
Rapid Real-Time Interdisciplinary Ocean
Forecasting Using Adaptive Sampling and
Adaptive Modeling and Legacy Codes:
Component Encapsulation Using XML

Constantinos Evangelinos1, Robert Chang1, Pierre F.J. Lermusiaux2, and
Nicholas M. Patrikalakis1

1 Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
2 Harvard University, Cambridge, MA 02138, U.S.A.

Abstract. We present the high level architecture of a real-time inter-
disciplinary ocean forecasting system that employs adaptive elements in
both modeling and sampling. We also discuss an important issue that
arises in creating an integrated, web-accessible framework for such a
system out of existing stand-alone components: transparent support for
handling legacy binaries. Such binaries, that are most common in scien-
tific applications, expect a standard input stream, maybe some command
line options, a set of input files and generate a set of output files as well
as standard output and error streams. Legacy applications of this form
are encapsulated using XML. We present a method that uses XML doc-
uments to describe the parameters for executing a binary.

1 Introduction

Effective ocean forecasting is essential for efficient human operations in the
ocean. Application areas include among others fisheries management, pollution
control and maritime and naval operations. The advances in physical oceanog-
raphy numerical models and data assimilation (DA) schemes of the last decade
have given rise to complete Ocean Prediction systems [1] that are used in oper-
ational settings. Recent developments in the availability of high-performance
computing and networking infrastructure now make it possible to construct
distributed computing systems that address computationally intensive prob-
lems in interdisciplinary oceanographic research, coupling physical and biological
oceanography with ocean acoustics [2].

Poseidon [3] is such a distributed computing based project, that brings to-
gether advanced modeling, observation tools, and field and parameter estimation
methods for oceanographic research. The project has three main goals:

1. To enable efficient interdisciplinary ocean forecasting, by coupling physi-
cal and biological oceanography with ocean acoustics in an operational dis-
tributed computing framework.

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2660, pp. 375–384, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

376 C. Evangelinos et al.

2. To introduce adaptive modeling and adaptive sampling of the ocean in the
forecasting system, thereby creating a dynamic data-driven forecast.

3. To allow seamless access, analysis, and visualization of experimental and
simulated forecast data, through a science-friendly Web interface that hides
the complexity of the underlying distributed heterogeneous software and
hardware resources. The aim is to allow the ocean scientist/forecaster to
concentrate on the task at hand as opposed to the micro-management of the
underlying forecasting mechanisms.

The Poseidon project employs the Harvard Ocean Prediction System (HOPS)
[4] as its underlying advanced interdisciplinary forecast system. HOPS is a
portable and generic system for interdisciplinary nowcasting and forecasting
through simulations of the ocean. It provides a framework for obtaining, pro-
cessing, and assimilating data in a dynamic forecast model capable of generating
forecasts with 3D fields and error estimates. HOPS has been successfully applied
to several diverse coastal and shelf regions [1], and analyses have indicated that
accurate real-time operational forecast capabilities were achieved. HOPS’ ad-
vanced DA scheme (Error Subspace Statistical Estimation - ESSE [5]) that is
quasi-optimal and at the same time provides an estimate of the dominant un-
certainty modes in the forecast is central to the project’s stated goal of adaptive
modeling and sampling.

The architecture of Poseidon is being designed based on HOPS, but keeping
in mind the future HOPS developments and also very importantly allowing the
replacement of certain elements of HOPS by other components, e.g. employing
different physical oceanographic models for adaptive physical modeling. More-
over, the ESSE methodology, that is computing and data intensive, is also an
important driving force behind the architectural design decisions.

One of the first practical problems we faced in the process of designing Po-
seidon had to deal with the fact that HOPS (as well as other ocean modeling
systems, eg. for physical oceanography ROMS [6] or for ocean acoustics OASES
[7]) are, like most scientific applications, legacy1 programs. They consist of bi-
naries that expect a standard input (stdin) stream, maybe some command line
options, a set of input files and generate a set of output files as well as stan-
dard output (stdout) and error (stderr) streams. In such a setup, any workflows
are either executed interactively (a very common approach) or (after all poten-
tial problems are handled) hardcoded in scripts. While such an approach, which
dates from the days when graphical user interfaces (GUIs) were not available, is
efficient for a skilled user, it is cumbersome and error-prone and entails a steep
learning curve. Moreover it is not suited for remote use over the Web.

After examining various ways of dealing with this issue in the context of
our distributed computing architecture and keeping in mind that the Poseidon
system should allow for future handling of non-HOPS components, we opted to
keep working with Fortran binaries and to encapsulate their functionality and
1 The term “legacy” should not be misconstrued to imply aged code in this context:
these are all codes with an active development community and recent enhancements.
For various reasons they are still being written in Fortran 77.

Rapid Real-Time Interdisciplinary Ocean Forecasting 377

requirements using the eXtensible Markup Language (XML) [8]. Thereby we are
creating a computer-readable manual for the binaries, allowing us to generate
a GUI, check for parameter correctness and drive execution in a transparent
manner.

In what follows, Section 2 briefly describes ESSE-based forecast workflows,
and adaptive sampling and modeling in the Poseidon system. Section 3 discusses
the restrictions legacy software impose on our system design and some proposed
solutions. Section 4 describes the XML schema [9] designed for constraining
XML descriptions of encapsulated binaries. Section 5 presents some results from
our initial XML-based implementation. Section 6 concludes the paper.

2 Forecast Workflow and Adaptivity

The initial implementation of Poseidon is based on HOPS. Poseidon distributes
its forecasting and data assimilation components, and will include new HOPS
developments in adaptive modeling and adaptive sampling. The HOPS forecast-
ing software is distributed by separating/parallelizing its sequential modules. For
example, physical and biological time-stepping modules are run simultaneously
on different CPUs with data-exchanges between modules. In this section, the
focus is on the data assimilation and adaptivity components of HOPS.

Data assimilation (DA) provides estimates of natural fields which are better
than what can be obtained by using only observations or a dynamical model.
Data and models are usually combined in accord with their respective uncertain-
ties, by quantitative minimization of a cost function. These computations are
very expensive. The ESSE schemes provide an optimal reduction of the prob-
lem: only the dominant errors are minimized. For example, if a variance criterion
is used to combine data and dynamics, the “dominant errors” are then defined
by the dominant ordered eigendecomposition of a normalized form of the error
covariance matrix. Even with such optimal error reductions, ESSE still involves
massive throughput requirements. However, by design, it provides tremendous
opportunities for scalable parallelism within the Poseidon system.

The ESSE workflow is as follows: First, the interdisciplinary error subspace
is initialized based on an error decomposition on multiple scales (Fig. 1, far left
oval). These dominant initial errors are then evolved by an ensemble of per-
turbed nonlinear and stochastically-forced dynamical model integrations (Fig.
1, center left oval). As the size of the ensemble is increased, convergence cri-
teria are evaluated. Usually, converged ensemble sizes are O(100 − 1000). This
provides a significant opportunity for throughput parallelism. Individual model
integrations can also be parallel simulations (depending on the problem size
and interdisciplinary nature of the problem), further increasing the scope for
parallelism, while also stressing available computing and data resources.

Once error estimates have converged, adaptive sampling forecasts are issued
(Fig. 1, bottom left oval). For example, future sampling patterns of autonomous
underwater vehicles are computed so as to maximize the reduction of forecast
errors. As new data are made available, data-forecast misfits are computed and

378 C. Evangelinos et al.

Fig. 1. The ESSE schematic workflow, adapted from [10]

used to correct the predicted fields by minimum error variance estimation in
the interdisciplinary error subspace (Fig. 1, center right oval). Outputs are the
filtering field and error estimates. A posteriori data misfits are then calculated
and used for adaptation of the dominant errors and adaptation of model struc-
tures and parameters (Fig. 1, right oval). Ultimately, the smoothing via ESSE is
carried out (Fig. 1, top oval) to correct, based on future data, the past coupled
fields and uncertainties [10].

Automated objective adaptive modeling allows the optimal use of approxi-
mate models for rapidly evolving ocean dynamics. Presently, a model quantity
is said to be adaptive if its formulation, classically assumed constant, is made
variable as a function of data values. Both structural as well as parametric adap-
tation are possible. Physical adaptive modeling includes regime transition (e.g.,
well-mixed to stratified) and evolving turbulent mixing parameterizations. Bio-
geochemical adaptive modeling includes variations of biological assemblages with
time and space (e.g., variable zooplankton dynamics, summer to fall phytoplank-
ton populations, etc) and evolving biogeochemical rates and ratios. This is es-
pecially important because biogeochemical modeling is in its infancy and model
uncertainties are very large. The adaptive component also greatly facilitates
quantitative comparisons of competing biogeochemical models, thus ultimately
leading to better scientific understanding.

From a computational point of view, three basic cases are considered in the
Poseidon design: i) a single interdisciplinary model is run and adapted, ii) a
single physical model is coupled to a set of competing biological models whose
parameters are adapted, iii) competing interdisciplinary models are run and their
parameters are adapted. In all cases, the basis of the adaptation is the value of
the misfits between model estimates and data. When misfits are large, either
models are adapted or, in the later two cases, eliminated when too inadequate.

Rapid Real-Time Interdisciplinary Ocean Forecasting 379

Fig. 2. Approaches for adaptive biophysical modeling

Within ESSE, misfits are large when they become significant compared to their
expected values, the ESSE uncertainties.

In the first case (Fig. 2, left), specific model input files are continuously
checked by the model software as it is running. These input files are updated
when data-forecast misfits are significant. Model parameters and/or model struc-
tures are then modified accordingly. For example, the carbon-to-chlorophyll
ratio is modified or the number of state variables is increased (adding meso-
zooplankton). The later is a structural adaptation which is efficiently imple-
mented using a set of C function pointers, with little change to the legacy
software. Adaptive updates on the physics or biology sides do not have to be
concurrent. In the second case (Fig. 2, right), it is the forecasts of competing bio-
geochemical models which are compared based on their respective data-forecast
misfits. The parameter values are updated and the best biological functional
forms can then be selected. The third case is as the second except that several
physical as well as several biological models are run and compared. In both cases
ii) and iii), only the parameters of the competing model structures are adapted
(i.e. fitted) to the data. The best model structures correspond to the fitted model
which has the least significant misfits.

3 Legacy Codes

The software components used in Poseidon are legacy Fortran 77 codes (be it
HOPS or ocean acoustics codes). As such they do not fit well within a modern
distributed computing model: For example, there is no support for dynamic
memory allocation, remote procedure calls and component-based programming.
At worst, they require manual intervention to work with each other (conversion,
concatenation, file editing). At best, they have been designed to interoperate in
a prescribed workflow. The individual components of such a workflow are the

380 C. Evangelinos et al.

legacy binaries and the connections between them are files and/or streaming
input/output. This type of setup is common among scientific codes that have
evolved over many years.

There are two major options for dealing with this issue of legacy: Migration
and Encapsulation (wrapping). The cleanest approach is to migrate the code and
rewrite all applications in a modern language, employing object-oriented and
component technologies. Use of platform-agnostic programs (by transferring the
codes to Java for example) and Mobile Agents [11] for the distributed calculations
would be a radical form of such modernization. Such an option is obviously costly.
Moreover, it is error-prone as it is impractical to convert existing procedural
programs to object-oriented components [12].

The more traditional approach is to encapsulate legacy codes as modern
software components using wrappers. For example, CORBA [13] wrappers (for
clear standardization reasons) can be used. The code can also be wrapped in
C/C++ and then called from Java (in a more complicated Mobile Agent setting
for distributed computing) using JNI [14]. However this powerful encapsulation
approach involves breaking the Fortran code into separately callable components
that a main program can access.

While CORBA was not designed with high performance computations in
mind, there is recent activity in the area of software components for scientific
computation, centered mostly around the Common Component Architecture Fo-
rum (CCA) [15]. We chose not to follow this approach as it would still entail
significant changes to our software components; moreover it would have to force
their developers to migrate to a new paradigm to allow us to keep up with
enhancements and bug fixes to their codes. While this is possible (but not nec-
essarily practical) for in-house codes, it is not reasonable for third party codes
and impossible with programs that are provided in binary format.

Another approach compatible with stand-alone binaries involves wrapping at
the binary level, preparing the input files and arguments to the binary, executing
the program and capturing and interpreting the output. This can again be ac-
complished using CORBA or Mobile Agents (losing much of their advantages in
the process). It can also be done via a master application generating job scripts
for a Grid computing [16] environment.

This way working with legacy codes reduces to devising an extensible encap-
sulation of the software components (as binaries), that treats them as black boxes
with a set of inputs/outputs and a set of valid types and ranges of runtime pa-
rameters. The advent of XML [8] provides a standards-based way to accomplish
this. XML describes data through the use of custom tags thus eliminating the
need to conform to a specific programming structure and offering the possibility
to integrate legacy software with new technology.

Some related work has been done but none focused on wrapping legacy soft-
ware components at the binary level to allow users to modify their runtime
parameter values. Sneed [17] worked on techniques for encapsulating legacy
COBOL programs with an XML interface. This requires some modifications
of legacy software within an architecture so as to adapt the components for

Rapid Real-Time Interdisciplinary Ocean Forecasting 381

reading and writing XML interfaces. Walker et al [18,19] illustrate the software
architecture of a problem solving environment (PSE) used for the construction
of scientific applications from software components. Users visually construct do-
main-specific applications using a Java/CORBA-based PSE for scientific simu-
lations and computations. Each legacy component is encapsulated as a CORBA
object, with its interface and constraints defined in XML.

The main difference between our approach and approaches such as the above
is that we aim to encapsulate software components without having to adapt
them for XML. We are in fact generating software metadata (in XML format)
that describe completely how to control the legacy code’s runtime behavior.

4 XML Schema Design

The XML interface to the binaries should be self-contained and should not re-
quire modifications to the binaries. By providing a detailed XML description for
a binary, this binary is treated as a black-box. An application should then be able
to parse in the XML description, and from its contents, determine the specifics
on how to properly execute the binary with the appropriate input parameters.

Several key concerns have to be addressed and supported in the XML schema
[20]. One issue is that the resulting XML documents should provide as much
information to the user as possible, so that well informed decisions can be taken
while making changes to the runtime parameters. There should be a set of default
parameter values so that manual entry of all values for each execution is avoided,
especially since there can be hundreds of them.The XML descriptions conforming
to our schema design should also be capable of specifying input and output files
for the binary execution. Since runtime parameters should be checked for legality
after any user changes, the schema must support datatypes and constraints on
parameter values. This is to facilitate the execution of the binary and ensure
that all input parameters are acceptable. Each parameter value can be validated
against its constraints and datatype before proceeding.

Our schema design supports the description of the binary’s input and output
files, as well as the runtime input parameters that are read in from stdin. It
also handles command line arguments and other runtime parameter sources. It
consists of two layers: the top layer handles the basic information about the
binary, child layers include the runtime inputs. Most elements in the schema
have parameters for name and description. These parameters are very useful
for generating a GUI that provides sufficient information for the users. A more
detailed description of the schema with example XML descriptions of software
components will be presented in a forthcoming paper.

5 Initial Results

We initially tested our implementation with the Primitive Equation (PE) Model
binary in the HOPS system. The PE model is at the heart of the forecasting
system: it is the solver for the ocean temperature, salinity and velocity fields.

382 C. Evangelinos et al.

The PE Model binary has runtime parameters read in from stdin. A sample of
the runtime parameter data is provided in the stdin file pemodel.in. We wrote
a schema-conforming XML description based on the values and types of these
parameters.

After validating the XML description using the schemas, our application was
able to process the parameters for display by the GUI, as shown in Fig. 3. The
system presents the contents of the stdin file in an organized manner that is
easily understood. Instead of editing the input file directly, the user can update
parameter values in the GUI and have changes checked for validity (type, range)
before the system generates the new input file and execution script automatically.

A subset of the PE Model stdin file generated by our system is included in
Fig. 4. The entire PE Model input file consists of 39 cards, which are analogous
to the sets defined in our schema. Each card contains the group of variables
relating to a specific aspect of the PE Model binary. For instance, Card 10 deals
with the tidal mixing variables used during execution. The PE Model binary
ignores every other line that contains the textual description of the parameter
value(s) for each card. The last line beginning with “99” signifies the end of the
input file for the binary.

Fig. 3. Screen capture of GUI displaying runtime parameters

Rapid Real-Time Interdisciplinary Ocean Forecasting 383

*** CARD 1: Various Initialization Parameters
1 672 8919.00 92 48 1 10 0 0
*** CARD 10: Tidal Mixing
0.08 60.0 200.0 200.0 0.1
*** CARD 39: Input File Defining Tidal Regions
dev/null
99 END of input data

Fig. 4. Subset of stdin file generated automatically by our system

6 Conclusion and Future Research

Portions of the high level architecture for Poseidon, a distributed computing
system for Real-Time Interdisciplinary Ocean Forecasting employing adaptive
modeling and sampling were presented. This includes ESSE-based workflows
and adaptive modeling and sampling schemes used to enhance forecasting ca-
pabilities. Poseidon efficiently manages legacy codes by using an XML-based
method for the encapsulation of legacy binaries. The schema-validated XML de-
scriptions provide a machine (and human) readable standard for handling legacy
codes. By wrapping the binaries using XML, their input and output files and
stdin-provided runtime parameters are described. A prototype system was imple-
mented and shown to generate a graphical interface displaying user-prescribed
parameters. The GUI allows for user customization of parameters and validates
user changes. It produces input files and a script file for the execution of the
binaries.

Future research includes extending our approach to encompass build-time
information. To allow XML-descriptions of binaries from other systems, the list
of supported datatypes needs to be expanded. The full system will be integrated
within a Grid infrastructure using the Globus toolkit [21].

Acknowledgements. The authors would like to acknowledge the assistance
of Professors J.J. McCarthy, A.R. Robinson and H. Schmidt, Drs. P.J. Ha-
ley, S. Lalis and R. Tian and Mr. S.K. Geiger. This work was funded in part
from NSF/ITR (under grant EIA-0121263) and from DoC (NOAA via MIT Sea
Grant) (under grant NA86RG0074).

References

1. Robinson, A.: Forecasting and simulating coastal ocean processes and variabilities
with the Harvard Ocean Prediction System. In Mooers, C., ed.: Coastal Ocean
Prediction. AGU Coastal and Estuarine Studies Series. American Geophysical
Union (1999) 77–100

2. Patrikalakis, N.M., Abrams, S.L., Bellingham, J.G., Cho, W., Mihanetzis, K.P.,
Robinson, A.R., Schmidt, H., Wariyapola, P.C.H.: The digital ocean. In: Proceed-
ings of Computer Graphics International, GCI ’2000, Geneva, Switzerland, IEEE
Computer Society Press (2000) 45–53 Los Alamitos, CA: IEEE, 2000.

384 C. Evangelinos et al.

3. Patrikalakis, N.: (Poseidon: A Distributed Information System for Ocean Pro-
cesses) http://czms.mit.edu/poseidon/.

4. Robinson, A.: (Harvard Ocean Prediction System (HOPS))
http://oceans.deas.harvard.edu/HOPS/HOPS.html.

5. Lermusiaux, P., Robinson, A.: Data assimilation via Error Subspace Statistical
Estimation. Part I: Theory and schemes. Month. Weather Rev. 127 (1999) 1385–
1407

6. Haidvogel, D., Arango, H., Hedstrom, K., Malanotte-Rizzoli, A.B.P., Shchepetkin,
A.: Model evaluation experiments in the North Atlantic basin: Simulations in
nonlinear terrain-following coordinates. Dyn. Atmos. Oceans 32 (2000) 239–281

7. Schmidt, H., Tango, G.: Efficient global matrix approach to the computation of
synthetic seismograms. Geophys. J. R. Astr. Soc. 84 (1986)

8. : (eXtensible Markup Language) http://www.w3.org/XML.
9. Roy, J., Ramanujan, A.: XML schema language: Taking XML to the next level.
IT Professional 3 (2001) 37–40

10. Lermusiaux, P., Robinson, A., Haley, P., Leslie, W.: Advanced interdisciplinary
data assimilation: Filtering and smoothing via Error Subspace Statistical Estima-
tion. In: The OCEANS 2002 MTS/IEEE, Holland Publications (2002) 795–802

11. Houstis, C., Lalis, S., Christophides, V., Plexousakis, D., Vavalis, E., Pitikakis,
M., Kritikos, K., Smardas, A., Gikas, C.: A service infrastructure for e-Science:
the case of the ARION system. In: 14th Intern. Conf. on Advanced Information
Systems Engineering (CAiSE 2002). Number 2512 in Lecture Notes in Computer
Science, Toronto, Canada, Springer (2002) 175–187 E-Services and the Semantic
Web workshop (WES2002).

12. Terekhov, A., Verhoef, C.: The realities of language conversions. IEEE Software
(2000) 111–124

13. : (Common Object Request Broker Architecture) http://www.corba.org.
14. : (Java Native Interface) http://java.sun.com/j2se/1.4.1/docs/guide/jni.
15. : (Common Component Architecture Forum) http://www.cca-forum.org.
16. Foster, I., Kesselman, C., eds.: The Grid: Blueprint for a New Computing Infras-

tructure. Morgan Kaufmann (1999)
17. Sneed, H.M.: Wrapping legacy COBOL programs behind an XML-interface. In:

Proceedings of the Eighth Working Conference on Reverse Engineering. (2001)
189–197

18. Walker, D.W., Li, M., Rana, O.F.: An XML-based component model for wrapping
legacy codes as Java/CORBA components. In: Proc. of the Fourth Intern. Conf.
on High Performance Computing in the Asia-Pacific Region, Beijing, China, IEEE
Computer Society Press (2000) 507–512

19. Walker, D.W., Li, M., Rana, O.F., Shields, M.S., Huang, Y.: The software archi-
tecture of a distributed problem-solving environment. Concurrency: Practice and
Experience 12 (2000) 1455–1480

20. : (XML Schema Specification) http://www.w3.org/XML/Schema.
21. : (The Globus Project) http://www.globus.org.

	1 Introduction
	2 Forecast Workflow and Adaptivity
	3 Legacy Codes
	4 XML Schema Design
	5 Initial Results
	6 Conclusion and Future Research
	References

