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ABSTRACT have significant phase lag from sensor dynamics,
This paper presents the magnetic suspension actuator dynamics, and time delay from the digital
elongated workpieces by using multiple controller. (3) The paired sensor and actuator can not
electromagnetic actuators and multiple position sensord&e physically collocated. When some resonance nodes
Our particular focus is on the use of such suspensions fall in between the paired sensor and actuator, this non-
manufacturing processes such as coating and paintirgpllocation problem causes the control effort to be out
which can be facilitated by non-contact handling. Weof phase by 180for these modes, and can destabilize
have developed a novel approach for the control of suctine system.
non-contact suspensions through what we teemsor
averaging and actuator averaging The difficult  We stabilize the structural vibration in two ways: (1) At
stability and robustness problems imposed by théow frequencies, we want to add damping to the
flexible dynamics of the workpiece can be overcome byesonance modes by using a lead compensator. (2) At
taking a properly-weighted average of the outputs of &igh frequencies, we want to reduce the gains of the
distributed array of N motion sensors (sensor resonance modes without adversely affecting the phase,
averaging), and/or by applying a properly-weightedwhich is practically very difficult to accomplish. The
distributed array oM forces (actuator averaging) to the following methods are frequently considered to
workpiece. The theory for these dual techniques istabilize the resonance modes at high frequencies:
developed in detail in the paper. These approaches ate Add a lead compensator to high frequencies: The
shown to be independent of the specific boundary disadvantage is that this also amplifies the gains of
conditions or the longitudinal dimensions of the the modes at higher frequencies, and these higher
workpiece. We experimentally demonstrate the utility  frequency modes can destabilize the system.
of our theory in the successful magnetic suspension ofa Add a low-pass filter to high frequencies: This
3 m long, 6.35 mm diameter, 0.89 mm wall thickness = method introduces phase lag to the modes at lower
steel tube with varying boundary conditions. This frequencies, and these lower frequency modes can
suspension uses 8 two-degree-of-freedom actuators and then destabilize the system.
8 two-degree-of-freedom sensors distributed along th8. Reduce the controller gain: This is undesirable
length of the workpiece. since it reduces the suspension stiffness.

4. Design notch filters to exactly cancel the modes:

This is essentially a model-based controller. A

INTRODUCTION change of boundary conditions or structural lengths
The ability of suspending workpieces without contact  can easily destabilize such a system.
can facilitate various manufacturing processes, such & Place sensors or actuators on the nodes of the
coating, painting, heat treating, and web handling corresponding unstable modal shapes: This is also
[1,2,3]. The suspended objects may have varying a model-based method, and is sensitive to system
boundary conditions, varying structure lengths, and uncertainties and changes.
varying structure positions. It is very challenging to
robustly stabilize such a time-varying system.In this paper, we present ogensor averagingand
Furthermore, it is generally difficult to control the actuator averaging methods to solve this stability
structural vibration since: (1) The structures may haveroblem. Both methods can robustly attenuate the
extremely light damping. (2) At high frequencies, wegains of undesired resonance modes without adversely



affecting the phase. These methods are a new concepynamic Analyses of Beams
for a non-model-based modal-band-stop filter. We us&Ve briefly review the structural dynamics of slender
the suspension of a tubular beam to demonstrate thebeams with negligible tension and negligible axial

two methods; this system is shown in Fig. 1. velocity. Details of this standard theory can be found in
Sensor Actuators Tubular beam [4]. The beam equation can be written as
4 2
El % + pA% = f @)

whereEl is bending stiffnesg is axial coordinatey is
transverse deflectiorp is material densityA is cross-
sectional area, andl is an external transverse force
density. The associated dispersion equation is

Elk? = pAw? (2)

wherek, is the wavenumber, ang, is the resonance
frequency. The natural response of this beam equation
can be represented by

FIGURE 1: Experimental setup: magnetic
suspension of a tubular beam.

SENSOR/ACTUATOR AVERAGING Uz 9= 3 &(0¢n(2

The simplest arrangement for sensor averaging places 2

sensors set apart by a distance df 2nd uses the = an(t)(cnlCOSan"r Go sink, z+ Gy &7+ _é"z) 3)
averaged measurement as a single output for feedback.™ , ) ,

Hence the resonance modes with wavelengths close ¥§1€réén is thenth modal coordinate, angh is thenth

4d, will have opposite deflections at the 2 sensors, anf'°dal shape. Her&, and Cy, represent sinusoidal
thus a low contribution to the averaged outputWaveforms with wavelength&rk, and Cns and Cn

Actuator averaging is the dual to sensor averagind€Present —evanescent —waveforms that —decay
increasing distances from the

Here, two actuators are spaced apart by a distance pxPonentially with m
2d,, and we apply the same force to each actuatoPoundaries. The evanescent waveforms have negligible
Since the modes will be forced in opposite directions ifffects far away from the boundaries at high
their wavelength is close tai4 this results in a similar fequencies wherk, is large.

nulling effect. On this basis, we show that ) ]
sensor/actuator  averaging can reduce moddifom modal analysis, the system dynamics can be

observability/controllability over a broad range of decoupled into ordinary differential equations for each
undesired resonance modes without adversely affecting©de: The frequency response of tita mode of
the measurement or actuation phase.  AnotheP®am dynamics can be represented as

advantage of using these averaging methods is that they, _ 1
only depend on the properties of the structure elementnN | Mn(32 +20 @, 5+ wﬁ) (4)

and are independent of boundary conditions, structure ) ) )
lengths, or structure positions. whereN, is modal forceM, is modal mass, ang, is

modal damping ratio. If we have a point force input at
z.. f(z,t)=f(t)d(z-z), and a position feedback at:

SENSOR AVERAGING FOR BEAMS y(t)=u(z,t), the frequency response from inpltto
We use the average of multiple sensors' measuremerfR4tPuty becomes

to stand for a single point's displacement. Fig. 2 showsY(S) _ 2 @ (25)0n( 2a)

the different arrangements of sensor locations that wef (s) n=1Mn(52 +20 \w, S+ wﬁ) )

will study in the following sections, including 2-sensor
averaging, 3-sensor averaging, and with more gener
sensor weightings.

Z Zo 22 Z1 2o Z2 Z1 2o Z2

Jihe modal shape at the sensor posipudetermines
the modal observability,(z), and the modal shape at
the actuator positionz, determines the modal

| e | e || 4 | g sensors| 4|y | controllability g¢n(z). Eg. 5 suggests that the modal
0 ‘ [1/ \ﬂ 0 0 \]jnnnmujmnnnnnﬂ properties can be modified by sensor/actuator
: Beam\ : Beam\ : Beam\ p05|t|0nlng.

(a) (b) (©)

2-Sensor Averaging

As shown in Fig. 2(a), we place 2 sensors set apart by a
distance of @, and use this average to represent the

FIGURE 2: Sensor positioning for beams: (a) 2
sensors, (b) 3 sensors, (c) many sensors.



displacement of the center point &tz. The real 1. A waveform with wavelengthdlis unobservable.
displacement & is: 2. It robustly attenuates the modal observability of
N ©) waveforms with wavelengths close td. 4

u(zo, 1) = nzl‘f”( )¥n(2) 3. ltis independent of sensor pair locatign
and the averaged output from 2 sensoi=4tz,-d) and
Z2:(ZO'|'d) is: (@) Modal gain cos(knd) as a function of wavenumber kn
(2, )=05uz, 9+ ¢ 2, ) 1

® ® 50
=055 & (@) + #n(2) = 5.& (dn(B)cos k d (7) 8

n= n= knd = 7/2
Eq. 7 neglects the exponential terms of the modal 5 5‘n T e 3
shape, since we assume we are far from the tube Wavenumber kn
boundaries. Compare Eq. 6 and Eq. 7, each mode is @ Elkn"'=pA®,?
multiplied by a modal gain of ciggl by using sensor (b) Modal gain cos(knd) as a function of resonance frequency ®p

averaging. Replacing the wavenumkgby frequency
w, from the beam dispersion equation, the modal gain
cok,d becomes

1stmode 2nd mode

Aw,
PAWy 8)

El
Using our experimental setup as an example, the

tubular beam hagpA)/(EI)=0.01. For a spacind=0.15

Gain (dB)

cosk,d = co

-40

m, the result of Eq. 8 is illustrated in Fig. 3. If we plot § [ !
. B . K 1
the modal gain as a_funct|0n of Wavenum_kgrlt is g 100 Resonance modes are in phase, which mears |
simply a cosine function. The notch zero is located at § | no sensor/actuator non-collocation problems
k.d=mm2. When we plot the modal gain as a function of . AN
resonance frequency,, the resulting plot shows that 10t 10° 10°
some resonance modes are attenuated near the notch Resonance frequency (0n (rad/s)

zero atw,=1000 rad/s. The phase stays unchanged
before the notch, and flips by 18éfter the notch when
cok,d<0. This result suggests thly adjusting the
sensor distance @ we can attenuate undesired
resonance modes without adversely affecting the sensor |
phase below the notch Furthermore, at frequencies \EI i EI/
below the cosine notch, all the resonance modes are in _
phase, which means there will be no sensor/actuator N Bam ”
non-collocation problems for these modes. hetater

FIGURE 3: 2-Sensor averaging for beams: modal
gain cok,d plotted as (a) a function &f, and (b) a
function of w,.

2d

‘ Sensor

Bode Plots of beam dynamics with 2-sensor averaging

Sensor averaging attenuates |
resonance modes

To demonstrate this cosine effect on beam dynamics, 0°}
we model the beam dynamics with an output
y()=(u(z,t)+u(z,t))/2 instead ofy(t)=u(z,t). The

resulting Bode plots is shown in Fig. 4, which includes = 10°
the response of the evanescent waveforms. The modal
gain cog.d creates an ideal band-stop filter for the .
resonance modes over a broad range of frequencies

agnitude
B
o

without adversely affecting the phase. gioop
) ) & -2001
Modal Analysis of 2-Sensor Averaging CE Sensorfactuator collocated | - Fa%eSDeeone
To further understand the behavior of sensor averaging, -300| — Sensoraveraging
we can rewrite Eq. 7 by modal analysis, and it becomes 10! 102 108
Frequency (rad/s)
a9 _=0 ez ]
=3 0 5 0 oy Leoskqdm - (9) FIGURE 4: Theoretical beam model: Solid line
f(s) n=1 oM n(S +2(, w, s+ wn) O shows a beam model with 2-sensor averaging, and

. a broad range of resonance modes are attenuated.
In summary, 2-sensor averaging method has the paghed Jine shows a beam model with collocated
following properties: sensor and actuator.



4. It is independent of beam length and boundaryContinuous-Sensor Averaging

conditions. The logical extension of the sensor averaging at 2 or 3

It eliminates possible non-collocation problems.  points is to use more sensors, as shown in Fig. 2(c).

6. Sensor averaging causes no phase lag because itHeom the previous derivation, we realize that sensor
a spatial filter, not a temporal filter. (Such spatialaveraging is a spatial filter, and is a dual to a temporal
filter concepts have also been used in structurdilter. Therefore we can adopt the theory for discrete-
control via Discrete Modal Filters [5] and time finite-impulse-response (FIR) filters and apply it

o

Distributed Sensors [6].) to sensor averaging. For example, by using 9 sensors
with the weighting of a Blackman window, the
3-Sensor Averaging resulting beam model is shown in Fig. 6. With this

The sensor averaging method can be readily extendditer, the high frequency modes become almost

to more than 2 sensors. Using 3 sensors as shown imobservable.  Resonance modes at even higher
Fig. 2(b), and taking the averaged measurement as  frequencies start to appear, with the interpretation that
a(Z, 1) =0.25U 7, d+ Q54 3, )+ Q25¢ z, } the wavelengths become so small that the waveforms

are aliased through the 9 discrete sensors.
0 J:E+ cosk,d[
P Fn(D9n(20) > . A (10)
n=.

Blackman Window

o
w

d Sensor weighting o
gives a broader notch as shown in Fig. 5. The modaf®™%] £, T
gain of 0.5(1+cdsgd) is always positive, and hence the y} DWDDD 7 EM '
180 phase flip of 2-sensor averaging will not happen in"  acuags"1 Beam v g8 I‘ I
3-sensor averaging. The notch zero is now located at BRI
knd:TE Again USing our eXperimental Setup as an , BodePlotsofbeamc‘iynamicswithcontinuous—sensoraveraging

10

example, withd=0.30 m to have the notch near 1000
rad/s gives the results shown in Fig. 5.

2

T
High frequency modes
10° are all attenuated |

107 -
The advantage of using 3 sensors is that phase remams,:
zero for all frequencies, and the notch is broader than .
for 2-sensor averaging. The disadvantage is that the : —
total sensor spacingd2will be twice as long as for the = w0l ]
two sensor case, if the notches are to be placed at tBe | i

gnitude

! R
R

Resonances modes '/’/

almost unobseryable

........ - )

same frequency. This means that the sensor array | — ———————— h
. [N r |
occupy a larger space on the workpiece. s00|| — Continuous-sensor averaging |
L (Blackman Window) ; i
2d 10* 10° 10° 10"
Sens@.m l‘]ﬁensor Frequency (rad/s)
- FIGURE 6: Theoretical beam model: Solid line
N Z - i i
actuadio L Bam shows 9-sensor averaging with a Blackman
. Bode Plots of beam dynamics with 3-sensor averaging window. Dashed line shows a collocated rhea
10 ‘ — model.
Sensor averaging attenuates
[} 2 resonance modes
S 10
=]
% - ACTUATOR AVERAGING
= Actuator averaging is the dual to sensor averaging.
10° Here, we use multiple actuators and apply the same
force to each actuator. The resulting filtering effect is
l similar to sensor averaging. Actuator averaging
D100 attenuates the modal controllability, and sensor
% U averaging attenuates the modal observability. Sensor
& 200 Modes remain averaging is easier to understand since it simply
i | =====- sensor/actuator collocated in phase b th ibrati f Actuat .
300l sensor averaging ( 3 sensors) i averages the vibration waveforms. Actuator averaging
L = .4 places actuators in a similar way such that certain
10 10 10 : .
Frequency (rad/s) resonance modes will not be excited, as can be

interpreted from the concepts of modal forces. If we
FIGURE 5: Theoretical beam model: Solid line  place one actuator atz, and apply forcd from the

shows 3-sensor averaging. Dashed line shows a actuator, the resultingth modal force can be calculated
collocated beam model. by:



N, =IOLf(z)(pn(z) dzzjoL O g)g.( ¥ dz ¢h( o3 (11) measured loop transfer function with a slow-rollup lead
compensator. Sensor averaging shows an improvement
of the gain margin within a frequency range from 700
to 1500 rad/s where the phase is below 218Dhus we

are able to stabilize the system and avoid the 1100 rad/s
f limit cycle. The modal observability becomes 18nit

N, :—((pn(zl) + (pn(zz)) = fp,(7)cosk, d (12) of phase after the cosine notch zero as predicted by the

2 at[heoretical analysis.

We then place two actuators set apart Byahd apply
the same control forceB2 to each actuator. With
actuators located aty=(zp-d) and z=(zy+d), the
averaged modal force is given by

By comparing Eq. 11 and Eq. 12; we can see th )
actuator averaging creates a modal gain ok.dos a Sensor Actuator
dual fashion to the sensor averaging. 0

Zzz
)

Similar to 3-sensor averaging, by using 3 actuators, and v usfy

assigning the force distribution #¢ atz=z andz=z, Experimental Bode Plots

andf/2 atz=z, we can also create a cosine notch filter : Sensor averaging has
without phase change. Finally, we can extend oug& | /\\ better gain margin
results to using many actuators, in dual to the multi-§ === ™N

sensor case shown in Fig. 6. =

Magn
T

Combination of Sensor/Actuator Averaging 40
In the ideal case, sensor averaging and actuator
averaging will be used together. The resulting modal
gain is the multiplication of both averaging effects. For
beams, using two sensors set apart dy é&d two 200F R
actuators set apart by the filter gain of each mode =~ Sensorfactuator collocated Modes becomj\ﬁ\\.“;
becomes cdgd{6ok.d,. The distancess andd, can 300 | T Zsensoraveragng 180° out of phase x| {
be arranged to meet the system's requirements and ' Fregiency (ads) 10°
result in a broader overall notch.

Phase (deg)

FIGURE 7: Experimental setup and Bode plots of
loop transfer function by using 2-sensor averaging.
EXPERIMENTAL RESULTS Dashed line shows the collocated sensor/actuator
In this section, we show the experimental results of experiment for comparison.
magnetic suspension of a tubular beam. Th wperiment with 3-Sensor Averagin
experimental setup is shown in Fig. 1. The details O(JE P ging

the sensor dynamics, actuator dynamics, and tha° verify the proposed idea of a 3-sensor arrangement,

. ] we use 3 sensors and 2 actuators. Specifically, the
controller design are presented in [7,8,9]. The

. sensors are placetD.15 m from each other about a
experimental results shown here focus on the

. i : enter atz=1.12 m. The two actuators are placed
suspension of a single point of the beam to demonstral :
: . closely to the sensor at the center. Fig. 8 shows the
the effectiveness of the proposed averaging methods, ;
)gaerlmental setup and the measured loop transfer

We used 4 such suspensions to successfully suspend &u

: ; . unction. Notice that the modal observability stays in
beam freely by independently controlling 4 points alongIohase after the cosine notch zero
the beam. ’

Experiment with 2-Actuator Averaging

Experiment with 2-Sensor Averaging To verify the effectiveness of the proposed actuator
We clamp the beam at both ends, support the beam .

. ; averaging, we use 1 sensor and 2 actuators to
weight by two strings, and place one actuator between

two sensors to control the beam at one poirEat12 Implement this experiment. Specifically, the sensor is

m. At first, we place sensors and the actuator in cI058IaCeOI az=1.12 m, and the actuators are placsal1/

. . —m from the sensor. Fig. 9 shows the experimental setup
proximity to simulate a collocated sensor/actuator pair, . .
and the measured loop transfer function. Notice the

We are almost able to stabilize the system loca"y’similarit between this setup and 2-sensor averagin
except there is a limit cycle vibration at 1100 rad/s. y P ging.
Experiment with Both Sensor/Actuator Averaging

) - . - {ve successfully suspend a free-free beam by 8 sensors
averaging and eliminate the limit cycle. Specifically, and 8 actuators. We apply both 2-sensor averaging and
the sensors are placed.15 m from the actuator at 2-actuator averaging to control 4 points along the beam

z=1.12 m. Fig. 7 shows the experimental setup and thﬁwdependently. The sensor averaging is designed to

We pull the sensors apart to implement senso



attenuate resonance modes in the vicinity of 160 Hzcontrol of flexible structures. This method takes the
and the actuator averaging is designed for 800 Hz. Owadvantage that the relations between resonance
experiment shows the system is robustly stable fofrequencies and wavelengths depend on structural
varying boundary conditions, including hinged, properties and can be calculated. Therefore we can

clamped, and free boundaries. place sensors and actuators based on the wavelengths of
undesired modes, and attenuate these resonance modes
SUMMARY to improve the gain margin.  Sensor averaging

This paper presents the novel results of sensaattenuates the modal observability, and actuator
averaging and actuator averaging methods for vibratioaveraging attenuates the modal controllability. This
’ . averaging method is mathematically proved and

I ugfy I experimentally verified. It creates a modal attenuation

N i l?mﬂ@l'mﬂ i 7 for undesired resonance modes without adversely

D i gl affecting the phase. The resulting modal gain is
independent of sensor/actuator pair locations, structural
lengths and boundary conditions. This method is thus

A

Experimental Bode Plots of Loop Transfer Function

.
ON

o S%ﬁg@gfﬂ;gg;as applicable to a wide range of structural control
g wr — problems.
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