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1. Introduction

Data assimilation is a modern methodology of relating natural data and dynamical
models. The general dynamics of a model is combined or melded with a set of obser-
vations. All dynamical models are to some extent approximate, and all data sets are
finite and to some extent limited by error bounds. The purpose of data assimilation
is to provide estimates of nature which are better estimates than can be obtained by
using only the observational data or the dynamical model. There are a number of
specific approaches to data assimilation which are suitable for estimation of the state
of nature, including natural parameters, and for evaluation of the dynamical approx-
imations.

Progress is accelerating in understanding the dynamics of real ocean biological–
physical interactive processes. Although most biophysical processes in the sea await
discovery, new techniques and novel interdisciplinary studies are evolving ocean sci-
ence to a new level of realism. Generally, understanding proceeds from a quantitative
description of four-dimensional structures and events, through the identification of
specific dynamics, to the formulation of simple generalizations. The emergence of
realistic interdisciplinary four-dimensional data assimilative ocean models and sys-
tems is contributing significantly and increasingly to this progress.

The Sea, Volume 12, edited by Allan R. Robinson, James J. McCarthy, and Brian J. Rothschild
ISBN 0-471-18901-4  2002 John Wiley & Sons, Inc., New York



ALLAN R. ROBINSON AND PIERRE F. J. LERMUSIAUX476

Dynamics evolves the state of a natural system forward in time. The state vari-
ables (e.g., velocities, temperature, concentration densities of plankton, nutrients, par-
ticles) are functions of four-dimensional space–time, classically referred to as fields.
A dynamical model to approximate nature consists of a set of coupled nonlinear
prognostic field equations for each state variable of interest. The fundamental prop-
erties of the system appear in the field equations as parameters (e.g., viscosities, dif-
fusivities, body forces, rates of Earth rotation, grazing, mortality). The initial and
boundary values of the state, which are necessary for integration of the equations,
may also be regarded as parameters by data assimilation methods. In principle, the
state and parameters of the system can be estimated directly by observations and
measurements. Given the state of the system at one time, a future state can be esti-
mated by a model prediction. In practice, directly observing and measuring the state
and parameter of a physical–acoustical–optical–biological-chemical-sedimentologi-
cal ocean system is extremely difficult because of sampling, technical, and resource
requirements.

Data assimilation provides a powerful methodology for state and parameter esti-
mation via the melding of data and dynamics. It makes feasible such estimates on
a substantial and sustainable basis. The general process is schematized in Fig. 12.1.
Sensor data are linked to state variables and parameters and transformed as appro-
priate for the dynamical model via measurement models. Dynamics interpolates and
extrapolates the data. Dynamical linkages among all the state variables and param-
eters allows all of them to be estimated from observations of some of them (i.e.,
those more accessible to existing techniques and prevailing conditions). Error esti-
mation and error models play a crucial role. Using data assimilation schemes, data
and dynamics are melded, often with weights inversely related to their relative errors.
The melding is based on an assimilation criterion involving a cost or penalty func-
tion. The final estimates should agree with the observations and measurements within
data error bounds and should satisfy the dynamical model within model error bounds.
There are many important feedbacks in the generally highly nonlinear ocean observ-
ing and prediction system (OOPS) schematized in Fig. 12.1, which illustrates the
system concept and two feedbacks. Prediction provides the opportunity of efficient
sampling schemes adapted to real-time structures, events, and errors. Data collected
for assimilation also used for ongoing validation can identify model deficiencies and
lead to model improvements.

There are many special purposes and different methods that lead to specific ver-
sions of the system of Fig. 12.1, and identifying the most suitable ones for biophysi-
cal applications requires research. Data assimilation must play several critical roles
in the development, design, assessment, and operation of interdisciplinary observing
and prediction systems, including, importantly, the control of loss of predictability
associated with highly nonlinear coupled biological–physical dynamics. Most ger-
mane to the central topic of this volume is the use of data assimilation in dynamical
hypothesis testing and the inference of real ocean dynamical processes from data.
Data-model misfits or residuals can be used to evaluate different model formulations.
Dynamically adjusted data can be used for balance-of-terms studies involving higher
spatial derivatives. Furthermore, many essential biological oceanographic rate param-
eters are presently not directly measurable in situ, and data assimilation is necessary
for their estimation.

Some important aspects of state estimation and parameter estimation are exem-
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Fig. 12.1. Schematic of the linkages and feedbacks for the process of data assimilation within an ocean
observing and prediction system (OOPS). Arrows represent the most common direction for the flows
of information. The arrow between the measurement models and dynamical models is double because
measurement models can include operators that map state variables and parameters to the sensor data
(e.g., interpolations, derivatives, or integrals of state variables/ parameters) and operators that transform
sensor data into data appropriate for the model scales and processes (e.g., filtering, extrapolations, or
integrals of sensor data). The legend at the bottom explains abbreviations.
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plified via an operational real-time interdisciplinary forecast and a highly idealized
predator–prey model, respectively. The operational forecast carried out in March 1998
for NATO naval maneuvers in the Gulf of Cadiz in the northeast Atlantic Ocean,
west of the Strait of Gibraltar, is illustrated in Fig. 12.2. The Harvard Ocean Predic-
tion System (HOPS; Section 3.8) was utilized in conjunction with an observational
network managed by the NATO SACLANT Undersea Research Centre (Robinson
et al., 1999; Robinson and Sellschopp, 2000). Platforms included satellites, aircraft,
and ships. Both state-variable fields and associated error fields were forecast, and
the error fields were used to design adaptive sampling patterns. For naval operations,
the temperature field is important because of its effect on acoustic propagation, and
the chlorophyll field is important because it is related to the phytoplankton field that
affects bioluminescence, which can be used to detect ship movements.

The simple predator (y)–prey (x) model used to illustrate parameter estimation
consists of two coupled nonlinear ordinary differential equations in time (Fig. 12.3)
assuming spatial homogeneity (Lawson et al., 1995). There are six internal parameters
(ai, i c 1 to 6) representing net growth–death rates, self-interactions and predator–prey
interactions, and two initial condition parameters. For a chosen set of parameters, a
“true” simulated time series is obtained by model integration, which is then subsam-
pled to provide a data set for assimilation in a model run with imperfect parameters.
The true parameters are retrieved iteratively: the model is run forward in time, the
adjoint model is run backward in time, and the parameters are adjusted to minimize
the penalty function, which consists of the sum of the squared differences between
the run estimates and true data. All eight parameters are recovered successfully and
accurately.

Data assimilation is now being extended to interdisciplinary oceanography from
physical oceanography, which has derived and extended methodologies originating
from meteorology and engineering for over a decade and a half (e.g., Mooers et al.,
1986). In physical oceanography it is now an established technique that is utilized
routinely for research and applications. Three books (Bennett, 1992; Malanotte-Riz-
zoli, 1996; Wunsch, 1996) introduce and overview the topic. A recent review (Robin-
son et al., 1998) discusses fundamental concepts, introduces the mathematical basis of
the range of specific methods under common generic assumptions and uniform nota-
tion, and summarizes research progress. That review (hereafter referred to as RLS98)
is intended to provide context and background for the present chapter. In particular,
the first two sections, on basic concepts, goals, and methods, may be helpful.

There is considerable potential for data assimilation to contribute powerfully to
understanding, modeling, and predicting biological–physical interactions in the sea
(GLOBEC, 2000). However, the complexity and scope of the problem will require
substantial computational resources, adequate data sets, biological model develop-
ments, and dedicated novel assimilation algorithms. The complexity also requires
that special care be exercised (e.g., to avoid spurious dynamics due to assimilation
shocks and to ensure global rather than local minima of penalty functions).

Subsequently in this chapter, in Section 2 we discuss interactive processes, scales,
data, models, and methods; Section 3 illustrates assimilation concepts and research
issues in terms of detailed case studies; in Section 4 we then overview progress to
data more comprehensively but with less detail for individual studies and discuss the
prospectus for future progress; and in Section 5 we summarize.
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Fig. 12.2. See color insert. Real-time multidisciplinary forecast for the Gulf of Cadiz and Strait of
Gibraltar: (a) melded estimate of forecast temperature with data assimilation; (b) melded estimate of
forecast chlorophyll with data assimilation; (c) forecasted error associated with the estimated field of (a)
carried out by ESSE methodology (e.g., Lermusiaux and Robinson, 1999); (d ) sampling track adaptively
designed from the forecast and forecast errors; (e) remotely sensed sea surface temperature field; ( f )
remotely sensed (SeaWiFS) chlorophyll field. (From Robinson et al., 1999.)
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Fig. 12.3. Predator–prey model. Recovery of the (a) prey equation 5 coefficients; (b) predator equation
6 coefficients, (c) initial conditions for the prey X1, and (d ) logarithm of the cost function. (Adapted
from Lawson et al., 1995.)

2. Processes, Concepts, and Methods

In this section we overview the broad range of biophysical phenomena to which
data assimilation is applicable and the systematics of such application, and discuss
research issues associated with models, data sets, assimilation procedures, and vali-
dation. Fundamental overall research issues relate to the essentially unknown observ-
ability, modelability, predictability, and controlability of marine ecosystems. The case
studies of Section 3 and overall review of Section 4 illustrate the research issues
introduced here.

2.1. Processes and Scales

Interactive biophysical processes in the ocean occur over a great range of space and
time scales, and many must be characterized by multiple scales. Some scales charac-
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terizing biological structures and events arise from pure biological dynamics, some
are directly imposed by physical dynamics, and some are generated by essentially
interactive dynamics. Examples are the rapid bloom of phytoplankton in the presence
of plentiful light and nutrients, the entrapment of an ecosystem in an eddy, and the
formation of an offshore plankton plume in a coastal upwelling system. A number of
studies have produced interesting diagrams and schematics of coupled phenomeno-
logical scales, which are summarized by Hofmann and Lascara (1998). However, the
multiscale aspect of oceanic phenomena must be borne in mind. A physical exam-
ple is an open-ocean free jet (e.g., the Gulf Stream). It is large scale downstream,
jet scale cross-stream, mesoscale in its meandering, submesoscale in ring formation
events, depth scale barotropically, thermocline scale baroclinically, and has surface
and bottom boundary layers. One thread of organization of biophysical processes in
this volume runs from smaller-scale to larger-scale processes. Processes range from
turbulence and individual predator–prey encounters to climate change and evolution
of the ocean–atmosphere system itself. Some of the most energetic processes occur at
intermediate scales, and statistically mesoscale interactive processes can importantly
mediate large-scale phenomena.

2.2. System Concept

A system approach that synthesizes theory, data, and numerical computations is
essential for rapid and efficient progress in modern interdisciplinary ocean science
(Robinson et al., 1999). The concept of ocean observing and prediction systems
(OOPS) for field and parameter estimation has only recently crystallized in ocean
science and technology. There are three major components of an OOPS: an observa-
tional network; a suite of interdisciplinary dynamical models; and data management,
analysis, and assimilation schemes.

Generally, multiple interactive scales require compatible observational and model-
ing nests, and efficiency requires a well-chosen mix of sensors and platforms. During
the last decade the first such systems were assembled, constructed, and applied to var-
ious applications in a few regions of the world ocean (RLS98; Section 4.2). The archi-
tecture of an advanced system concept structured around databases (LOOPS: Littoral
Ocean Observing and Prediction Systems; Patrikalakis et al., 1999; Robinson and the
LOOPS Group, 1999) is schematized in Fig. 12.4. The LOOPS system is modular,
based on a distributed information concept, providing shareable, scalable, flexible,
and efficient workflow and management. The system approach to complex interdisci-
plinary ocean science now shares many common or analogous problems with aspects
of computer and information science, complex system science, and optimization tech-
nology which can contribute to advanced system methodology in oceanography.

2.3. Models

The Navier–Stokes equations of fluid dynamics (conservation of momentum and
mass) together with thermodynamics and radiative transfer theory define the physical
hydrodynamical, acoustical, and optical state variables for the ocean continuum and
also provide fundamental nonlinear dynamical prognostic model equations for their
evolution. The problem lies in determining appropriate approximate forms for pro-
cesses and scale ranges of interest. This involves closure hypotheses for the parame-
terizations of scales that are smaller or larger than the scales explicitly represented in
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Fig. 12.4. Schematic of the architecture of the Littoral Ocean Observing and Prediction System
(LOOPS).

the approximate dynamics [e.g., for the hydrodynamics, Reynolds stresses, and open
boundary conditions: Kundu (1990), McComb (1991) and Frisch (1995)].

A similar fundamental dynamical underpinning does not exist for biogeochemical–
ecosystem models (hereafter referred to simply as biological models). There are fun-
damental a priori problems in the definition of the biological continuum, the definition
of biological state variables, and the formulation of the basic biological dynamical
model equations, which precede the challenging tasks of approximation and param-
eterization (Platt et al., 1997; see also Chapter 13). General dynamical equations for
n biological state-variable fields fi(r, t) are of the form
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∂fi

∂t
+ v . ∇fi − ∇ . (Ki∇fi) c Bi(f1, . . . ,fi, . . . ,fn) (i c 1, . . . , n) (1)

where t is time, r the three-dimensional position vector, v the velocity vector, and
Ki a diffusivity. The first term on the left is local time change at a point, the second
is advection, and the third term is diffusion. The term Bi on the right is the biologi-
cal dynamics or reaction, which represents all the sources and sinks of fi due to,
for example, reproduction, life-stage transitions, natural mortality, predation, chemi-
cal reactions and behavior. Universal formulations for all the processes inherent in
the Bi do not yet exist and require substantial research, but the Bi are known to be
strongly nonlinear. The general form of equation 1 governs the evolution of dynami-
cally active tracer fields in flows and is known as an advective–diffusive–reactive
(ADR) equation.

The concept of treating seawater as a physical continuum with regard to the point-
wise statement of the conservation of momentum, mass, heat, and salt is established
on sound physical and mathematical bases. The smallest test volume accessible to
macroscopic instruments still contains very many molecules (Batchelor, 1967), and
the infinitesimal limit process of calculus is applicable in the derivation of the differ-
ential equation statements of the conservations. The same is true for dissolved bio-
logical and chemical material but not necessarily for larger particles and organisms. It
is, however, interesting and fundamental to derive conservation equations for the state
variables of the concentration densities of these larger inorganic particles and living
organisms by averaging over small but finite volumes (Pedley and Kessler, 1990,
1992) and subsequently, to integrate those equations for the field functions fi(r, t)
in specific circumstances and forcings. As for the physics, an intermediate step will
often involve approximations for specific processes and dominant scales of interest
(e.g., Siegel, 1998). The nonlinearities of the Bi will produce larger-scale averages of
smaller-scale correlated fluctuations (generalized biological Reynolds stresses) which
will require parameterizations, and eddy diffusivities will generally be anisotropic and
spatially heterogeneous.

The basic biological state variables pertinent to the modeling of a marine ecosys-
tem consist of the life stages of all the species interacting in the food web and all
the nutrients and detrital products involved. This is generally a very large number of
state variables (closer to infinity than to 10) which for intellectual, conceptual, and
computational reasons must be reduced by condensation and aggregation (e.g., Iwasa
et al., 1989). A set of critical state variables must be defined for modeling a specific
problem, and the concept of a minimal set, an optimal set, and a maximal set has been
introduced (GLOBEC, 1995; Nihoul and Djenidi, 1998). The minimum set can cap-
ture the process qualitatively, the optimal set can capture the process quantitatively,
and the maximal set provides the most detail consistent with data, computational, and
conceptual constraints. Research on nested hierarchies of models in which a single
aggregated state variable is expanded into several state variables (e.g., a zooplankton
variable expanded into several types and size classes) is relevant. Here we consis-
tently use the term state variables, but note that many biological modelers use the
terms compartments or components.

An alternative to the Eulerian field equations (equations 1) is the Lagrangian
approach, in which water particles or parcels are marked at some initial time and



ALLAN R. ROBINSON AND PIERRE F. J. LERMUSIAUX484

the biological dynamics is subsequently followed along flow trajectories. Individual-
based models (IBMs) are Langrangian models for concentration densities of life-stage
cohorts of organisms (DeAngelis and Gross, 1992). It is, of course, essential that for
biophysical process modeling, the coupled physical and biological models be compat-
ible with respect to interactions and scales, and that the biological model be internally
consistent. However, hybrid approaches (e.g., Eulerian physics and Lagrangian biol-
ogy or a Lagrangian predator in an Eulerian prey field) may be utilized effectively.

Finally, we remark that analytical theoretical models and idealized numerical mod-
els can complement the most realistic four-dimensional ocean models and provide
valuable insights. Scale analyses and the nondimensionalization of the physical and
biological equations (O’Brien and Wroblewski, 1973; Platt et al., 1977; Ryabchenko
et al., 1997; Robinson, 1997, 1999a) can significantly enhance the impact of data in
assimilative studies, especially for parameter estimation. For example, Ekman num-
bers replace viscosities in the momentum equations and the ratios of the advective
rate to selected biological rates, and so on, parameterize equations 1. A particular
idealization that has received much attention is the reduction of biological models to
lower spatial dimensions. Hofmann and Lascara (1998) present comprehensive tables
of coupled models in zero spatial dimensions (time dependence only), one dimen-
sion (vertical with time), and two and three dimensions (vertical and horizontal with
time).

2.4. Data

Compatibility (e.g., Anderson et al., 2000) is required between the biophysical data
sets and the biophysical models into which the data are to be assimilated. There are
also strong compatibility requirements among the physical, biological, and chemi-
cal subcomponents of the interdisciplinary data sets suitable for assimilation. The
specifics of these compatibility constraints are not yet well known or defined, and a
substantial research effort is required to understand them. To succeed, such interdis-
ciplinary research requires an increased synergetic effort among physical, biological,
and chemical oceanographers. The different specific purposes for which the data are
to be assimilated may, of course, impose different specific requirements on data sets.
For example, the rigorous verification of a real-time regional ocean prediction sys-
tem requires dedicated predictive skill experiments with oversampling, whereas the
subsequent operation of such a system requires the definition of an efficient minimal
data set for desired accuracies. If a purpose of the assimilation is to control deficien-
cies of a biological model, the model must generally be capable of representing the
oceanic process being observed (i.e., it must be generally valid for the process). This
concept is illustrated in Section 3.4.

There are essentially three modes of collecting data for ecosystem studies. Labora-
tory experiments and measurements provide necessary information on the inner work-
ings of organisms (behavior, growth kinetics) and inorganic reactions (composition
ratios, reaction rates), usually in pure-culture or isolated species designs (e.g., Giesy,
1980). In situ samplings in the natural open-ocean environment provide data reflect-
ing the complexities of multiple interactions among various material and species,
on multiple scales, in response to internal dynamics and external forcings. To build
some bridges between laboratory manipulations or microcosms, and real ocean inves-
tigations or macrocosms, experiments with artificial enclosures of seawater can be
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employed (Grice and Reeve, 1982a,b; Harris, 1996). These mesocosms aim to sus-
tain representative, naturally proportioned, and viable ecosystems, either free or arti-
ficially forced (Gamble and Davies, 1982; Petersen et al., 1999). As of today, they
enclose usually about 10 to 104 m3 of seawater, for days to years. They can provide
data on aggregated production rates and exchanges between several trophic levels.

Data assimilation has important roles to play in each of these three modes of sci-
entific experiments, from the rigorous development and verification of models, to
the identification of the necessary and sufficient data for parameter estimation and
model state predictions. Important feedbacks (Fig. 12.1) are expected to occur, at
varied scales and levels of aggregation. Since mesocosm observations are often easy
to obtain and intensive, both locally and in budgets (e.g., Banse, 1982), zero- or one-
dimensional simplifications of parts of the models Bi (equation 1) can be calibrated,
validated, and verified (Section 2.6). Some of these concepts are illustrated in Sec-
tion 3.3. Similarly, the use of data assimilation in laboratory experiments for marine
biology should become widespread in the future.

An efficient mix of platforms and sensors, remote and in situ, is an effective
approach not only for individual state variables (e.g., temperature, chlorophyll) but
also for the suite of variables composing a compatible set of interdisciplinary data
types for coupled biophysical assimilation. Although compatible data sets simulta-
neously acquired by design are now rare, the promises of coupled biological–physical
data assimilation can be realized only by the purposeful acquisition of such coordi-
nated multivariate observations. Several techniques exist to compensate for lack of
observations in interdisciplinary data sets and to extend the impact of existing obser-
vations; vigorous research is also required in these areas. Multivariate and interdis-
ciplinary correlations, statistical feature models, and structured feature models (e.g.,
Lozano et al., 1996) provide valuable tools. Missing data for compatible biophysical
assimilation can also be estimated off-line of the main simulation or prediction of
interest. This approach is illustrated in Section 3.7.

New, advanced measurement techniques for biological fields and parameters
present powerful future opportunities for the acquisition of extensive and compre-
hensive data sets but also present challenging problems of interpretation. Observa-
tion of sea surface color from satellites, which was initiated in 1978 from the Coastal
Zone Color Scanner (CZCS) and is presently being obtained from the Sea-Viewing
Wide Field-of-View Sensor (SeaWiFS), is providing coverage of the surface distribu-
tion of biological features essentially unattainable otherwise (McClain et al., 1998).
But serious questions remain as the relationship of the observed outgoing surface
irradiances to near-surface distributions of chlorophyll, phytoplankton, and inorganic
colored materials, and of the relationships of surface distributions to deeper fields
(e.g., subsurface chlorophyll maxima). New sensor developments require concomitant
research on new measurement models, including, importantly, research on the rela-
tionship between sensor variables and dynamical model state variables. For example,
direct assimilation of irradiance measurements may be more effective than converting
those to chlorophyll and then assimilating them as is done now. Direct use of irradi-
ance measurements will require a more sophisticated bio-optical model component of
the biophysical model. In situ measurements of multifrequency acoustics, multispec-
tral optics, and their use simultaneously for biological state variables and parameters
is already very promising but requires extensive measurement model research.

Data impact and sensitivity research requires substantial research on skill metrics
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and error models (Lynch and Davies, 1995; Lynch et al., 1995; Robinson and Glenn,
1999). Their use in quantitative biophysical observation systems simulation experi-
ments (OSSEs; see GLOBEC, 1994) is essential, and OSSEs for automated adaptive
sampling research are crucial. There is a need for extensively sampled restricted areas
that can serve as test beds for model calibrations, model intercomparisons, parameter
estimation, assessment of data requirements, evaluation of data assimilation methods,
and other research issues related to biophysical data assimilation.

2.5. Assimilation Methodology

A number of methods developed and used for data assimilation in engineering, mete-
orology, and physical oceanography are available as starting points for coupled bio-
physical data assimilation. An overview is presented in Section 3 of RLS98, with
an appendix that provides mathematical assumptions and equations for most meth-
ods. Details presented there are not repeated here. Most methods are derived directly
from estimation theory or control theory. The methods range from simple to com-
plex, but all involve hypotheses that lead to the minimization of an error norm or
assimilation criterion to determine the state or parameter values. Optimal applica-
tion of a method satisfies the criterion exactly, but a suboptimal application does so
only approximately. Since assimilation calculations can be costly and time consuming
and can strain available or existent computational capabilities, suboptimal methods
are often necessary. Twin experiments consist of exercising the assimilation proce-
dure with simulated data of properties usually analogous to those of real data (e.g.,
Section 1, Fig. 12.3; Malanotte and Young, 1992; Miller and Cornuelle, 1999). This
serves to determine if the data and assimilation scheme could work for real data. In
identical twin experiments, the model used to create the simulated data is the same
as the model used for the assimilation.

The estimation of errors associated with the biophysical model and data available
for assimilation is important. The deterministic equations (equation 1) are generally
modified and manipulated to equations with stochastic forcings dh i (equation 2a). The
ensemble of model parameters (diffusivities, biological rates, etc.), Pi c {Ki, Ri, . . .},
are also represented by an equation with stochastic forcings dz i (equation 2b), where
Ci are functionals that describe the deterministic evolution of the parameters with
time and space. The state variables fi are related to the data yj via measurement
models, with stochastic forcings e j (equation 2c). The assimilation or melding cri-
terion (equation 2d) involves in general the minimization of a functional J of the
stochastic or error forcings dh i, dz i, and e j , and of their a priori statistical proper-
ties or weights denoted by qh , qz , and qe (equation 2d), subject to the constraints of
equations 2a to 2c.

dfi + v . ∇fi d t − ∇ . (Ki∇fi) dt c Bi(f1, . . . ,fi, . . . ,fn) dt + dh i

(i c 1, . . . , n) (2a)

dPi c Ci(f1, . . .fi, . . .fn) dt + dz i (2b)

yj c Hj(f1, . . .fi, . . .fn) + e j ( j c 1, . . . , m) (2c)
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min
fi , Pi

J(dh i, dz i, e j , qh , qz , qe) (2d)

The three sets of equations 2a to 2c and the assimilation criterion (equation 2d)
define the assimilation problem (Fig. 12.1). In equation 2b, the Ci’s are often assumed
constant (but do not need to be) and equation 2b then simply states that parameters are
known a priori up to a certain uncertainty dz i. In equation 2c the measurement model
operators are denoted by Hj . These functionals Hj can depend, as do Bi and Ci, on the
values of parameters. For example, if the parameter Pi is measured, yj then represents
that measurement and equation 2c is then usually yj c Pi +e j . Similarly, if a state vari-
able fi is measured at the scales of interest, equation 2b is simply yj c fi +e j . In equa-
tion 2d the functional J is often called the cost, penalty, or objective function. Using
equations 2a to 2c to substitute for dh i, dz i, and e j in equation 2d, J is expressed as
a function of the unknown state variables fi and parameters Pi, and known a priori
information, the data yj , and weights qh , qz , and qe . The subsequent minimization
(equation 2d) subject to equations 2a to 2c by a chosen assimilation scheme leads
to optimum estimates of fi and Pi, denoted by f̂i and P̂i. For state estimation (f̂i),
we refer to the estimates just before and just after data assimilation as a priori and
a posteriori, respectively. For parameter estimation (P̂i), a priori and a posteriori refer
to parameter values at the beginning and at the conclusion of the optimization. Data
residuals or data-model misfits refer to the differences between the data and model
estimated values of the data, yj − Hj (f̂1, . . . , f̂i, . . . , f̂n).

If the models or data are used as strong constraints (e.g., model structures and
functionality are assumed perfect without errors), the terms dh i, dz i, or e j are null.
If the model or data are used as weak constraints, their errors, or the probability
distribution of the stochastic forcings, are specified and utilized in the assimilation
criterion (equation 2d). We note that these stochastic error forcings dh i, dz i, and e j

do not need to have a zero mean, but that equation 2a to 2c can always be written
so that they do, by transferring the means to Bi, Ci, and Hj . The assimilation can be
understood as a forward or filtering problem, or as a smoothing or inverse problem
(Bennett, 1992; Wunsch, 1996; Robinson and Lermusiaux, in press), as is illustrated
in Section 3. In simple terms, the parameters or state are said to be observable if their
optimum value can be determined from the data and assimilation criterion (equa-
tions 2c and 2d). The issue of observability (e.g., Brockett, 1970; Jazwinski, 1970)
is important in biophysical estimation, as discussed in Sections 3 and 4. The use of
data assimilation methods for biophysical system identification is also described in
these sections. Different models 2a to 2c are then intercompared based on criterion
2d. Formal methodologies (e.g., Eykhoff, 1974; Kulhavy, 1996) to do so exist, espe-
cially for linear systems, and they should be investigated. In particular, the identifica-
tion of adequate parameterizations is primordial in ecosystem modeling (e.g., Haney
and Jackson, 1996), and in this chapter it is included in the objectives of parameter
estimation.

Most minimization criteria 2d are essentially least squares (e.g., error-weighted
sum of squared data residuals) or convex optimization problems, which give the con-
ditional mean as optimal estimate if the system is linear or of Gaussian statistics.
Some important processes in the ocean (e.g., intermittence and frontal coherence)
are inherently non-Gaussian, and methods may need to be extended or developed to
deal with these processes, especially when few data are available. This will probably
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be the case for several important biological processes. However, at this early stage
of biophysical assimilation, much is to be learned from the immediate application
of existing methods, including the use of simple methods if care is taken to avoid
pitfalls such as those illustrated in the following sections.

Biophysical dynamics are generally complex and highly nonlinear, and only data
assimilation research will reveal the essential methodological problems and the pre-
ferred methods of dealing with them. At this time, research with a variety of meth-
ods is desirable, although those that are fundamentally or inherently linear hold less
promise. Data assimilation methods and schemes, the structure of dynamical and mea-
surement models, and observational networks and sampling strategies are all inter-
related as an overall system (Fig. 12.1). Accuracy, efficiency, optimality, robustness,
and stability of the overall system can be achieved only by an iterative development
of the system’s architecture, components, linkages, and feedbacks.

2.6. Errors and System Evaluation

A current topic of data assimilation research in general relates to the representation,
attribution, and propagation of errors, and an increased research effort will be required
in coming years. The complexity of biophysical processes presents many challenging
issues in error modeling. The fact that biophysical data assimilation is in its infancy
provides an interesting opportunity to construct such models employing relevant new
ideas from the general research effort. A variety of error metrics (equation 2d) need
to be explored and defined for specific purposes involved in parameter estimations,
simulations, nowcasts, and forecasts. Important examples include penalty functions
and weights and predictive skill metrics. Such considerations are essential for the
development of effective biophysical observation system simulation experiments and
the real-time operation of ocean observing and prediction systems (GLOBEC, 1994).
Rigorous system evaluation is time consuming and demanding, and the development
of automated schemes for the dual use of data for validation prior to assimilation is
desirable.

Dynamical model errors (equations 2a and 2b) can arise from the misrepresen-
tation of dynamical processes, both explicitly and parametrically, the omission of
processes, mathematical formulations, and computational algorithms and procedures.
Observational errors (equation 2c) can arise from the design and operation of sensors
and platforms, sensor and measurement models, and environmental noise. As men-
tioned above, lack of compatibilities between the models and the data, as well as the
biology and the physics, are error sources. Error variances, multivariate correlations,
and probability distribution functions are all required. Stochastic processes not rep-
resented in the dynamics may be necessary to include in error models (Section 2.5).
To reduce the size of the estimation problem, dominant errors need to be identified
and represented (e.g., by eigendecomposition of error matrices and projection onto
error subspaces) (Lermusiaux, 1997, 1999a,b; Lermusiaux and Robinson, 1999).

For the development of regional biophysical OOPS, the concepts of successive
validation, calibration, and verification (Robinson et al., 1996) are useful. Validation
demonstrates that the system is generally appropriate for the processes and scales
of interest, and calibration tunes the system parameters to the region. Verification
requires dedicated predictive skill experiments with oversampling at the scales of
interest to establish in real time and quantitatively the predictive capability of the sys-
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tem. Both regionally specific and process generic skill metrics are required. Region-
ally specific metrics that quantify qualitative regional variabilities (e.g., the bifurca-
tion or not of a current or the occurrence or not of a significant bloom associated
with a synoptic event) can substantially reduce verification data requirements. Loss
of predictability, which is essentially rooted in nonlinear error propagation and error-
scale transfers, ultimately limits predictive capability (RLS98). Since the atmosphere
forces the ocean and ocean physics forces ocean biology, there are three sets of non-
linearities involved. The synoptic predictability limit of the atmosphere is O(days).
The mesoscle predictability of ocean physics due to ocean internal dynamical pro-
cesses is O(days to weeks). However, many dominant nonlinearities and associated
predictability limits of regional ecosystems and generic biogeochemical–ecosystem
processes are essentially not yet known.

3. Research Concepts and Issues: Case Studies

We present here selected studies and their results chosen to illustrate ideas discussed
generally in the preceding section. These case studies precede the overview of Section
4 in order to illustrate in depth interdisciplinary issues, in part as a basis for the under-
standing of the briefer discussions of individual studies reported there. Each example
presents the scientific problem; the data assimilation methodological research con-
cepts and issues; the model, data set, and assimilation scheme; a summary of research
highlights; and a discussion of implications for further assimilation research. Two
general lines of organization are (1) parameter estimation is followed by state esti-
mation, and (2) idealized, low-dimensional models precede four-dimensional, more
realistic models.

3.1. Model Evaluation via Parameter Estimation for the Sargasso Sea

Spitz et al. (1998) address the use of an adjoint method (Bennett, 1992; Wunsch,
1996; RLS98) for the systematic estimation of the parameters of a model for the sea-
sonal dynamics of plankton at a site in the upper mixed layer of the western North
Atlantic ocean. The pelagic ecosystem model is the nitrogen-based model of Fasham
et al. (1990). The data consist of sparse time series of observations (Fig. 12.5) col-
lected during the U.S. Joint Global Ocean Flux Study (JGOFS) experiments at the
Bermuda Atlantic Time-Series Study (BATS) station. Two groups of data assimilation
experiments are carried out: identical twin experiments (Section 2.5) to determine if
the properties of the BATS data and optimization algorithms permit a successful esti-
mation, and the parameter estimation based on the real BATS data to evaluate the
ecosystem model.

The one-dimensional ecosystem model averaged over the mixed layer includes
a microbial loop; its seven state variables are the concentrations of nitrate, phyto-
plankton, zooplankton, ammonium, dissolved organic nitrogen, detritus, and bacteria.
The data forcing the model are the monthly mean mixed-layer depths at Bermuda,
obtained from the Levitus (1982) climatology, and the incident solar radiation at
the ocean surface. The nitrate below the mixed layer and maximum phytoplankton
growth rate are free parameters. The BATS ecosystem observations consist of pro-
files of nitrate, chlorophyll a and particulate organic nitrogen concentrations, bacteria
cell counts, phytoplankton primary production rates, and bacterial production rates.
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Fig. 12.5. BATS observations between 1998 and 1993 (crosses) and results from data assimilation (solid
curves). (From Spitz et al., 1998, Fig. 10.)

Profiles collected at about monthly intervals from 1988 to 1993 are combined into a
single year and vertically integrated from the surface to the seasonally varying mixed-
layer depth prior to assimilation. These simplifications are based on the assumptions
of steady annual cycle and homogeneous mixed layer.
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A measurement model (e.g., equation 2c) is constructed based on diagnostic equa-
tions and conversion factors. The model phytoplankton nitrogen concentrations are
converted to chlorophyll a data assuming a linear relationship with constant coeffi-
cients. The bacteria cell counts are simply related to nitrogen but given a low weight
in the cost function. For the particulate organic nitrogen and phytoplankton primary
production rates data, diagnostic equations with constant factors are employed. Bac-
terial production rates were not used.

The cost function is an error-weighted sum of squared data residuals (Section 2.5).
The a priori weight matrices are chosen diagonal. The inverse of the weights are set
for each data type, proportional to the time average of the data (Lawson et al., 1995,
1996). Weights for data with large uncertainties are reduced by a factor of 10. An
adjoint method is used to minimize the cost function.

For the identical twin experiments, simulated data are generated at the same fre-
quency and type as the BATS data, using the model of Fasham et al. (1990) cali-
brated for a steady annual cycle at a station northwest of BATS. Five years of model
simulations are subsampled at BATS frequencies and combined into one year. This
simulated data are assimilated into an independent one-year simulation. Most param-
eters, but not all, are recovered. To solve this issue, the parameters not recovered are
grouped into combinations of parameters (i.e., sums, fractions, or products). Without
changing the dynamics, these combinations are then chosen as an alternative param-
eter set. The twin experiment is redone and all of these combinations are then recov-
ered. The authors note that the parameters to which the dynamics are most sensitive
are recovered with fewer iterations.

The BATS data are then assimilated, but the resulting optimized model solution is
not close to the data (Fig. 12.5). Primary production is too low in the model. Based
on the twin experiments, the data and optimization algorithm are not the probable
cause of failure. It is more likely the ecosystem model, imposed as a strong dynamical
constraint by the adjoint method (no model errors), and the measurement model and
its errors (weights in the cost function), which need to be revised.

For improvements of the ecosystem model, the authors first suggest modifying
the primary nitrate forcing from a constant below the mixed layer to a concentration
increasing linearly with depth below that layer. This suggestion is based on nitrate
profiles at BATS and on previous studies (Fasham and Evans, 1995; Hurtt and Arm-
strong, 1996). Due to interannual variabilities and episodic physical forcings (e.g.,
waves, eddies), the assumption of steady annual cycle should also be verified or, we
believe, at least imposed as a weak constraint (Section 4.5). In Fig. 12.5, this is shown
supported by the sometimes relatively large scattering between data crosses of sim-
ilar calendar days but different years. For the measurement model, the authors first
suggest using nonstatic conversion factors (e.g., chlorophyll a/ nitrogen ratio in the
phytoplankton, which varies seasonally with light intensity) (Hurtt and Armstrong,
1996). More research on N2 fixation and the diagnostic equations themselves (e.g.,
the link between the fraction of particulate organic nitrogen that is modeled and its
measured total value) may also be useful.

The results of Spitz et al. (1998) show that twin experiments can guide the removal
of parameter dependencies by indicating useful groupings and can reveal reasons for
unsuccessful real data assimilation. The authors also suggest that the model struc-
tures of Fasham et al. (1990) need to be modified to allow a fit of the BATS data
(Section 4.4). In addition, issues related to low-dimensional biophysical dynamics,
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error models, and data manipulations are also important. In particular, the effects of
combining multiyear data directly into a single assimilation year should be assessed
(e.g., Sections 4.4 and 4.5).

3.2. Model Complexity for the Subarctic Pacific

Matear (1995) illustrates that data assimilation can quantitatively determine the nature
of the dynamics and ensure that the complexity of a model is consistent with the infor-
mation contained in the data using simulated annealing (RLS98) to estimate model
parameters and their uncertainties. The consistency of three oceanic mixed-layer
ecosystem models of varying complexity with long-term biological data collected
at a site in the subarctic Pacific (Station P) are compared. The models are nitrogen-
based and aim to describe the seasonal variation of the phytoplankton biomass and
production. Horizontal advection and diffusion are neglected based on Frost (1991).
The mixed layer is assumed to be homogeneous and to overly an abiotic layer. The
vertical forcing is limited to the observed evolution of the mixed-layer depth, and
its biological effects are parameterized differently for motile or nonmotile variables
(Evans and Parslow, 1985).

The simplest model governs nitrate, phytoplankton, and zooplankton (NPZ) in
the mixed layer, based on Evans and Parslow (1985). This three-component model
contains 14 parameters. The next model divides zooplankton into two size classes
(mesozooplankton and microzooplankton), so as to ensure that only microzooplank-
ton grazing can prevent a bloom of phytoplankton (Frost, 1987). This four-component
model requires 18 model parameters. The final model, based on Fasham et al. (1990),
includes a microbial loop which has been observed to be significant for the plankton
dynamics in the northeast Pacific. It contains seven components and 25 parameters.

The daily data are averages of relatively high frequency observations collected at
Station P over several years. Some of these averaged data force the models directly
(the annual cycles of solar radiation, mixed-layer depth, mixed-layer temperature,
and nitrate concentration below the mixed layer). The remainder of the averaged
data constrain model parameters (phytoplankton, rate of primary production, nitrate,
and mesozooplankton concentrations) (Fig. 12.6A-1, A-2, A-4 and Fig. 12.7B-4).

For each model, the goal is to estimate the parameters that minimize an error-
weighted sum of squares (Section 2.5) comprising daily data residuals (data misfit
penalty), differences between state variables on the first and last days of the year
(steady-state seasonal cycle penalty), and differences between the final and a priori
parameter values (a priori parameter penalty). The a priori error variances for the data
(Fig. 12.6A-1, A-2, A-4, and Fig. 12.7B-4) are estimated from data variability, from
the uncertainty of converting sensor to data values (e.g., Fig. 12.6, from A-5 to A-1),
and from the differences between data processed by two sources. The a priori error
variances for the parameters are derived from earlier applications of the models.

Simulated annealing generates a sequence of estimates such that new estimates
with lower cost are always accepted, while new estimates with higher cost are
accepted with a certain probability. This direct, global method can address strong
nonlinearities, but its computational requirements are large. For all three models, the
observability (Section 2.5) of the parameters is estimated locally, based on the number
of parameters that are resolved independently. This is obtained from the off-diagonal
elements of the a posteriori error correlation matrix. In all cases, at most 10 model
parameters are resolved, which is always less than the number of unknown parame-



DATA ASSIMILATION FOR PHYSICAL–BIOLOGICAL INTERACTIONS 493

Fig. 12.6. Optimized solution for the three-component model (solid curves), compared with data
(dashed curves) and data error estimates (± 1 standard deviation uncertainties, dashed curves). On (A-1),
phytoplankton concentration; (A-2), net phytoplankton productivity; (A-3), zooplankton concentration;
(A-4), nitrate concentration; (A-5), chlorophyll a concentration data, as measured at Station P. The aver-
aged data assimilated are nitrate, phytoplankton, and the phytoplankton productivity. The weak “feature
model–like” constraint for the zooplankton is here also represented as a dashed line, with ± standard
deviation uncertainties (A-3). Note that the phytoplankton data assimilated (A-1) are constant. (Adapted
from Matear, 1995.)
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Fig. 12.7. As for Fig. 12.6, but for the four-compartment (B-1 to B-4) and seven-compartment (C-1 to
C-4) models. The nitrate concentrations of these two models are relatively similar to those of Fig. 12.6;
they are not shown. The mesozooplankton (B-4) is the additional state variable in the four-compartment
model and the mesozooplankton data (B-4) are only used with this model. Dashed curves lines on (B-3)
show the weak feature model constraint (as on Fig. 12.6). In the seven-compartment model, there is no
such weak constraint on the zooplankton (C-3), but there is one on the f-ratio (not shown). The bacteria
concentration (C-4) illustrates the microbial loop. (Adapted from Matear, 1995.)
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ters. For all models, linear combinations of parameters can thus lead to cost function
values similar to that at the optimum (i.e., the optimal parameters are numerically
not unique). Overall, some a posteriori data residuals are larger than the a priori stan-
dard data errors (Fig. 12.6A-1 to A-4, Fig. 12.7B-1 to B-4, Fig. 12.7C-1, C-2); some
parameters also have a posteriori errors larger than the a priori ones.

The optimized NPZ model is able to reproduce most patterns and magnitudes of
the three types of data assimilated. However, its zooplankton is too high when com-
pared to the few microzooplankton data available at Station P. To utilize this indepen-
dent information, a weak constraint on the zooplankton (Fig. 12.6A-3) is added to the
cost function. With this constraint, the fit is relatively good (Fig. 12.6), but the num-
ber of unresolved parameters remains unchanged. The four-component model (Fig.
12.7B-1 to B-4) also fails to produce adequate microzooplankton without the weak
constraint (Fig. 12.7B-3). Considering errors, the uncertainties on the parameters
comparable to these of the NPZ model are increased; model complexity thus increases
more than the information extracted from the mesozooplankton data. In addition,
for acceptable zooplankton estimates (Fig. 12.7B-3, B-4), some of the parameters
related to their growth and mortality rates seem unrealistic. The author concludes that
the four-component structure is inconsistent with the data and thus requires modifi-
cations (e.g., nonlinear and/ or temperature-dependent rates). The seven-component
model (Fig. 12.7C-1 to C-4) produces acceptable concentrations of zooplankton (Fig.
12.7C-3) without the weak, “feature model–like” (Section 2.4) constraint. However,
it requires such a constraint for its f-ratio estimate (ratio of new production to total
production) to agree with the few summer f-ratio data available at Station P. Con-
sidering errors, the parameters comparable to those of the two other models have
larger a posteriori error variances and correlations; fewer parameters are resolved.
Since very limited data on ammonium and bacteria are available, it is also difficult
to validate the corresponding estimates (e.g., Fig. 12.7C-4).

The analysis of Matear (1995) shows that data used for assimilation can limit the
dynamics that can consistently be included in an ecosystem model. The three-compo-
nent model seems to suffice for explaining the data, but even in this simplest case, sev-
eral parameters are not uniquely determined and some a posteriori errors are too large.
To justify the seven-component model, additional data are necessary to constrain the
microbial loop. Data assimilation is, in fact, shown to help identify the missing data sets.
In general, all the relevant data available should be used, even if the relations between
state variables and data are not simple. To ensure estimates in accord with independent
data, a weak, feature model–like constraint was added. Weak data constraints could also
have been applied via biological correlations (e.g., the sparse mesozooplankton data
could then constrain both the three- and seven-component models, even though these
models do not have a mesozooplankton variable). Similar statements apply to the few f-
ratio data. For all models, several of the optimized parameters are found to be either too
small or too large when compared to a priori knowledge. Error models for the biological
dynamics might be useful for this type of research.

3.3. Model Structure for Coastal Mesocosm Experiment

A promising approach to improving the understanding of ecosystems, and so develop
accurate models of such systems, combines data assimilation with mesocosm exper-
iments (Section 2.4). The recent work of Vallino (2000) aims to apply this approach
in a coastal environment. Mesocosm data are utilized to assess a class of biological
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models and estimate their parameters. Different optimization algorithms are inter-
compared, a relatively detailed measurement model is employed, and some of the
problems with the structure of current food web models (e.g., static parameters and
the lack of robustness), are illustrated.

The four mesocosms considered examine how food web communities in coastal
zones process and utilize the input of terrestrial organic material. The four enclosures
contain 7 m3 of seawater augmented with various combinations of dissolved inorganic
nitrogen and dissolved organic matter. The data consist of approximately daily mea-
surements of particulate and dissolved organic carbon, particulate organic and dissolved
inorganic nitrogen, chlorophyll a, net primary and bacterial productivities, and the light
extinction coefficient. The dynamical model is a zero-dimensional pelagic model sim-
ilar to that of Fasham et al. (1990) but with a fairly complex treatment of organic mat-
ter production and consumption. It employs 10 state variables and involves 29 parame-
ters (governing growth kinetics and organic matter decompositions), three of which are
measured. With the initial conditions, this leads to 36 free (nonmeasured) parameters.

The main goal is to estimate the parameter values that minimize an error-weighted
sum of squared data residuals (Section 2.5); the model structure is a strong constraint
and there are no a priori parameter penalties. Parameters are here directly constrained
to a bounded space and nondimensionalized. A measurement model (equation 2c) is
constructed to link the 10 state variables to the eight types of discrete data. Its error
component involves absolute and relative error variances: data error covariances are
assumed null, but data errors are set correlated in time to ramp in the discrete data
slowly and reduce assimilation shocks (Robinson, 1996; Lermusiaux, 1999a; Ander-
son et al., 2000). The observability of the parameters is estimated locally, based on
the rank, singular values, and resolution matrix of the Hessian matrix at an optimum
(Tziperman and Thacker, 1989; Wunsch, 1996). This local analysis indicates that the
initial carbon and nitrogen detritii, the carbon/ nitrogen ratio of phytoplankton exu-
date, and the decomposition rate of detritus are not well resolved.

Twelve optimization routines are tested, ranging from local gradient-based, sim-
plex, and quasi-Newton methods, to global simulated annealing and genetic algo-
rithms (e.g., RLS98). While some routines do not perform well, several local routines
perform more or less as well as global routines. An interesting result is that the 12 sets
of optimum parameter values found by the 12 routines are scattered throughout the
bounded range of acceptable values (Fig. 12.8). This scattering occurs even though
most routines converge to similar final values of the cost function. The dynamics
of the fits differ. Some are smooth fits, others are rapid oscillations in between data
points (Vallino, 2000). Overall, several a posteriori data residuals are larger than the
a priori standard measurement errors (equation 2c).

The results above indicate that either the data are not sufficient, the assimila-
tion schemes are not adequate, the dynamical model should be a weak constraint,
or the dynamical and measurement models, including their a priori errors, should be
improved. To investigate some of these possibilities, the author carries out an identical
twin experiment. Data are extracted daily from a model simulation of a mesocosm.
The corresponding cost function is reduced using three different routines. All recover
most parameters and lead to good fits of the simulated data. Since the data type and
resolution are as for the actual oceanic mesocosm, the data are overall sufficient and
the optimization routines adequate. It is the models and the strong dynamical con-
straint that are probably inadequate.



DATA ASSIMILATION FOR PHYSICAL–BIOLOGICAL INTERACTIONS 497

Figure 12.8. Optimized, scaled (0 to 1) parameter values associated with each of the minima located
by the 12 optimization routines (abbreviated routine names and their symbols are on top of the figure).
Model parameters (left ordinate) and their absolute parameter bounds (right ordinate) are described in
Vallino (2000). Parameters marked with an asterisk (left ordinate) were held constant during the data
assimilation. (From Vallino, 2000.)
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The author argues that model structures are probably inadequate because of aggrega-
tion and parametrization uncertainties. The large number of optima (Fig. 12.8) appears
related to the strong sensitivity of aggregated models to parameters and initial condi-
tions (Beckers and Nihoul, 1995). This sensitivity results from the strong nonlinearities
(e.g., growth rates varying with biomass). Another reason discussed is the assumption
of static parameters. Parameters can vary with the local environment in coastal regions,
and the parameters fitted for one mesocosm are not adequate for the other mesocosms.
To address these two issues, the author considers a simpler, first-order kinetic model
and a model with a dynamic carbon/ nitrogen ratio of phytoplankton. However, these
two models do not improve the fit to data. The author thus suggests alternative direc-
tions for improvements. Since accurate modeling of all organisms and their interac-
tions is unlikely and not practical, aggregation into a few trophic or functional groups
(Totterdell et al., 1993) is necessary. However, aggregation should involve models for
the growth kinetics of aggregated consortia of species. The structures of such models
do not necessarily mimic these of single-species models; they should be derived from
multiple-species interactions. More abstract models (e.g., starting from mass or energy
conservation) may also be useful and should be investigated (Platt et al., 1981).

Based on the findings of Vallino (2000), several issues and research directions can be
identified. One of them is error model research (Section 2.6) (e.g., the relaxation of the
strong dynamical constraint and the assessment of a priori errors in the measurements,
parameters, and model structures). Another is the compatibility of the sampling (e.g.,
data type, coverage, time and space scales) with the ecosystem under study (Section
2.4). Data assimilation can reduce parameter uncertainties and thus reveal structural
errors should the model with optimized parameters still fit the data poorly. Since meso-
cosm data can be seen as a zero- or one-dimensional limit of regional oversampling,
mesocosm data assimilation may allow the verification of some structures of zero- or
one-dimensional simplifications of biological dynamical models.

3.4. Model and Data Compatibility for the Equatorial Pacific

In a study of biological–physical interactions in the central equatorial Pacific,
Friedrichs (1999) and Friedrichs and Hofmann (2001) have used an adjoint method
(e.g., RLS98) to obtain realistic fields for dynamical inferences. This research illus-
trates the necessity for a biological model to be valid for the general representation
of the coupled process studied in order for data assimilation to be possible (Sec-
tion 2.4). It also demonstrates the importance and utility of both scale analysis for
model formulation and nondimensional analysis in parameter estimation. A number
of physical scales and forcings were studied, including low-frequency circulations in
both the absence and presence of an El Niño event and a tropical instability wave
(TIW) (Qiao and Weisberg, 1995; Yu et al., 1995).

The biological model was a one-dimensional (vertical) ADR model (equation 1)
depth averaged over the euphotic zone (Friedrichs and Hofmann, 2001). The dynam-
ics for the biological state variables (phytoplankton, zooplankton, nitrate, ammonium,
and detritus) is schematized on Fig. 12.9. Iron limitation of primary productivity was
parameterized by a feature model (Section 2.4) in the euphotic zone tied to deeper
observations. The physical diffusions and advections were input from calculations
based directly on time series observations from moorings. Scale analyses indicate
that diffusions were negligible compared to advections, that vertical advections were
important for all state variables, and that horizontal advections were also important
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Fig. 12.9. Schematic of the biological components [phytoplankton (P), zooplankton (Z), ammonium
(A), nitrate (N), and detritus (D)] and biological interactions included in the equatorial Pacific ecosystem
model. (Adapted from Deep-Sea Research II, 48, M. A. M. Friedrichs and E. E. Hofmann, Physical
control of biological processes in the central equatorial Pacific, pp. 1023–1069, copyright 2001, with
permission from Elsevier Science.)

for the two nutrients. The study was centered at (08N, 1408W) and data for physical
forcings and biological assimilations were taken from moorings from the Tropical
Atmosphere Ocean (TAO) project and from two cruises (TS1, TS2) that occurred
during the U.S. Joint Global Ocean Flux Study (JGOFS) Equatorial Pacific Process
Study (EqPac) in 1992. TS1 occurred during the 1991–1992 El Niño and TS2 after
the El Niño event. The control variables for the adjoint assimilation were nondimen-
sionalized and scaled to order unity to facilitate minimization of the penalty function.

The marine ecosystem model requires the specification of 16 parameters, and a
sensitivity analysis revealed that the model results were relatively insensitive to cer-
tain parameters and that many model parameters were highly correlated. Based on the
results of this preliminary sensitivity analysis, six parameters (phytoplankton and zoo-
plankton growth rates, phytoplankton and zooplankton mortality rates, the half-satura-
tion coefficient for iron uptake, and the rate of nutrient recycling) were allowed to vary
within permissible ranges determined by information gleaned from the EqPac cruises.

Fifty forward model simulations were performed in which values of these six param-
eters were randomly chosen for each simulation to be within the permissible ranges.
These results (Fig. 12.10) demonstrate how small changes in parameter values can
result in large differences in simulations. Even when conservative estimates of the
uncertainties associated with these parameters were made, several model state variables
had variations of a factor of 5 to 10. In an effort to select the optimal values for these
parameters, biogeochemical data from the two EqPac cruises were assimilated.

In one experiment, 50 assimilative runs were performed in which data from the
TS1 cruise were assimilated starting with the same 50 random parameter sets used
to generate the forward model results of Fig. 12.10. This experiment identified a
minimum of the cost function (parameter set A; Fig. 12.11) that reduced the model-
data misfit for the independent TS2 data, below the mean misfit obtained for the 50
forward model simulations.

When a second experiment was conducted in which all the TS2 data but no TS1
data were assimilated (not shown), the cost function did not converge in over 200
assimilation runs. This intriguing result implies that although the ecosystem model
structure is consistent with conditions during which the TS1 data were collected (the
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Fig. 12.10. Fourteen-day averaged time evolution (beginning on 9/ 1/ 91) of 50 forward model simula-
tions, generated using 50 randomly selected sets of parameter values that fall within reasonable ranges
(a) primary production, (b) phytoplankton, (c) zooplankton, (d ) ammonium, and (e) nitrate. Average val-
ues from the TS1 (square) and TS2 (triangle) cruise data are shown for comparison. All quantities are
depth-averaged over the euphotic zone. (Adapted from Friedrichs, 2001.)

1991–1992 El Niño), it is inconsistent with conditions during which the TS2 data
were collected.

Environmental conditions during the TS1 and TS2 cruises differed dramatically.
Not only was the thermocline relatively deep during TS1 and shallow during TS2,
characteristic of the El Niño/ non-El Niño time periods, respectively, but also a tropi-
cal instabilty wave (TIW) passed by 08N, 1408W during the TS2 cruise. In order to
determine the cause of the failure of the TS2 assimilation experiment, the portion
of the TS2 data set that was collected during the passage of this wave was removed
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Fig. 12.11. Simulated time distributions of (a) primary production, (b) phytoplankton, (c) zooplankton,
(d ) ammonium and (e) nitrate obtained using two optimal parameter sets recovered from the assimilation
of the TS1 data set (parameter set A; solid line) and a subset of the TS2 data set (parameter set B; dotted
line) using the adjoint method. The TS1 data (filled squares), TS2 data (open squares) and the subset of
the TS2 data (filled triangles) are shown for comparison. (Adapted from Friedrichs, 2001.)

from the TS2 data, and the assimilation process was repeated. In this experiment
the cost function did converge and a parameter set (B; Fig. 12.11) was obtained that
improved the model-data misfit for the independent (TS1) data set.

These results suggest that the initial TS2 assimilation experiment was unsuccessful
because the model structure was inconsistent with ecosystem changes associated with
the TIW. The large change in species composition observed during the passage of this
wave (Bidigare and Ondrusek, 1996) is the most likely cause of this inconsistency. In
this way, the adjoint assimilation of the EqPac data reveals that although the model
structure is consistent with both El Niño and non–El Niño conditions, it breaks down
during the passage of instability waves, which are believed to be associated with
significant changes in species composition.
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Fig. 12.12. Schematic of the bottom topography of the Gulf of Maine and Georges Bank. NEP, North-
east Peak; SF, Southern Flank. (From Lynch et al., 1998, Fig. 1.)

3.5. Calanus Bloom Process Inference in the Gulf of Maine

The Gulf of Maine is a semienclosed sea (Fig. 12.12) with major topographic fea-
tures, including three deep basins and Georges Bank, an important fisheries resource.
A dominant copepod Calanus (Calanus finmarchicus) is believed to play a significant
role in the dynamics of the regional ecosystem, and Lynch et al. (1998) have stud-
ied biological–physical interactions influencing the annual bloom of this Calanus.
A general hypothesis is introduced that the mean abundance and distribution of the
species is the result of basic animal characteristics combined with the climatological
mean physical and biological environment, and specific processes are investigated
by a series of idealized and realistic simulations. The data assimilation methodol-
ogy is assimilation by initialization and nudging. The specific scientific focus is the
midwinter initiation of the annual bloom by diapausing populations, and their role
in supplying reproducing populations to Georges Bank during spring. At this early
stage of coupled assimilation, this study illustrates how simple methods can be used
to obtain important results.

The physical dynamical model used was the free surface finite-element primitive
equation Dartmouth shelf model (Lynch et al., 1996). The model driven by buoyancy
flows, atmospheric fluxes, and tides has been used to construct a bimonthly circula-
tion climatology (Lynch et al., 1997), which was used to advect the copepod in an
Eulerian biological model. Simulations were run from January through April with
both depth-averaged and near-surface layer advections. The January–February fields
are shown on Fig. 12.13a and b. The biological model was a population dynamics
model resolving 16 life stages of the species (egg, six naupliar, six copepodite, and
three adult stages). Vertical swimming behavior could allow for aggregation in the
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Fig. 12.13. See also color insert for parts (c)–( f ). Biological/ physical simulations of Calanus fin-
marchicus population dynamics: (a) vertical averaged Lagrangian velocity for January–February; (b)
average surface layer (top 25 m) Lagrangian velocity for January–February; (c) decadally averaged
bimonthly adult Calanus abundances in the upper 200 m centered on January 1; (d ) decadally aver-
aged bimonthly adult Calanus abundances in the upper 200 m centered on March 1; (e) adult Calanus
abundances on March 1 from G0 simulation; ( f ) adult Calanus abundances on March 1 from G1 sim-
ulation. (From Lynch et al., 1998.)
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near-surface layer. Interaction with other biological variables was simply parameter-
ized by mortality and food supply, and limited food supply inhibits egg production.
In some simulations the model allowed reproduction of the initial population gen-
eration (G0) to produce the next generation (G1). The data set for initialization and
verification consisted of bimonthly 10-year means (1977–1988) of Calanus abun-
dance (adults and three highest copepodites) in the upper 200 m binned into 97 tiles
for the Gulf of Maine. The adult bimonthly distribution centered on January 1 and
March 1 are shown on Fig. 12.13c and d.

The results of March 1 for simulations initialized on January 1 are shown on Fig.
12.13e for the most realistic G0 simulation and on Fig. 12.13f for a baseline G1

simulation. The distributions are for total adults in the near-surface layer. The G0

simulation is regarded as being in reasonable agreement with MARMAP (Mountain
and Holzworth, 1989) data, but the G1 population has developed too rapidly over
Georges Bank. The development is slowed in subsequent simulations by assuming
food limitation in the Gulf of Maine but not over Georges Bank. The low abundances
on Fig. 12.13f near the Scotian Shelf, the Bay of Fundy, and the shelf break south
of Georges Bank are regarded as not real but caused by inadequate specification of
open boundary sources.

General results are summarized and dynamical processes presented in the three-
level schematic of Fig. 12.14. Diapausing populations wintering-over in all three deep
basins of the Gulf (Fig. 12.12) are assumed to rise into the circulation throughout
January and February, and this source is represented by nudging the water column
over the basins to maintain initial abundances. Exit from diapause lasts for about two
months, and thus the deep source regions provide a persistent rather than impulsive
supply of G0 adults to Georges Bank, arriving with viable egg production having
been inhibited by lack of sufficient food.

Research directions discussed by the authors include closing the annual cycle with
an extended simulation and a second (G2) population generation, and the treatment of
the Scotian shelf, Bay of Fundy, and shelf-break open boundary condition sources as
a parameter estimation problem by data assimilation. The extension of the model to
include detailed treatment of primary production and predation is also considered in
the context of some of the issues of complexities, computational resources, and data
requirements discussed in Section 2, and it is argued that even the densest biophysi-
cal data sets available today are sparse relative to requirements, so that data-based
modeling is essential for realistic studies of ecosystem dynamics.

3.6. Inverting for Population Dynamics in the Gulf of Maine and Georges Bank

McGillicuddy et al. (1998b) employ an adjoint method to investigate the biophysi-
cal mechanisms that control the seasonal variations in abundance of Pseudocalanus
spp. in the Gulf of Maine and Georges Bank. The copepod Pseudocalanus is an
abundant zooplankton in the region (different from Calanus finmarchicus studied
in Section 3.5). The authors postulate that the Pseudocalanus variations observed
result from the interactions of population dynamics with fluid motions. Even though
a broad spectrum of time and space scales are possibly relevant, as a first step, the
authors explore the relationships between the seasonal mean physics and seasonal
biology, especially the mechanisms controlling the biology at these scales. The bio-
logical model employed is a horizontal two-dimensional (three-dimensional vertically
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Fig. 12.14. Schematic of final G1 initiation scenario: (a) large source population of diapausing animals
in the deep basins of the Gulf of Maine; (b) slow bankward transport of rising C5s; (c) fast bankward
transport of adults in the surface layer; (d ) reproduction on the bank where food is abundant; (e) loss
from bank. (From Lynch et al., 1998, Fig. 23.)

integrated) ADR equation (equation 1) for copepod concentration fields in which the
specified two-dimensional velocity and diffusivity fields are outputs of a seasonal
physical model. An adjoint method is used to directly “invert for the population
dynamics,” that is, to estimate the source or reaction term Bi c 1 c B(x, y, t) in the
vertically integrated form of equation 1, based on the observed variations in abun-
dance and specified physical fields.

The general circulation of the Gulf of Maine is mainly cyclonic, from east to west,
with the Maine coastal current interacting with several topographically controlled
gyres and feeding some of the predominant clockwise circulation around Georges
Bank (see Fig. 12.13a and b). This coastal circulation is forced by external atmo-
spheric, Scotian shelf and slope processes, which lead to complex physical dynamics.
The numerical circulation used by the authors is obtained from a finite-element model
of the flow in the region (Lynch et al., 1996, 1997). The three-dimensional flow is
vertically integrated and broken down into six periods of two months. The resulting
horizontal climatological transport is specified as input to the two-dimensional ADR
model for the copepod concentrations.
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Two sets of experiments are carried out to evaluate the effects of the modeled
physical fields on passive tracer dynamics (advective-diffusive equation). One set
shows that the main domain of interest is not affected by the open boundaries over
the two-month time scales of interest. The other focuses on the pathways on and off
Georges Bank and the degree of material retention on the bank. At seasonal scales,
conditions vary between two extremes. In winter, a significant portion of the bank is
diluted in two months, by inflows from the north and outflows to the southwest. In
late summer, global stratification and local mixing effects strengthen the clockwise
circulation around the bank, increasing retention.

The Pseudocalanus spp. concentration fields, fi c 1 c Cobs in equation 1, are
obtained from 11 years of data collected during the MARMAP program. The data for
the adult stage of Pseudocalanus are combined into one year, binned into bimonthly
periods and objectively analyzed to lead Cobs (Fig. 12.15, first row). For each of
the bimonthly periods, the optimization problem is formulated as follows. Given the
imposed initial conditions in analyzed copepod concentration Cobs(x, y, t0), find the
reaction term B(x, y) that minimizes the difference between the next set of analyzed
concentration Cobs(x, y, t1) and the concentration at t1 obtained by integration of the
forward ADR model forced by B(x, y) from t0 to t1. The model up to the unknown
B(x, y) and the objectively analyzed data are thus assumed exact, while the cost func-
tion is a final cost (i.e., nonzero only at t1) (e.g., Wunsch, 1996). An adjoint method
is used for the inversion, using the adjoint code of the discrete dynamical model.

The inversion leads to six source terms B(x, y), one for each bimonthly transition.
The first three are plotted on (Fig. 12.15, second row), along with the objectively
analyzed Cobs (Fig. 12.15, first row), and the remaining terms in the ADR equations,
averaged over the bimonthly periods (Fig. 12.15, third and fourth rows). Most patterns
exhibit relatively strong seasonal and spatial variations. The copepod abundance (Fig.
12.15, first row) shows that for the domain covered by data, from January–February
to May–June, concentrations increase, building maxima on Georges Bank and in the
coastal waters of the western Gulf of Maine. For the rest of the year, most patterns
are maintained, but amplitudes decrease in these two active regions. Copepod ten-
dencies Fig. 12.15, fourth row) are found to be controlled primarily by a balance
between the source and advection terms (Fig. 12.15, second and third rows). Dur-
ing January–February to March–April (Fig. 12.15, first column), on Georges Bank,
growth dominates but is almost balanced by advection of low concentrations from
the Gulf of Maine. In western coastal areas, moderate growth occurs. Two months
later (Fig. 12.15, second column), net growth intensifies in these coastal waters. On
the bank the tendency is overall positive, with growth and advection still nearly bal-
ancing but in a dipolar mode. Growth dominates the dilution by advection on the
northeastern side, while southwestward advection of high concentrations from this
northeastern crest dominates net mortality on the western side. As the bank becomes
more isolated due to the reinforcing clockwise circulation, especially on the northern
flank (Fig. 12.15, third column), growth on the northeastern side drops and, over-
all, abundance on the bank decreases, due to the persisting southwestward advec-
tion on its western side and mortality on its southwestern extremity. In late summer
(McGillicuddy et al., 1998b), retention is maximum and abundance declines due to
mortality. During late fall and early winter, the advection and source terms are closely
balanced, maintaining a relatively low abundance. For the western coastal areas, the
source term (growth and mortality) is the main control of abundance, except in late
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Fig. 12.15. See color insert. Top row: bimonthly climatological Pseudocalanus spp. distributions (adults
only) objectively analyzed from the MARMAP data (number of animals m−3). Second row: three source
terms B(x, y) resulting from three of the six inversions. Each B(x, y) is located directly below the ana-
lyzed data used to initialize the experiment. That is, the JF–MA source term results in a forward model
integration which matches the March–April analyzed data. Last two rows: two of the remaining terms in
the ADR equation, adjective flux divergence and overall tendency, averaged over the period of integra-
tion. Fields in the bottom three rows have been normalized to the bottom depth, so the units are “number
of animals m−4s−1.” (From McGillicuddy et al., 1998b; reprinted by permission of Blackwell Science,
Inc.)

spring, when the southwestward advection by the Maine coastal current accumulates
organisms in the Massachusetts Bay areas.

To evaluate their source term estimates, the authors refer to historical food and
predator data. The growth estimates of Pseudocalanus do not disagree with data on
its food availability. Food is always limiting inside the Gulf of Maine, never limiting
on Georges Bank, and sometimes limiting in coastal waters. For mortality, there is
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possibly less agreement. The period of copepod decline on Georges Bank (May–June
to September–October) logically overlaps the period of maximum predator concen-
trations. However, these predators are not known to be more abundant on the south-
western side of the bank, while inside the Gulf of Maine, the largest predator concen-
trations are observed when copepods are estimated to grow the most. To explain this,
further research is required (e.g., show that mortality rates are controlled by factors
other than the abundance of predators).

These results show that the seasonal variability of Pseudocalanus is spatially vari-
able as a function of its own growth or mortality, and advection by climatological cur-
rents. Diffusion is not important. The ecological scenario proposed is that of two self-
sustaining populations, one in the western Gulf of Maine and the other on Georges
Bank, separated by a region of the Gulf where food concentrations are too low for the
copepods to thrive. This interpretations agrees with some previous results but differs
from others. The solution is probably sensitive to the inverse problem formulation.
Time-dependent source terms or, in general, more sophisticated biology, as well as
error models for the data and biophysical models, should be investigated. Portions of
the inverted source terms could, in fact, be due to deficiencies in the physical model.
Even though the physical features found important to the biology are robust in cli-
matological studies, time-dependent (storms, internal waves) and three-dimensional
stratified mesoscale flows should be included. The effects of life stages may also be
important (e.g., the voyage from the western Gulf of Maine to Georges Bank may
be possible for the nonfeeding early stages of the copepod). Another specific issue
concerns the compatibility of data and dynamics (e.g., the effects of nonlinear inter-
actions on multiple scales in both the data and models). Coupled inversions including
ADR equations and data for the food and predators, as well as models and data for
the individual Pseudocalanus species of possibly different behavior, should be use-
ful. More advanced syntheses, with newer data, models, and assimilation methods
(RLS98), should further the understanding.

3.7. Assimilation Methodology for Biophysical Dynamics in the Gulf Stream

In a study of coupled physical and biological processes in the Gulf Stream meander
and ring region (GSMR), Anderson et al. (2000) have addressed the issues related
to the necessity for assimilation of a comprehensive and compatible biophysical
data set for a case in which only sparse in situ observations were available and the
necessity of the avoidance of spurious shocks in the assimilation process. In GSMR,
mesoscale meanders grow, evolve, and propagate, and submesoscale events include
the birth and reabsorption of rings as well as temporary contacts between mean-
ders and rings. Vertical and horizontal advections occur, including upwelling, down-
welling and cross-frontal exchanges which can stimulate productivity, enhance bio-
logical gradients, and produce plankton patchiness. The scientific context involved
the use of data assimilation in order to achieve a simulation adequate to reveal specific
real ocean (sub)mesoscale dynamical processes. The simulation was carried out for
the nutrient limited conditions of late summer when the large-scale biological fields
are slowly varying in time. Specific scientific objectives were (1) to determine what
physical and/ or biological processes caused a high-phytoplankton patch at the Gulf
Stream front observed in the data, and (2) to assess the impact of stream meander-
ing, ring–stream interactions, and winds on vertical velocity, vertical nitrate transport,
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Fig. 12.16. Five-component biological model. The five state variables are nitrate (N), phytoplankton
(P), zooplankton (Z), ammonium (A), and dissolved and suspended particulate organic nitrogen (D). Fast-
sinking detritus (F) is included but sinks and remineralizes instantaneously, and thus is not an explicit
state variable. (Reprinted from Deep-Sea Research I, 47, L. A. Anderson et al., Physical and biological
modeling in the Gulf Stream region, I, Data assimilation methodology, pp. 1787–1827, copyright 2000,
with permission from Elsevier Science.)

phytoplankton and zooplankton patchiness, primary production and new production,
particle export, and cross-stream exchanges of nitrate and phytoplankton (Anderson
and Robinson, 2001).

The study was carried out with the Harvard Ocean Prediction System (HOPS)
primitive equation (PE) physical dynamical model coupled to a five-state-variable
(nitrate, ammonium, phytoplankton, zooplankton, and dissolved plus suspended par-
ticulate organic nitrogen) biological model (Fig. 12.16 and equation 1), and data were
assimilated via the HOPS optimal interpolation scheme (Robinson, 1996, 1999b). The
coupled biophysical dynamical simulation was run for about two weeks, from year
day (yd) 272 to 279 of 1988, utilizing data starting at yd 265 from both a Gulf Stream
meander coupled biological–physical dynamics experiment (BIOSYNOP/ Anatomy
of a Meander—BS/ AM) (Hitchcock et al., 1993; Lohrenz et al., 1993; Mariano et
al., 1996) and a Gulf Stream real-time forecasting project (GULFCAST) (Glenn and
Robinson, 1995). The BS/ AM in situ data consist of approximately 320 XBTS; 216
CTDs, half of which also measured fluorometry (chlorophyll); a total of 32 nutrient
stations; and a few zooplankton measurements, all located in a domain approximately
28 of latitude and 58 of longitude in extent centered at (388N, 708W). The GULF-
CAST data consist of weekly locations of the surface Gulf Stream meandering front
and the location and size of all warm- and cold-core rings determined from satellite
sea surface temperature and height measurements, located in a domain approximately
centered at (378N, 698W) and 68 of latitude and 108 of longitude in extent.

The procedure for optimal interpolation (OI) assimilation of compatible biophysi-
cal fields is schematized in Fig. 12.17. GULFCAST methodology provides full-water-
column three-dimensional estimates for the stream and rings by the use of feature
models, or typical synoptic structures for temperatures and salinities located at stream
and ring frontal locations (Gangopadhyay et al., 1997). Fields for initialization of
the PE model, assimilation, and verification were prepared from objective analyses
of the composite BS/ AM and GULFCAST temperature and salinity data sets and
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geostrophic velocities (Lozano et al., 1996; Robinson, 1996). Considerable experi-
ence exists in forecasting and simulating the physical fields in the GSMR with OI
assimilation (Glenn and Robinson, 1995; Gangopadhyay and Robinson, 1997; Robin-
son and Gangopadhyay, 1997). In general, the smooth evolution of the zeroth-order
horizontal flow structures by the primitive equations is negligibly affected by the
vertical velocity adjustment shock associated with assimilation. This, however, is not
often the case for the biological ADR equations (1), and the vertical velocity adjust-
ment to the update of the horizontal flow must be achieved prior to assimilation into
the biological dynamics (Fig. 12.17a).

Assimilation of the BS/ AM phytoplankton and nutrient data was carried out
based on biological objective analyses analogous to the physical analyses. This
required the preparation of background full-water-column three-dimensional esti-
mates of phytoplankton and nitrate fields over the larger GULFCAST domain
together with dynamically compatible fields for the zooplankton, ammonium, and
organic nitrogen. The BS/ AM data were used to provide vertical profiles and derive
biological-state-variable/ temperature correlations and biological/ biological correla-
tions. Biological/ temperature correlations were then used to construct biological fea-
ture model fields for the mesoscale meandering stream and ring structures. Dynami-
cal adjustment among the biological fields themselves and the choice of optimal bio-
logical parameters within reasonable constraints is obtained at this stage by zero- and
one-dimensional (vertical) dynamical sensitivity runs of the biological diffusive-reac-
tive equations (Fig. 12.16 and equation 1) without advection. Finally, the biological
fields are adjusted to the three-dimensional circulation by freezing the velocity fields
and running the full ADR equations until relatively large initial time derivatives of
the biological fields have decreased and the biology is judged to be time varying in
dynamical equilibrium with the physics.

The entire procedure is schematized on the flowchart of Fig. 12.17a and the time
chart of Fig. 12.17b. Note that the vertical velocity adjustment is run for seven days
and the final biological adjustment for 20 days, and the concept of adjustment space
and simulation space introduced in Fig. 12.17b. Dynamically adjusted biological data
for the assimilation day is melded with physical data from seven days earlier dynami-
cally evolved in adjustment space. The compatibility procedure schematized on Fig.
12.17 has some general applicability, but the adjustment times must be chosen appro-
priately for the dynamics of the region being simulated.

To illustrate the necessity and importance of the compatibility methodology, Fig.
12.18 compares a compatible biological and physical assimilation with the case of the
assimilation of physical data only. Although the vertical velocity has been adjusted
prior to assimilation, the patches of nitrate maxima on Fig. 12.18 (row 3) are larger
and stronger than those on Fig. 12.18 (row 2). Applying the methodology to process
studies of the GSMR. Anderson and Robinson (2001) found that in late summer
conditions, submesoscale ring–stream interactions rather than mesoscale meandering
were the dominant mechanism for generating phytoplankton maxima and patches at
the Gulf Stream front and for enhancing cross-frontal exchange. Important research
directions for compatibility methodology include the development of objective cri-
teria for establishing the dynamical equilibrium of coupled biophysical fields, data
impact and adaptive sampling studies, and the exploration of optimally efficient pro-
cedures.
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Fig. 12.18. Comparison of model simulation using assimilation of physical and biological fields versus
assimilation of physical fields only: (a) temperature at day 7, physics and biology; (b) temperature at
day 10, physics and biology; (c) phytoplankton at day 7; physics and biology; (d ) phytoplankton at day
10, physics and biology; (e) phytoplankton at day 7, physics only; ( f ) phytoplankton at day 10, physics
only.

3.8. Real-Time Biophysical Forecasting and Dynamics in Coastal Regions

State estimation was first illustrated in this chapter (Fig. 12.2) by a real-time oper-
ational forecast for the Gulf of Cadiz region carried out with the Harvard Ocean
Prediction System (HOPS; Robinson, 1999b). Recent real-time biophysical forecasts
have been carried out with HOPS for regions of the western North Atlantic shelf and
slope seas (Robinson and the LOOPS Group, 1999; Rothschild et al., 1999, 2000;
Robinson et al., 2001). Issues involved relate to data and model compatibilities, the
efficient mix of platforms and sensors, together with adaptive sampling and multiple
two-way nested domains in the development of robust and accurate interdisciplinary
forecast capabilities.
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HOPS (Fig. 12.19a) is a flexible, portable, and generic system that can be deployed
rapidly to any region of the world ocean. Physical and acoustical, real time at sea
forecasts have been carried out at numerous coastal and deep-sea sites (Robinson,
1999b) and biological forecasts were initiated in 1997 (Srokosz, 1997). Currently,
a primitive equation physical dynamical model incorporates effects of tidal mixing
and tidal advection of scalar fields computed from an external tidal model. Multiple
sigma vertical coordinates have been calibrated for accurate modeling of steep topog-
raphy. Data assimilation methods include optimal interpolation and a quasioptimal
scheme, error subspace statistical estimation (ESSE; Lermusiaux, 1999a,b; Lermusi-
aux and Robinson, 1999). The latter method determines the nonlinear evolution of
the oceanic state and its uncertainties by minimizing the most energetic errors under
the constraints of the dynamical and measurement models and their errors. Real-time
efficiency is achieved by reducing the error covariance to its dominant eigendecom-
position.

The biogeochemical–ecosystem model is modular to accommodate critical state
variables for regions and problems of interest. The model used for the west-
ern North Atlantic has six state variables (nitrate, ammonium, phytoplankton
biomass, phytoplankton chlorophyll, zooplankton, and detritus), as schematized in
Fig. 12.19b. Phytoplankton productivity is modeled using a simple two-parameter
phytosynthesis–irradiance model with a chlorophyll-dependent exponential attenua-
tion coefficient. All ecosystem variables are nitrogen-based except chlorophyll, and
photoacclimation kinetics can be incorporated into the model framework.

The nested domains that have been used for forecasts and simulations to be dis-
cussed here (Fig. 12.20) include the western North Atlantic Gulf Stream meander
and ring region, Gulf of Maine, Georges Bank, and Massachusetts Bay. In addition
to atmospheric and riverine fluxes and tides, the coastal ocean is driven by a buoy-
ancy current that flows in from the Scotian shelf and flows out along the shelf break
of the Middle Atlantic Bight and by Gulf Stream warm-core rings impinging across
the shelf break. The buoyancy flow penetrates Massachusetts Bay and usually encir-
cles Georges Bank. Information from the coarser-resolution domain is interpolated
around the boundaries of the finer-resolution domain, and in two-way nesting, aver-
aged information from the finer-resolution domain is fed to the coarser domain.

A demonstration of the real-time interdisciplinary forecast concept took place in
Massachusetts Bay from August 17 to October 5, 1998 (Robinson and the LOOPS
Group, 1999). The scientific focus was phytoplankton and zooplankton patchiness: in
particular, the spatial variability of zooplankton and its relationship to physical and
phytoplankton variabilities. Simultaneous synoptic physical and biological data sets
were obtained over a range of scales, and platforms included ships, satellites, and
autonomous underwater vehicles (AUVs). The multiscale sampling strategies were
based on (1) ocean field forecasts (regions of most active or interesting dynamics)
and (2) forecasts of error variances and of dominant eigendecompositions of error
covariances (Lermusiaux, 2001), assimilating yesterday’s data today for tomorrow’s
forecast and sampling. There resulted a combined and compatible physical, biologi-
cal, and chemical multiscale data set applicable to interactive process studies and
OSSEs. Dynamically, much more variability than described previously was found in
the circulation structures (Fig. 12.21a). Strong-wind events can control the qualitative
structures of the buoyancy flow. The Gulf of Maine current can have three branches:
(1) the Massachusetts Bay coastal current, (2) one that enters the bay (but not Cape
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Fig. 12.20. Locations of various one- and two-way nested forecast domains.

Code Bay) and then exits at Race Point, and (3) one that flows along Stellwagen Bank
without entering Massachusetts Bay. A Cape Code Bay gyre can be cyclonic, anticy-
lonic, or absent. For several days following a wind event, the structure of the buoy-
ancy current is maintained by a combination of inertia, topography, coastal geometry,
and internal dynamics. Submesoscale vortices form between branches and filaments
of the buoyancy currents and/ or mesoscale gyres. Figure 12.21b shows ship sam-
pling patterns superimposed on forecast surface temperature error standard deviation.
The shorter track represents objective adaptive sampling designed to reduce the error
maximum upon which it is superimposed.

During real-time modeling, physical data were assimilated while the coupled bio-
logical model was initialized and run forward. Figure 12.21c shows the chlorophyll-
a concentration at 10 m; Fig. 12.21d is a cross-section of zooplankton concentra-
tion. Multiscale patchiness is clearly visible. Higher concentrations occur: northeast
of Cape Ann and near Boston Harbor because of advected nutrients, over Stellwa-
gen Bank in part due to tidal mixing, and along the coastline due to wind-driven
upwelling and episodic wind mixing. Modeled subsurface chlorophyll agreed rela-
tively well with observations. The coupled dynamics were much more vigorous and
diverse than previously thought to be the case in the fall.

A real-time demonstration of concept for forecasting physics, biology, and fish
stock abundance for fisheries management applications was carried out in Georges
Bank from April 17 to May 15, 2000 (Rothschild and the AFMIS Group, 1999;
Robinson et al., 2001). The Georges Bank forecasts and associated preliminary
OSSEs in the nested Gulf of Maine and western North Atlantic domains utilized
primarily (1) satellite data (sea surface: temperature, SST; color, SSC; and height,
SSH), (2) feature models, and (3) historical quasisynoptic surveys adjusted to year
2000 conditions by atmospheric fluxes. The SeaWiFS SSC measurement model (Sec-
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Fig. 12.21. See color insert. Massachusetts Bay. (a) Schematic of circulation features and dominant
variabilities. The lines with divergent arrowheads indicate that the direction of circulations is variable.
Dashed lines indicate that the location of features varies. (b) Forecast of the standard error deviation for
the surface temperature, with tracks for adaptive sampling. (c) Chlorophyll a at 10 m, with overlying
velocity vectors. (d ) Vertical section of zooplankton along the entrance of Massachusetts Bay.

tion 2.5) involved the scaling and filtering of the SSC to surface chlorophyll and an
extension in the vertical based on a feature model (Section 2.4). The highly ideal-
ized fish dynamics model represented cod swimming behavior as an attraction to a
preferred bottom temperature together with a dispersive tendency. The model was
regarded as exemplary rather than realistic. Nowcasts and forecasts of one or two
days’ duration were issued twice a week. The products included daily maps of sur-
face temperature with superimposed vectors of subtidal velocity, chlorophyll at a
depth of 15 m, bottom temperature with superimposed vectors of subtidal velocity,
and idealized cod abundance at the bottom. Sample products are displayed in Fig.
12.22.

The real-time research-operational forecasts discussed here may be regarded as
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precursors to new powerful interdisciplinary ocean observing prediction systems
anticipated to become operative over the next decades for management of and oper-
ations in multiuse coastal oceans. Their development will involve many of the data
assimilation issues introduced in Section 2.

4. Progress and Prospectus: Overall Review

Having discussed case studies in detail, our intent in this section is to present an
overview of progress in, and prospects for, biological data assimilation. We have
compiled an extensive bibliography by searching libraries and the World Wide Web,
by direct inquiry to researchers, and from GLOBEC (2000). The discussion here
is topically arranged by general methodological concepts and issues rather than by
processes or oceanic regions. Comprehensive presentations of general progress in
parameter estimation and state estimation are followed by an overall review of issues
related to models, data, and errors. The detailed reports of work accomplished in
these latter three areas complement the conceptual discussions in the corresponding
subsections of Section 3.

4.1. Research Progress in Parameter Estimation

There is a large body of research in parameter estimation for engineering systems
as described in the books by Young (1984), Tarantola (1987), and Stortelder (1998),
some of which is closely related to oceanic ecosystems, as in freshwater ecology
reviewed by Beck (1987). Parameter estimations in biophysical oceanography to date
are mainly for zero- and one-dimensional models. The discussion here is presented in
terms of (1) network fluxes, (2) ecosystem parameters, (3) methods, and (4) observ-
ability.

Network Fluxes
Inverse methods have been applied in several regions to estimate fluxes of, for exam-
ple, nitrogen and/ or carbon between compartments of primarily steady-state ecosys-
tem models. Many of the models used are zero-dimensional linear balance equations
involving one to several vertical layers and linear data relationships, with or without
parameter constraints. Solutions are often computed by direct singular-value decom-
position. In the future, dynamic flux inversions and inversions involving error weights
for the data and dynamical model should be considered, as in physical inversions.
Vézina and Platt (1988) utilize data at two surface sites off the English coast in late
summer when planktonic food webs can be close to a steady state and confirm com-
mon flux patterns for those coastal euphotic zones. Using data from the warm-core
rings program in the Atlantic, Ducklow et al. (1989) obtain large algal fluxes to detri-
tus. Using cruise data for a planktonic system off southern California, Jackson and
Eldridge (1992) find that most of the algal production is consumed about equally by
protozoa and microzoa, and that zooplankton is important to transport organic matter
from the euphotic zone to deeper regions. Fluxes for benthic systems in the Califor-
nia coastal basin (Eldridge and Jackson, 1993) and in the Bay of Saint-Brieuc on the
French Atlantic coast (Chardy et al., 1993), as well as fluxes for tropical and lake
ecosystems (e.g., Carpenter et al., 1994), have been estimated and studied. Niquil et
al. (1998) assess food web fluxes in the tropical lagoon of Takapoto Atoll (French
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Polynesia), combining a seven-variable planktonic model with data collected as part
of pearl oyster farming studies. Vézina and Pace (1994) reconstruct ecosystem carbon
fluxes for three lakes, two of which had their fish community altered experimentally.
Other examples are given in Vézina (1989) and Eldridge and Jackson (1993). Bio-
logical inversions coupled to physical constraints have been carried out to study water
qualities and mass balances of nutrients in bays and larger coastal seas (Legovic et
al., 1989, 1990, 1995).

Ecosystem Parameters
Identical twin experiments are useful to evaluate estimation schemes. Lawson et
al. (1996) utilize this approach based on simulated data to investigate the ability
to recover parameters as a function of the data types and distributions available. A
five-variable model is chosen and an adjoint method used to estimate the rates, ini-
tial conditions, and amplitudes of episodic events in the mixed layer. Harmon and
Challenor (1997) employ a similar approach, but with a more advanced Bayesian esti-
mation, combining Markov chain, Monte Carlo, and simulated annealing methods.
Rothschild et al. (1997) estimate growth and mortality rates based on simulated data
from a linear stage-structured model (e.g., larval fish model). Gunson et al. (1999) use
an adjoint method to fit a one-dimensional, four-variable (NPZD) model to simulated
ocean color data. The biological model is implemented as a Lagrangian ADR equa-
tion without horizontal diffusion such that biological parcels follow the flow field of
a three-dimensional general circulation model of the North Atlantic forced by clima-
tological atmospheric data. Ten numerical floats are seeded in various locations and
followed over six months, assimilating the local simulated surface color. The authors
argue that about five of their parameters can be estimated from satellite color data
and that the importance of parameters varies spatially. Other examples are given in
Marsili-Libelli, 1992; Crispi and Mosetti, 1993; Ishizaka, 1993; Lawson et al., 1995;
and Section 3.1 of Spitz et al., 1998.

Real ocean data have been used for model calibration, validation, and process
studies. Rates in larval fish and zooplankton models have been estimated from con-
centration data (e.g., Banks et al., 1991; Somerton and Kobayashi, 1992; Aksnes et
al., 1997; Rothschild et al., 1997; Ackleh, 1999). For coupled problems, Prunet et al.
(1996a,b) calibrate a class of surface biophysical models for various combinations
of the data at Station Papa in the northern Pacific. A Newton-type algorithm and
singular-value decomposition directly minimize an error-weighted least squares cost
function. Using only surface chlorophyll data with a comprehensive model, half of
the parameters are estimated consistently. With a simplified model and all of the sur-
face chlorophyll, temperature, and nitrate data, most parameters are obtained. This
shows that for a robust inversion, the complexities of the models and data should be
compatible. Using data from two sites in the North Atlantic, Hurtt and Armstrong
(1996, 1999) assess a class of seasonal models similar to that of Fasham et al. (1990).
Parameters are estimated by simulated annealing based on a likelihood cost met-
ric. The authors identify dynamical features that are either essential or unnecessary.
Fasham and Evans (1995) and Evans (1999) fit an analogous class of models, but
to shipboard data collected during the JGOFS North Atlantic Bloom Experiment. A
main objective is to exemplify how local models and local data can be useful for
regional studies. Parameters are estimated based on a conjugate-gradient algorithm,
and the fits of models and constraining power of data are discussed. Other examples
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with real data are given in Legovic, 1987; Marcos and Payre, 1988; Section 3.2 of
Matear, 1995; Section 3.1 of Spitz et al., 1998; Section 3.3 of Vallino, 2000; and
Section 3.4 of Friedrichs and Hofmann, 2001.

Parameter Estimation Methods
Both local (e.g., steepest descent) and global (e.g., simulated annealing) direct min-
imization schemes have been successful. With descent methods, knowledge of the
gradient of the cost function often accelerates the rate of convergence. It is usually
computed using the adjoint equations, but sensitivity approaches or finite differences
are also employed. Conjugate gradient methods are useful but are usually modified
to allow nonlocal searches. Due to the scarcity of data and nonlinearities, global
schemes such as simulated annealing and Bayesian estimation are found among the
best for parameter estimation in zero-dimensional models. When biogeochemical
models are embedded in three- or four-dimensional physical models, these meth-
ods can be expensive and schemes based on conjugate gradient, Newton and adjoint
methods, and error subspace methods can be more efficient. It is worth mentioning
that when standard multipurpose optimization routines are used, algorithmic param-
eters have to be chosen, which can be challenging for ecosystem applications, and
results should thus be analyzed with care.

Quality of Fits, Constraints, and Observability
The fit of ecosystem models to ocean data using parameter estimation often leads
to large a posteriori data residuals (Section 2.5) or dynamical behaviors that appear
unrealistic. The reasons for unsuccessful fits are often multiple and of various types.
They include nonobservable parameters, inappropriate cost functions, multiple local
optima, inefficient optimization schemes, limited ocean data, improper dynamical
model structures, and inadequate error models for the dynamics or measurements.

Prior to data assimilation, parameters generally should be scaled or normalized. To
accelerate the convergence and avoid unrealistic or unstable models, parameters can
also be bounded by strong a priori constraints (Box, 1966; Fasham and Evans, 1995;
Section 3.3 of Vallino, 2000). Another option consists of imposing weak parameter
constraints, (e.g., penalty weighting the difference between the final and of a priori
parameter values) (Vézina and Platt, 1988; Section 3.2 of Matear, 1995; Prunet et
al., 1996a,b; Evans, 1999; Gunson et al., 1999). Parameters that deviate far from
their a priori estimated values are then permitted, but heavily discounted in the cost
function. Since biological data are often limited, both parameter bounds and weak
parameter constraints can be utilized to avoid solutions that are unrealistic or at the
wrong scales. Cases with more rather than fewer constraints are often most successful
(Vézina and Pace, 1994; Section 3.2 of Matear, 1995; Prunet et al., 1996b; Section
3.3 of Vallino, 2000).

Care should be taken to ensure that the parameters to be estimated are indepen-
dent. Combinations of parameters (sums, ratios, products) in the original equations
should first be eliminated by grouping or other manipulations (e.g., Carpenter et al.,
1994; Section 3.1 of Spitz et al., 1998). The observability or identifiability of the
remaining parameters can be estimated, at least locally from the error covariance,
Hessian, or resolution matrices at an optimum (e.g., Tziperman and Thacker, 1989;
Wunsch, 1996). In particular, the diagonal terms of the resolution matrix identify the
extent to which each parameter is resolved, and the off-diagonal terms identify the lin-
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ear dependencies among parameters. The a posteriori parameter error covariance and
cross-validation or bootstrap techniques (Wahba and Wendelberger, 1980; Efron and
Tibshirani, 1993) give parameter uncertainties and local shape of the cost function.
To eliminate unrealistic solutions and reduce the number of local optima (e.g., fast
and slow data fits with similar final costs), indetermination due to parameters that are
not completely observable (e.g., Jazwinski, 1970; Wunsch, 1996) may be removed.
This can be done either by sampling new data, imposing stronger constraints on the
parameters (e.g., fixing their values), or simplifying the models. Such observability
and dependency studies have been carried out for marine parameters (e.g., Marsili-
Libelli, 1992; Section 3.2 of Matear, 1995; Prunet et al., 1996a,b; Evans, 1999; Sec-
tion 3.3 of Vallino, 2000) and flux estimates (e.g. Vézina and Platt, 1988; Jackson
and Eldridge, 1992). Questions of controllability, observability, and predictability,
and the corresponding data requirements, are linked and important, both in theory
and practice. Further research in these areas would probably be useful.

4.2. Research Progress in Field Estimation

Early Approaches
Preliminary work toward coupled data assimilation for biophysical field estimation
can involve the assimilation of physical data to predict flow fields used for adap-
tive biological sampling (Robinson et al., 1993; Bowen et al., 1995; Lozano et al.,
1996; Robinson, 1996). A subsequent step consists of data assimilation via initial-
ization (i.e., initializing coupled biophysical predictive models based on data) with
or without physical data assimilation. Extensive research has been carried out using
this approach and numerous results have been obtained in many regions of the world
ocean. The published applications cannot all be cited here. For example, recent stud-
ies for the Mediterranean sea include (Crise et al., 1998, 1999; Crispi et al., 1998,
1999; Napolitano et al., 2000), for the Black sea (Oguz et al., 1996, 1998, 1999), for
the Gulf of Maine and Georges Bank (Section 3.5 of Lynch et al., 1998; Lynch 1999;
Rothschild and the AFMIS Group, 1999) and for Massachusetts Bay (Besiktepe et
al., 1998; Section 3.8 of Robinson and the LOOPS Group, 1999).

The simplest forward method for data assimilation is data insertion. When new
data become available, the model field forecast at data points is simply replaced by
the data. It was first applied for biology during a multidisciplinary study of the south-
eastern U.S. continental shelf (Atkinson et al., 1985). The supplies of nutrients on the
shelf, induced by Gulf Stream upwellings, were measured and inserted into ecosystem
models, aiming to investigate the shelf dynamics of nutrients and organic carbon pro-
duction. Continuing this research, Ishizaka (1990, 1993) objectively analyzed velocity
and temperature data to provide physical forcings to a four-variable biological model.
However, the resulting coupled simulations did not reproduce the observed biological
variabilities. To improve the short-term predictive capability, Ishizaka (1990) directly
inserted a one-month time series of Coastal Zone Color Scanner (CZCS) images into
the modeled phytoplankton, updating the other state variables based on a constant
nitrogen ratio.

Steady Biophysical Interactions
Nihoul et al. (1994) use a two-dimensional variational inverse method to fit a three-
dimensional physical primitive equation model and a five-variable ecosystem model
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to physical and biological data collected in the summer for five years in the northern
Bering Sea. The two-dimensional variational method for a steady-state inversion is
applied at selected depths, with the physical and biological models imposed as weak
constraints. To examine the steady-state cycling of phosphorus in the North Pacific,
Matear and Holloway (1995) use an adjoint method, combining a three-dimensional
phosphate ADR equation, historical three-dimensional gridded phosphate data, steady
three-dimensional flow data from a general circulation model, and geostrophic con-
straints. Due to the biological sensitivities to small changes in the circulation, the
authors found that physical constraints need to be weak. McGillicuddy et al. (1998,
Section 3.6) use an adjoint method to compute the biological dynamics itself.

Seasonal Cycles
Nudging zero- to one-dimensional biological models embedded in three-dimensional
steady-state circulation models has been employed by Najjar et al. (1992) to study
vertical transports of organic matter based on phosphate data. The role of remineral-
ization of organic matter at depth in the global cycling of carbon by oceanic organ-
isms is studied by Anderson and Sarmiento (1995), also via nudging to phosphate
data, and evaluated based on apparent oxygen utilization data. Misfits in the phos-
phate simulations were attributed mainly to errors in the coarse-resolution, world
ocean general circulation model employed, especially in the thermocline dynamics.
To monitor the seasonal evolution of the three-dimensional net primary productivity
and other ecological quantities in the Atlantic, Armstrong et al. (1995) nudge satellite
color data in two types of zero-dimensional seasonal ecosystem models embedded
in a three-dimensional ocean general circulation model. The first ecosystem model,
using a single phytoplankton and single zooplankton, cannot be forced to the monthly
surface data without producing too-high ammonium distributions; the modeled phy-
toplankton is limited by zooplankton grazing to a maximum steady-state value. How-
ever, a food-chain ecosystem model based on multiple phytoplankton and zooplank-
ton size classes prevents too-high ammonium by distributing the surface chlorophyll
forcing to the chain of size classes.

Mesoscale Variabilities and Bloom Events
Fields and parameters can be estimated jointly. For example, to study a coastal spring
bloom in the Gulf of Gdansk (Baltic sea), Semovski et al. (1994) use a hybrid assimi-
lation scheme consisting of (1) a blending method to estimate the NPZ field evolution,
combining chlorophyll profiles from three coastal stations with a one-dimensional
biophysical–optical model, and (2) a variational method to subsequently optimize
the model parameters. For the spring of 1993, Semovski et al. (1996) couple the
same one-dimensional model with a data-assimilative barotropic model of the wind-
driven currents in the gulf. Even though the fit to chlorophyll data are improved,
the authors show the need for modeling three-dimensional physical effects (e.g.,
mesoscale features, rivers). Semovski et al. (1999) consider such effects in coastal
regions of the Baltic Sea, combining satellite and in situ observations of various types
but without carrying out the coupled four-dimensional assimilation. To analyze the
annual phytoplankton cycle at a site in the North Atlantic (Semovski et al., 1995)
and over the three-dimensional North Atlantic and Baltic Sea (Semovski and Woz-
niak, 1995), satellite color data (CZCS; Section 2.4) are assimilated, again for both
field and parameter estimates. Ecosystem fields are estimated in the North Atlantic
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via an optimal-interpolation-based blending method. Parameters are estimated for the
Baltic Sea by direct minimization. The optimized simulations are discussed and the
primary production variability studied by empirical orthogonal function decomposi-
tion. Anderson et al. (2000, Section 3.7), Robinson and the LOOPS Group (1999,
Section 3.8), and Rothschild and the AFMIS Group (1999, Section 3.8) assimilate
biophysical data in coupled four-dimensional models by optimal interpolation for
forecasting and process studies.

Toward Real Ocean, Multivariate, Verified Fields
Important issues in field estimation relate to the coupled adjustment of the biophysi-
cal fields (Section 3.7 of Anderson et al., 2000) and the establishment of real-time
predictive capabilities, verification procedures, and efficient acquisition of data based
on forecasts and adaptive sampling (Robinson and the LOOPS Group, 1999, Section
3.8). Obtaining realistic biophysical simulations and real-time forecasts is especially
challenging (e.g., McGillicuddy et al., 2001), both for scientific investigations and
coastal operations (e.g., naval) and for management (e.g., fisheries). The validation
of predictions via efficient skill metrics is also important (Section 4.5). Forecasts of
the error fields and variability fields for each state variable, and the associated statis-
tics, are likely to become increasingly necessary (Rothschild and the AFMIS Group,
1999; Lermusiaux, 2001).

Several field estimation methods remain to be tested and nonlinear, coupled four-
dimensional advances are now possible. To date, significant results are based either on
nudging, adjoint, or optimal interpolation schemes. Physical oceanography and mete-
orology have made substantial progress in multivariate, four-dimensional, and nonlin-
ear data assimilation schemes (Daley, 1991; Bennett, 1992; Malanotte-Rizzoli, 1996;
Wunsch, 1996; Ehrendorfer, 1997; Lermusiaux, 1999a,b; Lermusiaux and Robinson,
1999; Miller et al., 1999). Many of these schemes could be useful for idealized, real-
istic, or operational research, and important biophysical results can be expected from
their applications.

4.3. Research Progress and Issues: Models

In Section 2.3, basic concepts and issues related to dynamical models were dis-
cussed which we summarize in this paragraph. Fundamental models exist for physi-
cal dynamics but not for biological dynamics, which is generally governed by a set
of advection–diffusion–reaction equations in which the representation of biological
processes is challenging. Model structures should be consistent with dominant scales
and processes of interest, and appropriate aggregations and linkages of state variables
should be chosen (e.g., Iwasa et al., 1989; Rothschild and Ault, 1992). Reasonable
parameterizations of larger- and smaller-scale processes are necessary for the physics
and biology and their interactions. The spatial dimensionalities required to represent
the biological processes should be guided by both theoretical considerations and data
assimilation constraints. Models and data compatibilities are essential. Here, we sur-
vey research results and directions.

To identify model structures from data, some guidance can be obtained from
applied mathematical biology (e.g., Banks and Fitzpatrick, 1990, 1991; Fitzpatrick,
1991, 1995) and from freshwater resources and ecology (Gardner et al., 1982; Beck,
1985, 1986, 1987, 1990; Carpenter et al., 1994). Dominant time and space scales



ALLAN R. ROBINSON AND PIERRE F. J. LERMUSIAUX524

can be challenging to identify. In some regions, the biological effects of horizontal
advection and diffusion can be small (e.g., Frost, 1991), in others the vertical advec-
tion and mixing can be usefully simplified (e.g., biology confined to a homogeneous
mixed layer and biomass in the pycnocline neglected). When such hypotheses lead to
oversimplifications, they have been altered in the course of the study (e.g., Anderson
et al., 1977; Section 3.2 of Matear, 1995). To be most useful in data assimilation, low-
dimensionality simplification can be combined with adequate error models. Increased
biophysical modeling in four physical dimensions is also anticipated.

Models can be quantitatively improved by data assimilation feedbacks. Armstrong
et al. (1995) indicate that parameterizing the effects of mulitple size classes may
be necessary in simple aggregated models to prevent too-high ammonium when
such models assimilate satellite color data. Using data collected at BATS during
1988–1991 [as in Spitz et al. (1998, Section 3.1) but less data], Hurtt and Arm-
strong (1996) estimate that the zooplankton variable in the model of Fasham et al.
(1990) is unnecessary at that site. However, several improvements of the model are
found useful. They include a nitrate pool varying linearly with depth, a biodiversity
effect on phytoplankton (algal and detrital size classes becoming larger as phyto-
plankton and detritus biomasses increase), and a physiological effect for the phyto-
plankton (chlorophyll/ nitrogen ratio function of light intensity and nutrient concen-
trations). Fitting an extension of their 1996 model to data from two sites in the North
Atlantic simultaneously (BATS and Ocean Weather Ship Station I), Hurtt and Arm-
strong (1999) indicate the need for more research on community structures and on
spatiotemporal variability of the model parameters and state variables. To model the
steady seasonal cycle during the JGOFS North Atlantic Bloom Experiment, Evans
(1999) finds that quadratic zooplankton mortality (Steele and Henderson, 1992) is
not a refinement of the model of Fasham et al. (1990) that is necessary. However,
the author shows that the detrital production in the model requires improvements and
that the passage from a zero- to a one-dimensional model may be necessary (e.g.,
see also Gunson et al., 1999). Friedrichs and Hofmann (2001, Section 3.4) found that
in the presence of a tropical instability wave, the species composition needed to be
modified.

4.4. Research Progress and Issues: Data

In Section 2.4, basic concepts and issues related to data were discussed which we
summarize in this paragraph. Compatibilities are essential between both biophysical
models and data sets, and also among interdisciplinary observations. Missing data
can be generated from simulations, correlations, and feature models. An efficient mix
of sensors and platforms for specific-purpose data sets should be chosen. Synergies
among in situ, mesocosm, and laboratory experiments can be helpful. New biophysi-
cal data sets dedicated to assimilation studies are greatly needed. Data impact and
sensitivity studies, OSSEs, and oceanic test beds can contribute much now. Rapidly
evolving new sensors, especially remotely mounted on platforms both in space and
in situ, are powerful resources. Here, we survey research results and research needs.

There should be enough data to estimate parameters when models are complex
and models should be simple enough when limited data are available (Section 3.2 of
Matear, 1995; Hurtt and Armstrong, 1996, 1999; Prunet et al., 1996a,b). The assim-
ilation of data obtained by averaging higher-frequency data over several years (e.g.,
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Nihoul et al., 1994; Section 3.2 of Matear, 1995) or by integrating depth-dependent
data over climatologically varying mixed-layer depth (e.g., Section 3.1 of Spitz et
al., 1998; Evans, 1999; Hurtt and Armstrong, 1996, 1999) can misrepresent some of
the dynamics. Physical climatological fields are estimated using complex procedures,
objective analyses, and filtering (e.g., averages along potential density surfaces). Sim-
ilar efforts are probably required in biology. Another direction for future research is
based on coupled models, nested in time, space, and varied levels of aggregation,
where all data are assimilated at the proper frequency, resolution, and aggregation
level.

Data assimilation can help in assessing data impact and determining the most use-
ful data. To increase the impact of satellite color data, in situ profiles of productivity,
nutrients, phytoplankton classes, and chlorophyll have been essential (Armstrong et
al., 1995; Semovski et al., 1999; Rothschild and the AFMIS Group, 1999). For the
estimation of new production. Evans (1999) shows that bacterial data are perhaps
not as useful as phytoplankton or nutrient data. Another research issue involves the
relative priorities in the allocation of limited resources to low-dimensional versus
four-dimensional data acquisition. It must be borne in mind that, at certain scales,
the physical forcing of the biology is not only in the advection–diffusion terms but
also in the qualitative form of the biological dynamics: i.e., Bi in equation (1), then
depends at least implicitly on the physical scales and processes. Most assimilation
studies indicate the need for new observations [e.g., ammonium data (Hurtt and Arm-
strong, 1996), zooplankton data (Section 3.2 of Matear, 1995), and mesocosm data
(Section 3.3 of Vallino, 2000)]. Data requirements may be attainable only with new
sensors and platforms (Dickey, et al., 1998). As the capabilities of biophysical mod-
els improve, the role of adaptive sampling research (Robinson and Glenn, 1999; Sec-
tion 3.8 of Rothschild and the AFMIS Group, 1999; Lermusiaux, 2001) should also
increase.

Biological measurement models (equation 2c) should be compatible with dynami-
cal models and their errors estimated (e.g., Fuller, 1987). Their deterministic com-
ponent can increase the impact of limited data and their error component eliminate
the scales that are not of interest (e.g., data ramping, surface-to-depth extension).
They are relatively easy to obtain when data consist of linear combinations of state
variables (e.g., particulate organic carbon or nitrogen) but less so when data consist
of a portion of a state variable (e.g., biomass of a species of an aggregated state
variable). To employ all the data, even if scarce, feature model constraints and weak
data constraints can be applied (e.g., Section 3.2 of Matear, 1995; Hurtt and Arm-
strong, 1996, 1999) and statistical models computed from data [e.g., multivariate
decorrelation scales (Abbott and Letelier, 1998) and covariances (Lermusiaux et al.,
2000)]. To convert state variables that are nitrogen- or carbon-based to data vari-
ables of different nature or units, models with nonstatic factors or ratios should be
developed (e.g., Armstrong et al., 1995; Semovski and Wozniak, 1995; Lawson et
al., 1996; Prunet et al., 1996b; Hurtt and Armstrong, 1996, 1999; Section 3.1 of
Spitz et al., 1998; Evans, 1999; Section 3.3 of Vallino, 2000). In some cases, the
spatiotemporal variability due to such ratio variations can dominate the variability
due to actual conversions of biomass. The derivation of models for linking the three-
dimensional biological state variables to the surface satellite color data are important
today since satellite observations are emerging as the main source of wide coverage
data for verification of nutrient-based models (e.g., Balch, et al., 1992; Armstrong
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et al., 1995; Semovski and Wozniak, 1995; Semovski et al., 1995; Gunson et al.,
1999).

4.5. Research Progress and Issues: Errors and System Evaluation

In Section 2.6, basic concepts and issues related to errors were discussed which
we summarize in this paragraph. The attribution, representation, and propagation of
errors require error models, including a variety of quantitative metrics for the evalua-
tion of results and for relative weights of data and dynamics. This is a most important
area of current data assimilation research. Errors arise from approximate dynamical
and measurement models and from limited and imprecise observations. In general,
both the deterministic and stochastic components of data assimilation systems must
be validated, calibrated, and verified. Regional predictability limits for biophysical
forecast must be established. Here, we survey results to date and research directions.

Field and parameter estimates are enhanced if accompanied by error estimates. A
priori and a posteriori errors should be compared, and for most cost functions and
constraints, the a posteriori residuals should on average be smaller than the a pri-
ori ones (e.g., Jazwinski, 1970). If this is not the case, either there are not enough
data, the assimilation schemes are not converging, or the a priori models and errors
are inadequate. Both physical and biological uncertainties can be important. Bio-
logical examples have been discussed, but misfits that are probably due to physical
shortcomings also occur (e.g., Najjar et al., 1992; Anderson and Sarmiento, 1995).
Measurement error models are essential since they often weight data residuals in
cost functions. Their statistics can be obtained via several means, including replicate
observations, sensor calibrations, or environmental noise data (e.g., higher-frequency
data).

Determining efficient biological cost functions is important. Absolute, relative,
square-root, quadratic, and likelihood cost measures have already been utilized with
real biological data as well as Bayesian estimation with Gaussian priors in twin exper-
iments. To evaluate the validity of models and sufficiency of data, simple cost func-
tions can now be useful, but guidance from nonlinear estimation and control will
be valuable. Cost functions should be in accord with prior information and statis-
tics. Many biophysical processes are multivariate and have multiscales, with strong
correlations between variables and parameters (Bennett and Denman, 1985; Den-
man and Abbott, 1988, 1994; Harris, 1996; Abbott and Letelier, 1998). There is
thus a need to investigate multivariate error covariances, by combination of data
and dynamics (GLOBEC, 2000; Lermusiaux et al., 2000). Adjoint methods con-
sider the dynamical model as a strong constraint and were originally derived for
linear models. With real oceanic data, they have been reported to perform well (e.g.,
Section 3.6 of McGillicuddy et al., 1998b; Section 3.4 of Friedrichs and Hofmann,
2001) or not so well when compared to less restrictive schemes (e.g., Section 3.3 of
Vallino, 2000). When model structures are known to be approximate, weak dynami-
cal constraints should be investigated. Methodologies such as generalized inverse
or Bayesian schemes (Jazwinski, 1970; Bennett, 1992; Miller et al., 1994, 1999;
Harmon and Challenor, 1997; Lermusiaux, 1997, 1999b; Lermusiaux and Robinson,
1999) are useful in this regard.

System evaluations include the validation, calibration, and verification of the data
and models, based on efficient skill metrics (e.g., Lynch and Davies, 1995). To do so,
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ecosystem manipulations are helpful. For example, to discriminate between alterna-
tive zero-dimensional models for phytoplankton–zooplankton interactions, Carpenter
et al. (1994) fit these models to time series data from a reference lake and manipu-
lated lake (addition and removal of bass and minnows). This facilitates the discrim-
ination of models and yields model formulations capable of predicting wider ranges
of conditions. The equivalent in oceanography are large enclosure experiments. To
assess the potentials of data assimilation, twin experiments are also helpful. If the
assimilation with real data fails but the twin experiment is successful, the data and
assimilation algorithm usually do not require improvements, but the constraints, the
models, and their error estimates (equations 2a to 2c) do. Several studies attempt to
validate pelagic models by comparisons with data collected at fixed stations (Section
3.2 of Matear, 1995; Hurtt and Armstrong, 1996, 1999; Prunet et al., 1996a,b; Sec-
tion 3.1 of Spitz et al., 1998) along a few cruise tracks (Fasham and Evans, 1995;
Evans, 1999), or at the surface (Armstrong et al., 1995). Some of the four-dimensional
effects of ocean dynamics are then neglected (e.g., horizontal advections) (Robinson,
1997), and temporal and spatial changes can be confounded. The reasons for failure
or success of the modeling effort can then be ambiguous (data, model, or assimi-
lation scheme). There are several remedies to these issues. Mesocosm data assim-
ilations can be carried out to reduce dimensions from four to one and thus justify
one-dimensional models. Error models can be established for the largest differences
between four- and one-dimensional biological dynamics, and one-dimensional mod-
els then used as weak constraints. Finally, physical and biological four-dimensional
models can be coupled (e.g., Section 3.7 of Anderson et al., 2000; Section 3.8 of
Robinson and LOOPS Group, 1999). Useful feedbacks among these approaches are
likely to occur.

5. Concluding Remarks

Oceanography is maturing into an essentially interdisciplinary science in which inter-
active biological–physical dynamics plays a central and critical role. Data assimila-
tion has recently entered oceanography and is just now beginning to be applied to cou-
pled biophysical processes. Data assimilation methods for complex system science
are generally evolving mathematically, computationally, and in scope and breadth of
applicability. It must be anticipated that in coming years interdisciplinary ocean sci-
ence will evolve with a systems science component linked to novel and advanced
data assimilation techniques.

Since coupled biological–physical data assimilation is in its infancy, much can
be accomplished now by the immediate application of existing methods as evinced
in progress and prospectus. Since data assimilation intimately links dynamical mod-
els and observations, it can play a critical role in the important area of fundamental
biological oceanographic dynamical model development and validation over a hier-
archy of complexities. Since coupled assimilation for coupled processes is challeng-
ing and can be complicated, care must be exercised in understanding, modeling, and
controlling errors and in performing sensitivity analyses to establish the robustness
of results. Compatible interdisciplinary data sets are essential and data assimilation
should iteratively define data impact and data requirements.

Data assimilation is powerfully applicable and must be expected to enable future
marine technologies otherwise impossible or not feasible. Interdisciplinary pre-
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dictability research, multiscale in both space and time, is required. State and param-
eter estimation via data assimilation is central to the successful establishment of
advanced interdisciplinary ocean observing and prediction systems, which, function-
ing in real time, will contribute to novel and efficient capabilities to manage and to
operate in our oceans.

Our conceptualization of nature is changing. Syntheses of sensor data provide our
view of nature. The syntheses that now best represent objective reality fuse data and
dynamics.
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