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Introduction

Data assimilation is a novel, versatile methodology
for estimating oceanic variables. The estimation of
a quantity of interest via data assimilation involves
the combination of observational data with the un-
derlying dynamical principles governing the system
under observation. The melding of data and dynam-
ics is a powerful methodology which makes possible
efficient, accurate, and realistic estimations other-
wise not feasible. It is providing rapid advances in
important aspects of both basic ocean science and
applied marine technology and operations.

The following sections introduce concepts, de-
scribe purposes, present applications to regional dy-
namics and forecasting, overview formalism and
methods, and provide a selected range of examples.

Field and Parameter Estimation

Ocean science, and marine technology and opera-
tions, require a knowledge of the distribution and
evolution in space and time of the properties of the
sea. The functions of space and time, or state vari-
ables, which characterize the state of the sea under
observation are classically designated as fields. The
determination of state variables poses problems of
state estimation or field estimation in three or four
dimensions. The fundamental problem of ocean
science may be simply stated as follows: given the
state of the ocean at one time, what is the state of
the ocean at a later time? It is the dynamics, i.e., the
basic laws and principles of oceanic physics, biol-
ogy, and chemistry, that evolve the state variables
forward in time. Thus, predicting the present and
future state of oceanic variables for practical ap-
plications is intimately linked to fundamental ocean
science.

A dynamical model to approximate nature con-
sists of a set of coupled nonlinear prognostic field
equations for each state variable of interest. The
fundamental properties of the system appear in the
field equations as parameters (e.g., viscosities, dif-
fusivities, representations of body forces, rates of
earth rotation, grazing, mortality, etc.). The initial
and boundary conditions necessary for integration
of the equations may also be regarded as para-
meters. In principle the parameters of the system
can be estimated directly from measurements. In
practice, directly measuring the parameters of the
interdisciplinary  (physical-acoustical-optical-biolo-
gical-chemical-sedimentological) ocean system is dif-
ficult because of sampling, technical, and resource
requirements. However, data assimilation provides
a powerful methodology for parameter estimation
via the melding of data and dynamics.

The physical state variables are usually the velo-
city components, pressure, density, temperature, and
salinity. Examples of biological and chemical state
variables are concentration fields of nutrients,
plankton, dissolved and particulate matter, etc. Im-
portant complexities are associated with the vast
range of phenomena, the multitude of concurrent
and interactive scales in space and time, and the
very large number of possible biological state vari-
ables. This complexity has two essential conse-
quences. First, state variable definitions relevant to
phenomena and scales of interest need to be de-
veloped from the basic definitions. Second, approx-
imate dynamics which govern the evolution of the
scale-restricted state variables, and their interaction
with other scales, must be developed from the basic
dynamical model equations. A familiar example
consists of decomposing the basic ocean fields into
slower and faster time scales, and shorter and longer
space scales, and averaging over the faster and shor-
ter scales. The resulting equations can be adapted to
govern synoptic/mesoscale resolution state variables
over a large-scale oceanic domain, with faster and
smaller scale phenomena represented as para-
meterized fluctuation correlations (Reynolds stres-
ses). There is, of course, a great variety of other
scale-restricted state variables and approximate dy-
namics of vital interest in ocean science. We refer to
scale-restricted state variables and approximate dy-
namics simply as ‘state variables’ and ‘dynamics’.

The use of dynamics is of fundamental import-
ance for efficient and accurate field and parameter
estimation. Today and in the foreseeable future,
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2 MODELS/Data Assimilation (Physical/Interdisciplinary)

data acquisition in the ocean is sufficiently difficult
and costly as to make field and parameter estimates
by direct measurements, on a substantial and sus-
tained basis, essentially prohibitive. However, data
acquisition for field and parameter estimates via
data assimilation is feasible, but substantial re-
sources must be applied to obtain adequate observa-
tions.

The general process of state and parameter es-
timation is schematized in Figure 1. Measurement
models link the state variables of the dynamical
model to the sensor data. Dynamics interpolates and
extrapolates the data. Dynamical linkages among
state variables and parameters allow all of them to
be estimated from measurements of some of them,
i.e., those more accessible to existing techniques and
prevailing conditions. Error estimation and error
models play a crucial role. The data and dynamics
are melded with weights inversely related to their
relative errors. The final estimates should agree with
the observations and measurements within data er-
ror bounds and should satisfy the dynamical model
within model error bounds. Thus the melded esti-
mate does not degrade the reliable information of
the observational data, but rather enhances that
information content. There are many important
feedbacks in the generally nonlinear data assimila-
tion system or ocean observing and prediction
system (OOPS) schematized in Figure 1, which illus-
trates the system concept and two feedbacks. Predic-
tion provides the opportunity for efficient sampling
adapted to real time structures, events, and errors.
Data collected for assimilation also used for ongo-
ing verification can identify model deficiencies and
lead to model improvements.

A data assimilation system consists of three com-
ponents: a set of observations, a dynamical model,
and a data assimilation scheme or melding scheme.
Modern interdisciplinary OOPS generally have com-
patible nested grids for both models and sampling.
An efficient mix of platforms and sensors is selected
for specific purposes.

Central to the concept of data assimilation is the
concept of errors, error estimation, and error
modeling. The observations have errors arising from
various sources: e.g., instrumental noise, environ-
mental noise, sampling, and the interpretation of
sensor measurements. All oceanic dynamical models
are imperfect, with errors arising from the approx-
imate explicit and parameterized dynamics and the
discretization of continuum dynamics into a com-
putational model.

A rigorous quantitative establishment of the accu-
racy of the melded field and parameter estimates, or
verification, is highly desirable but may be difficult

to achieve because of the quantity and quality of the
data required. Such verification involves all subcom-
ponents: the dynamical model, the observational
network, the associated error models, and the meld-
ing scheme. The concept of validation is the estab-
lishment of the general adequacy of the system and
its components to deal with the phenomena of inter-
est. As simple examples, a barotropic model should
not be used to describe baroclinic phenomena, and
data from an instrument whose threshold is higher
than the accuracy of the required measurement are
not suitable. In reality, validation issues can be
much more subtle. Calibration involves the tuning
of system parameters to the phenomena and re-
gional characteristics of interest. Final verification
requires dedicated experiments with oversampling.

At this point it is useful to classify types of esti-
mates with respect to the time interval of the data
input to the estimate for time ¢. If only past and
present data are utilized, the estimation is a filtering
process. After the entire time series of data is avail-
able for (0,T), the estimate for any time 0 <t < T'is
best based on the whole data set and the estimation
is a smoothing process.

Goals and Purposes

The specific uses of data assimilation depend upon
the relative quality of data sets and models, and the
desired purposes of the field and parameter esti-
mates. These uses include the control of errors for
state estimates, the estimation of parameters, the
elucidation of real ocean dynamical processes, the
design of experimental networks, and ocean
monitoring and prediction.

First consider ocean prediction for scientific and
practical purposes, which is the analog of numerical
weather prediction. In the best case scenario, the
dynamical model correctly represents both the
internal dynamical processes and the responses to
external forcings. Also, the observational network
provides initialization data of desired accuracy. The
phenomenon of loss of predictability nonetheless
inhibits accurate forecasts beyond the predictability
limit for the region and system. This limit for the
global atmosphere is 1-2 weeks and for the mid-
ocean eddy field of the north-west Atlantic on the
order of weeks to months. The phenomenon is asso-
ciated with the nonlinear scale transfer and growth
of initial errors. The early forecasts will accurately
track the state of the real ocean, but longer fore-
casts, although representing plausible and realistic
synoptical dynamical events, will not agree with
contemporary nature. However, this predictability
error can be controlled by the continual assimilation
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MODELS/Data Asssimilation (Physical/Interdisciplinary) 3

of data, and this is a major use of data assimilation
today.

Next, consider the case of a field estimate with
adequate data but a somewhat deficient dynamical
model. Assimilated data can compensate for the
imperfect physics so as to provide estimates in
agreement with nature. This is possible if dynamical
model errors are treated adequately. For instance, if
a barotropic model is considered perfect, and baro-
clinic real ocean data are assimilated, the field esti-
mate will remain barotropic. Even though melded
estimates with deficient models can be useful, it is of
course important to attempt to correct the model
dynamics.

Parameter estimation via data assimilation is
making an increasingly significant impact on ocean
science via the determination of both internal and
external parameter values. Regional field estimates
can be substantially improved by boundary condi-
tion estimation. Biological modelers have been ham-
pered by the inability to directly measure in situ
rates, e.g., grazing and mortality. Thus, for interdis-
ciplinary studies, internal parameter estimation is
particularly promising. For example, measurements
of concentration fields of plankton together with
a realistic interdisciplinary model can be used for
in situ rate estimation.

Data-driven simulations can provide four-dimen-
sional time series of dynamically adjusted fields
which are realistic. These fields, regarded as (numer-
ical) experimental data, can thus serve as high
resolution and complete data sets for dynamical
studies. Balance of terms in dynamical equations
and overall budgets can be carried out to determine
fluxes and rates for energy, vorticity, productivity,
grazing, carbon flux, etc. Case studies can be carried
out, and statistics and general processes can be
inferred for simulations of sufficient duration. Of
particular importance are observation system simu-
lation experiments (OSSEs), which first entered met-
eorology almost 30 years ago. By subsampling the
simulated ‘true’ ocean, future experimental net-
works and monitoring arrays can be designed to
provide efficient field estimates of requisite accu-
racies. Data assimilation and OSSEs develop the
concepts of data, theory, and their relationship be-
yond those of the classical scientific methodology.
For a period of almost 300 years, scientific meth-
odology was powerfully established on the basis of
two essential elements: experiments/observations
and theory/models. Today, due to powerful com-
puters, science is based on three fundamental con-
cepts: experiment, theory, and simulation. Since our
best field and parameter estimates today are based
on data assimilation, our very perception and con-

ceptions of nature and reality require philosophical
development.

It is apparent from the above discussion that mar-
ine operations and ocean management must depend
on data assimilation methods. Data-driven simula-
tions should be coupled to multipurpose manage-
ment models for risk assessments and for the design
of operational procedures. Regional multiscale
ocean prediction and monitoring systems, designed
by OSSEs, are being established to provide ongoing
nowecasts and forecasts with predictability error con-
trolled by updating. Both simple and sophisticated
versions of such systems are possible and relevant.

Regional Forecasting and Dynamics

In this section, the issues and concepts introduced in
the preceding sections are illustrated in the context
of real-time predictions carried out in 1996 for
NATO naval operations in the Strait of Sicily and
for interdisciplinary multiscale research in 1998 in
Massachusetts Bay. The Harvard Ocean Prediction
System (HOPS) with its primitive equation dynam-
ical model was utilized in both cases. In the Strait of
Sicily (Figure 2), the observational network with
platforms consisting of satellites, ships, aircraft, and
Lagrangian drifters, was managed by the NATO
SACLANT Undersea Research Centre. In Mass-
achusetts Bay (Figure 3), the observational network
with platforms consisting of ships, satellites, and
autonomous underwater vehicles, was provided by
the Littoral Ocean Observing and Prediction System
(LOOPS) project within the US National Ocean
Partnership Program. The data assimilation methods
used in both cases were the HOPS OI and ESSE
schemes (see below). In both cases the purposes of
data assimilation were to provide a predictive capa-
bility, to control loss of predictability, and to infer
basic underlying dynamical processes.

The dominant regional variabilities determined
from these exercises and studies are schematized in
Figures 2A and 3A. The dominant near surface flow
in the strait is the Atlantic Ionian Stream, AIS (black
and dotted white lines) and dominant variabilities
include the location and shapes of the Adventure
Bank Vortex (ABV), Maltese Channel Crest (MCCQC),
and the Ionian Shelfbreak Vortex (ISV), with shifts
and deformations 0 (10-100km) occurring in
0 (3-5 days). The variability of the Massachusetts
Bay circulation is more dramatic. The buoyancy
flow-through current which enters the Bay in the
north from the Gulf of Maine may have one, two or
three branches, and together with associated vor-
tices (which may or may not be present), can reverse
directions within the bay. Storm events shift the

VVC—NP—MD—Scan—Padma—RWOS 0404

0017

0018

0019



0020

0021
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pattern of the features which persist inertially be-
tween storms. Actual real-time forecast fields are
depicted in Figures 2B and 3B.

The existence of forecasts allows adaptive samp-
ling, i.e., sampling efficiently related to existing
structures and events. Adaptive sampling can be
determined subjectively by experience or objectively
by a quantitative metric. The sampling pattern asso-
ciated with the temperature objective analysis error
map (Figure 2C) reflects the flight pattern of an
aircraft dropping subsurface temperature probes
(AXBTs). The data were assimilated into a forecast
in support of naval operations centered near the ISV
(Figure 2A). The sampling extends to the surround-
ing meanders of the AIS, which will affect the cur-
rent’s thermal front in the operational region. The
multiscale sampling of the Massachusetts Bay ex-
periment is exemplified in Figure 3C, D by ship
tracks adapted to the interactive submesoscales,
mesoscales, bayscales, and large-scales. Note that
the tracks of Figure 3D are superimposed on a fore-
cast of the total temperature forecast error standard
deviation. The shorter track is objectively located
around an error maximum. The longer track is for
reduction of velocity error (not shown). Eigen-
decomposition of the variability fields helps dynam-
ical interpretations. The first temperature variability
eigenmodes for the strait and the bay are depicted in
Figures 2D and 3E respectively. The former is asso-
ciated with the dominant ABV variability and the
latter with the location, direction, and strength of
the inflow to the bay of the buoyancy current from
the Gulf of Maine.

A qualitative skill score for the prediction of
dominant ABV, MCC, and ISV variabilities in-
dicated correct predictions 75% of the time. It was
obtained by validation against new data for assimi-
lation and independent satellite sea surface temper-
ature data as shown in Figure 2E for the forecast of
Figure 2B. An important kinematical and dynamical
interconnection between the eastern and western
Mediterranean is the deep flow of salty Levantine
Intermediate Water (LIW), which was not directly
measured but was inferred from data assimilative
simulations (Figure 2F). The scientific focus of the
Massachusetts Bay experiment was plankton patchi-
ness, in particular the spatial variability of zooplan-
kton and its relationship to physical and
phytoplankton variabilities (Figure 3B, G). The
smallest scale measurements in the bay were turbu-
lence measurements from an AUV (Figure 3F),
which were also used to research the assimilation in
real time of subgridscale data in the primitive equa-
tion model.

Concepts and Methods

By definition (see Introduction), data assimilation in
ocean sciences is an estimation problem for the
ocean state, model parameters, or both. The
schemes for solving this problem often relate to
estimation or control theories (see below), but some
approaches like direct minimization, stochastic, and
hybrid methods (see below) can be used in both
frameworks. Several schemes are theoretically opti-
mal, while others are approximate or suboptimal.
Although optimal schemes are preferred, suboptimal
methods are generally the ones in operational use
today. Most schemes are related in some fashion to
least-squares criteria which have had great success.
Other criteria, such as the maximum likelihood,
minimax criterion or associated variations might be
more appropriate when data are very noisy and
sparse, and when probability density functions are
multimodal (see below). Parameters are assumed
next to be included in the vector of state variables.
For more detailed discussions, the reader is referred
to the article published by Robinson et al. in 1998
(see Further Reading section).

Estimation Theory

Estimation theory computes the state of a system by
combining all available reliable knowledge of the
system including measurements and theoretical
models. The a priori hypotheses and melding or
estimation criterion are crucial since they determine
the influence of dynamics and data onto the state
estimate.

At the heart of estimation theory is the Kalman
filter, derived in 1960. It is the sequential, unbiased,
minimum error variance estimate based upon a lin-
ear combination of all past measurements and dy-
namics. Its two steps are: (1) the forecast of the state
vector and of its error covariance, and (2) the data-
forecast melding and error update, which include
the linear combination of the dynamical forecast
with the difference between the data and model
predicted values for those data (i.e., data residuals).

The Kalman smoother uses the data available
before and after the time of interest. The smoothing
is often carried out by propagating the future data
information backward in time, correcting an initial
Kalman filter estimate using the error covariances
and adjoint dynamical transition matrices, which is
usually demanding on computational resources.

In a large part because of the linear hypothesis
and costs of these two optimal approaches, a series
of approximate or suboptimal schemes have been
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employed for ocean applications. They are now de-
scribed, from simple to complex.

Direct insertion consists of replacing forecast
values at all data points by the observed data which
are assumed to be exact. The blending estimate is
a scalar linear combination, with user-assigned
weights, of the forecast and data values at all data
points. The nudging or Newtonian relaxation
scheme ‘relaxes’ the dynamical model towards the
observations. The coefficients in the relaxation can
vary in time but, to avoid disruptions, cannot be too
large. They should be related to dynamical scales
and a priori estimates of model and data errors.

In optimal interpolation (OI), the matrix weight-
ing the data residuals, or gain matrix, is empirically
assigned. If the assigned OI gain is diagonal, OI and
nudging schemes can be equivalent. However, the
OI gain is usually not diagonal, but a function of
empirical correlation and error matrices.

The method of successive corrections performs
multiple but simplified linear combination of the
data and forecast. Conditions for convergence to the
Kalman filter have been derived, but in practice only
a few iterations are usually performed. Frequently,
the scales or processes of interest are corrected one
after the other, e.g., large-scale first, then mesoscale.

Control Theory

All control theory or variational approaches per-
form a global time-space adjustment of the model
solution to all observations and thus solve
a smoothing problem. The goal is to minimize a cost
function penalizing misfits between the data and
ocean fields, with the constraints of the model equa-
tions and their parameters. The misfits are inter-
preted as part of the unknown controls of the ocean
system. Similar to estimation theory, control theory
results depend on a priori assumptions for the con-
trol weights. The dynamical model can be either
considered as a strong or weak constraint. Strong
constraints correspond to the choice of infinite
weights for the model equations; the only free vari-
ables are the initial conditions, boundary conditions
and/or model parameters. A rational choice for the
cost function is important. A logical selection cor-
responds to dynamical model (data) weights inverse-
ly proportional to a priori specified model (data)
errors.

In an ‘adjoint method’, the dynamical model is
a strong constraint. One penalty in the cost function
weights the uncertainties in the initial conditions,
boundary conditions, and parameters with their re-
spective a priori error covariances. The other is the
sum over time of data-model misfits, weighted by

measurement error covariances. A classical ap-
proach to solve this constrained optimization is to
use Lagrange multipliers. This yields Euler-Lagrange
equations, one of which is the so-called adjoint
equation. An iterative algorithm for solving these
equations has often been termed the adjoint method.
It consists of integrating the forward and adjoint
equations successively. Minimization of the gradient
of the cost function at the end of each iteration
leads to new initial, boundary, and parameter
values. Another iteration can then be started, and so
on, until the gradient is small enough.

Expanding classic inverse problems to the weak
constraint fit of both data and dynamics leads to
generalized inverse problems. The cost function is
usually as in adjoint methods, except that a third
term now consist of dynamical model uncertainties
weighted by a priori model error covariances. In the
Euler-Lagrange equations, the dynamical model un-
certainties thus couple the state evolution with the
adjoint evolution. The representer method is an al-
gorithm for solving such problems.

Direct Minimization Methods

Such methods directly minimize cost functions sim-
ilar to those of generalized inverse problems, but
often without using the Euler-Lagrange equations.
Descent methods iteratively determine directions lo-
cally “descending’ along the cost function surface. At
each iteration, a minimization is performed along
the current direction and a new direction is found.
Classic methods to do so are the steepest descent,
conjugate-gradient, Newton, and quasi-Newton
methods. A drawback for descent methods is that
they are initialization sensitive. For sufficiently non-
linear cost functions, they are restarted to avoid
local minima.

Simulated annealing schemes are based on an
analogy to the way slowly cooling solids arrange
themselves into a perfect crystal, with a minimum
global energy. To simulate this relatively random
process, a sequence of states is generated such that
new states with lower energy (lower cost) are al-
ways accepted, while new states with higher energy
(higher cost) are accepted with a certain probability.

Genetic algorithms are based upon searches gen-
erated in analogy to the genetic evolution of natural
organisms. They evolve a population of solutions
mimicking genetic transformations such that the
likelihood of producing better data-fitted genera-
tions increases. Genetic algorithms allow nonlocal
searches, but convergence to the global minimum is
not assured due to the lack of theoretical base.
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6 MODELS/Data Assimilation (Physical/Interdisciplinary)

Stochastic and Hybrid Methods

Stochastic methods are based on nonlinear stochas-
tic dynamical models and stochastic optimal
control. Instead of using brute force like descent
algorithms, they try to solve the conditional prob-
ability density equation associated with ocean mod-
els. Minimum error variance, maximum likelihood
or minimax estimates can then be determined from
this probability density. No assumptions are re-
quired, but for large systems, parallel machines are
usually employed to carry out Monte Carlo en-
semble calculations.

Hybrid methods are combinations of previously
discussed schemes, for both state and parameter
estimation; for example, error subspace statistical
estimation (ESSE) schemes. The main assumption of
such schemes is that the error space in most ocean
applications can be efficiently reduced to its essen-
tial components. Smoothing problems based on Ka-
Iman ideas, but with nonlinear stochastic models
and using Monte Carlo calculations, can then be
solved. Combinations of variational and direct min-
imization methods are other examples of hybrid
schemes.

Examples

This section presents a series of recent results that
serve as a small but representative sample of the
wide range of research carried out as data assimila-
tion was established in physical oceanography.

General Circulation from Inverse Methods

The central idea is to combine the equations govern-
ing the oceanic motion and relevant oceanic tracers
with all available noisy observations, so as to esti-
mate the large-scale steady-state total velocities and
related internal properties and their respective er-
rors.. The work of Martel and Wunsch in 1993
exemplifies the problem. The three-dimensional cir-
culation of the North Atlantic (Figure 4A) was
studied for the period 1980-85. The observations
available consisted of objective analyses of temper-
ature, salinity, oxygen, and nutrients data; clima-
tological ocean-atmosphere fluxes of heat, water
vapor, and momentum; climatological river runoffs;
and current meter and float records. These data
were obtained with various sensors and platforms,
on various resolutions, as illustrated by Figure 4B.
A set of steady-state equations were assumed to
hold a priori, up to small unknown noise terms. The
tracers were advected and diffused. The advection

velocities ~ were  assumed in  geostrophic
thermal-wind balance, except in the top layer where
Ekman transport was added. Hydrostatic balance
and mass continuity were assumed. The problem is
inverse because the tracers and thermal wind vel-
ocities are known; the unknowns are the fields of
reference level velocities, vertical velocity, and tracer
mixing coefficients.

Discrete finite-difference equations were integ-
rated over a set of nested grids of increasing resolu-
tions (Figure 4A). The flows and fluxes at the
boundaries of these ocean subdivisions were com-
puted from the data (at 1° resolution). The resulting
discrete system contained < 29 000 unknowns and
9000 equations. It was solved using a tapered (nor-
malized) least-squares method with a sparse conju-
gate-gradient algorithm. The estimates of the total
flow field and of its standard error are plotted on
Figure 1C and D. The Gulf Stream, several recir-
culation cells and the Labrador current are present.
In 1993, such a rigorous large-scale, dense, and
eclectic inversion was an important achievement.

Global versus Local Data Assimilation via Nudging

Malanotte-Rizzoli and Young in 1994 investigated
the effectiveness of various data sets to correct and
control errors. They used two data sets of different
types and resolutions in time and space in the Gulf
Stream region, at mesoscale resolution and for peri-
ods of the order of 3 months, over a large-scale
domain referred to as global scale.

One objective was to assimilate data of high qual-
ity, but collected at localized mooring arrays, and to
investigate the effectiveness of such data in improv-
ing the realistic attributes of the simulated ocean
fields. If successful, such estimates allow for dynam-
ical and process studies. The global data consisted
of biweekly fields of sea surface dynamic height, and
of temperature and salinity in three dimensions,
over the entire region, as provided by the Optimal
Thermal Interpolation Scheme (OTIS) of the US
Navy Fleet Numerical Oceanography Center. The
local data were daily current velocities from two
mooring arrays. The dynamical model consisted of
primitive equations (Rutgers), with a suboptimal
nudging scheme for the assimilation.

The global and local data were first assimilated
alone, and then together. The ‘gentle’ assimilation
of the spatially dense global OTIS data was neces-
sary for the model to remain on track during the
3-month period. The ‘strong’ assimilation of the
daily but local SYNOP data was required to achieve
local dynamical accuracies, especially for the vel-
ocities.
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Small-scale Convection and Data Assimilation

In 1994, Miller et al. addressed the use of varia-
tional or control theory approaches (see earlier) to
assimilate data into dynamical models with highly
nonlinear convection. Because of limited data and
computer requirements, most practical ocean mod-
els cannot resolve motions that result from static
instabilities of the water column; these motions and
effects are therefore parameterized. A common
parameterization is the so-called convective adjust-
ment. This consists of assigning infinite mixing coef-
ficients (e.g., heat and salt conductivities) to the
water at a given level that has higher density than
the water just below. This is carried out by setting
the densities of the two parcels to a unique value in
such a way that heat and mass are conserved. In
a numerical model, at every time step, water points
are checked and all statistically unstable profiles
replaced by stable ones.

The main issues of using such convective schemes
with variational data assimilation are that: (1) the
dynamics is no longer governed by smooth equa-
tions, which often prevents the simple definition of
adjoint equations; (2) the optimal ocean fields may
evolve through ‘nonphysical’ states of static instabil-
ity; and (3), the optimization is nonlinear, even if
the dynamics are linear. Ideally, the optimal fields
should be statically stable. This introduces a set of
inequality constraints to satisfy. An idealized prob-
lem was studied so as to provide guidance for realis-
tic situations. A simple variational formulation had
several minima and at times produced evolutions
with unphysical behavior. Modifications that led to
more meaningful solutions and suggestions for
algorithms for realistic models were discussed. One
option is the ‘weak’ static stability constraint: a pen-
alty that ensures approximate statistic stability is
added to the cost function with a very small error or
large weight. In that case, statistic stability can be
violated, but in a limited fashion. Another option is
the ‘strong constraint’ form of static stability which
can be enforced via Lagrange multipliers. Convex
programming methods which explicitly account for
inequality constraints could also be utilized.

Global Ocean Tides Estimated from Generalized
Inverse Methods

In 1994, Egbert et al. estimated global ocean tides
using a generalized inverse scheme with the intent of
removing these tides from the data collected by the
TOPEX/POSEIDON satellite and thus allowing the
study of subtidal ocean dynamics.

A scheme for the inversion of the satellite cross-
over data for multiple tidal constituents was applied
to 38 cycles of the data, leading to global estimates
of the four principal tidal constituents (M,, S,,
K; and O;) at about 1° resolution. The dynamical
model was the linearized, barotropic shallow water
equations, corrected for the effects of ocean self-
attraction and tidal loading, the state variables be-
ing the horizontal velocity and sea surface height
fields. The data sets were linked to measurement
model and comprehensive error models were de-
rived.

The generalized inverse tidal problem was solved
by the representer method. Representer functions
are related to Green’s functions: they link a given
datum to all values of the state variables over the
period considered. These representers were com-
puted by solving the Euler-Lagrange equations in
parallel. The size of the problem was reduced by
winnowing out the full set of 6350 crossovers to an
evenly spaced subset of 986 points (see Figure 5A).
The resulting representer matrix was then reduced
by singular value decomposition.

The amplitude and phase estimates for the
M, constituent are shown in Figure 5B. The
M, fields are qualitatively similar to previous results
and amphidromes are consistent. However, when
compared with previous tidal model estimates, the
inversion result is noticeably smoother and in better
agreement with altimetric and ground truth data.

Conclusions

The melding of data and dynamics is a powerful,
novel, and versatile methodology for parameter and
field estimation. Data assimilation must be anticip-
ated both to accelerate research progress in com-
plex, modern multiscale interdisciplinary ocean
science, and to enable marine technology and mari-
time operations that would otherwise not be pos-

sible.

See also

Convection: Open Ocean Convection. Elemental Dis-
tribution: Overview. Food Webs: Patch Dynamics.
Models: Biogeochemical Data Assimilation; Bi-
ogeochemical Models; Coastal Circulation Models; In-
verse Methods; Numerical Models (The Forward
Problem); Regional Models (Including Shelf Sea Mod-
els). Ocean Circulation: General Processes. Ocean
Currents: Atlantic Western Boundary — Florida Cur-
rent/Gulf Stream/Labrador Current; Mediterranean Sea
(Overview of Basin and Current Systems). Ocean Pro-
cess Tracers: Inverse Modelling of Tracers (Nutrients).
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8 MODELS/Data Assimilation (Physical/Interdisciplinary)

Satellite Remote Sensing: Future Developments (the
next decade); Observation Synthesis. Sensors: CTD;
Expendable Sensors. Turbulence and Diffusion:
Mesoscale Eddies. Upper Ocean Structure: Ocean
Fronts and Eddies; Time and Space Variability. Waves:
Tides.
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a0404fig0001 Figure 1 Data assimilation system schematic.
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a0404fig0002 Figure 2 Strait of Sicily. (A) Schematic of circulation features and dominant variabilities. (B) Forecast of the surface temperature
for 25 August 1996, overlaid with surface velocity vectors (scale arrow is 0.25ms ™). (C) Objectively analyzed surface standard
error deviation associated with the aircraft sampling on 18 September 1996 (normalized from 0 to 1). (D) Surface values of the first
nondimensional temperature variability mode. (E) Satellite SST distributions for 25 August 1996. (F) Main LIW pathways, features,
and mixing on deep potential density anomaly iso-surface (o4 = 29.05), over bottom topography.
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a0404figooo3 Figure 3 Massachusetts Bay. (A) Schematic of circulation features and dominant variabilities. (B) Chlorophyll-a (ugm~3) at 10m,
with overlying velocity vectors. (C) Sampling pattern for the bay scales and external large-scales in the Gulf of Maine. (D) Forecast
of the standard error deviation for the surface temperature (from 0°C in dark blue to a maximum of 0.7°C in red), with tracks for
adaptive sampling. (E) 20 m values of the temperature component of the first nondimensional physical variability mode. (F) AUV
turbulence data (NUWC). (G) Vertical section of zooplankton (uM m~2) along the entrance of Massachusetts Bay.
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a0404figooo4 Figure 4 (A) Domain of the model used in the inverse computations. Weak dynamical constraints were imposed on the flow and
tracers, and integrated over a set of nested grids, from the full domain (heavy solid lines) to an ensemble of successive divisions
(e.g., dashed lines) reaching at the smallest scales the size of the boxes labeled by numbers. (B) Locations of the stations where
the hydrographic and chemical component of the data set were collected (model grid superposed). (C) Inverse estimate of the
absolute sea surface topography in centimeters (contour interval is 10cm). (D) Inverse estimate of the standard error deviation (in
cm) of the sea surface topography shown in (C). (Reproduced with permission from Martel and Wunsch, 1993.).
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a0404fig0005 Figure 5 (A) TOPEX/POSEIDON crossover points and subsampling. Representers were calculated only for the windowed subset
of 986 satellite crossover points (large filled dots), but differences from all 6355 crossover points (small dots and large filled dots)

were included in the data-misfit penalty. (B) Generalized inverse estimate of the amplitude and phase of the M, tidal constituent.

The phase isolines are plotted in white over color-filled contours of the amplitude. Contour interval is 10 cm for amplitude and 30° for

phase. (Reproduced with permission from Egbert et al. 1994.).
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