinity field. Fig. 3 shows a

volume rendering of the uncertainty in the salinity field

where uncertainty values > 0:2 are mapped to high

opacity values. High uncertainty regions show up as a

bluish cloud. We note that most of the uncertainty lies

along the salinity front on top of the shelfbreak and near

the northeast corner of the data set.

One can map uncertainty to opacity in a number of

ways. In this experiment, we mapped higher uncertainty

values to higher opacity values. Field values such as

salinity and temperature are mapped to color. A black

background with white grid lines is used to accentuate

the effects such that more transparent regions have

lower uncertainty. Note that regions with low uncer-

tainty do not automatically produce more transparent

regions because of potential occlusion from different

viewing angles.

One can also experiment with an increasing uncer-

tainty to decreasing opacity mapping so that the regions

of uncertainty show up as transparent regions rather

than opaque regions (Fig. 6). The results so far are very

encouraging. Looking at the uncertainty of the tem-

perature field alone confirms that, indeed, the regions of

high uncertainty in the right columns of Figs. 4 and 5 are

in the greenish opaque regions. In addition, there is

Fig. 2. Mean salinity.

Fig. 3. Uncertainty X0:2:
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Fig. 4. (A) Shows the transfer function for both the field values and uncertainty values. All values have been normalized to lie between

0 and 1. The increasing white curve maps higher uncertainty to higher opacity. (B) Volume rendering of the mean salinity field mapped

to color and uncertainty in salinity mapped to opacity. (C) Volume rendering of the mean temperature field mapped to color and

uncertainty in temperature mapped to opacity.

Fig. 5. High contrast transfer function. Similar to Fig. 4 but with a transfer function that produces more contrast between high and

low uncertainty regions.

Fig. 6. (A) Shows the transfer function for both the field values and uncertainty values. All values have been normalized to lie between

0 and 1. The decreasing white curve maps higher uncertainty to lower opacity. (B) Volume rendering of the mean salinity field mapped

to color and uncertainty in salinity mapped to opacity. (C) Volume rendering of the mean temperature field mapped to color and

uncertainty in temperature mapped to opacity.
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some ambiguity in interpreting the image. The ambi-

guities can be attributed to a number of factors including

varying thickness of the volume from a given viewpoint,

the depth within a volume of a region of high uncertainty,

interaction of the color and opacity compositing.

3.2. 2D transfer functions

In this experiment, we use 2D transfer functions

similar to those used by Kindlmann and Durkin [17].

However, instead of looking at the first and second

derivatives of the data, we look at data versus

uncertainty values. Fig. 7 is a 2D scatter plot showing

the distribution of mean salinity versus uncertainty in

salinity. We use this 2D scatter plot as the basis for our

transfer function, mapping different regions of the

scatter plot to different color values. Figs. 8 and 9 show

different 2D transfer functions and the corresponding

volume rendered images of the combined salinity and

uncertainty fields.

Unlike 1D transfer functions where we mapped

uncertainty to opacity, 2D transfer functions primarily

use color to show regions with varying uncertainty. For

example, the middle images of Figs. 8 and 9 use a

constant opacity regardless of uncertainty. However,

opacity can be used to also emphasize or de-emphasize

uncertainty. For example, the right images of Figs. 8 and

9 use a step function that maps low uncertainty data to

an almost transparent value, and high uncertainty data

(> 0:2; as in Fig. 3) to high opacity. The result is a

volume rendering of the salinity data, but with obvious

structural feature showing the location of the high

uncertainty regions.

4. Post-process approach

Due to the use of transparency, images produced by

volume rendering algorithms have a soft and smooth

quality to them. This aspect lends itself into explorations

of using discontinuity as a means of representing

uncertainty. We use discontinuity in several ways by

introducing speckles, noise and texture as options used

in post-processing of an image to highlight areas where

data is uncertain.

4.1. Inserting speckles/holes

This task is accomplished in several steps:

(1) Produce a standard volume rendering of the field

values (Fig. 10).

Fig. 7. Scatter plot of mean salinity (Y -axis) versus uncertainty

(X -axis). Mean salinity values increase towards the bottom,

while uncertainty values increases towards the right.

Fig. 8. Left: The scatter plot in Fig. 7 is used as a 2D transfer function. Good (low uncertainty) data with low values are mapped to

green, while good data with high values are mapped to red. Rest are mapped to gray. Middle: Volume rendering using the 2D transfer

function on the left. Unimportant regions are rendered with grey colors. A constant uncertainty to opacity mapping is used. Right:

Good (low uncertainty) data have low opacity while bad data have a high opacity.
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(2) Produce a gray scale volume rendering of un-

certainty values from the same viewpoint (Fig. 11).

Note that converting a color volume rendering of

the uncertainty field to gray scale will not produce

the same desired effect.

(3) Dither the gray scale image into a black and white

bitmap image with inverted values (Fig. 12). The

purpose of this step is to create a rendering in

which each black dot will be a representation of

uncertainty in that neighborhood. The dithering

itself makes sure that the dots are evenly distrib-

uted and visually pleasing.

(4) Generate a composite image by multiplying the

color volume rendering with the bitmap image

pixel by pixel (Fig. 13).

Fig. 13 shows the outcome of the operationsFan

image in which the volume rendering of the primary

data value is modified to show pixel-sized holes in areas

of high uncertainty. The user is still able to grasp the

overall structure of the primary parameter throughout

the data set, and yet has an understanding of where the

data is unreliable.

One possible pitfall of this method is that at a distance

the small holes may blend into the image and cause the

volume rendering to appear darker in regions with high

error. This may be undesirable and can be ameliorated

by increasing the size of the holes, thus making it more

apparent that the disturbance is not a coloring artifact,

but indeed an intended feature of the image. We show

one such example in Fig. 14 where the holes are

increased four-fold in order to emphasize the uncer-

Fig. 9. Left: The 2D transfer function identifies 5 regions instead of just 2. Blue and cyan regions have higher uncertainty. Middle and

right images use the same uncertainty to opacity mapping as the corresponding images in Fig. 8.

Fig. 10. Color volume rendering of mean salinity. Fig. 11. Gray-scale volume rendering of uncertainty.

Fig. 12. Inverted bitmap uncertainty rendering.
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tainty. This image was produced by first sub-sampling

the volume rendering of the uncertainty values (output

of step 2) by a factor of four, then proceeding with the

dithering, after which the image is brought back to its

original size and multiplied as in step 4. The end result is

an image where the holes are four pixels large.

We would like to point out that in these examples we

have used black to color the holes and match the

background color. It would be up to the user to decide

the choice of color for the speckles, but we recommend

black as an intuitive choice for representing holes.

4.2. Depth-shaded holes

In this section we explore the use of depth-shading as

an additional clue to the location of uncertainty in the

dataset. Keeping the concept of holes representing the

magnitude of the uncertainty in the region, we use

shading as a means of conveying the location of the

error in terms of distance from the viewing plane. For

this effect we turn to the popular depth-cueing method

known in 3D graphics as the fog-effect, by which objects

which are further away in the scene fade into less

dramatic colors.

We build on the previous concept by adding a

depth-calculation step. Once a pixelated image in 12 is

created, we reference the original data again in order to

retrieve depth information. Following the direct

volume rendering algorithm, for each pixel representing

a hole, we cast a ray into the volume and seek out the

cell along the ray which has the highest uncertainty

value. The depth of that cell is then translated into a

shade of gray according to the following formula in

RGB space:

RGBval ¼ RGBlightgray 1�
d

l

� �
;

where l is the overall depth of the volume and d is the

distance of that cell from the edge of the volume.

Fig. 15 shows results of depth-based shading opera-

tion, while Fig. 16 is the final image in which the points

closer to the viewer are shown in darker colors and those

further away fading away into light gray.

A prerequisite for the use of this approach is that gray

is not part of the original color transfer function. Also, it

is important that the uncertainty field is not character-

ized by sharp spikes in data values. If this is the case it

might be necessary to use a neighborhood average in

order to distinguish the cell which will be the represen-

tative chosen for the shading calculation.

Fig. 13. DVR composited with bitmap.

Fig. 14. Changing the size of the speckles.

Fig. 15. Depth-based rendering.
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4.3. Adding noise

Noise seems like a natural option for conveying

uncertaintyFour minds easily accept the idea that a

picture containing noise is less reliable than a clear one.

Noise also has the convenient property that it can be

introduced into an image without worry for side-effects,

as its random nature eliminates any possibility for

artifacts appearing as regular patterns.

We apply this idea to the volume rendered images by

selectively disturbing the images in the area if high

uncertainty. The output (Fig. 17) shows how rando-

mized color dots can be added to an area, thus causing it

to appear uneven and fuzzy.

The pseudocode for the algorithm is quite simple.

For each color pixel of the original volume rendering:

(1) Find the matching pixel in the uncertainty render-

ing.

(2) Rescale the uncertainty gray shade value to

between 0::P:P is the probability that the original

color will be changed.

(3) Replace the original color pixel with a random

color with probability P:

This algorithm ensures that the areas with high

uncertainty (lighter gray shades) on the uncertainty

image are translated into regions with higher numbers of

disturbed pixels in the original rendering. The use of

probability allows a portion of the pixels to retain their

original color even in areas of high uncertainty, so that

the overall color context is not lost. In our experiments,

we found that setting P to 20 produced a desirable

effect. This will preserve at least 80% of the original

color pixel values, and yet introduce enough noise in

high uncertainty areas. An alternative scheme is to use

the uncertainty value as an amount (rather than as a

probability) to change the original color value in color

space.

4.4. Adding texture

In line with the previous option, we explore the use of

textures in the post-processing context. We use 2D

grainy, gray scale textures with varying intensity or

contrast levels to represent different levels of uncer-

tainty. Low contrast represents low uncertainty, while

high contrast represents high uncertainty. We then use

the texture brightness (value in HSV space) to alter the

brightness of the original color image (value in HSV

space). Naturally, in areas of very low or no uncertainty

we do not apply any modifications.

The algorithm for adding textures to represent

uncertainty in a volume rendered image is also carried

out on a per-pixel basis. The difference from the previous

method is that the different levels of texture contrast have

to be created first. Each texture is tiled so that they are at

least as large as the volume rendered image.

For each color pixel of the original volume rendering:

(1) Find the matching pixel in the uncertainty render-

ing.

(2) Bin the uncertainty value to one of five contrast

levels, i:
(3) Find the corresponding pixel from texture map i:
(4) Adjust the brightness of the original pixel to that

obtained from the texture map.

The example in Fig. 18 uses a sandstone texture to

alter the original volume rendering. Figs. 19 and 20

show the sandstone texture at 2 of the 5 different

uncertainty levels. In our experiments, we found that

Fig. 16. Depth-shaded holes. Fig. 17. Noise is added to areas of high uncertainty.
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5 levels of contrast to represent different uncertainty

levels was sufficient. Beyond 5 levels, it was difficult to

distinguish additional levels of uncertainty.

5. Discussion and conclusion

We have described some experiments on how one

might include volumetric uncertainty information in a

volume rendering. They can be classified as either inline

or post-process, even though this is somewhat of an

artificial divide. The post-processing approach can be

modified and made an inline method by making the

pixel-level calculations for both variables in parallel. Yet

we decided to keep this distinction in order to clarify our

algorithms better.

One can also use a pre-process approach where the

two volumes are first combined to produce a single

scalar volume. Different strategies may be employed to

combine the two volumes. For example, one can

perform a point-wise multiplication of the two fields

and volume render the result. In this case, low values

would indicate either low data value, low uncertainty

value, or both. Converse is true for high values. We did

not experiment with this approach because it would be

difficult to distinguish between data and uncertainty

values in the resulting images.

One can argue which is the better approach: inline or

post-process. The inline method has the advantage that

the uncertainty information is integrated into the

volume rendering calculation, taking into account their

3D positions within the volume, and hence the results

are more faithful. On the other hand, more research is

needed to design transfer functions that will unambigu-

ously show the uncertainty information together with

the data values. Also, the inline method overloads the

elements of DVR processing, such as color and

transparency, and may lead to misinterpretation of the

final image. The post-process approach has the advan-

tage of producing images that intuitively show the

locations and extent of uncertainty in the volume

renderings. However, it is not as faithful to the data in

the sense that the uncertainty presentations are really

just image embellishments on the volume rendering of

the data. For example, if there is a region of high

uncertainty embedded within the volume, the post-

process approach does not accurately capture the

interaction of this region of uncertainty with the

corresponding embedded data values.

In this paper, we applied different ideas of incorpor-

ating uncertainty into volume rendering using the data

set from ocean modeling. Of course, the techniques are

applicable to data sets from other domains as well. Some

of the questions seeking further research include: how

many levels of uncertainty are necessary and can one

perceive? What transfer function best combines data and

uncertainty, and perhaps their derivatives? And if one

has a probability distribution function at each voxel,

such as the Monte-Carlo ensemble, how does one go

about visualizing such a data set? Finally, while volume

rendering does not produce any geometry to be

rendered, it does produce derived data in its rendering

pipeline. These derived data, when combined with the

uncertainty information, can also be used to depict

uncertainty information [18]. This approach should also

be investigated further.
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