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ABSTRACT

The effects of a priori parameters on the error subspace estimation and mapping methodology introduced by
P. F. J. Lermusiaux et al. is investigated. The approach is three-dimensional, multivariate, and multiscale. The
sensitivities of the subspace and a posteriori fields to the size of the subspace, scales considered, and nonlinearities
in the dynamical adjustments are studied. Applications focus on the mesoscale to subbasin-scale physics in the
northwestern Levantine Sea during 10 February–15 March and 19 March–16 April 1995. Forecasts generated
from various analyzed fields are compared to in situ and satellite data. The sensitivities to size show that the
truncation to a subspace is efficient. The use of criteria to determine adequate sizes is emphasized and a back-
of-the-envelope rule is outlined. The sensitivities to scales confirm that, for a given region, smaller scales usually
require larger subspaces because of spectral redness. However, synoptic conditions are also shown to strongly
influence the ordering of scales. The sensitivities to the dynamical adjustment reveal that nonlinearities can
modify the variability decomposition, especially the dominant eigenvectors, and that changes are largest for the
features and regions with high shears. Based on the estimated variability variance fields, eigenvalue spectra,
multivariate eigenvectors and (cross)-covariance functions, dominant dynamical balances and the spatial distri-
bution of hydrographic and velocity characteristic scales are obtained for primary regional features. In particular,
the Ierapetra Eddy is found to be close to gradient-wind balance and coastal-trapped waves are anticipated to
occur along the northern escarpment of the basin.

1. Introduction

In mapping geophysical fields and their uncertainties,
it is important to assess the sensitivity to parameters.
The present work carries out such studies for the a priori
error subspace estimation and mapping methodology in-
troduced in (Lermusiaux et al. 2000, henceforth
LAL00). With this three-dimensional, multivariate, and
multiscale approach (appendix A), the a priori error sub-
space, that is, the dominant components of the a priori
missing variability or probability density functions of
the state to be mapped, are constructed in two parts.
The observed portions of the subspace are specified
based on measurements and multiscale statistical mod-
els. The nonobserved portions are then built by dynam-
ical adjustments to the observed portions. Once this a
priori error subspace is computed, the datasets of interest
can be mapped into gridded fields and error properties
by Bayesian estimation in the subspace. Presently, error
statistics are assumed to be described by covariance
matrices and the mapping (analysis) reduces to a min-
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imum error variance estimation problem. The subspace
is then determined by the dominant eigendecomposition
of the a priori error covariance.

Two main objectives are to investigate (i) the sensi-
tivity of the state and error estimates to the properties
of the subspace (e.g., size, dynamics, adjustment) and
(ii) the sensitivity of the subspace itself to its size and
to the data and dynamics utilized in its construction.
The types of questions considered include: How many,
and why so many, eigenvectors should be employed to
represent most of a covariance matrix or to carry out a
mapping? How sensitive is the subspace to the param-
eters of the model employed in its dynamical adjust-
ment? By how much should such subspaces be dynam-
ically adjusted? What is the performance of forecasts
generated from these analyses? Results obtained from
different a priori parameters are compared among each
other and also to those of the univariate horizontal (2D)
scheme of the Harvard Ocean Prediction System
(HOPS; Lozano et al. 1996; Robinson 1996). Since this
benchmark is multiscale, the present 3D mapping of
fields and error covariances is referred to in short as the
‘‘multivariate 3D’’ scheme. Ultimately, forecasts gen-
erated from the various analyses are compared to in situ
and satellite data, using root-mean-square differences
and correlation coefficients for measures of skill. The
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FIG. 1. For case 4 (see section 4), 27 Mar analysis (nowcast) of
the potential density su at 105 m, overlaid with the horizontal velocity
vectors at 5 m (vectors are plotted only if the analyzed \u\ is larger
than 6 cm s21). Numbers identify the location of the main upper-
thermocline features: Asia Minor Current (1), Mid-Mediterranean Jet
(2), Rhodes Gyre (3), West Cyprus Gyre (4), Ierapetra Eddy (5), a
lobe of the Mersa Matruh Gyre (6), and main anticyclone in the Mersa
Matruh-Shikmona Gyre complex (7). Several water masses of the
Levantine are clearly visible. For the geography and bathymetry, see
Fig. 8a of LAL00; for cartoons of the circulation, see Fig. 2 of Rob-
inson and Golnaraghi (1993).

third objective is to extract dynamical knowledge from
the variability subspaces and fields computed. This is
carried out by studying the spatial distribution of the
estimated hydrographic and velocity variances, shapes
and amplitudes of dominant multivariate eigenvectors,
and structures of (cross)-covariance functions.

The applications illustrated are in the Levantine Sea
and focus on the mesoscale to subbasin-scale physical
errors and fields. The measurements were collected dur-
ing the LIW95 campaign (Roether et al. 1996; Malan-
otte-Rizzoli et al. 1996) carried out from January to
April 1995 in the eastern Mediterranean. To introduce
this region and its contemporary upper-thermocline fea-
tures, a multivariate 3D estimate of the potential density
at 105 m and velocity at 5 m is plotted in Fig. 1. Because
of thermal-wind effects, several surface circulation
structures are easily distinguished along the steepest
slopes of isopycnals. To date, most investigations in the
Levantine that combine data and dynamics have mainly
resolved the subbasin scales and are usually based on
close-to-geostrophy hypotheses (e.g., Hecht et al. 1988;
Milliff and Robinson 1992; Özsoy et al. 1993; Robinson
and Malanotte-Rizzoli 1993; Malanotte-Rizzoli et al.
1999).

Among the various techniques for the analysis of geo-
physical fields, only some estimate uncertainties
(LAL00 and references cited therein). The present work
is concerned with determining accurate a priori (error)
covariance or structure functions and with estimating

their parameters and covariance matrix form. Recent
studies include: in atmospheric science, Rabier et al.
(1998), Riishojgaard (1998), Dee and da Silva (1999),
Gaspari and Cohn (1999), Gneiting (1999), Franke and
Barker (2000); in physical oceanography, Cressie and
Huang (1999), Miller and Cornuelle (1999), Menemen-
lis and Chechelnitsky (2000), Molinari and Festa
(2000); and, in biological oceanography, Abbott and
Letelier (1998). Today, error models, in particular the
efficient representation of error covariance matrices, are
essential for error predictions (Ehrendorfer 1997; Ler-
musiaux 1997, henceforth LER97) and data assimilation
(Robinson et al. 1998; Chin et al. 1999; Derber and
Bouttier 1999; Lermusiaux 1999a,b; Lermusiaux and
Robinson 1999; Verron et al. 1999; Mitchell and Hou-
tekamer 2000; Tippett et al. 2000; Hamill et al. 2001;
Reichle et al. 2002).

In what follows, section 2 outlines a simple rule for
estimating the size of error subspaces. In section 3, var-
iations of these subspaces with their size and with the
scales in the data, and the impacts of these variations
on a posteriori fields, are illustrated for temperature and
salinity. Section 4 proceeds to the complete physics: in
addition to size and scales, nonlinear effects are studied
and some dynamical properties derived. In section 5,
the performance of forecasts initialized based on the
present mapping is evaluated. Conclusions are in section
6. In the appendixes, algorithms are summarized and
relevant nondimensional numbers listed.

2. The size of error subspaces: Back-of-the-
envelope calculation

A simple rule giving an approximate order of mag-
nitude for the size of multivariate error subspaces is
outlined. It is based on experience with more quanti-
tative calculations (e.g., Fukumori and Malanotte-Riz-
zoli 1995; LER97; Lermusiaux 1999a,b) and on the of-
ten red spectra of ocean phenomena. It is exemplified
for the case where errors are mesoscale variability.

Consider first one state variable, for example, tem-
perature or zonal velocity. For the vertical variability,
two to three empirical orthogonal functions (EOFs) or
dynamical modes often explain most of the significant
variance (e.g., De Mey and Robinson 1987; Haney et
al. 1995; De Mey 1997; Wunsch 1997; Pedder and Gom-
is 1998; von Storch and Frankignoul 1998). For the
horizontal variability, most studies to date focus on sur-
face fields. In that case, the number of dominant patterns
or modes usually varies from 15 to about 50: for ex-
ample, consider a surface field in the Gulf Stream or
Atlantic region (e.g., Thacker and Lewandowicz 1996,
1997; Everson et al. 1997; Kaplan et al. 1997). For the
3D variability, an approximate subspace size is simply
the product of vertical and horizontal requirements.
With the above values, this product yields a size of
30–150.

In the case of several state variables, the size of the
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subspace necessary to describe most of a normalized
form of the multivariate variability is often found pro-
portional to the number of variables. With this hypoth-
esis, considering, for example, the primitive equation
(PE) model1 of HOPS and the above mesoscale values,
an approximate size is then 135–650. This is of the order
of 102 to 103. In summary, the order of magnitude of
the size p of an error subspace is often well approxi-
mated by,

y yO (p) . n 3 n , (1)O h z
y

where ( ) is an estimate of the horizontal (vertical)y yn nh z

requirements for the state variable y. Similarly, a range
of likely p is obtained from the products of the minimum
and maximum horizontal and vertical requirements; that
is, Sy min( 3 ) # p # Sy max( 3 ). Such back-y y y yn n n nh z h z

of-the-envelope rules do not require extensive 3D com-
putations. They are very useful today since they provide
quick estimates of the number of state samples, breed
vectors, or singular vectors (e.g., Molteni et al. 1996;
Toth and Kalnay 1997; Barkmeijer et al. 1998) needed
to explain most of the variance in an analysis or en-
semble forecast.

The above sizes are much larger than classic 1D re-
quirements but much smaller than the number of discrete
state variables. For example, consider a nondimensional
(from here on denoted by *) covariance matrix B* for
a horizontal, univariate field. For covariance function,
we use a ‘‘Mexican hat’’2 and for discretized domain,
the northwestern Levantine with a uniform resolution
of 10 km (500 km in the x and 520 km in the y direction).
The size of B* is thus (2703 3 2703). Computing its
cumulative eigenvalue spectrum for the subbasin-scales
(200-km zero crossing, 100-km decay scale), 15 eigen-
vectors represent 85% of the variance, 36 vectors 99%,
and 50 vectors 99.8%. For the mesoscales (60-km zero
crossing, 30-km decay scale), larger numbers are re-
quired: 15 eigenvectors represent 20% of the variance,
50 vectors 56%, and 100 vectors 83%. For at least 90%
of the variance, 19 vectors are necessary for the sub-
basin-scales and 128 for the mesoscales. These sizes
represent only 0.7% and 4.7% of the number of discrete

1 This dynamical PE model governs five state variables, henceforth
called the PE fields: four 3D fields, the temperature T, salinity S, and
internal horizontal velocities û and (zonal x and meridional y di-ŷ
rections), and one 2D field, the barotropic transport streamfunction
c. The main model parameters are in Lermusiaux et al. (1998, hence-
forth LLA98).

2 This is the negative of the second derivative of a 2D Gaussian
function (e.g., Carter and Robinson 1987; Louis et al. 1997). Param-
eters are the zero crossing la, e-folding decay scale lb, and decor-
relation time t. Elements of B* are of the form C*(r1, r2) 5 (1 2
a2)e , where a2 5 (r1 2 r2)T (r1 2 r2) and b2 5 (r1 222b /2 22La

r2)T (r1 2 r2) 1 (Dti/t)2 are scalars, and r1 and r2 horizontal22Lb

position vectors, with r 5 (x, y). The 2-by-2 matrix La contains la

on its diagonal; Lb contains lb. The decorrelation time term, in which
Dti is the interval between the data time ti and estimation time t0, is
part of the measurement error model (appendix A).

state variables, 2703, respectively. Illustrations and fur-
ther details are in LLA98.

3. Multivariate three-dimensional analysis of
tracer fields: Subspace size

Hydrographic data (dynamical tracers T and S) are
frequent observations. The sensitivity of the a posteriori
state to the size of the a priori error subspace is thusaxtrc

first exemplified for the case of a global mapping of
temperature and salinity. The subspace is constructed
assuming that the a priori error covariance of these trac-
ers Btrc is ‘‘observed’’ in the sense of LAL00, that is,
historical (synoptic) data are available to specify its
dominant eigendecomposition . Variations ofp pB Btrc trc

with the scales considered are illustrated. Some differ-
ences between our multivariate 3D scheme and Kalman
update (appendix A section c) are also exemplified.

The data are 146 T and S profiles (Figs. 2a,b). Their
error model (appendix A) includes a decorrelation time
term. The numerical domain (Fig. 2c) contains 2703
horizontal grid points and 20 vertical levels (108 120
tracer state variables). There are 5840 data points [di-
mension of yo, Eq. (A1b)], that is, the number of T, S
scalar data residuals on vertical levels.

The benchmark univariate 2D scheme of HOPS as-
sumes that two independent scales are present and that
errors are homogeneous horizontally. It uses a succes-
sive correction, minimum error variance technique (e.g.,
Daley 1991; Lorenc 1992): the largest scales are gridded
first and the resulting fields constitute the background
in the mapping of smaller scales. Successively for each
scale, global horizontal analyses of scale-filtered T and
S data are thus carried out at various levels. For fair
comparisons with this benchmark, the present multi-
variate 3D scheme is also a two-scale correction (w 5
1, 2 in appendix A sections b–c), with horizontally ho-
mogeneous a priori errors. It thus carries out two mul-
tivariate 3D mappings successively. For each scale,

is constructed based on a statistical model fit to datapBtrc

in the horizontal and on data EOFs in the vertical [ap-
pendix A section b(1)]. In this section, the data used to
do so is yo. For both schemes, the first a priori estimate

(w 5 0 in appendix A sections b–c) is the horizontalbxtrc

average of yo. Subsequently, the two scales are the sub-
basin-scale and mesoscale. At the mesoscale stage (sec-
tion 3b), a priori errors are mesoscale variability but a
posteriori fields are the total fields.

a. Subbasin scale

UNIVARIATE 2D BENCHMARK: Figure 3 shows four
subbasin-scale (w 5 1) univariate 2D analyses. The a
priori horizontal covariance was set to be a ‘‘Mexican
hat’’ (section 2) of 200-km zero crossing and 100-km
decay scale, each estimated based on covariances among
subbasin-scale data residuals. The data error covariance
at data points was assumed diagonal (at each level, R
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FIG. 2. (a) Coordinates of 146 hydrographic profiles that form yo (appendix A) in the mappings
of section 3. They originated from CTD and aircraft XBT observations gathered during 10–18
Feb and on 15 Mar 1995, respectively. (b) Surface (5 m) a posteriori mesoscale error variance
for temperature, as estimated by the univariate 2D scheme. Errors are normalized (0–1) and
computed using a ‘‘Mexican hat’’ for a priori covariance function (60-km zero crossings, 30-km
decay scales) and an a priori error variance of uniform amplitude 1. (c) Model bottom topography
(m) at tracer grid points.

5 r I) and of 50 days decorrelation timescale. The cor-
responding horizontally uniform, nondimensional (0 to
1) variance was calibrated to r* 5 0.03, mainly based
on experience.

MULTIVARIATE 3D SCHEME: Figure 4 illustrates the
construction of Btrc and Fig. 5 the mappings. The dom-
inant eigendecomposition of [Eq. (A10)] is com-zCtrc

puted based on the EOFs of the subbasin-scale data
residuals [Eqs. (A7)–(A9)]. A small number of T, S
EOFs explains most of the variance (Fig. 4a). The hor-
izontal covariance [Eq. (A11)] is analytical, com-r*Ctrc

puted based on the subbasin-scale Mexican hat used in
the univariate 2D analyses. From Eqs. (A13)–(A15), the
vertical [Eq. (A10)] and horizontal [Eq. (A12)] decom-
positions are then combined. The resulting normalized
variance is explained by a few hundred 3D vectors (Fig.
4b). Using Eq. (A16) in (appendix A section c), the
subbasin-scale mapping (w 5 1) is finally carried out.

Figure 5a plots parts of the state for the case whereaxtrc

p 5 500 in Eq. (A16), that is, 500 eigenvectors are used,
which explains 99.6% of the a priori error variance (Fig.

4b). The size of being 108 120, this analysis is 216axtrc

times cheaper than a full covariance formulation and
about 12 times cheaper than a representer method (Ben-
nett and Chua 1994), the number of representers being
5840. Comparing results (Figs. 5a and 3), the T, S maps
are alike. For the subbasin scale, assuming zero vertical
covariance and uncorrelated T and S error fields does
not appear damaging. This is mainly because there is
here more than enough data coverage for the subbasin
scale. The vertical and T–S correlations are as expected
stronger with the 3D scheme (Fig. 5a), but most dif-
ferences are within data error bounds.

Comparing the T, S maps using 500 and 250 vectors
(not shown), the relative root-mean-square (rms) dif-
ferences are less than 1%. This is an interesting result.
Once most (e.g., here $98%, see Fig. 4b) of the co-
variance has converged, the remaining eigenvectors can
be ignored if their eigenvalues are negligible in com-
parison to data error eigenvalues (LLA98). Considering
costs, the mapping with p 5 250 is 103 times cheaper
than the full covariance mapping. Finally, using 10 vec-
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FIG. 3. Subbasin-scale (w 5 1) temperature and salinity fields, at 5 and 225 m, as estimated
by univariate 2D HOPS analyses. The scaling for temperature at 5 m differs from that at
225 m. The scaling for salinity is uniform with depth.

tors as on Fig. 5b is not sufficient. Indeed, the quick
product of horizontal and vertical requirements for 99%
of the variance each indicates here a total of 36 3 8 5
288 vectors [see Eq. (1) and use numbers in section 2
and Fig. 4a]. This back-of-the-envelope order of 102

multivariate 3D vectors agrees with the numerically
computed spectra of Fig. 4b.

b. Mesoscale

UNIVARIATE 2D BENCHMARK: Figure 6 shows four
mesoscale (w 5 2) univariate 2D analyses. Based on
plots of covariances among data residuals, the zero
crossing was set at 60 km, decay scale at 30 km, and
decorrelation timescale at 7 days. Other parameters are
as in section 3a.

MULTIVARIATE 3D SCHEME: In the mesoscale 3D
mapping, is the subbasin-scale state (Fig. 5a). Thebxtrc

construction of the mesoscale Btrc is illustrated by Fig.
7. In the vertical (Fig. 7a), the variance of the mesoscale
data residuals [Eq. (A10)] decays less rapidly with the
eigenvalue number than in the subbasin-scale case (Fig.
4a). In the horizontal, [Eq. (A11)] is computed basedr*Ctrc

on the mesoscale Mexican hat of the univariate 2D anal-
yses. From Eqs. (A13)–(15), the vertical [Eq. (A10)]
and horizontal [Eq. (A12)] decompositions are then
combined. The resulting normalized mesoscale variance
(Fig. 7b) is mostly explained by a few 3D vectors, but

compared to the subbasin-scale (Fig. 4b), slightly more
vectors are needed. Using Eq. (A16) in (appendix A
section c), the mesoscale mapping (w 5 2) is finally
carried out.

Figures 8a–b show obtained using the dominantaxtrc

500 and 750 mesoscale vectors, respectively. Differ-
ences with the fields of Fig. 6 are small, at several
locations within data error bounds. However, the 3D
scheme that uses the significant EOFs of the mesoscale
residuals [Eqs. (A7)–(A10)] yields larger vertical cor-
relations. For example, in the upper 0–50 m mixing
layer, the measurement noise and unresolved vertical
scales are filtered more on Figs. 8a–b. Small middepth
features of significant vertical extension, for example,
see T, S around 225 m, also seem better represented.
For mesoscale mappings with data resolutions similar
to those of Fig. 2a, a disadvantage of the univariate 2D
analysis is in fact its sensitivity to environmental noise.
Considering subspace sizes, the relative rms differences
between maps of Figs. 8a and 8b are less than 3%. Even
though 750 vectors explain 5% more a priori mesoscale
variance than 500 vectors do (Fig. 7b), most of the
additional 250 vectors have eigenvalues smaller than
the local data error variance. They thus mainly yield
mesoscale corrections within data error bounds.

For the 3D scheme, two main properties have been
exemplified. First, once most of the a priori error co-
variance has converged (e.g., 99%), the remaining ei-
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FIG. 4. (a) Normalized cumulative variance of the subbasin-scale
residuals of the tracer profiles, as a function of the eigenvalue number.
The covariance is (40 3 40). The first T, S vertical EOF explainszCtrc

64% of the subbasin-scale variance, the second 25%, third 5%, and
fourth 2%. They account together for 96% of the variance; the dom-
inant eight for 99%. (b) Normalized cumulative variance of the sub-
basin-scale error covariance of the 3D tracer fields, Btrc [Eq. (A13)],
as a function of the eigenvalue number. The size of Btrc is (108120
3 108120). The dominant 10 eigenvectors explain 46% of the var-
iance; the dominant 100, 94.25%; dominant 250, 98.5%; and dom-
inant 500, 99.6%. Employing 100 instead of 108 120 vectors reduces
complexity by more than 103 while only missing 6% of the variance.

genvectors can be truncated in most cases. Second, the
a priori error vectors of eigenvalues negligible with re-
spect to data errors have negligible impacts on the a
posteriori state. Even if the a priori error covariance has
not converged, these vectors can usually be omitted.

4. Multivariate three-dimensional analyses of PE
fields

Primitive equation fields and errors are now consid-
ered. Examples remain in the northwestern Levantine,
but the period is now 19 March–16 April 1995. Four
cases are discussed (Table 1): one univariate 2D bench-
mark and three variations of the multivariate 3D scheme.

The univariate 2D benchmark (case 1) first carries out
horizontal analyses for T and S, as in section 3. Total
velocity is then computed by assuming geostrophic bal-
ance with the gridded tracers and integrating the thermal
wind equations up and down from a level of reference.

The present multivariate 3D scheme (cases 2–4) again
uses a two-scale approach (w 5 1, 2 in appendix A
section b) to construct the a priori error subspace. For
each scale, the tracer portion Btrc of the a priori error
covariance B is specified as in section 3. The nonob-
served velocity portions are then built in dynamical ac-
cord with Btrc, through an ensemble of adjustment mo-
mentum integrations (tracers are kept fixed in these ad-
justments [see appendix A section b(2)]. These integra-
tions lead to an ensemble of PE adjusted fields.
Variability samples, that is, the differences between
these fields and a priori state xb, are then computed,
normalized, and organized by singular value decom-
position (SVD). Once a convergence criterion deter-
mines that the number of samples is large enough to
explain most of the variance, an estimate B p of B is
obtained. A mapping (appendix A section c) is then
carried out.

The 3D cases of Table 1 were selected to illustrate
the main tendencies in an extensive set of computations.
They exemplify the sensitivities of the error subspace
and state xa to: (i) the nonlinear terms of the momentum
equations used to adjust the nonobserved velocity var-
iability to the observed tracer variability (cases 2 and
3), and (ii) the size of the subspace p (cases 3 and 4).
Subbasin-scale estimates are only overviewed (section
4a). Mesoscale estimates are studied in more detail: a
priori error covariances B p 5 EPET (section 4b), a pos-
teriori fields (section 4.3), and a posteriori error co-
variances B 5 EaPaE (section 4d). The dynamical

p Ta a

possibilities raised by the study of subspaces are em-
phasized in sections 4b and 4d.

a. Subbasin scale

In each case (Table 1), the data yo employed for the
subbasin-scale are 512 profiles of the Mediterranean
Ocean database (MODB) winter climatology for the
Levantine (Brankart 1997, personal communication)
and the T–S profiles for 10–18 February and 15 March
(Fig. 2a). For coherence with the recent evolution of
deep eastern Mediterranean waters (Roether et al. 1996),
the MODB data were cut at 1250-m depth: only in situ
data are utilized below 1250 m. In all cases, xb is in
hydrostatic equilibrium: its tracer fields are the hori-
zontal averages of the data yo and its velocity is null.

For the univariate 2D scheme (case 1), T and S fields
are estimated from yo as in section 3a. Total velocities
are assumed in geostrophic balance, with a level of no
motion at 600 m. For the multivariate 3D cases 2–4,
the ’s are also as in section 3a, except for the differentpBtrc

sizes p. Three estimates of the subbasin-scale B p are
then built using the PE model, as indicated in Table 1.
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FIG. 5. (a) Subbasin-scale (w 5 1) temperature and salinity fields, at 5 and 225 m, as
estimated by a multivariate 3D error subspace analysis. The dominant 500 vectors of Btrc

are used [Eq. (A16)]. Scalings and levels shown are as on Fig. 3. (b) As (a) but with the
dominant 10 vectors of Btrc.
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FIG. 6. Total (subbasin-scale plus mesoscale) T and S fields at 5 and 225 m, as estimated
by univariate 2D HOPS analyses. The a priori estimate in this second stage (w 5 2)bxtrc

is the subbasin-scale analysis of the first stage (w 5 1) (see Fig. 3). For temperature, the
scaling at 5 m differs from that on Fig. 3; for salinity, it is the same.

With these B p’s, three mappings of the data yo are carried
out, following (appendix A section c).

b. Mesoscale: Data and a priori error covariance

For each case (Table 1), the data for the mesoscale
correction are 236 CTD profiles gathered from 19 March
to 16 April (Fig. 9). They lead to 9440 data points
(dimension of yo). To have an acceptable synoptic cov-
erage (see section 5), the field estimation is centered on
27 March. The data decorrelation timescale is adjusted
to 7 days.

The four xb’s (cases 1–4) are the four subbasin-scale
fields of section 4a. Their a priori error is thus mesoscale
variability: that is, for cases 2–4, G 5 I in Eq. (A23).
The corresponding covariances are computed using all
289 CTD profiles gathered from 10 February to 16 April
(denoted by ). These four covariance estimations areoyctd

now described.
UNIVARIATE 2D BENCHMARK: Based on plots of co-

variances among mesoscale residuals of the 289 CTD,
the zero crossing, decay scale, and data decorrelation
timescale are adjusted on basin average to 60 km, 30
km, and 7 days. Other parameters of the error covariance
function for T and S (see Fig. 9b) are as in section 3a.
Velocity error covariances are not computed.

MULTIVARIATE 3D SCHEME: In constructing the me-

soscale Bp 5 EPET, the dominant decomposition of its
tracer submatrix, 5 EtrcPtrc , is computed first [ap-p TB Etrc trc

pendix A section b(1)]. This is done by combining the
vertical EOFs of the mesoscale tracer residuals [ 2oyctdi

Hi(xb), i 5 1, . . . , 289, Eq. (A7)] with the eigendecom-
position of an analytical horizontal tracer covariance (of
elements specified using the mesoscale Mexican hat of the
benchmark). The resulting cumulative error variance is a
curve similar to that of Fig. 7b. For the sizes p utilized
(Table 1), the dominant 322 tracer eigenvectors explain
67.2% of the total tracer variance, the dominant 400, 72%,
and dominant 500, 76.5%. The complete Bp’s are then
obtained from , by adjustment momentum integrationspBtrc

[appendix A section b(2)]. The j 5 1, . . . , p dynamical
adjustments lasted for 2 model days, with p increasing
based on the convergence criterion r $ a [Eq. (A22)],
with the limit a set to 0.93. This coefficient r # 1 assesses
the added value of new parallel batches of adjustment runs;
some of its values are listed in Table 2a. For case 2, r $
a was achieved after 322 runs, for p 5 322 and p̃ 5 288.
For case 4, 400 runs were necessary, based on p 5 400
and p̃ 5 360. This larger dimension is due to the nonlinear
momentum terms that create flow variability not estimated
by the linear adjustments of case 2. Since case 3 is simply
the nonlinear extension of case 2, convergence is not an
objective. Overall, the rate of increase of r diminishes as
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FIG. 7. (a) As for Fig. 4a but for the mesoscale residuals of the
tracer profiles. The first T, S vertical EOF explains 70% of the me-
soscale variance, the second 8%, third 7%, and fourth less than 4%.
(b) As for Fig. 4b but for the mesoscale error covariance of the 3D
tracer fields, Btrc [Eq. (A13)]. The dominant 100 eigenvectors explain
58% of the variance; the dominant 250, 75%; dominant 500, 86%;
and dominant 750, 90.5%.

p̃ # p grows: this is partly because the singular values of
B decay rapidly.

Table 2b estimates the overall similarity among the
three B p’s, using Eq. (A22). Comparing cases 2 and 3,
averaged on volume and state variables, nonlinear mo-
mentum terms only change about 2.7% of the nondi-
mensional PE mesoscale variability. Since here uj 5

ej in Eq. (A17), the tracer covariance in a B p isÏp
exactly . Therefore, the covariances involving totalpBtrc

velocities in cases 2 and 3 differ by about (1 2 r)n/nvel

5 5.4%, where n is the state vector size (218 943) and
nvel the number of velocity variables (110 823). This
5.4% difference measures the volume-averaged effect
of nonlinear momentum terms on velocity covariances.
Comparing cases 3 and 4, they are about 13.2% apart.
The tracer eigenvectors of high number (small eigen-

values) here affect velocity covariances.3 Finally, com-
paring cases 2 and 4, their differences combine the non-
linear and size effects (2.7% and 13.2%).

The three B p 5 EPET’s (cases 2–4) are now com-
pared locally, focusing on variances [section 4b(1)], ei-
genvectors [section 4b(2)] and covariance functions
[section 4b(4)]. These estimates substantially improve
the univariate 2D scheme, which only provides 2D error
variance fields.

1) A PRIORI MESOSCALE ERROR VARIANCE

Univariate 2D benchmark: A priori tracer error var-
iances are set to the horizontally averaged variance of
the residuals of : they are depth dependent. The cor-oyctd

responding velocity error variances are set assuming
geostrophic balance.

Multivariate 3D scheme: Error variances form the
diagonal of the Bp’s. Tracer variances are horizontally
uniform in the data domain (Fig. 9). For cases 2 and 3
(p 5 322), the T–S error standard deviation at 5 m is
0.408C/0.080 PSU, while at 500 m, it is 0.178C/0.039
PSU. For case 4 (see LAL00), standard deviations are
logically slightly larger: to first order4, using the vari-
ance numbers given above, by 3.3%–3.6% [100 3 (72
2 67.2)/2, divided by 72 and 67.2]. Total velocity var-
iances are nonuniform in 3D. By construction, large a
priori errors (Table 3) correspond to the locations and
features estimated to have large mesoscale flow vari-
ability. They reflect local variations of the dominant
density and momentum balances.

In case 2 (linear momentum), at the surface, the larg-
est standard deviations are as expected above the Rhodes
Basin (flanked by steep topography) within the deep,
subbasin-scale Rhodes Gyre. Other features of above-
average flow variability are, in decreasing order, the
Ierapetra, Mersa Matruh Gyre (one of its lobes is in the
domain) and central branch of the Mid-Mediterranean
Jet. At 500-m depth, the largest û, deviations are nearŷ
the inflow/outflow of the Kasos and Karpathos Straits,
and again above the Rhodes Basin.

In case 3 (nonlinear momentum, p 5 322), at the
surface, it is now the high-velocity, small size Ierapetra
that dominates. The correction to the larger Mersa Ma-
truh Gyre is smaller, especially in c. For the subbasin-
scale Rhodes Gyre and Mid-Mediterranean Jet, nonlin-
ear terms only have a small impact. At 500-m depth,
the two Straits and Rhodes Basin still dominate internal
deviations, but case 3 also estimates that the Ierapetra
and an anticyclone of the Mersa Matruh-Shikmona Gyre
(MM-S-G) complex are above average. For these deep

3 This 13.2% rise is partly due to the 4.8% increase in normalized
3D tracer variance explained (from 67.2% at p 5 322 to 72% at p
5 400).

4 To link ratios of standard deviations to ratios of variances, one
can use: ( 2 )/2 # (x2 2 x1)/x2 # ( 2 )/2 with x2 . x1

2 2 2 2 2 2x x x x x x2 1 2 2 1 1

. 0.
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FIG. 8. (a) Total (subbasin-scale plus mesoscale) T and S fields at 5 and 225 m, as
estimated by a multivariate 3D error subspace analysis (w 5 2). The a priori estimate

was illustrated on Fig. 5a. The dominant 500 vectors of Btrc are used [Eq. (A16)].bxtrc

Scalings are as on Fig. 6. (b) As (a) but with the dominant 750 vectors of Btrc.
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TABLE 1. The four analyses selected and their main differences.

Case Scheme employed
Size of a priori
error subspace Velocity covariances Velocity dynamics utilized

1: Univariate 2D (benchmark) Full covariances
(all 2D vectors)

Not built: direct integration
of thermal wind equations

Geostrophy

2: Multivariate 3D p 5 322 Built via an ensemble of
adjustment PE integrations

Linear momentum PE model

3: Multivariate 3D p 5 322 As above Nonlinear momentum PE model
4: Multivariate 3D p 5 400 As above Nonlinear momentum PE model

FIG. 9. (a) Coordinates of the 247 CTD profiles gathered during
19 Mar–16 Apr, 236 of which are in the domain and form yo (appendix
A) in the mesoscale mappings. (b) As in Fig. 2b, surface (5 m)
normalized a posteriori mesoscale error variance, but for the data of
Fig. 9a.

mesoscale vortices, nonlinear terms matter at depth. In
case 4 (nonlinear momentum, p 5 400), results are as
those of case 3, except that standard deviations are a
bit larger, to first order by about 6.6%–7.6% (13.2/2–
13.2/2/0.868, see footnote 4).

Two general remarks can be made: (i) for accurate
flow variability variances, not only the background den-
sity field, but also the regional topography, nonlinear,
and diffusion terms should be considered; (ii) even
though subspaces are used, the present global estimates
of mesoscale variances are in accord with and comple-
ment previous local estimates (e.g., Özsoy et al. 1993;
Robinson and Golnaraghi 1993).

2) A PRIORI MESOSCALE ERROR EIGENVECTORS

AND SPECTRUM

Case 2: Figure 10 illustrates the first and second non-
dimensional singular vectors, columns of E* in Eqs.
(A21)–(A23). They explain 1.08% and 1.05% of the
variance explained by all 322 vectors, respectively.
They are examined because several of their properties
are representative of those of other dominant vectors.
As expected from section 4b(1), for linear momentum,
the variability in early spring is dominated by large-
mesoscale variations of the Rhodes Gyre. In the last
decades, the Rhodes Gyre has indeed been observed to
be the main subbasin-scale feature of the region (Milliff
and Robinson 1992; Nittis and Lascaratos 1998).

The first vector (Figs. 10, 1a–b) covers the principal
core of the Gyre, above the Rhodes Basin. Horizontally
(Fig. 10, 1a), the main T and S structures are almost
axisymmetric, with horizontal decay scales of about 40
km (radius of 60 km). On the open-ocean side, the main
T, S, and c structures indicate a predominant geostroph-
ic equilibrium. Close to the coastline, this is not true
mainly due to decreasing depth and increasing coastal
friction. Vertically, T is surface intensified (Fig. 10, 1b),
with a uniform extremum within 20–200 m and a sig-
nificant extension down to 900–1000 m above the
Rhodes Basin. The S structure has a subsurface extre-
mum within 250 to 320 m and a zero crossing near 100
m. The signs of T and S reverse at about 1500 and 1300
m, respectively. Below, local extrema are much smaller
than the global upper-thermocline extrema. Overall,
where T and S are both relatively large, they are in phase,
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TABLE 2. Convergence of and similarity between error subspaces.

a. Convergence coefficient
For case 2
For case 3
For case 4

r254–288 5 0.919
Same values as for case 4
r288–322 5 0.928

r288–322 5 0.930

r322–360 5 0.929 r360–400 5 0.935

b. Similarity coefficient
Between cases 2–3
Between cases 2–4
Between cases 3–4

r 5 0.973
r 5 0.845
r 5 0.868

TABLE 3. A priori mesoscale error std dev for velocity: estimates of cases 2 and 3/4.

Case Depth Features (and horizontal averages) c error std dev Internal velocity error std dev

2 Surface (5 m) Above the Rhodes Basin
Ierapetra
Mersa Matruh Gyre
Mid-Mediterranean Jet

Surface average

0.85 Sv*
0.8 Sv
0.8 Sv
0.68 Sv
0.65 Sv

15.5 cm s21

14.5 cm s21

13 cm s21

13.5 cm s21

12.5 cm s21

500 m Kasos and Karpathos Straits
Above the Rhodes Basin

500-m average

1.7 cm s21

1.3 cm s21

0.65 cm s21

3/4 Surface (5 m) Ierapetra
Above the Rhodes Basin
Mersa Matruh Gyre
Mid-Mediterranean Jet

Surface average

0.87/0.9 Sv
0.87/0.9 Sv
0.84/0.86 Sv
0.69/0.72 Sv
0.67/0.7 Sv

22/23 cm s21

16/16 cm s21

17/18 cm s21

14/15 cm s21

13.5/14 cm s21

500 m Kasos and Karpathos Straits
Above the Rhodes Basin
Ierapetra
Anticyclone in MM-S-G complex

500-m average

1.75/1.8 cm s21

1.4/1.5 cm s21

0.95/1 cm s21

1/1.05 cm s21

0.68/0.7 cm s21

* 1 Sv [ 106 m3 s21.

compensating each other in density. The surface û (Fig.
10, 1a) and cross sections in û and (Fig. 10, 1b) con-ŷ
firm a predominant geostrophic equilibrium. A weak
topographic wave pattern is also visible in the û map
and subsurface tracer cross sections. Its average ampli-
tudes are about 20% of those of the main lobes. Ver-
tically, û and reverse sign near 700 m. The extremaŷ
below are 10 times smaller than the surface ones. Using
c (Fig. 10, 1a), a minimum total velocity is expected
near 900 m.

The second vector (Fig. 10, 2a–b) mainly relates to
displacements of the core of the Gyre, along the north–
south axis of the Rhodes Basin. Except for the main
double lobes in T, S and c, and corresponding triple
lobes in û and , most properties are as those of the firstŷ
vector. Nonetheless, such a displacement of the Gyre’s
core is logically suggested to interact more with topo-
graphic wave patterns (e.g., Smith 1983) than in the first
vector. Along the northern escarpment, the dominant
wavelength of the pattern (Fig. 10, 2a–b) is about 160
km (scale of 25 km). Possible wave types and timescales
are discussed below.

Other dominant vectors also relate to main features

(Fig. 1 and Table 3). This is because to explain a natural
variation, a group of vectors is usually required. Con-
sidering, for example, vectors 3–16, their largest am-
plitudes assign the vectors: (3–7, 9, 12–16) to the
Rhodes Gyre; (3–6, 13–14) to wave patterns along the
northern escarpment and Mid-Mediterranean Ridge; (5–
9, 11–16) to the Ierapetra; (12–14) to the Mersa Matruh
Gyre; (8–16) to the Mid-Mediterranean Jet; (3–4, 6, 9–
16) to the West Cyprus Gyre; (4, 6, 9, 12–16) to the
Asia Minor Current; and (9–10, 12–16) to the Mersa
Matruh-Shikmona Gyre complex. Since each vector is
orthogonal to all more dominant ones and 3D dynamical
couplings can be complex, a detailed analysis requires
additional computations beyond the present scope. Con-
sidering the decay of the error spectrum, the variance
is distributed such that the dominant 50, 100, and 200
vectors explain 41.4%, 66.7%, and 89.4% of the total
variance, respectively.

Case 3: Figure 11 is as Fig. 10, but for nonlinear
momentum adjustments (Table 1). In accord with var-
iance results (Table 3), the feature of dominant meso-
scale variability is then the Ierapetra. The two vectors
shown explain 1.59% and 1.24% of the variance ex-
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FIG. 10. First two multivariate eigenvectors of the normalized a priori mesoscale error covariance, as estimated by case 2 (Table 1). The
panel number is the vector number, with index (a) for the surface (5 m) level, and (b) for a vertical cross section parallel to the Cretan Arc,
above the Cretan–Rhodes Ridge [section position drawn in (a)]. The estimation is based on appendix A section b. All variables are
nondimensional.

plained by all 322 vectors, respectively. These per-
centages are larger than in case 2 because nonlinear
terms steepen the start and flatten the upper middle of
the eigenvalue spectrum. The first vector corresponds
to the vortex itself, the second to eastward–westward
displacements.

In comparison with case 2, horizontal T and S struc-

tures in the first vector (Fig. 11, 1a) are, when signifi-
cant,5 closer to Mexican hats and of lesser width (radius

5 The lobes far from the vortex in surface S are mainly due to the
truncation and have an insignificant extremum based on r 5 0.928
(Table 2a). They are excited by radiating nonlinear effects (absent in
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FIG. 11. Same as Fig. 10 but for case 3 (Table 1) and with a different depth range in the cross sections.

near 50 km, decay scale of 30 km). Vertically (Fig. 11,
1b), T and S are more stretched than in case 2, as one
expects for a ringlike vortex. Even though T remains
surface intensified, its uniform extremum is deeper,
within 50 to 250 m. This agrees with previous results:
for example, the structure of Levantine warm core ed-

case 2, Fig. 10) and can be seen where amplitudes are relatively
small.

dies (Brenner 1993) and shallow surface mixed layer of
the Rhodes Gyre (e.g., Malanotte-Rizzoli et al. 1996).
The dominant feature in T extends down to about 600
m, main depth of the present Ierapetra, instead of about
1000 m for the Rhodes Gyre (Fig. 10). The S structure
has a zero crossing near 80 m and a subsurface extre-
mum within 250–340 m. The signs in T/S reverse at
about 1300 m/1100 m, which, as for the small extrema
below, is shallower than at the Rhodes Gyre. Overall,
T and S are still in phase when both important. The c,
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û, and components (Fig. 11, 1a–b) are less close toŷ
geostrophic equilibrium than in Fig. 10. The nonlinear,
inertial, and viscous terms modify the classic geostroph-
ic antisymmetries of û and with respect to the x andŷ
y axes. The horizontal lobes (Fig. 11, 1a) present sharp
gradients and are tilted, with their heads wider than their
tails. Velocity is maximum near a radius of 30 km. Ver-
tically (Fig. 11, 1b), û and reverse sign near 400 m,ŷ
indicating a minimum total velocity near 600 m based
on c (Fig. 11, 1a). The û and extrema below are aboutŷ
10% of the surface ones. The variations of the deep
counterflow and corresponding density are thus weak.
However, they have a large vertical extent (here 1500
m) and can influence the stability of the Ierapetra, as
found by forecast sensitivity studies in LER97 and ar-
gued in general by Dewar and Killworth (1995) and
Killworth et al. (1997).

Based on the second vector (Fig. 11, 2a,b), displace-
ments of the Ierapetra can excite radiative momentum
patterns. Such adjustments correlate most to density var-
iations in thermal wind balance: note the T and S ra-
diation patterns and horizontal û close to a ‘‘45 degree
shamrock.’’ However, at all depths, û and have clearŷ
asymmetries and amplitude variations that result from
local peculiarities of topography, density, nonlinearities,
and bottom friction [section 4b(3)]. In the vertical, most
properties are as those of the first vector.

Since the two dominant vectors are modified, the oth-
ers also differ, even though most of subspace itself re-
mains unchanged (Table 2b). Considering again vectors
3–16, their largest amplitudes assign the vectors: (3–6,
8, 14–16) to the Ierapetra; (6–16) to the Rhodes Gyre;
(4, 5, 8) to wave patterns along the northern escarpment
and Mid-Mediterranean Ridge; (3–4, 7–10, 12) to the
Mersa Matruh Gyre; (8–12, 14–16) to the Mid-Medi-
terranean Jet; (10–14, 16) to the West Cyprus Gyre; (10,
12, 16) to the Asia Minor Current; and (8–16) to the
Mersa Matruh-Shikmona Gyre complex. Overall, the
dominant 50, 100, and 200 vectors explain 41.1%,
66.2%, and 89.4% of the total variance, respectively.
These percentages are close to those of case 2: the result
is that here nonlinear terms impact the dominant vectors
of the subspace but do not change much of the overall
spectrum.

Case 4: The error subspaces of cases 3 and 4 were
estimated to be similar at 86.8% (Table 2b). Up to an
arbitrary sign, their vectors 1–15 are almost identical
(vectors of case 4 are only slightly less noisy). Some
differences start to occur by vector 16, mainly in the
small mesoscales. The additional vectors 323–400 in-
clude 3D patterns of relatively large horizontal scales
and usually ‘‘wiggly’’ vertical structures, or vice versa.
The decay of the error spectrum is similar to that of
case 3: the 50, 100, and 200 dominant vectors explain
38.4%, 62.7%, and 85.2% of the variance explained by
all 400 vectors, respectively.

3) DYNAMICAL PROPERTIES

From the dominant mesoscale vectors and fields ob-
tained, the types and scales of possible wave patterns
along the northern escarpment and Mid-Mediterranean
Ridge (e.g., case 2), and the dynamical balance of the
Ierapetra (e.g., cases 3–4) can be investigated. Note that
the numbers obtained from cases 3 and 4 are similar,
indicating a robustness of the results.

Wave patterns: Using app. B and Fig. 10, locally for
a wave packet along the escarpment, r0 5 1028 kg m23,
L 5 25 km, D is about 1000 m, H is on Fig. 2c, f 0 5
8.45 1025 s21, and b0 5 1.86 10211 m21 s21 (for u0 5
35.58). Computing a reference rs(z) by horizontal av-
erage of the density field, this leads an average Ns within
D of about 2.5 1023 s21, a local RD 5 NsD/ f 0 . 30
km, and Rext . 1200 km. For U, based on the second
vector (Fig. 10, panels 2a, b), the sum of the surface
internal and external components yields: U . (3.9 3
1.5 1022 1 5.6 107 3 0.5 1022/H/L) (1893)1/2 . 3 cm
s21 (1.5 1022 and 0.5 1022 are the nondimensional am-
plitudes, 3.9 and 5.6 107 the normalization factors, and
1893 the eigenvalue). With contributions from other rel-
evant vectors, the characteristic velocity U for a wave
packet is about 5 cm s21. Hence, the local nondimen-
sional numbers are Ro 5 0.015, Buext 5 2 103, Bu 5
1.4, b 5 0.23, a . 25, and s . 0.6 (except just east
of the island of Rhodes where a and s reach 50 and 1,
respectively). The small Ro and large Buext indicate that
the rigid-lid linear PE regime is appropriate. From b,
the planetary vorticity gradient is relatively small and
from a k 1, the topographic vorticity gradient is large:
b0 can be neglected compared to | =hH | f 0/D. From Bu
; 1, the length scales of the horizontal flow and internal
stretching (stratification’s strength) match. Since s is
close to one, quasigeostrophy may not apply. Finally,
for the model topography (Fig. 2c), s and a are relatively
uniform along the escarpment waveguide (about 60 km
wide). Based on these numbers and interpretations, the
topographic wave packets are of the coastal-trapped type
(Huthnance 1992; Pedlosky 1987; Brink 1991). Note
that here, wave patterns arise during rigid-lid momen-
tum adjustments (fixed tracer disturbances): for the bar-
otropic mode along the escarpment, to first-order in s,
the frequency is then of the order ( | ¹hH | f 0/D)/k, where
k 5 1/L is the wavenumber. This leads a period of about
1.45 days, that is, of the order of 1 to 2 days.

In the ocean, wave packets would be generated by
complete dynamical adjustments, and also by winds,
atmospheric pressure, and coastal flows. A complex
wave spectrum around the above values can be ex-
pected. First, the natural topography is more jagged and
at several locations steeper than the model topography,
which we estimate could shift the period by about 50%.
Second, several wave types are possible along the es-
carpment and/or Mid-Mediterranean Ridge: in addition
to a suite of coastal-trapped waves (e.g., Leblond and
Mysak 1971) like Kelvin and continental shelf waves,



OCTOBER 2002 1617L E R M U S I A U X

inertial and Rossby waves can be generated. For com-
plete statements on scales, shapes, and forcings, addi-
tional studies are necessary (e.g., Huthnance 1978; Hol-
land and Webster 1994). The dominance of such wave
patterns and associated mesoscale variations in the vec-
tors related to the Rhodes Gyre [section 4b(2)] suggests
that they could be in part responsible for the observed
multiple centers of the Gyre (Milliff and Robinson
1992). In particular, the main core of the Gyre is not
stationary, but undergoes translations and precessions
of synoptic timescales (seen in our simulations).

Ierapetra: Using Fig. 11 and local scale analysis, an
approximate dynamical balance for the Ierapetra can be
obtained. One has r0 5 1028 kg m23, L 5 20 km, D
5 400 m, H . 2500 m (Fig. 2c), f 0 5 8.15 1025 s21,
and b0 5 1.89 10211 m21 s21 (for u0 5 34.18). The
vertical averages within D of Ns and of the horizontal
Dr are 2.5 1023 s21 and 0.15 kg m23, respectively.
Hence, RD 5 12 km and Rext 5 770 km. From Table 3,
the mesoscale component of the total surface U is 25
cm s21. Adding the subbasin-scale component (section
4a) yields U . 45 cm s21. Hence, for the Ierapetra,
relevant nondimensional numbers are Ro 5 0.28, Buext

5 1500, Bu 5 0.38, b 5 0.017, a 5 1.8, and s 5 0.5.
The size of Ro attests that nonlinearities are important
while b and Buext confirm that the planetary vorticity
and stretching of the free surface do not matter. The
above numbers suggest that the dominant horizontal mo-
mentum balance within the vertical extent D is the gra-
dient–wind balance: solving for U in U 2/L 2 f 0U 1
DrgD/r0L . 0 gives a root U . 50 cm s21 (accounting
for the uncertainty in characteristic scales, this root lies
between 40 and 70 cm s21). In the vertical, since Ro
and Bu are of the same order, W is large enough for the
vertical convergence and horizontal divergence to bal-
ance (W . UD/L) and the horizontal changes in density
to match the vertical ones (Dr . Drs). Based on a and
s, the local topographic valley (Fig. 2c) is a factor in
maintaining the location of the vortex. Finally, viscous
terms are only important in the bottom layers and at the
submesoscales: for examples, the horizontal momentum
Ekman number Ekh 5 Ah/ f 0L2 is 0.92 for scales under
20 km but decays to 5 1024 at 50 km and is almost null
beyond 100 km (Ah is the effective Laplacian horizontal
eddy viscosity, which is here scale dependent).

4) A PRIORI MESOSCALE ERROR COVARIANCE

FUNCTIONS

The covariance function between the surface (5 m)
temperature at (33.808N, 27.858E: about 80 km east-
southeast of the Ierapetra) and the other state variables
is chosen as an example. The plots (Figs. 12–13) cor-
respond to elements of a row of B p (size 218943 3 p).

Case 2: Figure 12 shows that the horizontal T–T and
T–S Mexican hat covariances are well represented. Ver-
tically (Fig. 12b), the characteristics of tracer covari-
ances are T–T and T–S uniform within a 30-m surface

mixed layer; subsurface extremum in T–S near 300 m;
T–T and T–S positive down to about 1200 m where they
change sign; etc. For T–c (Fig. 12a), quasigeostrophic
balance is locally a good approximation. However, the
horizontal T–û and T– are not exactly antisymmetric,ŷ
geostrophic double-lobe structures. At the surface, the
main reason is that inertial terms matter at (33.808N,
27.858E). If only the inertial and geostrophic terms were
important, after 2 days of adjustment integration, with
2p/ f . 0.89 days, the T–û pattern at 5 m would be
tilted clockwise by almost 458. With horizontal, vertical
and bottom diffusion, this tilt at 5 m is here reduced to
about 308 (Fig. 12a). Note that even though inertial
oscillations occur (e.g., in numerical simulations, the
Ierapetra at the surface rotates in small circles at fre-
quencies close to f ), their effects on covariances are
not always desired.6 In the vertical (Fig. 12b), T–û and
T– have a zero crossing within 500–600 m. From T–ŷ
c, total velocity covariances near (33.808N, 27.858E)
have a vertical minimum near 700 m. Below the zero
crossings, T–û and T– are opposite to their surfaceŷ
structures, but as in section 4b(2), amplitudes are much
smaller (at most 10% of surface values).

Cases 3 and 4: By construction, the tracer autoco-
variance functions of cases 3 and 2 (Fig. 12) are equal.
Those of case 4 are very similar; the main difference
is a volume-averaged increase in variance of 100 3 (72
2 67.2)/67.2 5 7.1% (section 4b), which is distributed
in the 3D T–T and T–S fields according to the tracer
vectors 323 to 400. Figure 13 thus only illustrates cross-
covariances with velocities. Comparing cases 2 (Fig. 12)
and 3 (Fig. 13a), overall, nonlinear momentum adjust-
ment modifies structures, but amplitudes remain similar.
Focusing on differences, the horizontal T–û structure
has a smaller tilt, of about 158–208 clockwise: the non-
linear terms dissipate some inertial oscillations. Cross-
covariances now extend to the Ierapetra and their gra-
dients are tighter due to nonlinearities. The T–c struc-
ture has become asymmetric, with cyclonic T–c cor-
relations at the Ierapetra. In the vertical, structures in
the upper layers extend deeper. Other vertical changes
are mainly due to the lesser 158–208 rotation in the
horizontal. Considering the velocity cross-covariances
of cases 3 (Fig. 13a) and 4 (Fig. 13b), shape and am-
plitude differences are small. This agrees with the cor-
responding global similarity coefficient (Table 2b).

c. Mesoscale: A posteriori PE fields

At the mesoscale stage (w 5 2), the mapping pro-
cedures are as overviewed in section 4a. The differences

6 Undesired effects of inertial oscillations arising in adjustments
can be made insignificant by allowing the duration of adjustment
integrations to be random within an inertial period. This would be
useful inside the Rhodes Gyre where nonlinear terms are weak: the
tilt in the 5 m T–û and T– covariances there mainly depends on theŷ
duration of adjustment, due to inertial rotations. However, at the
Ierapetra where nonlinear terms dominate, the duration of adjustment
did not influence the tilt in velocity covariances (the tilt is desired).
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FIG. 12. Case 2 estimate of the dimensional mesoscale covariance functions between
the 5-m temperature at (33.808N, 27.858E) and the other state variables [only the later
are listed in bottom labels, e.g., T (8C) stands for T–T covariance (8C2), S (psu) for T–S
covariance (8C psu), etc.]. (a) Values on the first level (5 m); (b) zonal cross sections
along 33.808N.
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FIG. 13. As in Fig. 12 but (a) for case 3, (b) for case 4, and only plotting temperature–
velocity cross-covariance functions. These functions are still shown on the first level (5
m) and in zonal cross sections along 33.808N.
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lie in the a priori states (the subbasin-scale estimates),
dataset, and mesoscale covariances (section 4b). The
focus next is on cases 2 and 3 for the effects of nonlinear
momentum terms, and on cases 3 and 4 for the effects
of the size of the subspace.

1) TRACER FIELDS

Figure 14 illustrates the T, S components of xa ob-
tained by multivariate 3D analysis (appendix A section
c) in case 2. By construction, the tracer fields for case
3 (not shown) are identical. Comparing cases 2 (Fig.
14) and 4 (Fig. 10 in LAL00), their tracer fields have
small differences, in accord with the 4.8% (67.2%–72%)
increase in the 3D tracer variance explained. Differences
are largest in the surface layers and small mesoscales,
which is the main variability spanned by the additional
vectors 323 to 400 used in case 4. In comparison with
case 1 (Figs. 9 in LAL00), results are analogous to these
of section 3. The large mesoscales to the subbasin-scales
have small differences, within data error bounds. The
submesoscales to small mesoscales present larger dif-
ferences, especially near the surface. This is because
many of these small scales are environmental noise for
the available data resolution (Fig. 9a) and because the
400 eigenvectors explain only 72% of the total tracer
variance (section 4b).

2) TRANSPORT FIELDS

Figure 15a is the result of case 1 that computes c by
vertically averaging the total velocities in thermal wind
balance with the horizontal T and S analyses, assuming
a level of no motion at 600 m. Figure 15b is the c
component of xa for case 2: the transport is then globally
estimated from the T and S data (Fig. 9) using appendix
A section c. Figure 15c is c for case 3, Fig. 15d c for
case 4. The advantages of cases 2–4 are that their c
estimates, and corresponding uncertainties (section 4d),
are in accord with the dominant SVD of PE adjusted
perturbations. Most of the regional dynamical features
can be distinguished in these c fields, but not in those
of case 1. Comparing Figs. 15b and 15c, the effects of
nonlinear terms in the momentum adjustments agree
with local mesoscale standard deviations (Table 3). Dif-
ferences are largest for the Ierapetra and Mersa Matruh
Gyre. Comparing Figs. 15c and 15d, increasing the size
of the subspace leads to small 2% to 10% variations in
c, in accord with the global covariance similarity of
86.8% (Table 2b). Largest changes are at the Ierapetra,
above the Rhodes basin and along the Asia Minor Cur-
rent and Mid-Mediterranean Jet.

3) INTERNAL VELOCITY FIELDS

Figure 16a is the result of case 1, which computes û,
by thermal wind balance. Figure 16b are the surfaceŷ

û, components of xa for case 2: û, are then globallyŷ ŷ

estimated from the T and S data (Fig. 9) using appendix
A section c. Figure 16c is the same, but for case 3; Fig.
16d is for case 4. Differences between cases 1 and 2
are small and mainly due to their different tracer fields.
Nonlinear momentum terms (cases 2 to 3) mainly affect
the Ierapetra and Mersa Matruh Gyre. For the Ierapetra,
gradient–wind balance [section 4b(3)] is a good ap-
proximation but geostrophy is not. Increasing the size
of the subspace (cases 3 to 4) leads to variations in the
small mesoscales, in accord with the variability spanned
by the additional vectors considered. Overall, the re-
gional increases in speed from cases 2 to 3, and from
cases 3 to 4, agree with the a priori standard deviations
of Table 3 and global values obtained from Table 2b.

d. Mesoscale: A posteriori error covariance

1) A POSTERIORI MESOSCALE ERROR VARIANCE

Univariate 2D benchmark: A posteriori tracer error
variances result from the 2D analyses, for example, 5-
m errors on Fig. 9b. Velocity error variances are set
assuming geostrophic balance.

Multivariate 3D scheme: Figures 17a–b illustrate a
posteriori error standard deviations for cases 2 and 3
(for case 4, see Fig. 13 of LAL00). An important result
is that error properties are as one expects dynamically
even though only 322 or 400 vectors are used. The tracer
errors of cases 2–4 are similar to those of case 1 (Fig.
9b). Differences are due only to the use in cases 2–4
of a priori T and S covariances with nonzero multivariate
and vertical correlations. By construction, tracer errors
for cases 2 and 3 are identical (up to machine precision).

In general, the structures of velocity errors (Figs. 17a–
b) differ from those of tracer errors, which mimic the
patterns of hydrographic ship-tracks. Differences in
shape are much larger for û, errors (under geostrophicŷ
influence) than for c errors (under hydrostatic influ-
ence). The relationships among velocity error patterns,
regional dynamical features, and data horizontal and
vertical resolutions (unsampled regions, distances be-
tween ship-tracks, spacings between profiles along ship-
tracks, nonuniform profile lengths, etc.) are discussed
in section 5.b.ii of LAL00. These discussions apply
here. Focusing on sensitivities, velocity errors for cases
2–4 differ from these of case 1 (not shown) because,
in cases 2–4, a priori error covariances involving ve-
locities are nonhomogeneous and anisotropic in 3D and
because the dominant momentum balance is not every-
where geostrophy (diffusion and nonlinearities matter
locally). Comparing cases 2 (Fig. 17a) and 3 (Fig. 17b),
the nonlinear momentum terms impact a posteriori er-
rors in c, û, and at various depths and locations. Dif-ŷ
ferences are largest near the Ierapetra, Mersa Matruh
Gyre, and Mersa Matruh-Shikmona Gyre complex,
which we found to be the most nonlinear features a
priori (section 4b). Due to nonlinear mixing, error pat-
terns in case 3 are broader and more uniform (less de-
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FIG. 14. Case 2: Total (subbasin-scale plus mesoscale) T and S fields resulting from a
multivariate 3D analysis. The dominant 322 vectors of Bp in Eq. (A23) are used. The levels
shown and scalings are as in Figs. 9–10 of LAL00. The corresponding first-stage fields resulted
from a subbasin-scale multivariate 3D analysis.
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FIG. 15. Total (subbasin-scale plus mesoscale) barotropic transport streamfunction estimates (c in Sv; Sv [ 106 m3

s21). (a) Univariate 2D scheme. (b) Multivariate 3D analysis, with p 5 322 and linear momentum adjustment. (c) As
(b) but with a nonlinear momentum adjustment. (d) As (c) but with p 5 400 vectors.

pendent on data location) than in the linear case 2. The
local variations at depths (see LLA98) among cases 2–
4 are in accord with global dissimilarities (Table 2b)
and differences in a priori error fields [section 4b(1)].

2) A POSTERIORI MESOSCALE ERROR

EIGENVECTORS AND SPECTRUM

The first and second nondimensional a posteriori error
singular vectors for cases 2 and 3 are illustrated on Figs.
18 and 19, respectively (for case 4, see Fig. 14 of
LAL00). For each of cases 2–4, the data yo have re-
distributed the variance in the subspace. Dominant a
posteriori vectors have little in common with a priori
ones. In the linear case 2 (Fig. 18), the two dominant
vectors are associated with the low data resolution along
30.758E (Fig. 9a) and lack of data in the northeast corner
(north of 35.58N, east of 29.58E). In cases 3 (Fig. 19)

and 4, this holds for the first vector, but not for the
second. The second vector then corresponds to low data
resolution patches centered on 298E, which is across the
Mersa Matruh-Shikmona Gyres where nonlinearities
matter (section 4b). In case 2, the first vector accounts
for 5.7% of the normalized a posteriori error variance;
the second for 5.1%. In case 3, these numbers are small-
er, 5.2% and 4.8%, because some additional kinetic en-
ergy due to nonlinear terms remains unmeasured in the
a posteriori eigenvalue spectrum. In case 4, these num-
bers further reduce to 4.25% and 4.05% due to the larger
subspace size. Overall, eigenvalue spectra differ for the
same reasons, but by smaller amplitudes. In case 2, the
dominant 50 vectors explain 75.8% of the variance ex-
plained by all 322 vectors; the dominant 100 explain
87.2%. In case 3, these numbers remain nearly un-
changed, 75.5% and 87.2%. In case 4, they are logically
slightly smaller: 71.5% for 50 vectors and 84.5% for
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FIG. 16. Total (subbasin-scale plus mesoscale), zero-vertical mean, internal velocity
estimates (û, ) at 5 m (cases as in Fig. 15).ŷ
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FIG. 17. (a) Multivariate a posteriori error std dev for case 2. The square root of
the diagonal of EaPaE (appendix A section c) is illustrated: the surface (5 m)Ta

error std dev of T, û, and , and the c error std dev are shown. (b) As (a) but forŷ
case 3.
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FIG. 18. First two multivariate eigenvectors of the normalized a posteriori mesoscale error covariance (columns of Ea*, appendix A section
c), as estimated by case 2. The panel number is the vector number, with index (a) for the surface (5 m) level, and (b) for a vertical cross
section along an axis of large amplitudes (30.508E for vector 1, 368N for vector 2). All variables are nondimensional.

100 vectors out of all 400 vectors. For all cases, in
comparison to a priori values [section 4b(2)], the anal-
ysis has here steepened the top and flattened the middle
and end of the error spectrum.

Structurewise, cases 2–4 have almost the same first
vector (Figs. 18–19, panels 1a–b). Due to the nonlinear
adjustments, other vectors are reordered in cases 3–4:
for example, up to effects of the orthogonality constraint
and arbitrary sign, the second vector of case 2 is as the

third of case 3 (not shown) and inversely (Fig. 19).
However, the dominant vectors of cases 3 and 4 are
almost identical, indicating a convergence. Locally, both
dynamics and data affect all vectors. Focusing here on
data coverage (see LAL00 for dynamical effects), con-
sider, for example, the first vector of cases 2–4 (Figs.
18–19, panels 1a–b). For each variable, amplitudes
north of 35.58N in the corner without data are at least
twice as large as they are south of 35.58N. The zero
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FIG. 19. As Fig. 18 but for case 3: the vertical cross sections are along 30.508E for vector 1, but along 298E for vector 2.

crossings (maxima) of the T and S patterns of this first
vector are also aligned with the (lack of ) meridional
ship-transects (Fig. 9): from 348N to 35.58N included,
zero crossings are every 0.58 latitude, while north of
35.58N, the last lobe covers 0.88 latitude, across the no-
data corner. Profile depths also influence error patterns.
For example, east of 30.258E, all profiles are about 1000
m deep, except for two at (35.58N, 318E) and (34.58N,
318E), which are 2000 m deep. Logically, these two
deep profiles reduce the error on û at 358N but not on

[see Figs. 18(1b) and 19(1b) from 1000 to 2000 m].ŷ
Analogous facts hold for other vectors.

3) A POSTERIORI MESOSCALE ERROR COVARIANCE

FUNCTIONS

Comparing a priori [Figs. 12–13, section 4b(4)] and
a posteriori (Figs. 20–21) error covariance functions
also shows data impacts. All amplitudes are reduced in
accord with the data coverage and measurement error
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FIG. 20. As Fig. 12 but for the a posteriori covariance functions.
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FIG. 21. As Fig. 20 but for case 4.
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model (appendix A). At (33.808N, 27.858E), both the
horizontal and vertical correlation scales have been re-
duced to small mesoscale values.

Case 2: Horizontal structures (Fig. 20a) clearly show
the influences of the low data resolution south of 348N
within 288–298E and of the three ship-tracks along 268E,
26.58E, and 278E (Fig. 9a). In the vertical (Fig. 20b),
T–T and T–S structures have stronger negative lobes
and are more surface intensified than a priori (Fig. 12)
in part because a priori T and S data errors are modeled
to decay with depths (Fig. 23 in section 5b). The T–û
and T– structures have remained similar and surfaceŷ
intensified, but the negative lobe of T–û is now to the
east, in accord with thermal wind effects and lower data
resolution in that direction.

Cases 3 and 4: Only case 4 is shown (Fig. 21). Case
3 is analogous, up to amplitudes that are smaller in
accord with the global similarity coefficient (Table 2b).
In the horizontal (Fig. 21a), structures in case 4 are
similar to these in case 2 (Fig. 20a), except that gradients
are tighter due to nonlinearities and larger subspace size.
In cross-covariances with velocities, differences are
largest where features have been shown to be most non-
linear (e.g., Table 3). In the vertical, for all covariances,
gradients are tighter than in case 2. Vertical patterns in
T–û and T– have remained similar, but these of T–Tŷ
and T–S are more complex, in accord with the additional
small mesoscales explained by the vectors 323–400.

5. Quantitative evaluation of fields and impact on
forecast performance

The two mapping schemes and three error subspaces
(cases 2–4) are now evaluated by measuring the skill
of forecasts initialized from the four analyses on 27
March (cases 1–4). Note that for analyses centered on
other dates (not shown), results are analogous. Starting
from each gridded state (e.g., Figs. 14–16), the numer-
ical PE model is first integrated forward in time. Fore-
casts are then compared to in situ hydrographic data and
satellite sea surface temperature (SST) data. Due to the
interactions between tracers and velocities, the effects
of the initial flow fields and velocity error subspaces are
also assessed.

During 26 March–8 April, in situ samplings are rel-
atively intensive (see Fig. 23a below) and the corre-
sponding CTD profiles are used to evaluate forecasts.
The high-resolution satellite images (GISIS 1995) are
interpolated onto the numerical model grid, masking
cloudy areas. During 27 March–3 April, on 3 days, dif-
ferent halves of the grid are clear and contain limited
noise (e.g., Fig. 22a). This leads to a relatively good
week composite, even though one should beware of
nonsynoptic patching (LLA98). These interpolated day
and week images are used to evaluate forecasts.

An issue is that the interval during which forecasts
can be compared is limited by the predictive capability
of the prediction system. Beyond this limit, nonlinear

integrations of data and model errors could reverse con-
clusions. For the area, period, regime of interest, and
data available, the present limit is near 10 days (LER97).
Forecasts are thus not compared beyond that. Remaining
issues are to define the error and choose its measure.
Since comparing forecasts to analyses of data can be
misleading, data and forecasts are here directly com-
pared at data points. These data-forecast residuals can
be a good estimate of forecast error, in so far as they
are larger than the errors in the data. They are measured
by root-mean-squares (rms), correlation coefficients,
and pattern correlation coefficients (PCC).

a. Satellite SST data

Considering first daily images (e.g., Fig. 22), it is
challenging to determine qualitatively which of the fore-
casts is closest to the satellite SST. Quantitatively, their
global scores are indeed similar (see Table 4 below).
Focusing on differences, overall, gradients are more ac-
curate in the multivariate 3D scheme (cases 2–4) than
in the benchmark (case 1). The branch of the Mid-Med-
iterranean Jet near 338N (on Fig. 22a, seen starting at
298E) is also better represented in cases 2–4 (Figs. 22c–
e). The lobes of the Mersa Matruh Gyre are visible in
cases 1 and 4 (Figs. 22b,e), but not so much in the cases
with the smaller subspace size (Figs. 22c,d). For the
Ierapetra and its surrounding cold vortices, cases 1 and
4 have similar large mesoscales. At the small mesos-
cales, cases 1 and 4 are better than cases 2 and 3; overall,
the Ierapetra gradients of case 4 are the most accurate.
Comparable comments hold for other daily images (not
shown). Considering the week composite (Fig. 30 in
LLA98), similar statements can again be made, includ-
ing for the Rhodes Gyre.

In Table 4, the skill of forecasts generated from the
different analyses is evaluated quantitatively. For the
three relatively clear days, the correlation coefficient
between the satellite SST day composite and estimated
5-m temperature for that day is given (Table 4a). To
obtain these coefficients, the horizontal mean of each
field is removed first. In Table 4b, the week composite
is compared with the week average of the day-to-day
5-m temperature forecasts. To take advantage of the
larger composite coverage, two more measures are eval-
uated: (i) the rms of the residuals between the clear
satellite data and averaged forecasts, and (ii) the PCC
defined by PCC 8 [TS 2 Tb)T(T̂ 2 Tb)]/[\TS 2 Tb\ 2\T̂
2 Tb\ 2], where the vector TS is the satellite week com-
posite, T̂ the estimated week average, and Tb the back-
ground set to the satellite month composite for March
1995. In all computations, only common cloud-free
points are considered. For the day snapshots (Table 4a),
the main difference is on 27 March: the nowcasts of
cases 2–4 are about 15% better than that of the uni-
variate 2D case 1. On other days, a surprising result is
that there is little variation among cases. This is mainly
due to uncertainties in the satellite data, even though it
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FIG. 22. (a) Satellite SST image for 28 Mar (cloudy areas masked by dots), interpolated on the numerical grid. (b)
1-day forecast of temperature at 5 m for case 1. (c) As (b) but for case 2. (d) As (b) but for case 3. (e) As (b) but for
case 4. Note that there is almost no in situ data in the Aegean Sea (Fig. 9a).
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TABLE 4. Day and week measures of skill for temperature:
Satellite SST vs estimated T fields at 5 m.

a. Day cor coef

Day composite vs
Case 27 Mar

nowcast

28 Mar
1-day

forecast

3 Apr
7-day

forecast

1
2
3
4

0.57
0.67
0.67
0.66

0.76
0.77
0.76
0.76

0.82
0.81
0.81
0.81

b. Week measures Case Cor coef PCC Rms diff

(27 Mar–3 Apr week com-
posite vs average of eight
estimated T fields)

1
2
3
4

0.76
0.75
0.75
0.76

0.18
0.20
0.21
0.20

0.3912
0.3894
0.3870
0.3895

FIG. 23. (a) Sampling locations and total number of CTDs, divided
in four 3-day periods. (b) Rmse for (left) temperature and (right)
salinity at data points, from horizontal model-level 1 (5 m) to 12
(500 m). Solid line: a priori model of the measurement error standard
deviations (LER97). Dash-dotted line with circles: rmse at data point
for case 1. Dashed line with triangles: rmse at data point for case 4.
Note that scales vary with the 3-day periods. Cases 2 and 3, similar
to case 4, are not plotted.

also reflects the subspace and forecast convergences.
Another artifact of data errors and also varying data
coverage is the increasing correlation with time. For the
week composite (Table 4b), correlation coefficients are
analogous. The PCCs indicate that case 1 is the worst
and case 3 the best (adding more vectors can thus at
times decrease performance). These PCC numbers are
relatively low. This is mainly because they focus on the
small mesoscale for which the PCC skill is smaller than
for the large mesoscale and subbasin scale due to the
initial data resolution. The rms’s indicate an error slight-
ly larger for case 1 than for cases 2–4, but variations
are not significant (the estimated error in the in situ data
at the surface is around 0.38C, see Fig. 23 below). For
the day images, the rms and PCC (not given) lead to
the same conclusions. Overall, the satellite data indicate
that the skills of cases 2–4 are similar and only a few
times slightly larger than the skill of case 1.

b. In situ data

In the evaluations based on in situ T and S data (Fig.
23a), time is divided in periods of 3 days. For each of
these periods, data-forecast residuals are computed at
the intersections of the CTDs with the model grid, using
the forecast for the center of the period (measurement
model details are in LER97). These residuals are mea-
sured by rms, averaging level by level. On Fig. 23b,
the resulting rms error (rmse) estimates are plotted for
the temperature and salinity of cases 1 and 4 on 12
horizontal model levels (from 0 to 500-m depth). Over-
all, forecast errors increase with forecast durations and
decrease with depths in proportion to the variability. For
26–28 March (Rhodes Gyre area) and 29 March–1 April
(near 308E), most rmse’s are below the estimated error
standard deviations of the data. Both schemes likely lead
to good forecasts. Focusing where rmse’s are significant,
case 4 is better than case 1 at the surface, but the op-
posite holds near 500 m. For 3–5 April (data along the
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Cretan Arc), rmse’s are much larger, in accord with the
longer forecast duration and also lesser quality of the
numerical model in this region. For T, case 1 is better
than case 4 at all depths. For S, case 4 is substantially
better than case 1 in the surface layers, but is worse
below. For 6–8 April, at the surface, case 4 is better for
T, but not for S. At middepths, the situation reverses.
Near 500 m, case 1 is best but errors become smaller
than the estimated data error.

These results first confirm that the two schemes
have similar skill. They also restate that the univariate
2D scheme can be too sensitive to small-scale noise
(e.g., section 3b), hence the usually lesser skill in the
surface layers. They show that the present multivar-
iate 3D scheme can sometimes be less effective at
depth. To improve this, either the subspace can be
enlarged or the specification of the initial covariance
decomposition (appendix A sections a–b) refined. For
example, in coastal regions, the lack of better per-
formance at depth is likely due to the initial tracer
covariances that were simplified (e.g., horizontally
homogeneous, vertically dominated by open-ocean
data structures instead of coastal ones).

6. Summary and conclusions

The foregoing study investigated the influence of a
priori parameters on the error subspace estimation and
mapping methodology introduced in (Lermusiaux et al.
2000, henceforth LAL00). The sensitivities of the sub-
space and of the a posteriori gridded fields and errors
to the size of the subspace, scales considered, and non-
linearities in the dynamical adjustments were exempli-
fied and studied for mesoscale to subbasin-scale phys-
ical fields in the northwestern Levantine during 10 Feb-
ruary–15 March and 19 March–16 April 1995. A pos-
teriori field and error estimates were evaluated by
comparison among each other and by using the uni-
variate 2D analysis scheme of HOPS as a benchmark.
Forecasts generated from the various analyses were
qualitatively and quantitatively compared to in situ and
satellite data. A simple back-of-the-envelope rule for
the required size of error subspaces was also outlined
and utilized.

Several three-dimensional, multivariate, and multis-
cale properties were illustrated. The global mapping was
shown to estimate simultaneously all physical fields and
errors from the tracer data, usefully decompose multi-
variate covariances, improve vertical correlations and
the filtering of environmental noise, yield more accurate
field gradients, and lead to velocities that are close to
being PE adjusted and a posteriori velocity errors that
are PE consistent. In comparison to the geostrophic
benchmark, gains were largest where topographic, non-
linear, and diffusion terms mattered. In particular, a pos-
teriori errors were found to reflect complex properties
of both the data utilized and the regional dynamics (not
always close to geostrophic). Based on the forecasts

from the various analyses, the multivariate 3D scheme
performed as well as the benchmark. Similar conclu-
sions have been drawn in meteorology (Andersson et
al. 1998). Presently, this is likely in part due to the
limited data.

Based on sensitivities to scales, for a fixed domain
size, smaller scales usually require larger subspaces due
to spectral redness. Based on sensitivities to the size of
the subspace, truncating the a priori error covariance to
a converged subspace is efficient and a priori error ei-
genvectors of eigenvalues negligible with respect to data
errors can be neglected. In the Levantine, increasing the
subspace size usually improved the analysis at depths
and the small mesoscales. Overall, the variations of a
posteriori fields with the parameters of the subspace
were as indicated by a global similarity coefficient: if
a priori error covariance matrices differed by about 5%
(in the standard deviation sense), so did the fields and
a posteriori errors. Based on sensitivities to the dynam-
ics of adjustments, it was found however that even when
subspaces are globally similar, some of their dominant
vectors can be quite different. For example, the nonlin-
ear momentum correction modified the dominant vec-
tors from large-mesoscale variations of the Rhodes Gyre
to mesoscale variations of the Ierapetra eddy. It also
modified the shape of error spectra, the structures of
covariance functions, and some properties of the a pos-
teriori fields and errors. Relative linear–nonlinear dif-
ferences were computed and as anticipated found to be
largest for the features and regions with high shears,
around deep eddies or gyres (e.g., Ierapetra, Mersa Ma-
truh Gyre), along fronts (e.g., Mid-Mediterranean Jet),
and in Straits. The impacts of inertial oscillations on the
subspace adjustment were also discussed.

The study of a priori tracer and velocity variances,
spectra of eigenvalues, shapes and amplitudes of dom-
inant multivariate eigenvectors, and structures of
(cross)-covariance functions revealed several dynamical
properties. The spatial distribution of characteristic hy-
drographic and velocity scales as well as dominant dy-
namical balances were quantitatively obtained for most
features of the northwestern Levantine. In particular, the
Ierapetra eddy was found to be close to gradient–wind
balance in the spring of 1995. Coastal-trapped waves
were also inferred to be likely along the northern es-
carpment of the basin and to account for a significant
portion of the global variations of momentum and den-
sity fields in the region.

Focusing on research directions, a first issue relates
to data availability and accurate multiscale statistical
models. Mainly for fair comparisons with the univariate
2D scheme but also for lack of sufficient data, a suc-
cessive correction approach was used instead of a gen-
eral one for multiple interacting scales. A priori tracer
covariance functions were also assumed homogeneous
and isotropic in the horizontal instead of being non-
homogeneous and anisotropic in 3D as velocity co-
variances were. These two assumptions can be removed
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in principle (LAL00). In regions with more data than
here (to allow accurate fits), the performance of the 3D
scheme may then be improved. Another direction con-
cerns algorithms for efficient dynamical adjustment of
the error subspace. For example, specific models or pro-
cesses (e.g., free surface, coupled biochemical irrevers-
ibilities, stochastic internal waves) may require specific
adjustment procedures. Additional convergence criteria
(appendix A) should also be investigated. For example,
our experience in other regions suggest that taking into
account each variable separately as well as all variables
as a whole [Eq. (A22)] is useful. In these criteria, ideal
normalizations for specific purposes should also be re-
searched. Most results obtained here apply to the anal-
ysis step of data assimilation schemes based on error
subspaces. Other research opportunities thus include:
error forecasting and adaptive sampling (e.g., Lermu-
siaux 1999b), model improvements (e.g., LER97), dy-
namical studies (e.g., Lermusiaux 2001; Lermusiaux
and Robinson 2001), and interdisciplinary applications
(Robinson and Lermusiaux 2001).
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APPENDIX A

A Priori Error Subspace Estimation and
Mapping Methodology

Algorithms introduced in LAL00 for the estimation/
initialization of 3D multivariate and multiscale geo-
physical fields and their dominant errors are summa-
rized. The main step is the construction of the dominant
a priori error covariance. The framework is that of con-
tinuous–discrete estimation and Ide et al. (1997) is used.
The true (superscript t) state vector xt ∈ Rn is assumed
subject to the stochastic dynamical and measurement
models, respectively,

t t tdx 5 M (x , t)dt 1 dh (t), (A1a)
o ty 5 H [x (t )] 1 e, (A1b)0

where M is the dynamics operator, h t a random pro-
cess of zero mean and covariance matrix Q, y o ∈ Rm

the data vector, H the measurement operator, and e a
random process of zero mean and covariance matrix
R. The time t 0 for the estimation is fixed and R in-

cludes a term for data decorrelation with time (see
footnote 2 and LER97). An unbiased estimate of x t (t 0 )
is denoted by x ∈ Rn . The state error covariance is
defined by P 8 E {[x 2 x t (t 0 )][x 2 x t (t 0 )]T } ∈ Rn3n ,
where E {·} is the statistical mean operator. For the
present minimum error variance criterion (section 1),
an error subspace of dimension p is the portion of R n

that is spanned by the eigenvectors corresponding to
the dominant p eigenvalues of a (normalized) error
covariance. With this rational reduction, the optimal
estimate becomes

p pa o ba bx min tr(P ), knowing (y , R) and (x , P ) , (A1c))5 6
x

in which xt(t0) is subject to (A1a)–(A1b). The super-
scripts (b) and (a) refer to estimates before mapping (a
priori) and after mapping (a posteriori). The superscript
( p) indicates a rank-p approximation: for example, the
a priori/a posteriori principal error covariance P /P is

p pb a

the rank-p eigendecomposition of Pb/Pa. Quantities
marked with asterisks are normalized.

a. Observed portions of the a priori error covariance

The value of a field f at location (r, z), where r 5
(x, y) and z are horizontal and vertical positions in a
suitable coordinate system, is denoted by f(r, z). The
a priori error covariance function for the fields f(r1,
z1) and w(r2, z2) is then,

C (r , r , z , z )fw 1 2 1 2

b t b t8 E{[f (r , z ) 2 f (r , z )][w (r , z ) 2 w (r , z )]}.1 1 1 1 2 2 2 2

(A2)

An often efficient representation of (A2) is obtained by
expanding the a priori errors into

`

b tf (r, z) 2 f (r, z) 5 f (r)Z* (z), (A3a)O i fi
i50

`

b tw (r, z) 2 w (r, z) 5 w (r)Z*(z), (A3b)O i wi
i50

where the (z)’s and (z)’s are vertical functions,Z* Z*f wi i

normalized in some suitable sense. Substituting (A3a)–
(A3b) into (A2) yields,

C (r , r , z , z )fw 1 2 1 2

`,`

5 A C* (r , r )Z* (z )Z*(z ), (A4a)O f ,w f ,w 1 2 f 1 w 2i j i j i j
i, j50

where the factor A 5 A is the horizontal averagef ,w w ,fi j j i

of E{f i(r)wj(r)} and (r1, r2) 8 E{fi(r1)w j(r2)}*C*f ,wi j

the nondimensional horizontal cross-covariance func-
tion associated with f i and wj. The representation (A4a)
is efficient if
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C (r , r , z , z )fw 1 2 1 2

I,J

. A C* (r , r )Z* (z )Z*(z ) (A4b)O f ,w f ,w 1 2 f 1 w 2i j i j i j
i, j50

with small indices I and J (i.e., A ’s decay rapidlyf ,wi j

with increasing i and j).
In section 3c of LAL00, algorithms for estimating the

dominant components of error covariance matrices
based on the functionals (A4b) are outlined for three
types of assumptions involving a single scale, multiple
but independent scales, and general multiple scales. In
each of these assumptions, the vertical and horizontal
decompositions can be obtained either directly from data
(EOFs of scale-restricted data residuals) or from an an-
alytical model fit to data (eigendecomposition of a spec-
ified covariance matrix).

b. Present construction of the a priori error subspace

Here, the discrete state vector x 8 (û, v̂, T, S, p) ∈
Rn contains gridded values of the û, , T, S, and c fieldsŷ
(see footnote 1). The corresponding a priori error co-
variance estimate, B (superscriptb omitted), is construct-
ed as follows.

OBSERVED PORTIONS: For the observed T and S, the
assumption of multiple but independent scales is made
and (A4b) becomes

C (r , r , z , z )fw 1 2 1 2

2

. R* (r , r )Z (z , z ), (A5)O f ,w 1 2 f ,w 1 2w w w w
w50

for f and w any four combinations of T and S. As in
the univariate 2D scheme, for each scale w in (A5),

, , and are also assumed equal. The tracerR* R* R*T T S S T Sw w w w w w

submatrix Btrc of B is then the sum of Kronecker prod-
ucts of vertical and horizontal covariances,z r*C Ctrc trcw w

z r*B 5 B 5 C J C . (A6)O Otrc trc trc trcw w w
w w

The algorithm used here to construct is outlinedpBtrcw

below (A7)–(A16): for each scale w, is obtainedzCtrcw

from data (A7)–(A10) and from an analytical modelr*C trcw

fit to data (A11)–(A12). Normalization matrices are de-
noted by N. They are block-diagonal: for each field, the
corresponding element of N is the sample and spatial
averaged variance.

A priori error subspace construction for one scale (w is omitted):
a. Observed portions

Tracer vertical EOFs
Compute scale-restricted a priori tracer residuals o bd 5 y 2 H (x ), i 5 1, . . . , s. (A7)i i i

Remove horizontal average, normalize 21d* 5 N (d 2 d ). (A8)di i i

Compute SVD of normalized tracer residuals TSVD(S 8 [d*, . . . , d*]) 5 E S*V . (A9)* * *d d d1 s d

Leads to tracer vertical covariance decomposition Tzz z zC 5 E P Etrc trc trctrc (A10)
2zzwhere E 5 N E and P 5 S* /s.*trc d d trc d

Tracer horizontal covariance eigendecomposition
Specify normalized covariance from analytical fit r*C filled from R* (r , r ) in (A5). (A11)trc f,w 1 2

Compute SVD or eigendecompose Trr* r* r*C 5 E P E . (A12)trc trc trctrc

Tracer 3D covariance eigendecomposition
Based on Kronecker product of (A10) and (A12) z r*B 5 C J C . (A13)trc trc trc

Sort eigenproducts and truncate to subspacel lz r p dominant l l ⇒ diagonal P . (A14)z r trc

Construct corresponding 3D eigenvectors p dominant e J e ⇒ rank-p orthogonal E . (A15)trcz r

Result is rank-p decomposition for considered scale p TB 5 E P E . (A16)trc trc trctrc

COMPLETE MULTIVARIATE FORMULATION: The ve-
locity portions of B are computed through an ensemble
of adjustment momentum integrations. The algorithm
for a given scale w is outlined below. An ensemble of
perturbed tracers 8 (T , S ) is created (A17). Thej j jb b bxtrc

corresponding PE-adjusted velocities are obtained by
momentum integrations (A19), starting from unbal-
anced, for example, geostrophic, initial conditions
(A18). Adjusted variability samples are then formed
(A20), normalized, and organized by SVD (A21). New

adjustments (A17)–(A21) are carried out to increase p
until (A22) determines that the number of samples is
large enough. Once this occurs, B p is obtained (A23).
In (A22), the pairs (E*, P 5 1/p S 2) of rank p and
(Ẽ*, 5 1/p̃ 2) of rank p̃ # p correspond to ‘‘new’’˜ ˜P S
and ‘‘previous’’ estimates of B p . With the weighted
inner products, 1/2 Ẽ*TE* P1/2 , both principal errorP̃
directions and amplitudes are compared (other criteria
are in LER97). In (A23), G is a scaling, block diagonal
matrix.
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b. Complete primitive equation–based formulation

Form ensemble of perturbed a priori tracer fields jb b 1/2 jx 5 x 1 E P u , j 5 1, . . . , p,trctrc trc trc (A17)
j jwhere here u 5 Ïpe .

Form ensemble of unbalanced a priori state vectors j jb b b b bx̃ 8 (û , v̂ , x , p ). (A18)trc

Run p dynamical momentum adjustments jbIntegrate momentum eqs. in (A1a) with x 5 x̃0
j jb band here x fixed to yield adjusted x . (A19)trc

Form differences of PE adjusted fields, normalize 1 qb b b bbS 8 [x 2 x ; . . . , x 2 x ];
21 bS* 5 N S . (A20)

Compute SVD of rank p b TSVD (S ) 8 N SVD (S*) 5 ESV ;p p

E 5 N E*. (A21)

Restart (A17)–(A21) and evaluate convergence criterion

p̃
T1/2 1/2˜ ˜s (P E* E*P )O i

i51r 5 $ a, (A22)p

s (P)O i
i51

where r # 1,
a is a chosen limit (1 2 e # a # 1)
and s (·) selects the singular valuei

number i.

Result is principal error covariance estimate Tp TB 5 GEPE G . (A23)

TABLE B1. Main nondimensional numbers/parameters.

Number/
parameter Definition Ratio

Rossby
U

Ro 5
f L0

Relative vorticity to plane-
tary vorticity (also non-
linear advection to Cor-
iolis force)

External Burger
2gD RextBu 5 5ext 2 2 2f L L0

Relative vorticity to exter-
nal vertical vortex-tube
stretching (of free surface)

Internal Burger
2 2 2N D Rs DBu 5 5
2 2 2f L L0

Relative vorticity to internal
vertical vortex-tube stretch-
ing (of isopycnal surfaces)

Planetary b
2L

b 5 b0 U
Planetary (ambient) vortic-

ity gradient to relative
vorticity gradient

Topographic b
2f L0a 5 |= H |h D U

Topographic (ambient) vor-
ticity gradient to relative
vorticity gradient

Slope or topo-
graphic:

L
s 5 |= H |h D

5 aRo

Topographic gradient to
motion aspect ratio

c. Error subspace mapping scheme

With xb, B p (A23) and (A1a)–(A1b), the extremum
of (A1c) yields the a posteriori estimates xa, Ea, and
Pa, hence B 8 EaPaE . For direct inversion, (A1b)

p Ta a

is linearized in the vicinity of xb and xa is hypothesized
to be a linear function of xb and yo 2 H (xb), each of
which is assumed unbiased. The extremum is then
(LER97),

T Ta b 21p p px 5 x 1 EPH (H PH 1 R)

o b3 [y 2 H (x )], (A24a)

a aT ˜UP U 5 P

T T 21p p p p8 P 2 PH (H PH 1 R) H P, (A24b)

aE 5 EU, (A24c)

where H is the linearization of H in the vicinity of xb,
H p 8 HE, the columns of U are ordered orthonormal
eigenvectors of a, and Pa is diagonal. With the suc-P̃
cessive corrections, (A24a)–(A24c) are repetitively used
for each scale w. The Kalman update and (A24a) differ
because of the different gains, K 8 PbHT(HPbHT 1 R)21

and K p 8 B pHT(HB pHT 1 R)21, respectively. Three cas-
es are discussed in LLA98 as a function of the mea-
surement properties H and R.

APPENDIX B

Relevant Scalings and Nondimensional Numbers

Table B1 defines numbers that are relevant for the
present mesoscale to subbasin-scale study. The notation
is standard (Gill 1982; Pedlosky 1987; Cushman-Roisin
1994): g is the acceleration due to gravity; L and D the
horizontal and vertical length scales of motion; U and

W the horizontal and vertical characteristic velocity
scales; f 0 and b0 the Coriolis parameter and its north-
ward gradient at latitude u0; rs(z) the background den-
sity profile; and r0 a constant reference density. In ad
dition, Ns 5 is the Brunt–Väisälä fre-Ï2(g/r )(]r /] )0 s z

quency, RD 5 NsD/ f 0 and Rext 5 / f 0 the internalÏgD
and external Rossby radius of deformations, and =hH
the horizontal gradient of bottom topography H. Except
for g, all of these characteristic scales are here regional;
they are functions of the location and process consid-
ered.
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For the synoptic and horizontally isotropic quasigeo-
strophic scales in a stratified ocean, Ro, , and s K21Buext

1, but the other numbers may take a range of values:
in particular, Bu and a increase with the strength of the
stratification and topographic slope, respectively (e.g.,
Pedlosky 1987). At these scales, using the internal en-
ergy (density) equation to estimate W, one can also show
that Ro/Bu is the ratio of vertical convergence to hor-
izontal divergence WL/UD, and that the characteristic
horizontal variations in density Dr and vertical varia-
tions in background density Drs are related via Dr/r0

5 (Ro/Bu)(Drs/r0).
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